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Optimization problems containing a �nite number of variables and an in�nite number of constraints are called semi-in�nite
programming problems. Under certain conditions, a class of these problems can be represented as bi-level programming
problems. Bi-level problems are a particular class of optimization problems, in which there is another optimization problem
embedded in one of the constraints. We reformulate a semi-in�nite problem into a bi-level problem and then into a single-level
nonlinear one by using the Kuhn–Tucker optimality conditions. �e resulting reformulation allows us to employ a branch and
bound scheme to optimally solve the problem. Computational experimentation over well-known instances shows the e�ectiveness
of the developed method concluding that it is able to e�ectively solve linear semi-in�nite programming problems. Additionally,
some linear bi-level problems from literature are used to validate the robustness of the proposed algorithm.

1. Introduction

�e more general case of semi-in�nite programming (SIP)
problems occurs when a �nite number of semi-in�nite
constraints are considered. Each constraint consists in a set
of constraints indexed by a set of in�nite cardinality, in this
case, a generalized semi-in�nite programming (GSIP)
problem arises. Previous work has been reported for
problems that involve continuous and di�erentiable func-
tions [1–3]. �erefore, linear generalized semi-in�nite
programming (LGSIP) problems can be considered as a
particular case of GSIPs, where all the de�ning functions are
su�ciently smooth. In [4], an inverse optimization approach
is proposed to solve a LGSIP. In general, semi-in�nite
programming is a very challenging �eld and keeps attracting
the attention of researchers. For instance, a review of so-
lution methods and di�erent applications appear in [5].
Similarly, GSIPs have been proposed to model a wide variety
of real-life applications, such as design centering, optimi-
zation of assembly lines, time minimal control, and robust
optimization [6].

A basic reference on this topic is [7], and a review of
classical methods in GSIP appears in [8]. When the set
Y(x) � Y does not depend on the variable x, we have a
standard semi-in�nite programming (SSIP) problem which
is another especial case in GSIP. Regarding the latter
problems, in [9], an extensive study on their main char-
acteristics is presented, and, in [10, 11], some algorithmic
aspects are reviewed. Recent results for a linear case are
presented in [12–15]. For a wide overview of SSIP appli-
cations, we refer to [7]. Some applications of GSIP can be
found in the maneuverability problem in robotics (see [16])
and the reverse Chebyshev approximation (see [17, 18]).

�eory and solution methods for SIPs are strongly re-
lated to their corresponding bi-level formulation. �e
connection between both classes of problems relies in the
fact that, under certain conditions, semi-in�nite problems
can be reformulated as bi-level programming ones [1, 3]. Bi-
level programming (BLP) problems have been used to model
applications widely, for example, in location, network de-
sign, pricing, humanitarian logistics, and telecommunica-
tion systems, among others [19, 20]. BLP can be seen as a
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hierarchized situation in which the decision maker with a
higher hierarchy (leader) aims to optimize his/her own
objective function depending on its decisions and the de-
cisions taken by the decision maker with a lower hierarchy
(follower). In this case, the follower considers his/her own
optimization problem but parameterized according to the
leader’s decision. It is essential to mention that BLP cannot
be seen as two-stage optimization problems, since the
leader’s decision restricts the follower’s problem, and then,
the follower’s decision impacts the leader’s objective func-
tion. Hence, both decisions are interrelated but respecting a
predefined hierarchy among the decision makers.

As it is mentioned above, there exist few methods for
solving generalized semi-infinite optimization that exploit
the closely relationship obtained from the bi-level structure
of the problems [8]. Despite the abovementioned, the
proposed methods that solve GSIPs are scarce and the
computational experimentations are limited. +e latter
motivated us to conduct this research. Hence, in order to
benefit from the relationship between GSIPs and BLPs, the
following idea could be followed: reformulate the lower-level
problem by some of the well-known methods. For instance,
in the convex case, the Kuhn–Tucker optimality conditions
are commonly used. After that, some of the classical algo-
rithms used to solve linear bi-level problems, such as the
Kth-best algorithm, Kuhn–Tucker approach, complemen-
tarity approach, variable elimination algorithm, and penalty
function approach [21, 22], could be implemented to solve
the reformulated GSIP. In this case, we decided to imple-
ment a different exact approach, which is based on the
branch and bound method, which have been used to suc-
cessfully solve nonlinear SIPs (see [23]).

Other methods that have been used to solve GSIPs via
the bi-level formulation differ from each other on the lower-
level reformulations. For instance, Stein [2] uses equilibrium
constraints to model the lower level. In [8], complementarity
constraints are employed to replace the lower level. Nu-
merical methods to approximate the original problem are
generated by substituting these complementarity constraints
by smooth ones [3, 24]. +at method has been applied to
solve centering design and lapidary cutting problems (see
[1, 25], respectively). Another approach is to reformulate the
lower level by its corresponding dual problem. In [24],
Wolfe’s dual problem is considered. It is shown that, under
additional conditions, the resulting problem is numerically
tractable. +eoretically, feasible direction methods and
discretization algorithms [6] have been also proposed to
solve GSIPs. However, the computational experimentation
is complicated when having multidimensional set of indices.
Most of these methods are developed to solve particular class
of GSIPs or made significant assumptions preventing their
reproducibility, in general. On the contrary, the algorithm
herein proposed is motivated by the ideas given in [3] for
solving a general case of semi-infinite programming prob-
lems but neither a detailed description nor results are re-
ported there. Hence, a detailed step-by-step description of
the algorithm is included to facilitate its implementation and
reproducibility.

+e main contribution of this research is the proposal of
an algorithm that can be used to solve a particular class of
generalized semi-infinite programming problems. In par-
ticular, linear problems consider a semi-infinite constraint.
+e proposed method exploits the conditions that allow a
generalized semi-infinite problem to be handled as a bi-level
programming one. In order to apply this method, the
representation of the semi-infinite problem as a bi-level one
is required.+en, its Kuhn–Tucker optimality conditions are
used to reformulate the bi-level problem into a single-level
one, which is solved via a branch-and-bound scheme. +e
effectiveness of the algorithm is shown through computa-
tional experimentation. To validate the obtained results, we
analytically solve the tested linear semi-infinite program-
ming problems, showing the algebraic and graphical solu-
tions coincide with the solution obtained by the algorithm.

+e remainder of this study is organized as follows. In
Section 2, some preliminaries and the notation considered
throughout this research is presented. In Section 3, the
developed algorithm is described. +erefore, the computa-
tional experimentation, in which the effectiveness of the
algorithm is validated, is presented in Section 4. Addi-
tionally, some examples are solved in a geometric and al-
gebraic way to corroborate the obtained solution.
Conclusions that include important remarks regarding the
topic investigated in this study and further research direc-
tions are presented in Section 5.

2. Preliminaries

Let us introduce the necessary notation for this study, as well
as some concepts, and necessary results on GSIP and BLP
that will be used.

+roughout this study, we consider a, c, c1, c2􏼈 􏼉 ⊂ Rn,
b, d1,d2􏼈 􏼉 ⊂ Rm, b0 ∈ R, b1 ∈ Rp, b2 ∈ Rq, A1 is a p×

n-matrix, B1 is a p × m-matrix, A2 is a q × n-matrix, and B2 is
a q × m-matrix.

We consider linear generalized semi-infinite program-
ming (LGSIP) problems which are defined as

SIP: min
x

cTx

s.t. aTx + bTy ≤ b0, for all y inY(x),

(1)

where

Y (x) � y|A2x + B2y ≤ b2􏼈 􏼉. (2)

Unless otherwise stated, we will consider x ∈ X and
y ∈ Y0, where the sets X and Y0 will represent additional
restrictions on the decision variables. In particular, X⊆Rn

+

and Y0 ⊆Rm
+ , that is, xi ≥ 0 and yj ≥ 0, for all i � 1, . . . , n and

j � 1, . . . , m, respectively. Furthermore, we will consider
that X � do m Y, where domY � x|Y(x)≠ ∅{ }; this con-
dition can always be satisfied by adding in X appropriate
extra conditions (such as xi ≤ δ or others depending only on
the variables xi).

Following the notation presented in [21], a linear bi-level
programming (LBLP) problem is defined as
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BL: min
x

cT
1 x + dT

1 y,

s.t. A1x + B1y ≤ b1,

and y solves,

Q(x): min
y

cT
1 x + dT

1 y,

s.t. y ∈ Y(x),

(3)

where Y(x) is defined as in SIP.
With the conditions on X, the problem SIP can be

considered as a LBLP problem with the special structure that
lower-level objective function is obtained with the upper-
level constraint. +e problem that results is presented next
(see [3]):

BLSIP: min
x

cTx,

s.t. aTx + b
Ty ≤ b0,

and y solves,

Q(x): min
x

−aTx − bTy,

s.t. y ∈ Y(x).

(4)

In order to have well-defined considered problem, we
assume that the set-valued mapping Y: Rn⟶ 2Rm is
uniformly compact on Rn. In other words, there exists a ball
Bε(x) � x ∈ Rn |x − x≤ ε{ } with ε> 0 for any x ∈ Rn such
that cl (∪ Bε(x)Y(x)) is compact, where cl X denotes the
topological closure of X. +erefore, under these assump-
tions, the mapping Y is closed and upper semicontinuous in
the sense of Berge, and X is a closed set. It is important to
remark that, by considering the latter condition, the lower-
level problems Q(x), x ∈ X, always has an optimal solution.

+e following sets are associated with a bi-level problem.
Let S(x) � y|y is a solution global of Q(x)􏼈 􏼉 be the set of
solutions of Q(x). Consider S � (x, y)|y ∈ S(x)􏼈 􏼉 as the
solution graph of Q, and G � (x, y) | aTx + bTy ≤ b0􏽮 􏽯 as the
constrained set for the upper level. Also, let
MBL � (x, y)|(x, y) ∈ G, y ∈ S(x)􏼈 􏼉 be the feasible set of
BLP.

Now, the concepts associated with the semi-infinite
problem defined in the introduction are presented. First, its
feasible set is defined as follows:

MSIP � x ∈ X|aTx + bTy ≤ b0, y ∈ Y(x)􏽮 􏽯. (5)

Under the assumptions made on the set X, we have (see
[3]) MSIP � prx(MBLSIP

), where prx denotes the orthogonal
projection onto the space Rn.

+e latter equality allows the use of methods proposed to
solve LBLP problems to obtain the solution of LGSIP
problems.

As it is mentioned in the introduction, the main idea of
the algorithms designed to solve linear bi-level problems is
to reformulate the bi-level problem into an equivalent
single-level one. +e latter can be achieved by using the
important result described next.

Consider u ∈ Rq and v ∈ Rm as the corresponding dual
variables of the constraints associated with the lower-level
problem, that is, constraints represented by equation (3).
Using the notation of problem BLSIP, we adapt the following
proposition given in [21].

Proposition 1. A necessary condition for (x∗, y∗) to solve
BLSIP is that there exist (column) vectors u∗ and v∗ such that
(x∗, y∗, u∗, v∗) solves

min
x

cTx, (6)

s.t. aTx + bTy ≤ b0, (7)

uT
B2 − v � b, (8)

uT b2 − A2x − B2y( 􏼁 + vTy � 0, (9)

A2x + B2y ≤ b2, (10)

x ≥ 0, y ≥ 0,u≥ 0, v ≥ 0. (11)

+is single-level reformulation is valid in bi-level pro-
gramming when the lower-level problem is convex. Hence, it
not always exists for all the classes of BLP problems.
However, in this study, we are considering the linear case, so
the problems can be reformulated under this scheme.

3. An Algorithm that Uses the Kuhn–Tucker
Optimality Conditions and a Branch-and-
Bound Scheme for Solving LGSIPs

It is well known that one of the most common approaches to
solve a linear bi-level problem is by using its equivalent
single-level reformulation, which is given in equation
(5)–(10). It can be appreciated that the resulting single-level
model is a nonlinear one (see equation (9)), which com-
plicates the optimization process. Noting that equation (9) is
the only nonlinear constraint, it is common to try to handle
the reformulation without that equation instead of solving
the reformulated nonlinear single-level model.

One option to address the nonlinearity of the refor-
mulated model is by omitting the nonlinear term (this re-
sults in a relaxation of the problem) and solve the resulting
relaxed problem. For achieving this, let us consider all the
inequalities that appear in the lower-level problem in the
followingmanner: gi(x, y)≥ 0, i � 1, . . . , q + m. Also, it is
identified that the nonlinear constraints uigi(x, y) � 0
(i � 1, . . . , q + m, where uq+j � vj, j � 1, . . . , m) imply
the complementarity slackness constraints. Recall that the
relaxed reformulation yields to a linear subproblem.

After the resulting linear subproblem has been solved, it
is checked if equation (9) holds. If so, the optimal solution
obtained is a feasible solution of problem given by equation
(5)–(10), which implies that it is a feasible solution for the bi-
level problem derived from the SIP; if not, an approach
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based on a branch and bound scheme is implemented to try
to satisfy the complementarity slackness constraints. To
achieve the latter, an examination of all the possible com-
binations’ values that guarantee the complementarity
slackness implicitly is conducted. A complete cycle of this
procedure is called an iteration.

+e notation introduced in [21], which is the classical
notation for an implicit enumeration, is used to describe the
solutionmethod herein considered. Let W � 1, . . . , q + m􏼈 􏼉

be the set of indexes associated with the complementarity
slackness terms (see equation (9)). Consider F(·) as the
objective function of the single-level reformulation, which
corresponds to the upper-level’s objective function of the bi-
level problem, and consider F as the incumbent upper
bound on the upper-level’s objective function. A subset of
indexes Wk ⊂W is considered at the kth level of the search
tree, and also, a path Pk is used. +e path indicates if either
ui � 0 or gi � 0, for i ∈Wk. +e common sets S+

k , S−
k , and S0k

of the implicit branch and bound are used. +erefore,

S
+
k � i |i ∈Wk and ui � 0􏼈 􏼉,

S
−
k � i |i ∈Wk andgi � 0􏼈 􏼉,

S
0
k � i|i ∉Wk􏼈 􏼉.

(12)

+e variables ui and gi, for which i ∈ S0k, are considered
as nonnegative when solving the relaxation of the single-
level reformulated problem defined by equations (6)–(11).
Recall that, in the aforementioned relaxation, equation (9) is
omitted. Hence, the complementarity slackness constraint
may be satisfied or not.

+e description of the algorithm based on a branch-and-
bound scheme that considers the complementarity slackness
constraints is presented next. It is important to emphasize
that this algorithm is based in the Kuhn–Tucker approach
for solving linear bi-level problems (see [21]). In nonlinear
problems, Kuhn–Tucker conditions are used in globalization
[26].

(i) Initialization: set k � 0, S+
k � ∅, S−

k � ∅, S0k � 1,{

. . . , q + m}, and F �∞.

(ii) Main step (in the kth iteration): set ui � 0, for i ∈ S+
k ,

and gi � 0, for i ∈ S−
k . Try to solve the relaxed single-

level problem, that is, the problem defined by
problem defined in equations (6)–(11) omitting
equation (9). If an optimal solution is obtained, do
k← k + 1, record the solution (xk, yk,uk), and
continue to the Fathom step; otherwise, go to the
Backtrack step.

Fathom: if the obtained solution yields an objective
function value worst that the incumbent, a backtrack
is needed. +at is, if F(xk, yk)≥ F, go to the Back-
track step; otherwise, continue to the Branch step.
Branch: if uk

i gi(xk, yk) � 0, i � 1, . . . , q + m, go to
the next step; otherwise, select the ith for which the
product uk

i gi(xk, yk) is the largest one and label it as
i1. Update the sets as follows: S+

k←S+
k⋃ i1􏼈 􏼉,

S0k←S0k∖ i1􏼈 􏼉, and S−
k←S−

k . Append i1 to the current
path Pk, and return to the main step.
Update: set the incumbent objective function value
as F � F(xk, yk).
Backtrack: if all the nodes in the current path Pk has
been explored already, go to the next step; otherwise,
branch to the ith component most recently intro-
duced in the path Pk and update S+

k , S−
k , and S0k.

Return to the main step.
Termination: if the initial incumbent value remains
the same (F �∞), hence, there is no feasible solu-
tion to the bi-level problem. Otherwise, consider the
feasible solution associated with F as the optimal
one.

+is algorithm based in the branch-and-bound scheme
solves exactly the equivalent single-level reformulation of the
linear bi-level programming problem. +e latter arises from
linear generalized semi-infinite problems. +erefore, this
algorithm is used to solve LGSIPs optimally.

4. Numerical Experimentation

In this section, the algorithm described above is used to solve
a set of ten linear semi-infinite problems with different
characteristics. Its effectiveness and suitability to solve
LGSIPs are shown. Since various examples will be shown, the
semi-infinite problem, its feasible set, the optimal value, and
the optimal set are distinguished as Pi, Mi

SIP, vi, and F∗i ,
respectively, where i denotes the number of example.
Moreover, for the bi-level form, we also distinguish its
corresponding sets Si(x), Si, Gi, and Mi

BLSIP
.

+e aim of this section is to exhibit that the proposed
algorithm is able to solve LGSIPs in an efficient manner. +e
optimal solution of the tested problems is compared with the
optimal solution obtained analytically. Also, eight additional
linear bi-level problems are tested to robust the computa-
tional section showing that the algorithm is able to efficiently
solve these problems. Since the majority of the semi-infinite
problems herein tested are proposed by us, we do not
compare the efficiency results of our algorithm against other
methods. However, a comparison regarding the quality of
the solution is made.

+e first three examples show the particular case when
Y(x) � Y. Although the study is only of interest in the
general case (since in standard SIPs, they are inherently finite
by the vertex theorem), standard SIPs are considered to
show that the algorithm is effective in both cases.

Example 1. Consider the following problem:

P1: min
x

x1 + 2x2,

s.t. x1 + x2 ≥y, y ∈ Y � [0, 1].
(13)

Figure 1 shows that the problem has feasible solution,
v1 � 1 and F∗1 � (1, 0)’􏽮 􏽯.

+e bi-level formulation of P1 is
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min
x
x1 + 2x2

s.t. x1 + x2 ≥y,
andy solves,

Q(x): min
y
−y

s.t. 0≤y≤ 1.

(14)

�e solution obtained by the algorithm coincides with
the solution obtained geometrically.

Example 2. Consider the following problem:

P2: min
x

2x1 + x2

s.t. x1 + x2 ≥y1 + y2, y ∈ Y �[0, 1] ×[0, 1].
(15)

�e corresponding bi-level formulation is

min
x

2x1 + x2

s.t. x1 + x2 ≥y1 + y2,
and y solves,

Q(x): min
y
−y1 − y2

s.t. 0≤y1 ≤ 1,

0≤y2 ≤ 1.

(16)

�e algorithm shows that F∗2 � (0, 2)’{ } and v2 � 2.

Example 3. Consider the following problem:

P3: min
x

2x1 + x2

s.t. x1 + x2 ≥y1 + y2, y ∈ Y,
(17)

where

Y � y|0 ≤y1 + y2 ≤ 1{ }. (18)

�e bi-level formulation is

min
x

2x1 + x2

s.t. x1 + x2 ≥y1 + y2,
and y solves,

Q(x): min
y
−y1 − y2

s.t. 0≤y1 + y2 ≤ 1.

(19)

�e results obtained by the algorithm are F∗3 � (0, 1)’{ }
and v3 � 1.

�e following examples show that the proposed algo-
rithm is also e�ective to solve semi-in�nite problems in the
general case.

Example 4. Consider the following problem:

P4: max
x
x

s.t. 2y + x − 1≤ 0, y ∈ Y(x),
(20)

where

Y(x) � y|0 ≤y ≤
x

2
{ }. (21)

�is example is presented in [23], where the bi-level
problem has optimal set F∗ � ((1/2), (1/4))’{ } and its op-
timal value is v4 � (1/2).

To solve the semi-in�nite problem using the algorithm
herein proposed, its bi-level formulation is deduced:

P4BL: min
x
−x

s.t. x + 2y≤ 1,

andy solves,

Q(x): min
y
−2y

s.t. 0 ≤y ≤
x

2
.

(22)

�en, its equivalent single-level reformulation is as
follows:

min
x
−x

s.t. x + 2y≤ 1,

u − v � 2,

u
x

2
− y( ) + vy � 0,

−
x

2
+ y ≤ 0,

x≥ 0, y≥ 0, u≥ 0, v≥ 0.

(23)

-3 -2 -1 0

1

2

3

4

-1

1 2

M1
SIP

3

Figure 1: Feasible set of P1.
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To solve that problem, the nonlinear constraint (com-
plementarity slackness constraint) is omitted and the relaxed
linear problem is solved:

min−
x

x

s.t. x + 2y≤ 1,

u − v � 2,

−
x

2
+ y≤ 0,

x≥ 0, y≥ 0, u≥ 0, v≥ 0.

(24)

+e optimal solution of the relaxed problem is
(x, y, u, v)’ � (1, 0, 2, 0)’, with an optimal value of F � −1.
Now, the relaxed complementarity slackness constraints are
verified. +e algorithm first explores the branch when u � 0.
In this case, the resulting problem is infeasible, and that
branch is fathomed. +en, the branch that considers (x/2) −

y � 0 is explored. In this case, the optimal solution
(x, y, u, v)’ � (0.5, 0.25, 2, 0)’ is obtained, yielding to
F � −0.5. +e search to the global optimum continues, and
v � 0 is imposed. By doing this, the same solution of the
latter problem is obtained. At this point, the obtained so-
lution is a candidate to be the global optimum of the semi-
infinite problem since all the complementarity slackness
constraints are hold. To finish the search, the constraint v �

0 is substituted by y � 0 and the resulting problem is solved.
+e obtained solution is (x, y, u, v)’ � (0, 0, 2, 0)’ and the
objective function value of F � 0. +e algorithm stops and
the optimal solution of the bi-level problem is (x, y, u, v)’ �

(0.5, 0.25, 2, 0)’ with F � −0.5. Hence, the optimal solution
for the semi-infinite problem is x � 0.5 y v4 � 0.5.

In Figure 2, the representation of the search tree is
shown.

Example 5. Consider the following problem:

P5: min
x

x

s.t. x − y ≤ 0, y ∈ Y(x),

(25)

where

Y(x) � y| − x − y ≤ − 3, x − y≤ 3,
x

2
+ y≤ 3􏼚 􏼛. (26)

+e corresponding bi-level formulation is

min
x

x

s.t. x − y

andy solves,

Q(x): min
y

y

s.t. − x − y ≤ − 3,

x − y≤ 3,

x

2
+ y≤ 3.

(27)

Its single-level reformulation is as follows:

min
x

x,

s.t. x − y ≤ 0,

u1 + u2 − u3 + v � 1,

u1(−3 + x + y) + u2(3 − x + y)

+ u3 3 −
x

2
− y􏼒 􏼓 + vy � 0,

−x − y ≤ − 3,

x − y≤ 3,

x

2
+ y≤ 3,

x, y, u1, u2, u3, v≥ 0.

(28)

Similarly, as in the previous example, the branch and
bounding scheme explores the search tree depicted in
Figure 3 to achieve the optimal solution.

+e solution that the algorithm obtains is (0, 3)’􏽮 􏽯 as
optimal set and 0 as optimal value, which shows that F∗5 �

0{ } and v5 � 0. +e results are validated by solving P5 in a
geometric way. We have

S5(x) �
3 − x if 0≤x≤ 3,

x − 3 if 3<x≤ 4.
􏼨 (29)

+e solution graph of Q is shown in Figure 4. On the
contraru, in Figure 5, we show that
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M5
BLSIP

� (x, y)′|y � 3 − x, 0≤ x≤
3
2

{ }. (30)

As M5
SIP � prx(M5

BLSIP
), the feasible set is

M5
SIP � 0,

3
2

[ ]. (31)

�e optimal solution of the SIP problem obtained from
the above described feasible set is the same as the one ob-
tained by the algorithm.

Example 6. Consider the following problem:

u = 0

v = 0 y = 0

x – y = 0
F = –1—

F = –0.5—

F = –0.5— F = 0—

infactible

2

Figure 2: Search tree for Example 4.

u3 = 0

u2 = 0

u1 = 0

v = 0 y = 0
y = 0v = 0

F = 0—

F = 0—

F = 0—

F = 0— F = 0—
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P6: min
x

x

s.t. x + y≤ 0, y ∈ Y(x),
(32)

where

Y(x) � y| − x − y ≤ − 3, x − y≤ 3,
x

2
+ y≤ 3􏼚 􏼛. (33)

+e bi-level formulation is

min
x

x

s.t. x + y ≤ 0,

andy solves,

Q(x): min
y

−y,

s.t. − x − y ≤ − 3,

x − y≤ 3,

x

2
+ y≤ 3.

(34)

+e algorithm shows that the problem does not have
feasible solution (from the Backtrack step goes to the Ter-
mination one). +e result is justified geometrically because
the intersection of G6 and S6 is empty.

Example 7. Consider the following problem:

P7: min
x

x

s.t. − x + y ≤ 0, y ∈ Y(x),
(35)

where

Y (x) � y|x + y ≤ 3􏼈 􏼉. (36)

+e bi-level form is

min
x

x

s.t. − x + y ≤ 0,

andy solves,

Q(x): min
y

−y

s.t. x + y ≤ 3.

(37)

+e solution graph of Q is shown in Figure 6. On the
contrary, in Figure 7, we show that

M
7
BLSIP

� (x, y) ′|y � 3 − x, 1.5≤ x≤ 3􏼈 􏼉. (38)

Since M7
SIP � pxx(M7

BLSIP
), the feasible set is

M7
SIP � [1.5, 3]. +e optimal solution is x � 1.5. We have

the same result with the algorithm.

Example 8. Consider the following problem:

P8: min
x

−x1 + x2

s.t. y ≥ 0, y ∈ Y(x),
(39)

where

Y (x) � y|y ≥ x1, y≥x2, y ≤ 1􏼈 􏼉. (40)

+e corresponding bi-level formulation is

min
x

−x1 + x2

s.t. y ≥ 0,

andy solves,

Q(x): min
y

y

s.t. y ≥ x1,

y ≥ x2,

y ≤ 1.

(41)

+e solution obtained by the algorithm is (x1, x2)
’ �

(1, 0)’ and v8 � −1.
If the restriction y≤ 1 is omitted in the problem P8, then

the problem is unbounded. Moreover, if x1 and x2 have no
sign constraints, the feasible set exhibits a so-called re-en-
trant corner point at the origin (see [2]).

Example 9. Consider the following problem:

P9: min
x

x1 − x2

s.t. y≥ 0, y ∈ Y(x),
(42)

where

Y(x) � y|x1 − y≤ − 1, x2 − y≤ 1, y≤ 2􏼈 􏼉. (43)

+e corresponding bi-level formulation is

min
x

x1 − x2

s.t. y ≥ 0

andy solves,

Q(x): min
y

y

s.t. x1 − y≤ − 1,

x2 − y≤ 1,

y ≤ 2.

(44)

+e solution obtained by the algorithm is (x1, x2)
’ �

(0, 3)’ and v9 � −3.

Example 10. Consider the following problem:

P10: min
x2 ≤ 3

−x1 − x2

s.t. y ≥ 0, y ∈ Y(x),

(45)

where
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Y (x) � y|y ≥ x1, y≤ x2{ }. (46)

�e corresponding bi-level formulation is

min
x2 ≤ 3

−x1 − x2

s.t. y ≥ 0

andy solves,

Q(x): min
y
y

s.t. y ≥x1,

y≤x2.

(47)

�e solution obtained by the algorithm is (x1, x2)
’ �

(3, 3)’ and v10 � −6.
If the restriction x2 ≤ 3 is omitted in the problem P10,

then the problem is unbounded. Moreover, if x1 and x2 have
no sign constraints, the feasible set is not closed (see [2]).

�e examples and computational results are summarized
in Table 1, in which the problem is shown in the �rst column,
the optimal solution is reported in the second one, the
number of mathematical programming problems solved
until the optimal solution obtained is presented in the third
column, the total number of mathematical programming
problems solved to guarantee optimality is shown in the
fourth column, and the total CPU required time is reported
in the last column. All tests were performed using a personal
computer having an Intel (R) Core processor with 8GB of
RAM, and the proposed algorithm was coded and run using
the FICO XPRESS 8.5 commercial software. Also, as
mentioned in each example, the optimal solutions are taken
from the cited references in which each problem is proposed.

�e e�ectiveness of the algorithm is shown by solving an
additional set of problems that appears in [3, 21, 22, 27].
Here, bi-level problems are considered to show the ro-
bustness of the developed method.�e algorithm starts from
the point in which a bi-level reformulation of the linear
generalized semi-in�nite programming problem is obtained.
As it is explained above, the algorithm aims to �nd the
optimal solution, but then, global optimality must be
guaranteed. As a consequence, additional iterations are
required. However, the required time to solve the tested
problems is very short. �e obtained results are presented in
Table 2 in which we follow the notation of the authors.

5. Application to a Real-Life Problem

In this section, a case study regarding a supply chain, in
which distribution centers and manufacturers are involved,
is used to demonstrate the applicability of the developed
algorithm. �e problem herein considered is proposed in
[28] and considered in [27]. At the upper level, the distri-
bution centers aim to maximize the overall pro�t, while at
the lower level, the manufacturer aims to minimize the costs.

Let yij be the upper-level decision variables, which
denote the amount of products that will be available at
distribution center i. Also, let xij be the lower-level decision
variables and represent the demand of customer j supplied
from the distribution center i. �erefore, the upper-level
objective function is given by the bene�t obtained from
selling xij products at price pij minus the production costs
ui. �e lower-level objective function is given by the
manufacturing costs oij and the acquisition cost from other
manufacturers. �e imposed constraints are typical on a
problem of this type; that is, there is a capacity ci at the
distribution centers, the demand of the customers cannot be
supplied from distribution centers that are closed, and at
least the minimum demand of customers must be ful�lled.

Considering the particular case study, the obtained data
are assumed and the resulting bi-level model is as follows:

S7

x + y = 3

-1-2

-1

-2

1

2

3

4

10 2 3 4

Figure 6: Solution graph of Q which results of P7.
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Figure 7: Feasible set of BLSIP which results of P7.
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Table 1: Results in linear semi-infinite programming.

Example Optimal
solution

Math Prog solved to find the
optimal solution

Math Prog solved to
guarantee optimality

Required time
(sec)

P1: min
x

x1 + 2x2

s.t. x1 + x2 ≥y,

y ∈ Y � [0, 1]

v1 � 1
v1 � 1
x1 � 1
x2 � 0

3 3 0.031

P2: min
x

2x1 + x2

s.t. x1 + x2 ≥y1 + y2,

y ∈ Y � [0, 1] × [0, 1]

v2 � 2
x1 � 0
x2 � 2 5 5 0.047

P3: min
x

2x1 + x2

s.t. x1 + x2 ≥y1 + y2, y ∈ Y,
where

Y � y|0 ≤y1 + y2 ≤ 1􏼈 􏼉

v3 � 1
x1 � 0
x2 � 1

3 3 0.031

P4: max
x

x

s.t. 2y + x − 1≤ 0, y ∈ Y(x),
where

Y(x) � y|0 ≤y ≤ (x/2)􏼈 􏼉

v4 � (1/2)

x � (1/2)
3 3 0.031

P5: min
x

x

s.t. x − y ≤ 0, y ∈ Y(x),
where

Y(x) � y |

−x − y ≤ − 3
x − y≤ 3

(x/2) + y≤ 3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

v5 � 0
x � 0 2 3 0.031

P6: min
x

x

s.t. x + y ≤ 0, y ∈ Y(x)
, where

Y(x) � y |

−x − y ≤ − 3
x − y≤ 3

(x/2) + y≤ 3

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

infeasible 1 1 0.016

P7: min
x

x

s.t. − x + y ≤ 0, y ∈ Y(x)
where

Y (x) � y|x + y ≤ 3􏼈 􏼉

v7 � 1.5
x � 1.5 3 3 0.031

P8: min
x

−x1 + x2

s.t. y ≥ 0, y ∈ Y(x)
where

Y (x) � y

y ≥x1
y≥x2
y≤ 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

v8 � −1
x1 � 1
x2 � 0 2 3 0.031

P9: min
x

x1 − x2

s.t. y≥ 0, y ∈ Y(x),
where

Y(x) � y|

x1 − y≤ − 1
x2 − y≤ 1

y≤ 2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

v9 � −3
x1 � 0
x2 � 3 3 5 0.047

P10: min
x2 ≤ 3

−x1 − x2

s.t. y ≥ 0, y ∈ Y(x),
where

Y (x) � y|y ≥x1, y≤x2􏼈 􏼉

v10 � −6
x1 � 3
x2 � 3

2 3 0.031
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Table 2: Results in linear bi-level programming.

Example Optimal
solution

Math Prog solved to find the
optimal solution

Math Prog solved to
guarantee optimality

Required time
(sec)

BL1: min
x≥0

−8x1 − 4x2 + 4y1 − 40y2 − 4y3

s.t. min
y≥0

x1 + 2x2 + y1 + y2 + 2y3

s.t. − y1 + y2 + y3 ≤ 1
2x1 − y1 + 2y2 − 0.5y3 ≤ 1
2x2 + 2y1 − y2 − 0.5y3 ≤ 1

v1 � −29.2
x1 � 0
x2 � 0.9
y1 � 0
y2 � 0.6
y3 � 0.4

5 15 0.14

BL2: min
x

−x − 10y

s.t. min
y

y

s.t. − 25x + 20y≤ 30
x + 2y≤ 10
2x − y≤ 15
2x + 10y≥ 15

v2 � −18
x � 8
y � 1 5 7 0.078

BL3: min
x≥0

x + y

s.t. min
y≥0

−5x − y

s.t. − x −
y

2
≤ − 2

−
x

4
+ y≤ 2

x + y/2≤ 8

x − 2y≤ 4

v3 � 28/9
x � 8/9
y � 20/9

5 5 0.047

BL4: min
x

x + 2y

s.t. min
y

−y

s.t. − x + 2.5y≤ 3.75
x + 2.5y≥ 3.75
2.5x + y≤ 8.75

v4 � 3
x � 0
y � 1.5

1 1 0.016

BL5: min 3x + y

s.t. 1≤y≤ 6
min

x
−x

s.t. x + y≤ 8
4x + y≥ 8
2x + y≤ 13

v5 � 12
x � 2
y � 6 5 5 0.047

BL6: min
y

2x2 − y,

s.t. 0≤y≤ 3
min

x
−x1

s.t. 100x1 − x2 ≤ 1
x2 ≤y

x≥ 0

v6 � 0
x1 � 0.01
x2 � 0
y � 0 3 3 0.031
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Table 2: Continued.

Example Optimal
solution

Math Prog solved to find the
optimal solution

Math Prog solved to
guarantee optimality

Required time
(sec)

BL7: maxx + y

s.t. y solves

Q(x): max
y

2y

s.t. 2y + x − 1≤ 0

0≤y≤
1
2

x

v7 � 1
x � 1
y � 0

2 3 0.031

BL8: maxx + y

s.t. x + 2y≤ 8
andy is a solution of
Q(x): maxx + y

s.t. 0≤y≤ 4

v8 � 4
x � 0
y � 4 3 3 0.031

BL9: min
x1

2x1 − 11x2

s.t. min
x2

x1 + 3x2

s.t. x1 − 2x2 ≤ 4
2x1 − x2 ≤ 24
3x1 + 4x2 ≤ 96
x1 + 7x2 ≤ 126
−4x1 + 5x2 ≤ 65
− x1 − 4x2 ≤ − 8

x1, x2 ≥ 0

v9 � −85.09
x1 � 17.45
x2 � 10.90

6 9 0.08

BL10: min
x1

−x2

s.t.min
x2

x2

s.t. − x1 − 2x2 ≤ 10
x1 − 2x2 ≤ 6
2x1 − x2 ≤ 21
x1 + 2x2 ≤ 38
−x1 + 2x2 ≤ 18
x1, x2 ≥ 0

v10 � −11
x1 � 16
x2 � 11

6 9 0.064

BL11: min
x1

−x1 − 3x2

s.t. min
x2

x2

s.t. − x1 + x2 ≤ 3
x1 + 2x2 ≤ 12
4x1 − x2 ≤ 12
x1, x2 ≥ 0

v11 � −16
x1 � 4
x2 � 4 4 5 0.049
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max
y1 ,y2

110x11 + 120x21 − 40y1 − 50y2,

min
x11 ,x21

130x11 + 145x21,

x11 ≤y1,

x21 ≤y2,

y1 ≤ 1000,

y2 ≤ 500,

y1 + y2 ≥ 750,

x11, x21, y1, y2 ≥ 0.

(48)

In order to apply the proposed algorithm, its single-level
reformulation obtained by applying its Kuhn–Tucker con-
ditions is as follows:

max
y1 ,y2 ,x11 ,x21.zk

110x11 + 120x21 − 40y1 − 50y2,

z1 − z6 � −130,

z2 − z7 � −145,

x11 ≤y1,

x21 ≤y2,

y1 ≤ 1000,

y2 ≤ 500,

y1 + y2 ≥ 750,

y1 − x11( 􏼁z1 � 0,

y2 − x21( 􏼁z2 � 0,

1000 − y1( 􏼁z3 � 0,

500 − y2( 􏼁z4 � 0,

−750 + y1 + y2( 􏼁z4 � 0,

x11z6 � 0 ,

x21z7 � 0,

x11, x21, y1, y2 ≥ 0,

zk ≥ 0, k � 1, . . . , 7.

(49)

+e obtained solution is the same as in [27, 28], that is,
(x11, x21) � (y1, y2) � (1000, 500), with a corresponding
objective function value of 105,000. +e algorithm solves 5
mathematical problems, and the optimal solution was as-
sured in the 5th iteration. It required 0.031 seconds to reach
the optimal solution. It is important to mention that, in [27],
hybrid genetic and particle swarm optimization algorithms
solved the problem in 8 iterations, while 6 iterations of a
population-based metaheuristic are required in [28]. Both
references do not report the computational time, but for the
type of algorithms, it is probably that our methodology is
faster for solving this real-life application.

6. Conclusions

In this study, the bi-level formulation of linear generalized
semi-infinite programming problems is exploited to propose

an easy-to-implement exact solution algorithm. +e core of
the method relies in the use of Kuhn–Tucker optimality
conditions to reduce the bi-level formulation into a non-
linear programming problem with complementarity con-
straints. +e main contribution of this study is the approach
of satisfying the complementarity constraints via a branch-
and-bound scheme. +at strategy is utilized in bi-level
programming, but the adaptation to solve linear generalized
semi-infinite programming problems is a novel contribution
in this research area.

Additionally, computational experimentation is con-
ducted to validate the proposed algorithm and its effec-
tiveness. Diverse linear generalized semi-infinite
programming problems with different characteristics are
considered to validate the robustness of the implemented
algorithm. An interesting real-life application is considered
during the numerical experience, which demonstrates the
convenience and applicability of the proposed approach.

+erefore, the proposed method results in an alternative
for solving this particular type of problems that avoid the
inclusion of additional functions to regulate the comple-
mentarity constraints, as in [8]. Nevertheless, in both
methods, similar assumptions are made before applying
them.

A generalization of the proposed method for the case
when many semi-infinite constraints are considered is
presented in [3]. +eir proposal is described in a theoretical
manner, but its application to specific semi-infinite prob-
lems and computational experiments are not reported. +e
latter may be a challenging further research direction.
Another opportunity is to extend the presented algorithm
for solving other variants of SIPs. Also, the generalization of
the algorithm to the case withmany semi-infinite constraints
can also be considered as future work.
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