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Abstract: This work compares the degradation of Mg and Mg-Ca0.3 alloy when they are exposed for
14 days to Hank’s solution at 37 ◦C. A combination of immersion test, electrochemical techniques
(PDP, EIS, EN), and surface characterization methods (SEM-EDS, XRD, and XPS) were carried out.
The pH change over time, the lower mass loss (≈20%), and the lower concentration of the released
Mg2+ ions (≈3.6 times), as well as the lower level of the surface degradation, allowed to consider the
positive effect of Ca, presenting Mg-Ca0.3 alloy with lower electrochemical activity than that of Mg.
The positive effect of Ca may be due to the formed layer characteristics on the alloy surface, which
impedes the cathodic hydrogen evolution and Mg-ions release. The electroless deposited Ag-nano-
particles (Ag-NPs) on Mg-Ca0.3 surface were characterized by SEM-EDS, XRD, UV-Vis, and contact
angle. The agar-diffusion test was used to compare the growth of Staphylococcus aureus and Escherichia
coli bacteria on Mg-Ca0.3 in the presence of Ag-NPs deposits in different size. Zeta-potential of
the bacteria was negative, with respect to pH of the Mueller-Hinton culture broth. The greater
antibacterial effect of S. aureus was attributed to its more negative zeta-potential, attracting more
released Ag+ ions.

Keywords: magnesium; Mg-Ca alloy; corrosion; Hank’s solution; silver nano-particles; UV-Vis;
bacteria zeta potential; antibacterial properties

1. Introduction

The magnesium and its alloys have attracted a lot of research interest as biodegradable,
resorbable and biocompatible materials, when used as temporary implants in physiological
media. As structural materials, they present prevalence over the non-resorbable biomateri-
als [1–7]. Mg is the lightest metal with a density of 1.738 g cm−3 which is close to the cortical
bone (1.75–2.1 g cm−3), with an elastic modulus of 45 GPa (≈20 GPa of cortical bone), its
rapidly cooled alloys can reach a strength/weight ratio of 490 kN m kg−1 [8–11], hence
it is considered as a more suitable material than the biomedical titanium alloy Ti6Al4V
(4.47 g cm−3) [12]. The released magnesium ion (Mg2+) is non-toxic and is a fundamental
for: the synthesis of proteins, activation of a variety of enzymes, regulation of activities of
the central nervous and neuromuscular systems, regulation of blood glucose level, promo-
tion of normal blood pressure, as well as playing an important role in the prevention and
treatment of disorders of the hypertension, cardiovascular diseases, and diabetes [13–15].
The Mg ion is the second most abundant intracellular divalent cation, which is assimilated
by the human body, and the average requirement is of ~375 mg per day for a human
body of approximately 70 kg of weight [16]. Unlike calcium, the clinical importance of
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which is indisputable, that of Mg is often underestimated, as an element necessary for the
incorporation of Ca into the bone [17,18]. Magnesium has been applied as a biomaterial for
cardiovascular, microsurgeries, orthopedic, and wound closures [4,19–22].

Most metals, such as iron (Fe), chromium (Cr), titanium (Ti), nickel (Ni), cobalt (Co),
tantalum (Ta), tungsten (W), niobium (Nb), and molybdenum (Mo), which are used for
the manufacture of implants, present serious problems such as release of ions during the
degradation process into the physiological solutions, as well as the formation of corrosion
products that are not tolerable (toxic) for the body even in minute quantities [23]. Therefore,
because of the many advantages over non-resorbable biomaterials, Mg and its alloys are
potential materials for the design of new temporary orthopedic devices, providing mechan-
ical properties like those of human bone, maintaining mechanical integrity on a scale of 12
to 18 weeks, while the bone tissue heals [3,24–26]. Moreover, they have stimulating effects
on the growth of new bone tissue, because magnesium ions (Mg2+) exhibit a strong affinity
to bind with phosphate ions present in the human body, influencing the mineralization
of bone tissue through the formation of hydroxyapatite [Ca10(PO4)6(OH)2], or possible
similar compounds, which can inhibit the corrosion process [27–31]. Nowadays there is a
great demand for orthopedic implants with an increase in 2020 of ~116 billion dollars in
the stock market [23,24,31–33].

In aqueous media, because of the very negative redox potential of Mg (−2.38 VSHE),
its anodic dissolution (Equation (1)) is accompanied by the main cathodic reaction of
hydrogen evolution over a wide pH range [25–39]. The hydrogen volume measurement is
not a reliable method for the corrosion process monitoring, because the oxygen reduction
(Equation (2)) and the water reduction (Equation (3)) may also occur as secondary cathodic
reactions on the Mg surface [40–42]. Different microstructural regions, as intermetallic
phases and impurity particles rich in transition metals (Fe, Ni or Cu), are potential cathodic
sites for these reduction reactions [39,40].

Mg + 2H2O→ Mg(OH)2 + H2 ↑ (1)

O2 + 2H2O + 4e− → 4OH− (2)

2H2O + 2e− → H2 + 2OH− (3)

In physiological solutions composed of a high content of NaCl (up to 3.5%), the Cl−

ions penetrate the pores of the poorly soluble (0.009 g L−1) corrosion product of Mg(OH)2,
causing its partial transformation to highly soluble MgCl2 (54.3 g L−1) [3,20,43]:

Mg(OH)2 + 2Cl− → MgCl2 + 2OH− → Mg2+ + 2Cl− (4)

On the other hand, the biodegradation mechanism of Mg and its alloys depends
strongly on the ionic composition of the surrounding solutions used for testing, whose
corrosivity may change the corrosion behavior [44]. A mathematical method has been
reported to predict the biodegradable corrosion mechanism and properties of commercially
pure Mg-based implants in a simulated environment [45].

The mainly disadvantages that Mg may present in physiological media are: anticipated
loss of mechanical integrity (implant failure); H2 gas generated as a byproduct of corrosion
(affecting the healing process); alkalinization at the surface interface (Equation (4)), which
accelerates the process of Mg(OH)2 corrosion product formation and disorder in the
physiological reactions that depend on the pH [46–48]. The recent advancement in reducing
the rapid degradation of Mg implants is linked with the introduction of alloying elements.
The metal Ca (1.55 g cm−3) was chosen as it is the major component in the human bones,
as a hydroxyapatite complex [Ca10(PO4)6(OH)2], which provides the rigidity and stability
of the bone, as well as, the ions of Ca are essential for the chemical signals of cells [48,49].
In a solid solution its percentage can reach up to 1.34 wt.% according to the binary phase
diagrams of Mg-Ca [28,50]. It has been reported that the addition of Ca in Mg alloys
improves their mechanical properties and diminishes their corrosion activity [51,52]. Mg-
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Ca alloys, as a class of novel biodegradable magnesium alloys, have been recommended in
the context of medical implants [53], with the advantage of a density like that of human
bone [2,54].

The microstructure of Mg-Ca alloys systems includes α-Mg (hexagonal crystalline
structure) and Mg2Ca phase, in which crystalline cell presents double parameter values
(a = 0.623, c = 0.1012) compared to those of Mg [55–58]. The standard electrode potential of
Ca is more negative (−2.87 VSHE) than that of Mg and it may be assumed that Ca2+ will be
released, originating from the Mg2Ca particles, considered as an anodic active [54,59–63].
However, reports suggest that in 1 M Mg(NO3)2 solution these particles present a less
negative potential value (−1.54 VSCE) and therefore, they were considered as cathodic ac-
tive [64,65]. In the literature, there are controversial results for the electrochemical behavior
of the Mg2Ca intermetallic particles present in the matrix of Mg-Ca alloys and there is
not a clear justification for their biodegradation mechanism [14,24,33,66–68]. It has been
noted that the electrochemical activity of Mg2Ca particles needs to be investigated with
precision to determine their effect on the biodegradation process of Mg-Ca implants [69–71].
Reported research concluded that the addition of a small amount of Ca (up to 2 wt.%)
reduced the degradation of Mg, but a further increase of the Ca content led to an increased
rate [61,70]. An interesting biological characteristic of the Mg-Ca alloys is that to provide a
possible cell adhesion (osteoconductivity) and to stimulate the cell growth on the implant
surface [70].

One approach for a significant decrease of the corrosion degradation rate has been
the modification of the Mg-Ca0.8 surface by wollastonite (CaSiO3) and β-tricalcium phos-
phate [Ca3(PO4)2] micro-arc coatings [72,73]. Reported studies compare the degradation
behavior of Mg-Ca alloys (0.3, 0.6, and 0.9 %Ca) under physiological conditions, such
as the culture medium DMEM glutamax + 10% FBS-Fetal serum bovine + 1% penicillin
streptomycin) [74–76]. The average grain size has been determined by optical microcopy
and reported as: 18.6 ± 1.2 µm (Mg-Ca0.3), 17.6 ± 1.9 µm (Mg-Ca0.6), and 20.5 ± 1.2 µm
(Mg-Ca0.9). The best corrosion behavior was showed by Mg-0.3Ca with a mean degra-
dation depth (MDD) value of 0.392 ± 0.08 µm. The Ca content increases the amount of
the secondary phase Mg2Ca at the grain boundaries, intensifying the degradation rate in
Mg-Ca alloys [74]. Other reports indicate that the extruded Mg-Ca0.8 alloy maintained
more than 50% of the initial volume after being used for six months as a tibiae implant in
rabbits [77].

The new generation of biomaterials combines bioactivity and biodegradability of
their surfaces. The increasing fight against bacterial infections during the surgery requires
the development of medical devices and materials with antimicrobial properties [78].
The World Health Organization reports that every four years approximately 350 million
illnesses and 190,000 deaths are caused by pathogens that proliferate on the surfaces of
medical tools [79]. The bacterial proliferation and its surface adhesion on solids are crucial,
caused mainly by the interaction between the solid surface potential (electric charge) and
the zeta potential charge of the bacteria cellular surface [80], in an addition to other factors,
such as pH of the solution and its chemical composition, the hydrophobicity of the solid
surface and ionic strength.

Currently there is a consensus that indicates the importance of the zeta potential and
the hydrophobicity of the substrate as physicochemical parameters that control bacterial
adhesion on the solid surfaces, governed by van der Waals forces and electrostatic interac-
tions through the double layer of substrate-electrolyte [81–90]. Results demonstrated an
antibacterial effect of Mg on three common aerobic bacterial organisms, as a result of the
Mg2+ concentration increase accompanied by an increase of pH of the media [91]. Reported
studies suggest that porous coatings may have a strong effect on the antibacterial properties
of Mg-based alloys used as implants in orthopedics, also slowing their biodegradation
rate [92].

Several studies have revealed the antimicrobial efficiency of Ag-nanoparticles (NPs),
although the mechanism of their effect is not yet fully understood [93–96]. It was suggested
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that Ag-NPs initially bind to the bacteria cell, altering its permeability and respiration,
followed by penetration into and the intracellular release of Ag-ions [97]. The silver exhibits
a significant antibacterial action in the dark, where there is no light (within the human body),
making this metal an attractive material for biomedical applications [98]. The introduced
Ag+ ions within bacteria can affect the production of various enzymes, interrupting their
respiratory chain, generating stress in the reactive oxygen species (ROS), as also inhibiting
cell signaling and protein synthesis [99–101]. The antimicrobial mechanism of Ag-NPs
has been explained by the formation of Ag-free radicals, induced in the bacteria cells
through perforation of its membrane, resulting in their subsequent death [93,95]. Thus, the
deposition of Ag-NPs on Mg-alloys surface could be one approach to provide antimicrobial
protection for the implantable medical device surface, to combat associated infections.

The aim of this work is to provide more detailed information on the effect of Ca
on the electrochemical degradation process of Mg-Ca0.3 alloy, when exposed to Hank´s
physiological solution (at 37 ◦C) for up to 14 days, compared with that of pure Mg. The
change of surface morphology and composition was characterized by SEM-EDS and XPS
techniques. The pH of the Hank´s solution and concentration of the released Mg-ions
were monitored. Mass losses, potentiodynamic polarization (PDP) curves, EIS diagrams,
fluctuations of corrosion current and potential (EN), revealed an additional information.
Ag-NPs of different size, electroless deposited on Mg-Ca0.3 surface, were characterized by
means of the UV-Vis spectroscopy, SEM-EDS, XRD and the contact angle test. The bacteria
S. aureus (Staphylococcus aureus) and E. coli (Escherichia coli) were selected as models of
Gram-positive and Gram-negative bacteria for testing the antibacterial properties of the
Ag-NPs. The ability to prevent bacteria growth was proved by the agar disk diffusion
method (Kirby–Bauer test).

2. Materials and Methods
2.1. Samples and Solution Preparation

Mg (99.9 wt.%) and Mg-Ca alloy (Ca 0.3 wt.% and the balance Mg) were manufactured
by an extrusion process and supplied by Helmholtz-Zentrum Hereon, Institute of Materials
and Process Design (Geesthacht, Germany) as cylindrical bars (diameter = 1 cm). The
nominal composition (wt.%) is presented in Table 1, according to the manufacturer. The
tested materials were cut into a 3-mm thick discs; some of them were used for the immersion
test, while others were prepared as electrodes for electrochemical experiments. All samples
were abraded with SiC paper to 4000 grit, using ethanol as a lubricant, and then sonicated
in ethanol for 5 min and dried in air at room temperature.

Table 1. Nominal composition of the extruded Mg-Ca0.3 alloy.

Alloy
Chemical Composition (wt.%)

Al Cu Fe Ni Zn Ca Mg

Mg-Ca0.3 0.016 0.0019 0.0019 0.0014 0.0060 0.23 Bal.

Hank’s physiological solution was prepared with the following analytical grade
reagents: NaCl 8.0 g L−1, glucose 1.0 g L−1, NaHCO3 0.35 g L−1, and KCl 0.30 g L−1; in a
low content: KH2PO4, MgSO4·7H2O, MgCl2·6H2O, CaCl2, and ultrapure deionized water
(18.2 MΩ·cm) [102–104]. The initial pH of the newly formed solution was 7.2.

2.2. Immersion Test and Surface Characterization

The Mg and the Mg-Ca0.3 alloy samples (in triplicate) were submerged in 20 mL of
Hank’s physiological solution at 37 ◦C, in independent containers (with a daily renewal
of electrolyte) for 14 days, according to the ISO 16428 [102] and ASTM G31-12a [105]
standards. The residual solutions were stored to measure their pH by a pH meter and
the concentration of the released Mg2+ ions by photometry (HI83200, Hanna Instruments,
Woonsocket, RI, USA). At the end of each exposure period, the samples were removed,
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rinsed with deionized water, and dried in air at room temperature. To evaluate the mass
loss and the corrosion damage on the surface after each exposure period, the formed layer
of products was chemically removed, according to the standards ASTM G1-03 [106], using
the solution of 200 g L−1 CrO3, 10 g L−1 AgNO3, and 20 g L−1 Ba(NO3)2. The values of
initial mass w0 and final mass w1 were measured by an analytical balance (VE-204, Velab,
CDMX, México) and then the mass loss was calculated (∆m = w1 − w0).

The morphology and composition of the layers formed on the Mg and Mg-Ca0.3
surfaces, before and after exposure to Hank’s physiological solution, were characterized
by: SEM-EDS (SEM-EDS, XL-30 ESEM-JEOL JSM-7600F, JEOL Ltd., Tokyo, Japan) and XPS
(K-Alpha Surface Analyzer, Thermo Scientific, Waltham, MA, USA), after sputtering the
specimens’ surface with a scanning argon-ion during 15 s. The binding energies of all XPS
spectra were normalized to the C1s peak at 284.8 eV. The crystalline phases of the formed
products were identified by X-ray diffraction technique (Siemens, D-500, Munich, Germany)
with Bragg-Brentano geometry, 25◦ to 40◦ 2θ angle, radiation Cukα and 34 kV/25 mA.

2.3. Electrochemical Characterization

Several electrochemical methods were carried out to study the corrosion process of
Mg and Mg-Ca0.3 in Hank’s solution: registration of the free corrosion potential (open
circuit potential, OCP), potentiodynamic polarization curves (PDP), and electrochemical
impedance spectroscopy (EIS). Mg and Mg-Ca0.3 samples were elaborated as working
electrodes (0.78 cm2) in a typical three-electrode cell configuration, inside a Faraday cage.
A Pt mesh (Alfa Aesar, Ward Hill, MA, USA) was used as an auxiliary electrode and
a saturated calomel electrode (SCE) as a reference electrode (SCE, Gamry Instruments,
Philadelphia, PA, USA). The electrodes were connected to a potentiostat/galvanostat/ZRA
Interface-1000E (Gamry Instruments, Philadelphia, PA, USA). The PDP curves (vs. OCP)
were recorded at a scanning rate of 10 mV s−1, in a potential range from −1 V to +1 V.
The EIS spectra were acquired for 24 h of immersion in Hank’s solution, employing a
perturbation amplitude of ±5 mV vs. OCP (1 h to stabilize), in a frequency interval of
100 kHz to 10 mHz. The obtained EIS data were analyzed with the Gamry Echem Analyst®

software (Gamry Instruments, version 7.0.1, Philadelphia, PA, USA).
The spontaneous corrosion current fluctuations considered as electrochemical noise

(EN) were associated with the corrosion phenomena and were measured according to
ASTM G199-09 [107], employing two identical working electrodes and SCE reference
electrode, all connected to the potentiostat in zero resistance ammeter mode (ZRA). The
data were examined with Electrochemical Signal Analyzer® (Gamry Instruments, V.7.0.1,
Philadelphia, PA, USA), then transformed to the frequency domain by fast Fourier trans-
form (FFT) in order to analyze their power spectral density (PSD) [108,109]. The values
of the β-slope (an exponent of PSD plots) were used to characterize the dynamics of the
corrosion process. All experiments were carried out at room temperature at 21 ◦C.

2.4. Electroless Deposition of Ag-NPs on Mg-Ca0.3 Surface and Characterization

The Ag-NPs were electroless deposited on Mg-Ca0.3 surface (0.78 cm2), by immersion
(t = 1 min, 3 min and 6 min) in solutions of AgNO3 (10−3 M and 10−2 M) and ultrapure
deionized water (18.2 MΩ·cm) at 21 ◦C. Due to the very negative potential of metallic Mg,
the silver ions are spontaneously reduced during the typical process known as electroless
deposition (ELD) [110,111]. The Ag-NPs were characterized by UV-Vis technique (AVASpec
2048, AVANTES, Eerbeek, The Netherlands), SEM-EDS, XRD, and contact angle test (Drop
Shape Analyzer DSA25, KRÜSS, Hamburg, Germany).

2.5. Characterization of Antibacterial Properties of Ag-NPs Deposits on Mg-Ca0.3 Surface
2.5.1. Zeta Potential Measurement of Bacteria

The zeta potential (NANO ZEN 3600, Malvern Instruments Ltd., Worcestershire, UK)
of E. coli and S. aureus bacteria in Muller-Hinton culture medium (at 21.5 ◦C) was measured
at different pH values by auto-titration (MPT-2, Malvern Instruments Ltd., Worcestershire,
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UK), to better understand their interactions with sample surfaces. The titrants were
solutions of 0.1 and 0.5 mol L−1 of NaOH or 0.5 mol L−1 of HCl. Zeta potential values are
the average of triplicate measurements for each pH value.

2.5.2. Agar Disk Diffusion Antibacterial Test (Kirby–Bauer Method)

The antibacterial effect of Ag-NPs was evaluated with the Gram-positive bacteria
S. aureus ATCC 6538 and Gram-negative bacteria E. coli ATCC 25922. Nutrient broth and
Mueller-Hinton agar were used as the non-selective medium that promote bacterial growth.
The antibacterial agar disk-diffusion method (Kirby–Bauer method) [112–114] was carried
out, which consists of initial inoculation of a bacteria spread layer (100 µm) on the agar
disk. The suspensions with bacteria were adjusted by optical density (spectrophotometry)
at 625 nm, in order to match the turbidity equivalent to the 0.5 McFarland standard
(1.5 × 108 CFU mL−1) and adjusted to 1.5 × 10−6 CFU mL−1 by serial dilutions. All
samples were sterilized with ethyl alcohol and placed in a box with ultraviolet light for 1 h,
as well as all glassware were sterilized in an autoclave at 121 ◦C and 15 psi (for 20 min).
The samples of the Mg-Ca0.3 alloy without and with deposit of Ag-NPs, were placed
on the agar disk and incubated at 37 ◦C for 24 h. The diameter of the inhibition halo
around the alloys, where the bacteria did not grow, was then measured and compared. The
antimicrobial tests were performed inside an incubator, in the dark, and the results are the
average of three separate tests corresponding to different days.

3. Results and Discussion
3.1. Surface Characterization of Mg and Mg-Ca0.3

Figure 1 compares SEM images (2000×) of freshly polished reference surfaces of Mg
(Figure 1A) and Mg-Ca0.3 (Figure 1B) samples.

Figure 1. SEM images (2000×) of the Mg (A) and Mg-Ca0.3 (B) reference surfaces. (C) EDS analysis
of sites marked on the SEM images and the suggested compounds. (D) XRD spectra of Mg-Ca0.3
alloy surface and (E) zoom of 2θ region, presenting Mg2Ca particles.

The EDS analysis of sites (labeled as 1, 2, 3, and 4) is presented in Figure 1C, as
also the suggested compounds of MgO (site 3) and Mg2Ca particles (site 4), reported by
metallurgical studies [61,115–117]. The XRD spectra of the Mg-Ca0.3 surface is shown in
Figure 1D,E, presenting the α-Mg matrix (HCP Mg-JCPDS #350821) and the intermetallic
phase of Mg2Ca [61,62]. MgO was not detected and according to study [118], this phase
appears as amorphous under environmental conditions.

3.2. Test Solution Monitoring and Mass Loss Measurement

Figure 2A shows the change in time of the Hank’s solution pH (with renewal every
24 h), during the exposure of Mg and Mg-Ca0.3 samples up to 14 days, as well as the
concentration of the released Mg2+ ions and the mass loss ∆m of the samples are presented
in Figure 2B. The pH of Hank’s solution showed increasing and decreasing tendencies,



Metals 2021, 11, 1357 7 of 24

which were influenced by the formation of OH− ions (Equations (2) and (3)) and the
evolution of H2 (Equation (1)) during the corrosion process. Consequently, when the
pH solution was shifted to more alkaline values, the precipitation of Mg(OH)2 corrosion
product was favored. On the other hand, the glucose [CH2OH(CHOH)4CHO], which
is a part of Hank’s solution (1.00 g L−1), can be rapidly transformed into gluconic acid
[CH2OH(CHOH)4COOH], which acidifies the electrolyte and causes partial destruction of
the Mg(OH)2 film [118]. It has been reported that the gluconic acid promotes the growth of
the hydroxyapatite layer, due to the chelation reaction with Ca2+ ions [117]. However, the
influence of glucose has not yet been clarified. Previous works [119,120] suggested that the
lowering in the pH may greatly affect the Mg degradation process under the conditions of
physiological environments.

Figure 2. Changes in times of: (A) Hank’s solution pH up to 14 days during the exposure of Mg and
Mg-Ca0.3 samples up to 14 days; (B) concentration of the released Mg2+ ions and measured mass
loss (∆m) at 7 and 14 days. (Electrolyte renewal every 24 h).

At the end of the experiment (14 days), the pH of Hank´s solution reached alkaline
value of ~8.3 for Mg samples, while that of Mg-Ca0.3 the value decreased to pH ~6.3
(Figure 2A). The values of mass loss (∆m) and concentration of the released Mg2+ ions
(Figure 2B) were a consequence of the change in pH over time. Therefore, after 14 days of
immersion in Hank’s solution, the mass loss of Mg-Ca0.3 (3.76 mg cm−2) was ~20% lower
than that of the Mg samples (4.66 mg cm−2). The concentration of released Mg2+ ions was
3.65 times lower for the Mg-Ca0.3 alloy than that for Mg. It can be suggested that a fraction
of the mass loss and concentration of released Mg2+ ions are the result of attacks by Cl−

ions and formation of soluble MgCl2 (Equations (4) and (5)). However, it may also consider
the chelating effect of gluconic acid, forming compounds with the Mg2+ ion, contributing
to the reduction of MgCl2 generation [121]. The pH change over time, the ∆m, and the
concentration of the released Mg2+ ions allowed us to consider the positive effect of Ca in
the Mg-Ca0.3 alloy, presenting lower electrochemical activity than that of Mg.

3.3. Surface Characterization after Exposure to Hank’s Solution
3.3.1. SEM-EDS Analysis

After exposure to Hank’s solution for 14 days, the Mg (Figure 3A) and Mg-Ca0.3
(Figure 3B) surfaces showed cracked layers. These cracks can connect the α-Mg with
Hank’s solution, improving the release of Mg2+ ions and the evolution of the H2 bubble.
The pressure of H2 bubbles may cause cracks or fractures in the layers.
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Figure 3. SEM images of the morphological surfaces changes after immersion in Hank´s solution
for 14 days: (A) Mg and (B) Mg-Ca0.3 (2000×); cross-sections (500×): (C) Mg and (D) Mg-Ca0.3;
surfaces after the removal of layers (50×): (E) Mg and (F) Mg-Ca0.3.

According to the EDS analysis, the main elements on Mg-Ca0.3 alloy surfaces are Mg,
O, and Ca, and Cu, Al, Fe, Ni, and Zn (Table 1) appear in small amounts (below 1% wt.),
which may present cathodic activity, being effective sites for hydrogen evolution [122].
After the removal of the formed layers, the cross-sectional images (Figure 3C,D) revealed
that the corrosion attacks have been less aggressive in depth, ~5.5 times in Mg-Ca0.3
surface (Figure 3D) than those in Mg (Figure 3C). It is also evident that the localized attacks
have been more pronounced on the Mg surface (Figure 3E) than those on the Mg-Ca0.3
surface (Figure 3F). The EDS analysis (Figure 4) indicated that the layers formed after
immersion in Hank’s solution for 14 days contained a very low content of Na and Cl. The
presence of P element, could be considered as a part of the formed Mg3(PO4)2 and as well
as participating in the compound Ca10(PO4)6(OH)2 (hydroxyapatite), originated from the
Hank’s solution [119,120].

Figure 4. EDS analysis of corresponding sites marked in the SEM images (Figure 3A,B,E,F) and suggested compounds,
formed before and after removal of the surface layers.

The intermetallic Mg2Ca particles appeared on the surface of Mg-Ca0.3 (Figure 3F,
sites 9 and 10) even after the removal of the formed layers, suggesting their role as local
cathodic sites. The obtained results allow concluding the positive effect of Ca, as a part of
the Mg-Ca0.3 alloy, which contributed to its lower level of degradation.
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3.3.2. XPS Analysis

The XPS spectrum analysis (Figure 5) was performed as a complementary information,
in order to correlate with the EDS elemental composition analysis of the layers grown on
the Mg and Mg-Ca0.3 surfaces after exposure for 14 days to Hank’s physiological solution.
The high-resolution spectra revealed the presence of Mg, Ca, O, C, P, Cl, and Na elements.
The main peaks of Mg2p (at 50.28 eV) and O1s (at 531.48 eV) were associated with Mg(OH)2
compound [123–125]. The secondary peak of Mg2p (at 44.98 eV), together with the peaks
of P2p (at 133.43 eV) and Ca2p (at 347.51 and 351.18 eV) were attributed to Mg3(PO4)2
and calcium phosphate [Ca10(PO4)6(OH)2] compounds. The peaks C1s and O1s were
considered as a part of CaCO3, originated from the Hank’s solution [125–128].

Figure 5. XPS spectra of the layers grown on (A) Mg and (B) Mg-Ca0.3 surfaces after exposure to Hank’s solution for
14 days (at 37 ◦C).

The intensity level of the XPS peaks, presenting the spectra of Mg-Ca0.3 surfaces, was
lower than that of the peaks of XPS spectra of the Mg surface, suggesting a difference in the
formed layers after exposure for 14 days to Hank´s solution. The decrease in content of the
compounds formed on the Mg and Mg-Ca0.3 is as follows: Ca10(PO4)6(OH)2 > Mg3(PO4)2
> Mg(OH)2 > CaCO3. Due to the low solubility of Mg3(PO4)2 (1.64 × 10−3 g L−1) and
Ca10(PO4)6(OH)2 (4.38 × 10−2 g L−1). It is considered that these compounds appeared,
since they are thermodynamically more stable than other types of phosphates in aqueous
solutions; these compounds are suitable for the regeneration of human bone [129].

3.4. Electrochemical Measurements
3.4.1. Potentiodynamic Polarization Curves (PDP)

Figure 6 shows the PDP curves after 24 h of immersion in Hank’s solution. The
cathodic branches have a kinetics controlled by the activation process, while the anodic
branches tended to reach a limiting current value related to a barrier effect of the formed
corrosion layers on the Mg and Mg-Ca0.3 surfaces. The followed strong increase in
the anodic current was attributed to the chloride ions, which transformed the insoluble
compound of Mg(OH)2 to soluble MgCl2. The tendency to the next limiting current (at a
higher anodic polarization) could be related to the formation of phosphate and carbonate
salts on the surfaces, which may act as protective layers, reducing the speed of the anodic
process [130–132].
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Figure 6. Potentiodynamic polarization (PDP) curves of Mg and Mg-Ca0.3 after 24 h of immersion in
Hank’s solution.

Both limiting anodic current values of Mg-Ca0.3, presenting two surface states, seem
to be lower than those of Mg, as well also the cathodic current values. The corrosion
potential and current density (jcorr) were not calculated by Tafel extrapolation because the
presence of precise linear Tafel regions in the PDP curves was not considered. According
to the procedure of ASTM G102-89 [133], the value of the polarization resistance (Rp) was
estimated from the anodic branch at a polarization of ±5 mV, as well as the respective
value of corrosion current density jcorr (∆E/∆I). The “apparent” Tafel constant (B’) was
calculated through the Stern–Geary relation:

jcorr =
B′
Rp

(5)

Table 2 presents the values of Rp, “apparent” Tafel constant (B’) and the calculated
mass loss rate (MR) [133]:

MR = K·jcorr·EW (6)

where K is a constant (8.954 × 10−3), and EW is the approximate equivalent weight of the
samples (~11.17 for Mg).

Table 2. Values of Rp, jcorr, B’, and MR for Mg and Mg-Ca0.3 in Hank’s solution (at 27 ◦C), estimated
by PDP curves.

Sample Rp (kΩ cm2) B’ (mV) jcorr (µA cm−2) MR (g m−2 d−1)

Mg 31.57 38.52 1.22 0.12
Mg-Ca0.3 32.81 33.79 1.03 0.10

The higher value of Mg-Ca0.3 polarization resistance (Rp) to the corrosion process,
compared to that of Mg (Table 2) has led to lower values of jcorr and MR. These facts suggest
the positive effect of Ca as a part of the Mg-alloy, although of a very low content (0.3 wt.%).

3.4.2. Electrochemical Noise (EN) Analysis

The spontaneous fluctuations of the current density of Mg and Mg-Ca0.3 at low
amplidute, during 24 h of exposure to Hank’s solution, are presented in Figure 7. They may
be considered as an electrochemical noise (EN), resulting in variations in the kinetics of the
electrochemical corrosion process [134–136]. The EN resistance (Rn) values were estimated,
suggesting as similar to the resistance to polarization (Rp) and inversely proportional to
the corrosion rate (controlled by charge transfer) [136–138]. The Rn value of Mg-Ca0.3 was
3.42 kΩ cm2, which is 5.5 times greater than that of Mg (0.62 kΩ cm2), indicating that the
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product layer formed on Mg-Ca0.3 is more protective against corrosion after 24 h explosion
in Hank’s physiological solution at 21 ◦C.

Figure 7. Corrosion current density fluctuations at OCP of (A) Mg and (B) Mg-Ca0.3 during 24 h of
exposure to Hank’s solution.

The pitting index (PI) was calculated (Equation (7)) to compare the localized corrosion
susceptibility of the samples:

PI = σi·iRNC
−1 (7)

where σi and iRNC are the standard deviation and the root mean square of current noise,
respectively.

The PI was 0.06 for Mg-Ca0.3 and 0.11 for Mg, both materials do not present localized
corrosion (<0.06), according to ASTM G199-09 [107]. However, the cross-sectional SEM
images (Figure 3C,D) and those of the surfaces after the formed layer removal (Figure 3E,F),
showed that the corrosion attacks are more localized on the surface of the Mg and more
uniform on Mg-Ca0.3. The EN data were analyzed in the domain of time and frequency,
in order to characterize the dynamin of the corrosion process. The Figure 8 shows the
power spectral density (PDS) of the corrosion current as a function of low frequencies
(10−2 Hz–1 Hz), obtained by the fast Fourier transform (FFT) method. The extracted
exponent (β slope) values were 0.36 for Mg and 0.32 for Mg-Ca0.3, which correspond to the
fractional Gaussian noise (fGn: −1 < β < 1), classifying the corrosion process as persistent
processes [139–141].

Figure 8. PSD of corrosion current density fluctuations vs. frequency in bi-logarithmic scale for Mg
(A) and Mg-Ca0.3 alloy (B) after 24 h of immersion in Hank’s solution.

3.4.3. Electrochemical Impedance Spectroscopy (EIS)

Figure 9A shows the Nyquist diagrams for Mg and Mg-Ca0.3 exposed to Hank’s
physiological solution for 24 h at 21 ◦C, as well as the equivalent electrical circuit used to fit
the experimental EIS data (Figure 9B) [142]. The Bode diagrams are presented in Figure 9C.
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Figure 9. (A) Nyquist diagrams of Mg and Mg-Ca0.3 exposed for 24 h to Hank’s physiological
solution at 21 ◦C; (B) equivalent circuits used to fit experimental EIS spectra; and (C) Bode diagrams.

The Mg Nyquist diagram reveals two capacitive loops, representing the two surface
states during the anodic process of degradation of Mg in Hank’s solution (see Figure 6);
for Mg-Ca0.3 the effect of two loops is not sufficiently observable. According to the
literature, the capacitive loop at high frequencies represents the charge transfer resistance
(Rt) [143–150], while the second loop at medium frequencies can be associated with the
mass transport process, including the Mg2+ release [144,147,148,150]. The Bode diagrams
are congruent with the Nyquist diagrams and help to appreciate the existence of two
interfaces.

The suggested circuit includes as main components: the solution resistance (Rs), a
constant phase element (CPE1) and a resistor (R1), both associated with the double layer
and charge transfer resistor (substrate/electrolyte interface). The (CPE2) and the resistance
(R2) are characteristic of the corrosion process at the metal surface through the corrosion
layer and the release of Mg2+ ions. The constant phase elements (CPE) have been used
instead of a capacitance, due to the possible microscopic roughness or the heterogeneities of
the Mg and Mg-Ca0.3 surfaces [143–145]. Table 3 presents the estimated fitted parameters
of the circuit elements from the EIS diagrams, in which fitting is of 10−4.

Table 3. Fitting parameters estimated from EIS data of Mg and Mg-Ca0.3 exposed for 24 h to Hank’s
physiological solution at 21 ◦C.

Circuit Elements Mg Mg-Ca0.3

Rs (Ω cm2) 30.28 ± 0.41 26.03 ± 0.59
CPE1 (µS sn cm−2) 0.34 ± 0.09 5.92 ± 0.84

n1 0.79 ± 0.02 0.74 ± 0.01
R1 (Ω cm2) 279.2 ± 9.10 580.90 ± 53.70

CPE2 (µsn/Ω cm2) 22.48 ± 0.52 6.04 ± 0.76
n2 0.71 ± 0.04 0.85 ± 0.01

R2 (kΩ cm2) 12.62 ± 0.12 40.80 ± 0.42
Rp (kΩ cm2) 12.90 41.38
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The values of the total polarization resistance (Rp) were calculated (Equation (8)) and
they indicate (Table 3) that the Rp for Mg-Ca0.3 was ~three times higher than that of Mg,
suggesting that the formed layer in the presence of Ca was more protective.

Rp = R1 + R2 (8)

3.5. Characterization of Ag-Nanoparticles (NPs) on the Surface of Mg-Ca0.3
3.5.1. UV-Vis Spectrophotometry and SEM Micrograph

The electroless deposited (ELD) Ag-NPs (zero-valent Ag) on Mg-Ca0.3 were initially
characterized by the time evolution of the UV-Vis absorption spectra (Figure 10A) and
change in color of the MgCa0.3 surface (Figure 10B).

Figure 10. ELD of Ag-nanoparticles on Mg-Ca0.3 surface form 10−3 M and 10−2 M AgNO3 solutions
at different times: (A) UV-Vis absorption spectra (evolution over time), (B) representative circular
images, (C) SEM micrographs of selected areas (5000×), and (D) Ag-NPs and agglomerate size
distribution on the Mg-Ca0.3 surface.

The absorption band with a maximum at around 290 nm that decreases up to 320 nm
(Figure 10A) is attributed to electronic interband transition between electrons in s-orbitals
and p-empty orbitals of metallic silver [146,147]. The minimum observed at 320 nm
in all samples is related to the well-known decrease of the imaginary part (k) of the
refraction index characteristic of metallic silver [148]. This wavelength outlines the limits
between interband transition, from 320 nm toward lower wavelengths. A maximum of the
adsorbance near to 400 nm is a result of the electron density resonance phenomena (surface
plasmon resonant band). The bandwidth, asymmetry, and position depend on the Ag-NPs
particle size and size distribution. The interaction of the particles with the substrate also
affects the optical response due to the localization of the plasmon fluctuations (localized
surface plasmon resonance, LSPR).

According to study [149], the Ag-NPs may exhibit various colors depending on their
localized surface plasmon resonance (LSPR) and consequently they can represent different
optical states (black, magenta, cyan, yellow, silver mirror, and transparent). The change in
color is influenced by the LSPR band, when the Ag-NPs show difference in morphology,
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size, and shape. The SEM images (Figure 10C) reveal that the Ag-NPs are well-isolated and
in a very low size (Figure 10D) by using the electrolyte of low concentration of Ag+ (10−3 M,
1 min), because of the slow growth rate. However, at one order higher concentration of
Ag+ (10−2 M, 1 min), the better connection between Ag-particles leads to the formation
of agglomerates, as the diffusion of the Ag-ions is more facilitated to the substrate. It
is considered that this effect of short-range interaction induces the LSPR band in the
long wavelength region [146,147,149], that is why the photograph of the surface becomes
darker at higher concentration of Ag-NPS agglomerates. The Ag-NPs and agglomerate
size distribution on the Mg-Ca03 surface is presented in Figure 10D.

The Figure 11 presents SEM images (10,000×) and EDS elemental analysis, which
compare the surface of Mg-Ca0.3 before (Figure 11A) and after the deposit of Ag-NPs
(10−3 M, t = 3 min) (Figure 11B). EDS analysis suggests that the Ag-NPs are deposited in
the vicinity of the intermetallic phases of Mg2Ca (Figure 11B).

Figure 11. SEM images (10,000×) of Mg-Ca0.3 surface: (A) before and (B) after electroless deposited
Ag-NPs and agglomerates by 10−3 M AgNO3 (t = 3 min, at 21 ◦C) and (C) EDS analysis on marked
sites.

3.5.2. X-ray Diffraction (XRD)

In order to characterize the Ag-NPs a complementary analysis by XRD was carried out
(Figure 12). The spectra indicated the pattern of the hexagonal Mg-metal matrix and the
presence of nanostructured Ag crystals of FCC cell structure. The calculated average size of
Ag (T) nanocrystallites was 10 nm, according to the Debye-Scherrer’s equation [150–152]:

T =
K·λ

B· cos(θB)
(9)

where K is a dimensionless factor (0.9); λ is the wavelength of the X-rays (1.5406 Å); B is
the mean width of the peak at a half of the height (fhwm), considered for the calculation;
and θB is the angle corresponding to the maximum of the reflection.

3.5.3. Contact Angle and Surface Free Energy (SFE)

The contact angle (Figure 13A) was measured following the ASTM D 5725-99 method-
ology for the drop shape analysis [153]. The surface free energy (SFE) was calculated based
on the contact angle value (Figure 13B). The results revealed that the contact angle depends
on the concentration (molarity) of the solution for Ag-NPs electroless deposition, as well
as, on the time for deposition (quantity of Ag-NPs on the Mg-Ca0.3 alloy, Figure 10C). The
angle value was greater than 120◦ on the B surfaces (substrate Mg-Ca0.3), as well as on all
Ag-NPs deposits formed by 10−3 M and 10−2 M AgNO3, at different times. Therefore, these
surfaces are considered as superhydrophobic [154–157]. According to studies [158–164],
the superhydrophobic surfaces may exhibit an antibacterial behavior, as also a reduction of
a fluidic drag and an anticorrosive protection for metal surfaces.
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Figure 12. XRD spectra of Ag-NPs deposited on Mg-Ca0.3 surface (from 10−3 M, t = 6 min). The
column bar graphs correspond to HCP Mg-JCPDS #350821 and FCC Ag-JCPDS #04-0783.

Figure 13. (A) Contact angle values, (B) calculated surface free energy (SFE), and (C) description of the surfaces.

On the other hand (Figure 13B), the calculated surface free energy (SFE) showed a
decrease in the positive values of B, M1, and M2 surfaces, while the M3 y M4 surfaces
presented very negative values of the SFE. The last fact suggests that these surfaces will
exhibit a poor cell bacterial adhesion, as well as wettability properties [154–162].

3.6. Characterization of Antibacterial Properties of Ag-Nanoparticles (NPs) Deposited on
Mg-Ca0.3 Surface
3.6.1. Zeta Potential Measurement of E. coli and S. aureus

To measure the zeta-potential of the bacteria, pH titration was carried out, in order
to understand the electrostatic interactions between bacteria and Ag-NPs deposits on the
Mg-Ca0.3 surface. The data in Figure 14 showed that zeta potential of E. coli and S. aureus
tended to be more negative values with respect to the pH of the Mueller–Hinton culture
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broth (pH ≈ 7.0 and up to 11), with a bacteria concentration of 108 CFU mL−1. The pH
of the culture broth (≈7.0 and up to 11) was chosen to be similar to that of the pH range
of change of Hank´s solution during the exposure of Mg-Ca0 (Figure 2A). At the initial
pH of 7.0 the zeta potential was more negative for S. aureus (−5.67 mV) than that of E. coli
(−3.16 mV), followed by a sudden shift at pH ≈ 7.25 to more negative values close to each
other and ending at ≈−11 mV at pH = 11.

Figure 14. Average values of zeta potential of E. coli and S. aureus bacteria vs. pH of Mueller–Hinton
culture broth.

3.6.2. Agar Disk-Diffusion Test

This test was used to compare the ability to inhibit bacteria growth of E. coli and
S. aureus on different substrates: bare surface of Mg-Ca0.3 (B) and in the presence of Ag-
NPs, deposited from lowest to highest concentration of AgNO3 at different times (M1 to
M4). The agar disk-diffusion test was carried out in an incubator at 37 ◦C after 24 h in the
dark (Figure 15).

Figure 15. E. coli and S. aureus bacteria growth of on Mg-Ca0.3: bare surface (B); Ag-NPs deposits on
Mg-Ca0.3; M1 (10−3 M, 1 min), M2 (10−3 M, 3 min), M3 (10−3 M, 6 min) and M4 (10−2 M, 1 min).

The histogram in Figure 16A (agar disk-diffusion test) compares the results of the
diameters (halos) of zone of inhibition that the bacteria presented, and the corresponding
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images are presented in Figure 15. On the bare of Mg-Ca0.3 substrate, zone of inhibition
was not observed. It was evident that a greater antibacterial activity was observed on
the substrate M4, which surface is covered by agglomerates of Ag-NPs in an extended
area (Figure 10C,D). For all the samples, S. aureus presented a larger zone of inhibition
than E. coli, which indicated that S. aureus is more sensitive to the Ag-NPs than E. coli.
After measuring the diameters of the inhibition halos, the percent of diameter of inhibition
growth (PIDG) was determined (Figure 16B) according to the following equation [165]:

PIDG (%) =

( ∣∣∣∣ Diameter of sample−Diameter of control
Diameter of control

∣∣∣∣ )·(100) (10)

where diameter of control is the diameter of the Mg-Ca0.3 samples (1 cm), and the diameter
of sample is the average diameter of the zone of inhibition after agar disk-diffusion test of
three replicates.

Figure 16. Histogram of comparison of the diameters of the (A) zone of inhibition and (B) PIDG, for
the sample surfaces exposed to E. coli and S. aureus on agar for 24 h at 37 ◦C in an incubator (dark
conditions).

The results revealed that the zone of inhibition (Figure 16B) depends on the Ag-NPs
content and their size deposited on the Mg-Ca0.3 surface: a higher content (surface of
available area) of Ag-NPs gives a possibility for more binding capacity of the particle
interaction with the bacterial cell membrane. The higher inhibition percentage reached was
~83% for S. aureus and ~64% for E. coli.

The exact antimicrobial mechanism of Ag-NPs is still not completely known; however,
it is suggested that it depends on chemisorbed Ag+ ions, released from the silver partial
oxidation as a consequence of its sensitivity to oxygen [166]. Studies report that the Ag-NPs
can generate long-lasting antibacterial activity due to the consequent release of Ag+ ions
which kill the bacteria [167–170]. On the other hand, considering that the surface charge of
Ag-NPs is not actually measured [171], their interaction with bacteria cell is still open to
discussion.

4. Conclusions

The electrochemical degradation process of Mg-Ca0.3 alloy, exposed for 14 days to
Hank’s physiological solution (at 37 ◦C), was compared with that of pure Mg, in order to
provide more detailed information on the effect of Ca.

• At the end of the experiment, the pH of Hank’s solution reached alkaline value of ~8.3
for Mg samples, while that of Mg-Ca0.3 decreased to pH ~6.3. The values of mass
loss and concentration of the released Mg2+ ions were a consequence of the change
in pH over time. The mass loss of Mg-Ca0.3 (3.76 mg cm−2) was ~20% lower than
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that of the Mg samples (4.66 mg cm−2). The concentration of released Mg2+ ions was
~3.6 times lower for the Mg-Ca0.3 alloy than that for Mg. A fraction of the mass loss
and concentration of the released Mg2+ ions are a result of the formation of soluble
MgCl2, as also considering the chelating effect of the gluconic acid.

• The intermetallic Mg2Ca particles appeared on the surface of Mg-Ca0.3 even after the
removal of the formed layers, suggesting their role as local cathodic sites. According
to the analysis of XPS spectra, the decrease in the content of the compounds formed
on the Mg-Ca0.3 and Mg surfaces was as follows: Ca10(PO4)6(OH)2 > Mg3(PO4)2 >
Mg(OH)2 > CaCO3.

• The values of the EN-resistance (Rn) of Mg-Ca0.3 (3.42 kΩ cm2) was 5.5 times greater
than that of Mg (0.62 kΩ cm2), indicating that the product layer formed on Mg-Ca0.3
is more protective.

• The total polarization resistance (Rp), estimated from the EIS data indicated that Rp
for Mg-Ca0.3 was ~three times higher than that of Mg, suggesting the Ca positive
effect.

• The electroless deposited Ag-nanoparticles (Ag-NPs) on Mg-Ca0.3 were characterized
by the time evolution of the UV-Vis absorption spectra and change in color of the
Mg-Ca0.3 substrate. The XRD spectra indicated the presence of nanostructured Ag
crystals of FCC cell, in which the calculated average size was 10 nm.

• The measured contact angle of the Ag-NPs (>120◦) indicated that their surfaces may be
considered as superhydrophobic, and thus, they may exhibit an antibacterial behavior.
The calculated surface free energy (SFE) showed a tendency to very negative values,
which suggest that the Ag-NPs exhibit a poor cell bacteria adhesion, as well as poor
wettability properties.

• The ability to prevent growth of S. aureus (Staphylococcus aureus) and E. coli (Escherichia
coli) bacteria, in the presence of Ag-NPs, was proved by the agar disk diffusion method
(Kirby–Bauer test). The greater antibacterial effect of S. aureus was attributed to its
more negative zeta-potential, attracting more the released Ag+ ions from the Ag-NPs.
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