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Abstract

Mayra Cristina Berrones Reyes.

Candidate for obtaining the degree of Doctorado en Ingenieŕıa de Sistemas.

Universidad Autónoma de Nuevo León.

Facultad de Ingenieŕıa Mecánica y Eléctrica.

Title of the study: Use of artificial intelligence tools for computational-

aided diagnostics.

Number of pages: 142.

Objectives and hypothesis:

Hypothesis: Combining deep learning with traditional machine learning in an

ensemble approach will enhance breast cancer detection accuracy from previously

designed deep learning models in mammogram images, maintaining manageable

computational demands. This hybrid model is expected to offer a scalable and

computational-friendly solution for medical imaging.

For this work, our primary and secondary objectives align with the overarching

goal of employing a wide range of artificial intelligence tools to improve existing

computer-aided diagnostics methods.
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MAIN OBJECTIVES:

• Develop an Advanced Computer-Aided Diagnostic Tool: To develop a

robust and effective tool for assisting medical experts in diagnosing anomalies

in medical images, leveraging a range of artificial intelligence methodologies.

• Classify Medical Images: To utilize various artificial intelligence algorithms

and ensemble methods to classify medical images into “with anomalies” and

“without anomalies” categories with high accuracy.

• Image Segmentation for Anomaly Detection: After classification, com-

bine traditional artificial intelligence methods to perform image segmentation

and precisely locate the anomaly within images classified as containing an

anomaly.

SECONDARY OBJECTIVES:

• Utilize Ensemble Learning: To integrate ensemble learning techniques,

like bagging, boosting, and stacking, with deep learning to reduce the training

complexity and enhance performance.

• Experiment with Transfer Learning: To leverage pre-trained weights from

popular architectures (VGG-16, Inception, etc.) for feature extraction and

examine how this affects the overall diagnostic process.

• Ensure Data Integrity and Model Validation: To use well-balanced and

externally validated data sets to train and test the models, ensuring their real-

world applicability.

• Performance Comparison: Highlight the differences in effectiveness be-

tween simple and deep neural network architectures and traditional machine

learning algorithms in achieving high classification accuracy.
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• Optimize for Computational Efficiency: To consider the computational

time and resources, particularly when feature extraction and ensemble methods

are used.

• Benchmarking and Evaluation: To compare the developed tool against

existing methods using established datasets, focusing on popular metrics like

accuracy and F1 score.

• Understand the Impact of Data Imbalance: To explore how an imbalance

in data can introduce bias and affect the overall performance and how to

mitigate this properly.

The primary and secondary objectives consider previous difficulties when mod-

elling and testing real clinical mammography images from a Mexican hospital spe-

cialized in cancer research. The main issue was the discrepancy between the accu-

racy displayed in benchmark data sets and the data set provided by this hospital

(YERAL).

EXPERIMENTAL FINDINGS:

In our quest to enhance breast cancer detection through computational means,

we navigated a spectrum of machine learning and deep learning methodologies, high-

lighting each approach’s merits and challenges. Strikingly, combining deep learning

with machine and statistical learning methodologies resulted in a well-structured

strategy, enhancing our model’s predictive accuracy, notably on our target data set,

YERAL.

Specifically, leveraging the feature extraction capabilities of a pre-trained VGG-

16 model and integrating it with ensemble learning strategies—bagging, boosting,

and stacking—brought forth good model performance. The bagging model, notably,

showed a robust 91% accuracy on the development set and held 82% accuracy and

F1 score on the target dataset. This strategy amplified our model’s performance and

achieved this without overloading the computational burden, marking a significant
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stride in our exploration and application of AI in breast cancer detection.
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CONTRIBUTIONS:

This research comprehensively explores the evolving landscape of Computer-

Aided Diagnostics (CAD), offering critical insights across multiple dimensions. With

a detailed review of the historical reliance on rule-based algorithms, this work high-

lights how the field has undergone significant transformations, primarily driven by

machine learning and statistical learning advances.

One essential contribution is the critical evaluation of rule-based algorithms

in CAD. The research highlights the limitations of these algorithms, showing that

while they served as stepping stones, they had inherent limitations that necessitated

the adoption of more advanced techniques. Building on this, the work delves into

the role of statistical learning in CAD, offering an in-depth analysis that outlines its

strengths, weaknesses, and potential avenues for future research.

Another significant contribution is the extensive overview of CAD machine

learning applications, which includes exploring supervised, unsupervised, and semi-

supervised learning methods. This section clarifies their respective performance

metrics and suitability for various diagnostic problems, setting the stage for more

targeted and practical implementations in the future.

Deep learning receives particular attention as it represents the cutting edge

of CAD technologies. The research examines the types of diagnostic problems best

suited for deep learning techniques, providing a roadmap for future research, includ-

ing challenges that still need to be overcome.

Further, the research is open to the less technical aspects that affect CAD

adoption. It investigates the resistance CAD systems have encountered within the

medical community, shedding light on factors such as trust, technical limitations,

and the stigma surrounding human-versus-computer errors in medical diagnoses.

This work also delves into the often-overlooked aspects of technical limitations and

interoperability issues. It uniquely highlights the challenges peculiar to developing

countries and different from those faced by first-world countries.
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Finally, the ethical and legal dimensions are examined, particularly concern-

ing the lack of centralized data for medical imaging. This aspect contributes to

understanding the ethical implications that CAD systems introduce into healthcare

practices.

Based on this work, we have several practical results, where we explore the

nature of different statistical and machine learning processes and methods and com-

bine them to suit the complex task of medical imaging. These experiments have

the advantage of shedding light on a process often characterized as a black box and

also have the intended purpose of demystifying the inner workings of AI-based al-

gorithms. As a result of these experiments, we developed a GitHub page with a

structured explanation of different statistical learning tools, and it can be consulted

by the reader in Section A.

Another notorious output of this investigation is our scientific paper describing

ensemble learning to combine known convolutional neural networks and traditional

machine learning algorithms. Both works share similar goals, the main difference

being that in this work, we get into more detail on the previous steps that lead us

to the final results highlighted in the article (Berrones-Reyes et al. [2023]).

This work’s final and helpful output is the interface generated to help the

medical team use the model output without needing previous coding knowledge. It

is a very adaptable tool, where all the instructions on how are detailed in a technical

report. This interface and the technical report can be requested from the author

from the information in Section A.

In conclusion, this research is a multifaceted exploration of CAD, from its

technical underpinnings to its socio-ethical implications. It aims to provide a robust

foundation for academic researchers and industry professionals, aiding in the more

effective design and deployment of future CAD systems.
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Chapter 1

Introduction

In this chapter, we discuss a general view of the environment for the project’s de-

velopment, touching on subjects such as Artificial Intelligence (AI) and its many

applications in various fields, emphasizing computer vision. Then, in the problem

statement, we deepen the investigation of AI applications in medicine. Lastly, we

comment on a summary of the chapters ahead.

1.1 Introduction

Artificial intelligence (AI) is a rapidly advancing field within Computer Science that

focuses on developing computational models capable of performing tasks like hu-

mans (Joiner [2018]). This progress is evident in the widespread use of AI-powered

applications such as Siri and Cortana (Chander et al. [2022]) and the emergence of

self-driving cars (Nadikattu [2016]).

In today’s world, enormous volumes of data are generated from various sources,

including our social media interactions, bank statements, and online purchase history

(Yigitcanlar et al. [2020]). Recognizing the significance of processing and analyzing

this data, companies have realized the value of leveraging customer interactions to

enhance their products, retain existing customers, and attract new ones (Russell

1
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et al. [2015]).

Consequently, the field of data analysis has evolved substantially, with computer-

aided programs becoming pivotal to the success or failure of businesses (Russell et al.

[2015]). To address the challenges associated with the complexity of the data and

the need for real-time processing, specialized branches of AI have emerged (Vinuesa

et al. [2020]).

One such branch is deep learning, which has become a critical sub-field of ma-

chine learning. Deep learning utilizes neural network algorithms as its foundation,

enabling the successful resolution of highly complex problems (LeCun et al. [2015]).

However, it is crucial to understand the distinctions between machine learning, arti-

ficial intelligence, and deep learning algorithms in problem-solving (Goodfellow et al.

[2016]).

While these terms are often used interchangeably, they have some differences.

Machine learning refers to algorithms that allow computers to learn and improve

from data without explicit programming (Shinde and Shah [2018]). Artificial intelli-

gence encompasses various techniques and methods to create intelligent systems that

emulate human intelligence. On the other hand, deep learning can be interpreted as

a “specialized” machine learning that uses neural networks with numerous layers to

process complex data and extract meaningful patterns (Abiodun et al. [2019]).

Although these concepts share a common objective of using advanced comput-

ing capabilities to solve real-life problems more efficiently, their specific approaches

and techniques differ. By understanding these distinctions, we can better appreciate

the diverse landscape of AI and its various applications (Sarker [2021]).

Overall, the rapid growth of AI, along with its sub-fields such as deep learning,

has revolutionized industries and opened up new possibilities for problem-solving.

As technology advances, it is crucial to stay informed about these developments and

their potential impact on our lives (Liu et al. [2021]).
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Figure 1.1: The evolutionary spectrum of Artificial Intelligence, Machine Learning,

and Deep Learning. This illustration shows the hierarchical relationship between

these three fields.

There is a common misconception surrounding artificial intelligence (AI) that

portrays it as a recently developed field, representing a new approach to problem-

solving using computers. However, this belief is only partially accurate, as AI has

existed since the early days of computing when computers were employed to solve

repetitive mathematical problems. Initially, AI was used to streamline processes

characterized by repetitive tasks, where the precise steps, materials, and procedures

were well-defined (Copeland [2022]). These processes could be optimized by leverag-

ing AI, as computers could compute results far more quickly than humans. Beyond

its practicality, AI also relieved humans of tedious tasks, enhancing workflow effi-

ciency across numerous processes.

Since AI proved to be a significant improvement, it is natural that it followed a

change to adapt to new and more challenging tasks. The complexity of the data and

jobs required to be completed by the computer became more demanding and chal-

lenging (Haug and Drazen [2023]). That is when the use for more flexible algorithms

came to be, and we have machine learning.
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As mentioned in Figure 1.1, at the base, we have Artificial Intelligence, which

focuses on emulating human-like decision-making and problem-solving. Nested in-

side the world of AI is Machine Learning (ML), a specialized branch that enables

computers to learn from data, solving more complex problems without explicit pro-

gramming. Further specializing ML, we have Deep Learning (DL), a subset that

leverages neural networks for even more complex problem-solving tasks. Despite

their increasing complexity and specialization, each successive section retains key

attributes of its parent category, illustrating the evolution and continuity of intelli-

gent computation.

In the previous iteration of AI, programs needed strict steps and paths since

the computer would not perform anything outside of the parameters assigned by the

program’s instructions. If anything unexpected crossed its way, the program would

crash and stop working correctly (Copeland [2022]).

Constructing a procedure that strict may have been feasible with the type of

data and challenges of minor problems, but for more complex instructions, program-

ming every single path could be time-consuming and ineffective, especially since we

are trying to optimize the time to have good results. Machine learning enabled the

ability of the computer to solve problems with little to no human input and make

decisions based on previous actions and observations (Lazzaro [2021]).

Over time, ML algorithms could detect patterns in the data and learn from

the outputs to make their predictions. The main difference between the older AI

programs and this ML approach is that we do not need to program specific actions

and conditions. Still, we could feed the algorithms examples of labelled data to help

them make calculations, learn, and identify patterns automatically (Chollet [2018]).

ML then proved to be a very efficient tool. As long as they were provided with

an accurate training example, these algorithms became efficient in labelling similar

images without human assistance. This advancement helped save time and money

on tasks such as data analysis.
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The type of learning we described is supervised learning, where the algorithms

need labelled data, which needs to be approved by humans. Since these programs

will analyze the data and make a prediction based on those labels, if the program

has dubious labels, the predictions for unseen data will be wrong (Chollet [2018]).

The advantage of this supervised learning is that we can measure the success or

accuracy more efficiently since we can determine if the algorithm’s output is good or

bad depending on how many of the predictions got right or wrong. The disadvantage

of these models is that their supervised part could be highly time-consuming since

it needs to be fed manually and accurately tagged data to learn patterns.

There are some problems we see nowadays that would be impossible to man-

ually label all data since it could be created at a tremendous rate, or the labelling

needs a level of expertise that only a few experts could do, which then creates a

bottleneck that could affect the performance of the whole process (Lazzaro [2021]).

For these types of problems, ML algorithms evolved into unsupervised or semi-

supervised learning, which uses the disadvantage of having a massive amount of

unlabeled data in its favour by using it to uncover patterns and relationships out-

side what a label could provide. These models are not trained to find the correct

answer or prediction, so they are based on circumstantial evidence to find patterns

independently (Géron [2020]).

Many machine learning algorithms are powerful tools for analyzing and digest-

ing complex data. However, like every other problem we try to solve that involves

data, the way these algorithms are different in their performance is how each algo-

rithm learns, what type of data is needed, and how much of this data the algorithm

will need to perform well.

Despite the many advantages of machine learning algorithms, their perfor-

mance is based on factors such as the learning approach, the type of data required,

and the amount needed for optimal performance. Even the unsupervised kinds de-

pend on human intervention to perform correctly since we determine the labels we
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need to predict or the hierarchy of the most important features the algorithms need

to understand (e.g., determining labels or establishing the hierarchy of essential fea-

tures); they require more structured data. Deep learning comes into play to tackle

problems that involve unstructured data and require robust solutions.

Deep learning can be interpreted as a subset of machine learning since it is

differentiated from classical or non-deep machine learning and deep machine learning.

In this case, deep learning can but does not necessarily need labelled data to be

trained. Going back to what we mentioned earlier, the algorithms we use to analyze

data are dependent on the type, amount, and complexity of the data we have, and

deep learning is primarily used for the most complex cases, such as problems that

require answers in real-time, such as fraud detection or virtual assistants, to the

most challenging issues we have nowadays like computer vision for self-driving cars,

or tools of pattern and image recognition for medical diagnosis (Chollet [2018]).

1.2 Problem Statement

The advancement of artificial intelligence algorithms, particularly in deep learn-

ing, has significantly impacted fields such as finance, healthcare, and government

by enhancing performance and automating labour-intensive tasks. Although many

sectors strive to emulate the remarkable successes achieved through these computa-

tional tools, the applicability of algorithms substantially depends on the specificity

of the data and issues at hand. While trending in numerous applications, deep learn-

ing models are only sometimes applicable due to their data and feature specificity.

Specifically, image recognition in computer vision has notably benefited from deep

learning, achieving unparalleled flexibility and performance through classic and deep

learning methods, with neural networks emerging as a popular model.

One field that was attracted to the success of using neural networks for image

recognition is the medical diagnosis field. Their main problem is the massive amount
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of data they must process daily. If we compare the number of experts available to

use and analyze all of the data, we come up with a bottleneck that affects the care

and performance of the diagnosis of patients. This time loss becomes particularly

burdensome in the medical field of radiology since cancer diagnosis relies on early

detection to give the patient better treatment.

Given the necessity of applying the best tools to aid in the already existing

computational tools that the experts use, there have been many attempts to im-

plement these kinds of image recognition deep learning algorithms to improve their

performance. However, in this urgency, many of the features required for a reliable

and accurate model have been glossed over, resulting in dubious or non-replicable

results.

This is not to say that these studies have no merit since they are all based

on current methods for deep learning in the computer vision field. In the area of

medical diagnosis, there needs to be a different standard in how we conduct our

experimentations so as not to create false expectations on the result of our models

and give them the best accuracy we can get.

In a more focused approach, we studied and compared the results of using the

state-of-the-art tools for computer vision used in computational-aided diagnostics

with benchmark data sets and real clinical data sets from a Mexican hospital. One of

the main concerns we found in our literature review is that aspects of computer vision

need to translate better to specific medical imaging problems, such as annotated

images or data set diversification, especially when working with limited resources,

which often happens in developing countries.

To overcome that, we explore the capabilities of artificial intelligence tools

and not only trap ourselves inside the box of deep learning algorithms. In this

work, we highlight the symbiosis that exists across all areas of artificial intelligence,

which includes machine learning, deep learning, and statistical analysis, to solve

such a complex problem as medical image analysis with limited resources. In this
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instance, we focus on using mammography as the data set. (See Apendix A for

further information on the data set)

Our hypothesis is that we are going to be able to find a balance between the use

of deep learning mixed with traditional machine learning, and the current available

resources, such as computational capabilities, and sufficient annotated data to design

a model that can improve previous classification and segmentation experimentations.

Looking to identify such a balance, we also aim to do a comprehensive com-

parison between what are the main differences, advantages and disadvantages of

what the state-of-the art instructs, and how they differ from the findings we made

while experimenting with different methodologies. Another goal is to add to the

balance what are the different paths we can consider in the realm of Artificial In-

telligence when we encounter constraints that are not detailed on other works when

computational time and resources are not a issue.

STRUCTURE OF THE THESIS

In the Introduction, we mentioned the progression and importance of all the

fields in artificial intelligence. In Background (Section 2), we discuss the differences

and requirements for each algorithm mentioned in the Introduction. We see the

benefits and precautions we need to take when using each one and how we can

determine the best fit for our data.

In Literature Review (Section 3), we explore the use of these algorithms in

computer vision and medical diagnosis; we compare their benefits and outline the

differences we need to consider when solving problems in the medical field. In

Methodology (Section 4), we outline the steps and methods we deem appropriate

for the situation we are trying to solve: to improve the classification and diagnosis

of mammography by applying a combination of machine learning and deep learning

algorithms. Results (Section 5) show the output of the stages mentioned in the

methodology section. Since our goal is for these tools to be used in a real-life med-

ical setting, we divide the methodology and results into three stages. They can be
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separated so the experts can use our tools in the order they need.

In Conclusions (Section 6), we highlight the advantages and disadvantages of

using the different methodologies we mention in our work, emphasizing the type of

data we use. Finally, in Future Work (Section 6.2), we outline the proposed steps

to follow our methodology once the data and resources become available.



Chapter 2

Background

In this chapter, we review in depth the different artificial intelligence tools that we

use for our methodology, explaining their most essential features, how to evaluate

their performance, and the pros and cons of using them with different types of data,

making emphasis on their use on computer vision and medical imaging fields.

2.1 Machine Learning

While deep learning, especially with CNNs, has demonstrated exceptional perfor-

mance in computer vision tasks, particularly with large-scale data sets, traditional

machine learning algorithms can still be valuable alternatives in specific scenarios,

depending on the available data, interpretability requirements, resource constraints,

and feature engineering considerations.

Deep learning models often require large amounts of labeled data to train

effectively. Traditional machine learning algorithms can be a practical choice if the

dataset is small or limited. Techniques such as Support Vector Machines (SVM),

Random Forests, or k-nearest neighbors (k-NN) can still yield good results with

smaller data sets. Some machine learning algorithms can provide more interpretable

models than deep learning, so they are sometimes preferred in certain fields, such as

10
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medical diagnosis (Chugh et al. [2021]).

Deep learning algorithms are known for their high computational requirements.

Certain machine learning algorithms are more practical and efficient when faced with

limited computational resources. Traditional machine learning approaches often

involve feature engineering, which means extracting relevant features from raw data

using domain knowledge. The presence of specific domain knowledge in a problem

can significantly influence the model’s performance.

This first section lists some of the more common traditional machine-learning

algorithms for classification problems. In the methodology section, they are often

used with their standard parameters, so if more detail is needed, there are books for

traditional ML methodologies, such as works by Geetha and Sendhilkumar [2023a],

Chopra and Khurana [2023], Ghosh and Math [2023] which go in-depth on these

subjects.

2.1.1 Logistic Regression

Logistic Regression (Menard [2010]) is a popular algorithm for binary classification.

It models the relationship between the data features and the binary target variable

using the logistic function, which maps the input to a probability. It is known for

its simplicity, interpretability, and efficiency.

The logistic function is determined by Equation 2.1 and looks like Figure 2.1.

This equation forces the output to assume a value between 0 and 1. In the final

result, a threshold of 0.5 is common for each category. When we have a binary

categorical feature, it is easy to interpret the result as one end being closer to 0 and

the other being closer to 1. When it comes to problems of more than two categories,

the problem uses one hot encoding, meaning each column or feature gets its category:
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logistic(n) =
1

1 + exp(−n).
(2.1)

Figure 2.1: Behaviour of the logistic function. It outputs a number between 0 and

1.

The logistic regression model has the main advantage of its simplicity. It does

not require extensive computational resources to be trained quickly. The model also

provides interpretable results, as the coefficients associated with each feature can be

interpreted as the impact of that feature on the probability of the target class. If

we have a class with 80% impact, it would mean it has more significance than the

probability of a class of 50%.

Finally, logistic regression tends to be less susceptible to overfitting when work-

ing with limited data, making it an excellent choice when we have small to moderate

size data sets.

One disadvantage of this model is that it assumes a linear relationship between

the independent variables and the log odds of the target class. It may not perform



Chapter 2. Background 13

well if the true relationship is non-linear. It also assumes that the features are not

dependent on one another. If there are strong correlations or interactions among the

features, it may lead to biased coefficient estimates (Singh [2020]).

Logistic regression is also designed to solve binary classification problems. Al-

though it can be extended to handle multi-class problems (e.g., through one-vs-rest

or multi-nomial logistic regression), it may not be as straightforward or effective as

other models specifically designed for multi-class classification (James et al. [2013]).

2.1.2 Support Vector Machines (SVM)

SVM is a very powerful algorithm that searches for an optimal hyperplane to sep-

arate data points of different classes in a high-dimensional feature space. It aims

to maximize the margin between the classes while minimizing classification errors.

SVMs can handle linear as well as nonlinear classification tasks using kernel func-

tions. These kernel functions are a strategy for dealing with scenarios where the

separation of groups is non-linear and involves expanding the dimensions of the orig-

inal space. An example is illustrated in Figure 2.2, where two groups are initially

not separable by a linear boundary. However, introducing an additional dimension

makes their separability apparent (Chollet [2018]).

This algorithm can be used for several tasks and is regarded for its high per-

formance, efficiency, and flexibility. In some cases, using SVM has simplified the

application of other machine learning algorithms, for example, combined with CNN,

where the network is used to extract features and the SVM acts as the binary clas-

sifier (Ahlawat and Choudhary [2020]).

An interesting feature that we explore with this model and hyperparameters of

neural networks is the regularization or penalizing feature of the concept of “maxi-

mum margin classifier” that uses a similar loss function component known as hinge

loss, which can also be applied to loss-functions like cross-entropy in binary classi-
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Figure 2.2: Use of kernels in support vector machine to maximize the distance

between classes. On the left, we see the representation of a 2D kernel, and on the

right, a 3D kernel. The complexity of the SVM goes up exponentially with each

kernel and becomes difficult to illustrate graphically.

fication problems within neural network training. Sometimes, hinge loss could be

beneficial when dealing with imbalanced data, as it focuses on the hardest-to-classify

examples (those near the decision boundary) rather than all data points. In some

cases, combining hinge loss with other regularization methods could potentially sta-

bilize and improve training in neural networks (Hastie et al. [2009]).

One of the key advantages of SVM is its ability to utilize diverse kernel func-

tions, including linear, polynomial, radial basis function (RBF), and sigmoid. This

flexibility enables the capture of various relationships between features and the tar-

get variable. Additionally, SVM excels in handling non-linear decision boundaries by

effectively utilizing kernel functions. By mapping the original features to a higher-

dimensional space, SVM can effectively separate classes that are not linearly sepa-

rable in the original feature space (Logunova [2022]).

Another advantage of SVM is its ability to perform well without overfitting, as
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it can generalize effectively even when the amount of data is small. It is important

to note that the suitability of SVM depends on the specific problem and data set

since this algorithm can require significant computational resources and time when

dealing with complex or large data sets. It also requires more manual tuning for

optimal performance since several parameters greatly affect the outcome, such as

kernel, kernel parameters, and the regularization parameter. Improper parameter

selection can lead to sub-optimal results (Mammone et al. [2009]).

2.1.3 Decision Trees

Decision Trees are versatile and intuitive algorithms that partition the feature space

based on a series of decision rules. They create a tree-like structure where each of

the internal nodes represents a decision based on one of the features, and each of

the leaf nodes represents a class label. Decision Trees can handle both categorical

and numerical features and are easily interpretable. This algorithm makes predic-

tions based on how the previous “questions” were answered that contain the desired

categorization of the data, which makes it a form of supervised learning (IBM).

The decision-making structure of the decision tree algorithm reflects its name,

resembling the shape and behavior of a tree, which is why the terms used to explain

them include relevant concepts. Figure 2.3 represents the schematic diagram of the

different terminology for this model, where the root node represents the starting

point where the decision tree begins to divide the data, while the leaf nodes signify

the outcomes with no further separation. Parent and child nodes refer to the rela-

tionship between nodes, where the initial node is the parent, and subsequent nodes

are its children. Splitting, sub-tree construction, and pruning are techniques em-

ployed to enhance the tree’s performance and, in some cases, reduce its size without

compromising accuracy (Bansal et al. [2022]).

An important attribute of this model is the Gini index, which measures the
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Figure 2.3: Schematic diagram of the different terminology for decision tree. Illus-

tration inspired by EdX.org [2023].

impurity used during the creation of the tree algorithm. It helps determine the

quality of a split when constructing the decision tree.

The Gini index calculates the probability of misclassifying a randomly chosen

element in a node if it were randomly labeled according to the distribution of the

classes in that node. It ranges from 0 to 1, where a Gini index of 0 indicates that

the node is pure (all elements belong to the same class). A Gini index of 1 indicates

maximum impurity. A lower Gini index indicates a more homogeneous distribution

of classes after the split, which is the desirable outcome (Singh [2023]).

Decision trees provide intuitive and interpretable models for measuring the
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importance of features in the classification process. By examining the tree’s structure

and the feature’s placement, you can assess the importance of different features

in decision-making. They can capture complex decision boundaries without the

need for complex transformations or feature engineering and are far less sensitive to

outliers than other models for linear regression (Bansal et al. [2022]).

The main disadvantage of this algorithm is that they can learn intricate pat-

terns in the training data that may not generalize well to unseen data, leading to

poor performance on test data and overfitting. They are also prone to bias to-

wards features with many categories, as they can create more specific rules. It is

important, then, when using this algorithm, to consider the various regularization

techniques and ensemble methods such as random forests, gradient boosting, and

pruning. (Castillo [2021]).

2.1.4 Neural Networks

Deep learning models, particularly Artificial Neural Networks (ANNs), are increas-

ingly popular for binary classification. ANNs consist of multiple layers of intercon-

nected nodes (neurons) that learn complex representations of the input data. With

the advancement of deep learning architectures, such as convolutional neural net-

works (CNNs) and recurrent neural networks (RNNs), they have shown remarkable

performance on various classification tasks (Chollet [2021]).

Neural networks have gained significant popularity in machine learning appli-

cations based on their ability to model complex relationships in the data. They can

adjust their internal representation based on the data they are trained with to im-

prove their performance over time. They are a great tool when handling large-scale

problems and big-data applications since they generally achieve better performance

when they have more training data to use. Their success garnered many topics of

investigation, leading up to deep learning and more complex architectures (Aggarwal
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Figure 2.4: Schematic diagram of the structure of a common neural network. As it

stands, we have input, hidden, and output layers. The connections between these

layers have different hyperparameters, such as activation functions and weights.

[2019]).

However, one of the main drawbacks of neural networks is that they can be

computationally expensive since they require substantial computational resources

to compile a problem and need a large amount of training data to generalize well.

If they do not have access to a big data set, they can be prone to over-fitting,

where they become overly specialized in the training data and perform poorly on

unseen examples. Regularization and careful hyperparameter tuning are necessary

to mitigate this effect (Ng [2019]).

Furthermore, neural networks have a black-box nature, so it is difficult to in-

terpret, understand, and explain their internal workings. This poses challenges when

insights into the decision-making process are required. Considering these advantages

and disadvantages in the context of specific problems, data sets, and other factors

is important. While neural networks are powerful, they may not always be the best

choice for every machine learning task (Géron [2020]).
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2.1.5 k-nearest Neighbor

It is a machine learning algorithm commonly used for classification tasks, including

binary classification. The basic principle of k-NN is to classify a new data point by

comparing the class labels of its nearest neighbors in the training data set. However,

it is a non-parametric algorithm that does not make explicit assumptions about the

underlying data distribution. It is a relatively simple and intuitive algorithm but can

suffer from performance issues with large data sets, as the computation of distances

can be computationally expensive. Additionally, selecting an appropriate value for

k and handling imbalanced data sets are considerations to keep in mind when using

k-NN for binary classification (Harrington [2012]).

Figure 2.5: Example of how k-NN classifies a new data point based on the different

k chosen.
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This offers many advantages in the field of machine learning. Since it is a

non-parametric algorithm, it does not assume any specific data distribution, which

allows it to handle various data types and adapt well to different problems.

It also has the ability to capture local patterns in the data. While it is primarily

used for classification and regression tasks, it can also be used in image segmentation

to some extent. However, it is not a widely used algorithm for this task since image

segmentation often requires capturing complex relationships and boundaries between

regions of interest, which can not be effectively captured by a k-NN algorithm alone

(Harini and Chandrasekar [2012]). So, while it can be applied to image segmentation,

it may not provide the most optimal results compared to more advanced techniques

tailored for this task, such as convolutional neural networks or graph-based methods.

The curse of dimensionality is also a known challenge with k-NN; as the number

of dimensions increases, the distance between instances becomes less informative,

and the algorithm may struggle to find meaningful neighbors. This can degrade its

performance in high-dimensional feature spaces.

Lastly, k-NN is often considered a black box algorithm since it does not ex-

plicitly explain its predictions. Understanding and interpreting the decision-making

process can be challenging, especially when many neighbors are used (Hu and Sejdi-

novic [2021]).

2.1.6 Random Forest

Random Forest is one of the most commonly known ensemble learning method.

This algorithm combines multiple decision trees to improve their predictions. It is

formed from a set of decision trees on different random subsets of the training data

and aggregates their predictions. Random Forests offer improved generalization,

robustness against overfitting, and the ability to capture complex relationships in

the data (Shaik and Srinivasan [2018]). Like Figure 2.3, Random forest follows the
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same terminology as shown in Figure 2.6. The main difference here is the ensemble

behavior represented as multiple decision forests.

Figure 2.6: Schematic diagram of a random forest model.

Random forest algorithm is considered an ensemble method combining multiple

decision trees, averaging its decisions, and reducing the impact of individual tree

errors. As such, it follows the same performance metric, the Gini. This often allows

the algorithm to garner a higher accuracy than a single decision tree. Combining

predictions from multiple trees can capture a broader range of patterns and reduce

overfitting (Slimani et al. [2023]).

Random Forest offers improved accuracy, robustness, and feature importance

analysis compared to a single decision tree. However, it sacrifices some interpretabil-

ity and computational complexity due to the ensemble approach. Random Forest is

more suitable when higher accuracy and generalization are required, while decision

trees can provide simpler, interpretable models.

Regarding computer complexity, training this model requires storing multi-

ple decision trees in memory (often RAM), which can exhaust our resources if the

problem is complex. Training and prediction times can be longer, although parallel
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processing can handle this if used correctly (Cloud [2023]).

2.2 Statistical Learning

Finally, let us explore the profound influence of statistical learning across the various

domains of Artificial Intelligence discussed earlier. Statistical learning serves as a

unifying factor, playing a critical role within deep learning, a subfield of machine

learning that focuses on training ANN with multiple layers. While deep learning

models excel at learning intricate patterns and representations from vast volumes of

data, enabling great advancements in image recognition, natural language process-

ing, and speech recognition, comprehending the specific aspects in which statistical

learning contributes becomes essential for a comprehensive grasp of the underlying

theoretical foundation.

By delving into the involvement of statistical learning in deep learning, we

can gain valuable insights into the fundamental principles that govern the tuning

of these models to achieve enhanced performance without compromising the accu-

racy of the outcomes. Through statistical learning, we are equipped with many

techniques and concepts that aid in data preprocessing, selecting appropriate loss

functions, optimizing model parameters, utilizing regularization techniques, evaluat-

ing model performance, and even hypothesis testing and model comparison. These

statistical learning components seamlessly integrate with the complex machinery of

deep learning, enabling us to extract meaningful insights, make accurate predictions,

and unlock the full potential of artificial neural networks.

In essence, statistical learning acts as a powerful ally within deep learning,

empowering us to navigate the intricacies of training deep neural networks and

empowering them to unravel complex patterns hidden within vast datasets. By

harnessing the synergy between statistical learning and deep learning, we pave the

way for groundbreaking advancements and foster innovation across various domains,
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propelling Artificial Intelligence to new frontiers of understanding and capability.

2.2.1 Data Pre-processing

In the realm of deep learning, statistical learning techniques are commonly employed

for data preprocessing purposes. This thesis focuses on applying statistical learning

in the context of medical imaging. It is important to note that certain computational

tools cannot be directly applied to medical images in the same way they are used

with typical data, as medical images require a higher level of specificity and detail.

The same holds true for statistical learning methods.

When considering a medical image dataset, statistical learning techniques are

still involved in the preprocessing stage of deep learning, but there are some specific

considerations to address the unique characteristics of medical images:

• Data Normalization: Statistical learning techniques are used to normalize

medical image data. However, normalization may involve more specialized

techniques tailored to the imaging modality in the case of medical images.

For instance, techniques such as intensity rescaling or histogram equalization

are commonly employed to ensure consistent intensity ranges across images

obtained from different scanners or protocols.

• Handling Missing Data: Missing data in medical images can occur due

to various factors, such as imaging artifacts or incomplete scans. Statistical

techniques, specifically developed for medical imaging, can be used to han-

dle missing data. These techniques may involve sophisticated interpolation

methods or advanced image reconstruction algorithms to fill in the missing

information.

• Preprocessing Techniques for Specific Modalities: Different medical

imaging modalities (e.g., MRI, CT, ultrasound) have their unique character-
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istics and preprocessing requirements. Statistical techniques are utilized to

address these specific needs. For instance, spatial registration techniques may

be applied to align images from different time points or modalities. Noise

reduction algorithms may also be employed to enhance image quality while

preserving important features.

• Data Augmentation and Variability: Data augmentation techniques spe-

cific to medical images are used to increase the size and variability of the

training dataset. These techniques can include deformations, rotations, or in-

tensity transformations that are relevant to medical imaging. It is important to

apply these augmentations while preserving anatomical accuracy and clinical

relevance.

• Statistical Analysis and Visualization: Statistical techniques are crucial

in analyzing and visualizing medical image datasets. Descriptive statistics,

such as mean, variance, or texture features, can provide insights into the

data characteristics and guide preprocessing decisions. Statistical visualiza-

tion methods, such as heat maps or scatter plots, can help identify regions of

interest or anomalies inside the images.

2.3 Convolutional Neural Networks

Now that we have described the different methods of artificial intelligence that range

from statistical learning to machine learning, we discuss the most popular one for

image classification and segmentation—Convolutional Neural Networks.

When describing the advancements of convolutional neural networks (CNN),

we follow similar examples of how we described the development of artificial intelli-

gence and computer-aided diagnostics. In the case of CNN, their early architectures

were linear and simple, following a straightforward structure of layers. So to ex-
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plain the functioning of a CNN, we start with the example of the first popular CNN

architecture, the LeNet-5. But first, we explain the essential parts of a CNN.

• Convolutional layer: This layer applies a convolution filter or kernel to the

image to detect its features. Mathematically, this kernel is represented by a

matrix of weights, as shown in Figure 2.7. We begin with the original or input

image; the user determines the size of the kernel, but the numbers inside are

usually random at the beginning of the process. This kernel will “slide over”

the image, where at each position, we multiply the kernel by the element of the

pixels it covers and sum the results. The output will be a slightly smaller image

with simple features. The numbers in the kernels are not usually programmed

by hand but by random allocation and change in the course of the training

process thanks to the optimization function; they serve as the first stage to

build on early detected features to identify more complex shapes as the layers

progress. The activation functions determine the adjustment of these kernels.

Figure 2.7: Simplified representation of the process and parameters inside a convo-

lutional layer.

• Pooling layer: In a structure similar to the convolutional layer, the pooling

layer is responsible for reducing the features of the image, decreasing the com-

putational power required to process the images, and extracting the dominant

features. It is a common practice to always put a pooling layer right after

one or two convolutional layers, though it is not mandatory for a good perfor-

mance. It all depends on the complexity of the images. There are two types of
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pooling: max-pooling and average-pooling, with max-pooling being the most

commonly used. Figure 2.8 shows an example of the differences between each

type of pooling. In this case, max pooling also has the advantage of acting as a

noise suppressant, as it discards unimportant activations with dimensionality

reduction. Although simple, this process reduces the network’s complexity and

helps improve its efficiency. The only drawback of this reduction is that it also

results in information loss.

Figure 2.8: Representation of the max pooling and average pooling layer process.

• Dense layer: We call the dense layer the last connection of the network

since it holds the fully connected layer, the flattening, and the output layers.

In Figure 2.9, we can see how the process starts with the receiving input

of the feature extracted map, created by the convolution and pooling layers.

This fully connected layer is considered a very easy and inexpensive way to

learn non-linear combinations of high-level features. After going through this

layer, we have the flattening layer, where the image is arranged into a column

vector to feed it forward to the output nodes by a loss function. Still, this

function is applied to every iteration of training and helps correct the model’s

performance, depending on the classification task.

• Activation functions: An activation function decides how the weighted sum

of the inputs will be transformed from one layer to the other. This parameter
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Figure 2.9: Representation of the process of the dense layer, which includes the

pooling layer, fully connected layer, flattening, and output layer.

is very important to decide since it greatly impacts the neural network’s per-

formance. Different activation functions may be applied to different parts of

the network. Typically, all hidden layers in the network will use the same ac-

tivation function, and the output layer will have a different one corresponding

to the classification process we need. Figure 2.10, illustrates the most common

ones. We have in Figure 2.10b the rectified linear activation and its variant,

leaky ReLU. Both are very popular for hidden layers since they are less sus-

ceptible to vanishing gradients. A very simple way of seeing this function is

that when the input value is negative or 0, the value 0 is returned. Any other

positive value is returned as is. Another function is the Sigmoid or logistic

function. This one takes the input and output values from 0 to 1. This func-

tion is common for the dense layers since the output helps determine which

class the results are more aligned with. The more positive the response, the

closer it is to 1; the more negative, the closer it is to 0. Finally, the hyperbolic

tangent activation function, or simply Tanh. This is very similar to the sig-

moid function, only in this one, the input and output values range from -1 to

1. For the recommendations on which activation to choose in the hidden and

output layers, we have a representation in Figure 2.11 taken from a web page
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(a) Tahn activation function. (b) ReLu activation function.

(c) Sigmoid activation function. (d) Leaky ReLu activation function.

Figure 2.10: Representation of the most common activation functions for neural

networks.

where we can learn more about the depth of each function (Brownlee [2021]).

There are other important hyperparameters that we need to mention. For neu-

ral networks, especially convolutional networks, tuning hyper-parameters is called

searching for the optimum values for the model architecture. This performance en-

hancement varies from problem to problem, and there is no drawn-out path we can

choose for these parameters, so they are often picked out with experience and trial

and error.

• Dropout: One of the main problems to avoid when working with convolutional

neural networks is the overfitting of the model. This happens when the model

we use is too complex or the data set does not have enough training examples.

For this, we use regularization methods, such as dropout. This parameter

follows the behavior of the neural connections in the brain of a human. The

more a connection between two neurons activates, the more robust it becomes.
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Figure 2.11: How to choose the activation function for the hidden layer based on the

network type and for the output layer based on problem type.

Dropout can be used as a threshold, where set, can ignore or “drop out” some

layer outputs, depending on the robustness of the connection between layers.

This helps the network to learn a sparse representation as a consequence. Like

pooling and other normalization strategies, dropout needs to be used carefully

since one of the side effects is how it reduces the network’s capacity.

• Optimization function: The optimization function helps the network im-

prove the accuracy of their performance and training speed. When explaining

the convolution and pooling process, we mentioned that the kernels used in

those tasks start at random, and depending on the optimization function we

select, it modifies the weights and aims to minimize the loss function for the

dense layer. We make reference here to our master’s thesis, where we explain

in detail all the different optimization algorithms available for deep learning,

their advantages and disadvantages, and performance for our desired data set

(Berrones-Reyes [2019]). In this work, we employ the Adam optimization al-

gorithm. It is a recommended default optimization algorithm for many bench-

mark deep learning papers. It has low memory requirements, needs less tuning

than any other optimizer, and has a faster running time in training. We refer
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to the original work of Kingma and Ba [2014] for a more in-depth description

of its properties and application.

• Batch size: It is a number that needs to be selected at the beginning of

training since it is the number of samples the epoch will take to update the

model parameters. Same as all other hyperparameters, the batch size can

not be a fixed number for all problems, but it is suggested to consider the

hardware capabilities for the experimentation. The bigger the batch size, the

more computationally expensive it is.

• Epochs and iterations: The iterations is the number of batches the al-

gorithm will execute, while the epochs are the number of times a learning

algorithm sees the complete data set. The iterations are linked with the batch

size since it can run out of data if we allocate a small batch number and a

big iteration number. Epochs are usually the way we can see improvement in

our performance. Too few epochs will result in underfitting, while too many

will result in overfitting. To avoid this, there are “callbacks” that help reduce

dynamically the number of iterations in each epoch.

• Loss function: In a convolutional neural network (CNN), the loss function

is a crucial component used to measure the discrepancy between the predicted

output of the network and the true or expected output. The goal of the loss

function is to quantify the model’s performance by assigning a numerical value

that indicates how well or poorly the network is performing on a given task.

The choice of an appropriate loss function depends on the nature of the problem

being solved. Specific loss functions are commonly used for tasks such as image

classification, object detection, or semantic segmentation. Some examples are

categorical cross-entropy, binary cross-entropy, mean squared error, etc.

• Modules: When working with CNN architectures, a problem arises when the

network can no longer propagate useful information from the output layer to

the layers from the input. This will mean that the weights can not be up-
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dated, so the network will not learn, and the performance will decrease. Some

more complex networks tackle this problem with modules, like the ResNet50.

ResNet-50 can create a very deep network architecture by stacking multiple

residual blocks together. The network is typically divided into stages, each con-

taining a different number of residual blocks. The number of blocks per stage

depends on the complexity of the problem being solved. The skip connections

in ResNet-50 allow the network to effectively propagate gradients through the

layers, enabling the training of very deep networks. This, in turn, helps capture

more complex and abstract features from the input data, leading to improved

performance in tasks such as image classification or object detection.

Having discussed the most common terms in convolutional networks, we de-

scribe the most common architectures known in the literature.

2.3.1 LeNet-5

The LeNet-5 architecture of the original article by LeCun et al. [1998] is shown in

Figure 2.12. In this case, and all the architectures we will discuss, we represent

the convolutional layer as the red box, the gray as the pooling operation, the blue

box as the dense layers, and the information inside is the actual operation of strides

they use. Additionally, the yellow circles represent the different activation functions,

and the white circles the other normalization functions available. We can tune many

other hyper-parameters to help the network’s performance, but these representations

will help us to understand their complexity better.

As mentioned, the LeNet-5 architecture is the simplest one, with the stan-

dard or traditional architecture we can expect from CNN-convolutions with acti-

vation functions, pooling layers, and fully connected layers. The authors first pro-

posed this now-familiar architecture to solve the problem of recognizing handwritten

and machine-printed characters. Its simplicity allowed the hardware of the time to
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Figure 2.12: Compact visualization of the LeNet-5 architecture (from Karim [2022])

that follows the original architecture by (LeCun et al. [1998]).

achieve great results. LeCun et al. [1998] introduced the concept of automatic pat-

tern recognition, removing the need to choose hand-crafted feature extractors. The

comparison was between this newly crafted architecture and traditional machine

learning and statistical learning algorithms, such as k nearest neighbor, principal

component analysis, support vector machines, etc.

Even though the performance from LeNet-5 was very impressive, the compar-

ison between the other machine learning algorithms was not out of the ordinary,

when in some cases, algorithms like support vector machine could surpass it. At

the time, the resources needed to train and model a CNN were still highly costly,

making neural networks’ popularity fade by the end of the 90s.

2.3.2 AlexNet

When the ImageNet competition arrived, numerous researchers had already explored

alternative machine learning algorithms. However, it was in 2012 that another

groundbreaking moment for deep learning occurred when AlexNet’s architecture was

introduced by Krizhevsky et al. [2012], leading to a decisive victory in the ILSVRC

competition, as depicted in Figure 2.13. Comparing the architectural differences be-

tween LeNet-5 (Figure 2.12) and AlexNet (Figure 2.14), we observe that the linear

structure and certain parameters remain consistent.
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Figure 2.13: Error rate from the IMAGENET challenge, from 2010 (ILSVRC 10)

to 2015 (ILSVRC 15). The blue bars represent the error rate, and the orange line

represents the complexity incline from shallow nets to 152 layers.

Both models employ linear training, convolutional layers, pooling layers, and

activation functions in a similar manner. Considering these similarities, it raises the

question: Why did it take so long to adopt a superior architecture? The simplest

answer lies in the availability of better resources.

Figure 2.14: Compact visualization of the Alexnet architecture following the original

architecture by Krizhevsky et al. [2017].

The key distinction between these two architectures lies in the increased pa-

rameter volume within the AlexNet architecture. This expansion of parameters

became feasible due to the emergence of enhanced computational power, specifically

GPUs, and the greater accessibility to a wealth of new data facilitated by the inter-
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net. These advancements provided the necessary resources to scale up the parameter

size, enabling AlexNet to achieve improved performance and leverage the growing

availability of computational resources and vast datasets.

The concept of utilizing GPUs was not a novel idea, as parallelization had been

introduced much earlier in 1958 by Cocke and Slotnick. They pioneered parallelism

in numerical calculations, recognizing its potential and laying the foundation for

future advancements (Sperling [2017]).

Utilizing modern GPUs for deep learning is a fascinating and intricate topic.

In our methodology section, we provide a detailed explanation of how we harness the

power of GPUs and the appropriate software to enhance our approach. For a more

comprehensive understanding of the diverse capabilities of GPUs, we recommend

exploring, for example, resources such as Dettmers [2023], Weka [2021], and Nvidia

[2023].

Several additional innovations distinguished AlexNet from LeNet-5. AlexNet

introduced the Rectified Linear Unit (ReLU) activation function, a departure from

the previous reliance on hyperbolic tangent or sigmoid units. Furthermore, it incor-

porated normalization layers, which mitigated the risk of overfitting by accounting

for the significantly increased number of parameters compared to LeNet-5. However,

Dropout was the parameter that truly revolutionized the architectural framework,

as it effectively prevents overfitting when used appropriately.

2.3.3 VGG-16

Following the linear category of CNN architectures, we have the VGG-16 model,

more commonly known as VGG-16, which emerged after the AlexNet architecture.

Introduced in the 2014 ILSVRC competition by Simonyan and Zisserman from the

University of Oxford, VGG-16 features a configuration that includes 16 convolutional

layers while still adhering to the convolutional and pooling layer pattern established
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Figure 2.15: Compact visualization of the VGG-16 architecture following the original

architecture by Simonyan and Zisserman [2014].

by AlexNet. At first glance, the increase from eight to 16 convolutional layers may

not seem significant. However, the number of layers alone does not accurately repre-

sent the computational load imposed on the system. Table 2.1 illustrates the impact

of doubling the number of layers on the parameter count, highlighting its substantial

difference.

Table 2.1: Comparison of the parameters for each architecture, LeNet-5, AlexNet,

and VGG-16 (M. Swapna and Prasad [2020]).

Year CNN Developed by No. of parameters

1998 LeNet-5 LeCun et al. [2015] 60K

2012 AlexNet Krizhevsky et al. [2012] 15M

2014 VGG-16 Simonyan and Zisserman [2014] 138M

VGG networks (16 and 19) introduced the concept of increasing the number

of layers to enhance performance. Still, it is important to note that there are limi-

tations to how many layers can be added. According to the study presented in its

article, exceeding 20 layers hindered model convergence and introduced the issue of

vanishing gradients. Among the various iterations of VGG nets, VGG-16 demon-

strated superior performance, surpassing the achievements of the previous AlexNet

model.

One significant drawback of the VGGNet architecture was its resource-intensive

nature. Training the model required a considerable amount of time, typically lasting

two to three weeks. The process relied on four Nvidia Titan GPUs (Potent but
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expensive hardware), a dataset comprising 1.3 million images, and a substantial

model size. This resource demand posed a notable challenge regarding computational

requirements and training efficiency.

2.3.4 ResNet-50

Modern architectures now rely on skip connections or modules to reduce the number

of parameters, effectively utilize computational resources, minimize training time,

and enhance overall performance.

Architectures can establish direct connections between different layers by in-

corporating skip connections, also known as residual connections. This allows for

bypassing certain layers, enabling the network to retain and propagate useful infor-

mation more effectively. As a result, skip connections alleviate the burden of exces-

sive parameters and computational demands, improving efficiency during training

and inference (Adaloglou [2020]).

These skip connections offer several benefits. They enable the network to simul-

taneously learn low-level and high-level features, fostering better gradient flow and

alleviating the vanishing gradient problem. Additionally, skip connections provide

shortcuts for gradient propagation, aiding in training deeper architectures. Ulti-

mately, these architectural enhancements contribute to more efficient and powerful

models.

Understanding that adding more layers indiscriminately was not the answer

to improving performance the next generation of convolutional networks focused on

residual blocks and modules inside the architecture. So we have ResNet because the

name comes from its nature of using Residual networks. We can observe in Figure

2.16 that the behavior of the architecture flows similarly to the ones mentioned

before, but in this case, we have blocks that work differently than just adding more

layers. The key component here is the skip connections (He et al. [2016]).
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Figure 2.16: ResNet50 architecture, using a compact visualization by Karim [2022]

following the original architecture by He et al. [2016].

They are designed to facilitate the training of deep neural networks by ad-

dressing the vanishing gradient problem and enabling the flow of gradients more

effectively.

In a ResNet, the skip connections create shortcuts that allow information to

bypass certain layers within the network. Instead of strictly following a sequential

flow from one layer to the next, these connections enable the direct propagation of

information from one layer to a subsequent layer, typically several layers ahead.

The core idea behind skip connections is to introduce residual mappings. Each

skip connection aims to learn a residual function, which captures the difference

between the desired output of a layer and the actual output. By using these residuals,

the network can learn to refine the layer’s output rather than attempting to learn

the entire transformation directly (Neurohive [2019]).

Mathematically, it denotes the input to a layer as x. The layer’s output can be

represented as H(x), where H represents the transformation applied by the layer.

With a skip connection, the layer’s output becomes F (x) = H(x) + x, where F

represents the residual mapping. The original input x is added to the transformed

output H(x) to create the new output F (x) (Zhang et al. [2021]).

Introducing the skip connection enables the network to learn the residuals di-

rectly, making it easier for the model to optimize and train deeper architectures.

These connections ensure the gradient can flow back through the network more
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efficiently during backpropagation, addressing the vanishing gradient problem asso-

ciated with deep networks. Using skip connections, ResNet architectures can effec-

tively train networks with dozens or even hundreds of layers, improving performance

and accuracy on challenging tasks such as object detection, image classification, and

segmentation (Boesch [2023]).

2.3.5 Transfer Learning

Having explored the common architectures used in deep learning for image recog-

nition, let us introduce another valuable tool for processing complex data: transfer

learning.

Like how we perceive neural networks as mimicking the learning process in the

human brain, transfer learning operates on a similar principle. To illustrate this,

consider an athlete transitioning from track to field events. Their well-developed

muscles from track training would give them a considerable advantage compared to

someone just starting to exercise.

Likewise, in deep learning, transfer learning involves leveraging knowledge

gained from one model to improve the accuracy and performance of another. A

simple classifier can benefit from the learned representations and adapt them to a

specific task using a pre-trained model as a starting point. This approach proves

especially useful in computer vision applications, where large amounts of data and

high computational power are typically required. Transfer learning provides a viable

alternative when these resources are not readily available.

Transfer learning finds applications across various fields. For instance, au-

tonomous driving can be employed to detect road signs, vehicles, and roads them-

selves. In the industrial sector, transfer learning aids in sentiment analysis when a

company lacks extensive monitoring of customer interactions. Additionally, in the

healthcare sector, where labeled data sets and expert image labeling resources are
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limited, transfer learning becomes a valuable tool for image recognition tasks.

The versatility of transfer learning makes it a powerful technique to enhance

model performance, accelerate training, and tackle data limitations across diverse

domains. From the architectures we mentioned before, the most common to use

for transfer learning are VGG-16, Inception, and ResNet50. While transfer learning

can be applied with various architectures, the popularity of using transfer learning

with AlexNet may have diminished compared to other deeper architectures for a few

reasons:

1. Model Capacity: AlexNet was a groundbreaking model when it was intro-

duced, but compared to more recent architectures, it has a smaller capacity

in terms of the number of layers and parameters. Deeper architectures, such

as VGG and ResNet, and more recent ones, like Inception and EfficientNet,

have demonstrated superior performance and representation capabilities due

to their increased depth and complexity.

2. Feature Extraction: Transfer learning often involves utilizing pre-trained

models to extract useful features from the data before training a new classifier

on top of these features. Deeper architectures generally capture more abstract

and higher-level features, making them better suited for feature extraction

tasks. This flexibility and expressiveness of deeper architectures make them

more popular for transfer learning scenarios.

3. Availability of Pre-trained Models: The popularity of transfer learning

with specific architectures also depends on the availability and accessibility

of pre-trained models. While pre-trained AlexNet models are still available,

newer and deeper architectures often have more readily available pre-trained

models due to their wider usage and ongoing research advancements.

4. State-of-the-Art Performance: As deep learning progresses, new architec-

tures continually push the boundaries of performance on various tasks such
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as image recognition, object detection, and natural language processing. Re-

searchers and practitioners tend to gravitate towards architectures that offer

state-of-the-art results and achieve the highest accuracy on benchmark data

sets.

However, it is worth noting that transfer learning with AlexNet can still be

effective and useful in specific scenarios, especially when dealing with limited com-

putational resources or smaller datasets. Ultimately, the choice of architecture for

transfer learning depends on the specific task, available resources, and the state-of-

the-art models and research in the field at the time of implementation.

2.3.5.1 Approaches for Transfer Learning

Transfer learning provides a valuable solution in scenarios where we encounter a

task that requires deep learning but lacks sufficient data for effective training. One

approach is to train a model on a dataset that addresses a similar or related problem.

By doing so, we can utilize the resulting model as a starting point for our target task.

However, the decision regarding whether to use all the weights of this pre-trained

model or only the last layers depends on the nature of the problem at hand.

When deciding on the appropriate transfer learning strategy, we consider the

level of similarity between the pre-trained model’s task and our target task. If

the tasks are closely related and share similar high-level features, it is beneficial to

leverage the entire pre-trained model, including its weights, as a starting point. This

approach allows the model to inherit the learned representations and adapt them to

the specific nuances of our task.

However, in cases where the pre-trained model’s task differs significantly from

our target task, it may be more effective to utilize only the last layers of the model.

The earlier layers of a deep neural network typically learn low-level and generic

features, while the later layers capture more task-specific and higher-level represen-
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tations. By freezing the weights of the earlier layers and training only the last layers

on our dataset, we can fine-tune the model to specialize in our specific task while

benefiting from the pre-trained model’s initial feature extraction capabilities.

In summary, the decision to use all the weights of a pre-trained model or

only the last layers depends on the similarity between the pre-trained task and our

target task. This consideration ensures we balance leveraging existing knowledge

and adapting the model to our specific problem domain.

Using pre-trained model: Pre-trained models have typically been trained on

large and diverse datasets, enabling them to capture general visual features that

apply to various image recognition tasks. By utilizing a pre-trained model, you

can take advantage of the model’s ability to generalize well to unseen data. This is

especially valuable when you have limited training samples or need to classify images

from different categories than the original training dataset.

Feature extraction CNNs are highly effective at learning hierarchical represen-

tations of visual features from large datasets. Pre-trained models trained on massive

image datasets like ImageNet, have already learned these features. By leveraging a

pre-trained model, you can benefit from its ability to extract meaningful and high-

level features from images, even if you have a limited dataset. This is especially

useful in scenarios where training a CNN from scratch may not be feasible due to

data scarcity or computational constraints.

2.3.6 Functions for Deep Learning

As mentioned before, statistical learning plays a crucial role in many of the param-

eters we use to train a deep learning model or a machine learning algorithm. For

example:
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Loss functions: As mentioned before, choosing the appropriate loss functions is

crucial in a CNN. Statistical learning provides various loss functions, such as mean

squared error (MSE), binary cross-entropy, or categorical cross-entropy, depending

on the nature of the problem. In the methodology section, we fully explain the type

of loss function needed for the experimentation.

Regularization techniques: Overfitting is a common challenge in deep learning,

where the model has a good performance on training data but fails to unseen data.

Statistical learning techniques like L1 and L2 regularization (also known as weight

decay) are employed in deep learning models to mitigate overfitting. These tech-

niques introduce a penalty term in the loss function to discourage overly complex

models, promoting generalization. In other cases, these regularization techniques

can be used to ensure that the number of epochs and iterations do not compromise

the learning rate of the model.

2.3.6.1 Optimization algorithms

Deep learning models are typically trained using optimization algorithms, such as

stochastic gradient descent (SGD) and its variants. These algorithms aim to mini-

mize the loss function by iteratively updating the model’s parameters based on the

gradients of the loss function concerning those parameters. Statistical learning pro-

vides optimization techniques and convergence guarantees that help develop efficient

optimization algorithms for deep learning.

Here we have a general description of the most commonly used optimization

algorithms in CNN. For a more detailed and comprehensive explanation of each of

the algorithms, we refer to a previous work by Berrones-Reyes [2019].

1. Stochastic Gradient Descent (SGD): SGD is the foundation of many opti-

mization algorithms in deep learning. It updates the network parameters based
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on the gradients of the loss function computed on mini-batches of training

data. SGD updates the parameters by taking small steps toward the steepest

descent, gradually minimizing the loss. While basic SGD is simple and easy to

implement, it can sometimes be slow to converge and prone to getting stuck

in local minima.

2. Adaptive Moment Estimation (Adam): Adam is a popular optimization

algorithm combining Momentum and RMSprop ideas. It adapts the learning

rate for each parameter by calculating individual adaptive learning rates based

on past and squared gradients. Adam is known for its effectiveness in training

deep networks, providing fast convergence and robustness to different types of

networks and architectures.

3. Adadelta: Adadelta is an extension of Adagrad that seeks to alleviate the

problem of continually decreasing learning rate during training. It addresses

this using a decaying average of past squared gradients instead of the sum

of squared gradients. Adadelta has no learning rate hyperparameter and can

converge faster than Adagrad in certain scenarios.

These optimization algorithms and their variations and extensions are widely

employed in training CNNs. The choice of the optimization algorithm is very de-

pendent on factors such as the specific task, network architecture, and data set

characteristics and empirical observations. Experimentation and fine-tuning are of-

ten necessary to find the most suitable optimization algorithm for a given CNN

problem. Figure 2.17 shows the behavior we mention here for each of the algorithms

from a study by Thavanani [2020].

2.3.6.2 Evaluation Metrics

Statistical learning provides various evaluation metrics to assess the performance of

deep learning models. For example, accuracy, precision, recall, and F1-score have
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Figure 2.17: Comparative performance of different deep learning optimization algo-

rithms using the library Numpy. Image from Thavanani [2020].

commonly used metrics for classification tasks, while mean absolute error (MAE)

and mean squared error (MSE) are used for regression tasks (Chollet [2018]). These

metrics help measure the effectiveness of a model and guide its improvement.

Here we explain the other three metrics commonly used for machine learning

classifiers because they also provide a balanced view of the classifier performance

and the data we use.

To understand the performance of the metrics, we need to discuss the confusion

matrix. This takes the classification results and groups them into four categories

(Geetha and Sendhilkumar [2023b]):

True positive (TP) is when the actual and predicted values are 1.

True Negative (TN) is when both the actual and predicted values are 0.

False positive (FP) is when the actual value is 0, but the predicted value is 1.

False negative (FN) is when the actual value is 1, but the predicted value is 0.
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In Figure 2.18, we can see the representation of the confusion matrix for binary

classification.

Figure 2.18: Confusion matrix for binary classification.

1. Accuracy: The most common way to measure a classifier’s performance is

using the accuracy metric, as seen in the literature review. This is because we

compare each input data’s actual and predicted class. This metric, however,

can sometimes hide the signs of an imbalanced data set, so even if the classifier

were to perform poorly in the other three metrics, the accuracy would still

perform well, masking the deficiency:

TN + TP

TN + TP + FN + FP
. (2.2)

2. Precision: Precision is a metric that focuses on the True and False positives,

it can represent a view missed by the accuracy:

TP

TP + FP
. (2.3)

3. Recall: This metric operates on a principle similar to the precision metric but

focuses on false negatives rather than false positives. Precision and recall are

trade-off metrics, meaning that optimizing one often comes at the expense of

the other. While precision emphasizes reducing false positives, which improves

its precision, it may increase false negatives, leading to a decrease in recall.
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Depending on the task’s nature, we must prioritize which aspect is more critical

to highlight in the problem we are attempting to solve:

TP

TP + FN
. (2.4)

4. F1: What if both the precision and the recall metrics are important? The F1

metric considers both precision and recall and gives us a good balance between

the two:
2 ∗ (Precision ∗ Recall)

Precision + Recall
. (2.5)

2.4 U-Net

We have covered a range of algorithms for image recognition, including both classical

methods and newer approaches. Although these algorithms were initially developed

for general computer vision tasks, researchers have also explored their effectiveness

in specialized domains.

One notable architecture is the U-Net, which has gained prominence for its

application in biomedical image segmentation. By utilizing convolutional neural

networks (CNNs), the U-Net architecture is specifically tailored to leverage the

strengths of CNNs in this particular field. It offers a focused and effective solu-

tion for segmenting biomedical images.

The U-Net approach has demonstrated outstanding performance compared to

many competing algorithms. One notable advantage is its ability to achieve accurate

results even with a smaller training dataset. Additionally, it incorporates various

techniques to enhance the learning rate of its architecture, further improving its

performance.

Despite its specialization in biomedical image segmentation, the U-Net archi-

tecture shares several fundamental concepts with traditional CNNs. These include
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convolutions, pooling, and the hyperparameters we previously discussed. In Figure

2.19, we can observe an example of the U-Net architecture taken from the work by

Ronneberger et al. [2015]. The name “U-Net” derives from its distinctive shape,

which comprises contracting and expansive paths known as the encoder and decoder

sections.

Overall, the U-Net architecture represents a significant advancement in the field

of biomedical image segmentation. It highlights the adaptability of convolutional

neural networks to specialized tasks and reinforces their effectiveness in addressing

complex challenges.

Figure 2.19: U-net architecture as represented by Ronneberger et al. [2015]. The

arrows indicate the flow of data and the color of the type of operation performed at

that level.

The U-Net architecture has emerged as a preferred choice for bio-medicine due

to several key factors:

Effective feature extraction: U-Net is designed to extract and localize features

in images effectively. This capability is particularly valuable in biomedical appli-
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cations where precise identification and localization of structures or anomalies are

crucial. With its contracting and expansive paths, U-Net’s architecture enables the

extraction of intricate features at different scales, aiding in accurate segmentation

and analysis.

Limited data availability: Biomedical data sets are often limited in size for var-

ious reasons, including privacy concerns and the difficulty of acquiring annotated

medical images. U-Net has shown the ability to perform well even with a smaller

training data set. This characteristic is advantageous in biomedicine, where obtain-

ing large-scale annotated data sets can be challenging.

Handling class imbalance: In many biomedical tasks, class imbalance is preva-

lent, meaning certain classes or anomalies may be significantly rarer than others.

U-Net addresses this issue by incorporating data augmentation techniques and us-

ing specialized loss functions such as dice loss or focal loss, which help mitigate the

impact of class imbalance. This makes U-Net well-suited for biomedical applications

where specific abnormalities may be infrequent.

Adaptability to various imaging modalities: Biomedical imaging encompasses

diverse modalities such as magnetic resonance imaging (MRI), computed tomogra-

phy (CT), and ultrasound. U-Net has demonstrated its effectiveness across different

imaging modalities, showcasing its versatility and applicability in various biomedical

domains.

State-of-the-art performance: U-Net has consistently achieved state-of-the-art

results in numerous biomedical image segmentation challenges, competitions, and

research studies. Its remarkable performance has garnered widespread recognition,

making it a preferred choice among researchers and practitioners.

The U-Net architecture excels in several key areas, including effective feature
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extraction, handling limited data, addressing class imbalance, adaptability to various

imaging modalities, and impressive performance. These capabilities have contributed

to its widespread adoption in diverse biomedical applications.

However, with U-Net, we deviate from conventional image classification tech-

niques commonly used in deep learning. Instead, the focus shifts to semantic segmen-

tation, a task that involves pixel classification. Each pixel in the image is assigned to

a specific class. We obtain two results at the model’s output: the segmented image,

divided into distinct regions, and the corresponding label that assigns a class to each

pixel.

So we see, the main difference between simple image classification tasks and

semantic segmentation is that the latter requires not only a deep learning architecture

for the classification of pixels but also a way to discriminate features that learn on

the different stages of the encoder section of its architecture.

The reason why U-Net is so famous for biomedical use, and in our case, what

we have a particular interest in this architecture, is because of its capabilities to use

the encoder and decoder to extract and localize features in images, which in our case

will be breast anomalies, and helps us solve the last two sections of our methodology.

Now we introduce two new concepts for this network: the encoder and decoder.

For the encoder part, we are going to use familiar terms. This is the section where the

object detection or image classification task is made. Here, we reference a classical

convolutional neural network representation. We begin with an input layer, followed

by the convolutional and pooling layers. The architecture has the corresponding

layers contracting and passing on the important features.

We now have the intermediate or the bottom layer, where we transition from

the encoder to the decoder part of our U-net shape. Here, we encounter new con-

cepts we did not use for the classic CNN. This middle part involves the concept of

deconvolution and layer concatenation.
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A deconvolution involves the exact opposite behavior of the convolution. We

know that convolutional layers reduce the information for the next layer of the

architecture, so naturally, a deconvolution will output a bigger dimension to the

next layer. Then we have the concept of pooling layers for convolution. The opposite

option for deconvolution is the upsampling function.

Now that we understand the contracting and expansive path of the net (en-

coder and decoder), we see the skip connections. In Figure 2.19, these connections

are represented by grey arrows. They play a crucial role in the flow of informa-

tion and feature fusion. The skip connections provide a shortcut for gradients and

help the decoder utilize both local and global context information, contributing to

accurate and detailed segmentation. U-Net effectively merges multi-scale features

through skip connections, leveraging high-level semantic information while preserv-

ing fine spatial details. This combination aids in producing accurate and detailed

segmentations, making U-Net well-suited for various medical image segmentation

tasks.

Then, in the same fashion as a CNN, we have a feature map. Throughout the

network, the feature map resolution gradually decreases in the contracting path and

then increases in the expanding path. This feature map resolution change allows the

network to capture both high-level context and fine-grained details simultaneously.

By combining the encoder-decoder structure, skip connections and appropriate

loss functions, the U-Net network is capable of capturing detailed features, preserving

spatial information, and producing accurate segmentation maps for medical images.

Its architecture has proven effective in various medical imaging applications, such as

organ segmentation, tumor detection, and lesion delineation.
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2.5 Real-life Applications

In the same way, we discussed the topic of artificial intelligence on how it may

seem like a recent field, while it has been developed and improved for many years.

Computer-aided diagnostics (CAD) have grown in medical imaging since the ’90s.

Since then, many studies have tried to test and prove if these technologies help

radiologists perform medical diagnosis. In this section, we discuss the evolution of

CADs, and their use in the medical field.

2.5.1 Computer-aided Diagnostics

In the early iterations of the use of CADs, it consisted of a checklist that the computer

reviewed from the images that expert radiologists extracted from mammograms, and

based on the calculations from that checklist, it made a prediction on the likelihood of

malignancy for the mammogram. This was a very rigid process that did not require

the computer to make the more complex learning algorithms we use nowadays.

In the case of this first CADs, the main goal was to standardize the diagnosis

of different experts since the main issue then was the inconsistency in which the

radiologist was able to recognize the features that lead to malignancy, which led to

unnecessary biopsies, being only the 15% to 30% of cases where the biopsy resulted

in the discovery of malignancy. This meant that most biopsies were performed on

benign lesions (Jiang et al. [1999]).

This estimation of malignancy via automated computer feature extraction was

a significant success, improving the accuracy of radiologists by up to 14%. This

led to various studies that looked to improve the accuracy and efficiency of medical

diagnosis.

Fast forward a couple of years, parallel to the advancement of these CAD tech-
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nologies, computer vision tools were also making significant improvements, thanks

to the development of deep learning algorithms.

In April 2010, the ImageNet challenge changed how researchers explored using

artificial intelligence in computer vision. It dared to focus not only on the algorithms

and programs but also on looking at the data to help redefine how we build models.

This data set had accumulated more than 11 million labeled images by the end

of 2010. It gave way to the first ever ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), where researchers from all over the world competed with their

programs and algorithms that allow them to classify and detect objects on these

images.

Since its conception, this challenge and data set have allowed researchers to use

this as a benchmark to test the newest machine learning and deep learning models,

where the accuracy has reached levels greater than 95%.

Thanks to these fantastic collective contributions of artificial intelligence algo-

rithms from different researchers, a branch of deep learning became the favorite to

help solve computer vision issues and complex problems from other fields, such as

big data. This field is known as neural networks.

Moving forward, we discuss some works specific to the medical use of artificial

intelligence tools that, while still inside the sphere of CAD tools, have now evolved

into a field better known as radiomics (Lambin et al. [2017]), which focuses more on

medical imaging.



Chapter 3

Literature Review

As we mentioned, medical imaging is one of the real-life applications of deep learn-

ing in computational vision. Computer-aided diagnostics (CADs) has tried to evolve

alongside the breakthroughs of computer vision. Still, as we learn from different lit-

erature reviews, we see that medical imaging has a different set of rules and limita-

tions that we do not find in traditional computer vision problems. In this section, we

discuss some of the advances that have been tested on medical images from a com-

puter vision perspective and contrast them with the perspective of real-life clinical

problems.

3.1 Evolution of Computer-aided Diagnostics

Computer-Aided diagnostics have a history that can date back a few decades. The

first iterations were notable advances in their field and helped greatly improve the

accuracy of many specialists in medicine. Some examples of the early developments

for CAD systems in radiology date from 1970 to 1980, when researchers explored

the use of computer algorithms to interpret medical images of CT scans. In this

stage, these methods aimed to consider the output of these algorithms as “second

opinions” to improve the diagnostic performance of radiologists/physicians Suzuki

[2012].

53
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The first processes of a CAD scheme followed similar steps. In Figure 3.1, we

can see the generic flow chart for detecting lesions in medical images. In this case,

the boxes with blue color represent the major steps in the process. The boxes with

orange color represent the optional steps.

Figure 3.1: Common flowchart of a generic scheme of CADs used for lesion detection

in medical images by Suzuki [2012].

In this scheme, many major steps were not optimized, as machine learning

was generally not applied until lesion candidates were detected. Some of the known

feature-based machine learning (or classifiers) included in the classification of the

lesion candidate were LDA, QDA, ANN, a Bayesian ANN, and an SVM.

As the field advanced, Computer-Aided Diagnosis (CAD) systems began to in-

corporate more sophisticated pattern recognition and feature extraction techniques.

These specialized methods tailored to distinct types of medical images and specific

diseases required more comprehensive systems. This led to the emergence of expert

systems, which integrated the knowledge of medical experts and utilized rule-based

algorithms to analyze medical images. Such expert systems facilitated a more nu-

anced and accurate disease detection (Ribeiro et al. [2008], Matesin et al. [2001],

Barrera et al. [2010]).

In the early 2000s, research efforts concentrated on the statistical aspects of

rule-based and expert systems. For instance, the work by Ribeiro et al. [2008] em-

ployed an association rule-based method to analyze mammograms. This approach
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aimed to expedite the diagnostic process led by specialists by automatically gen-

erating preliminary diagnostic suggestions through mining association rules. The

method was tested on a real-world dataset and achieved an accuracy rate exceeding

90%.

Other notable works, such as those by Matesin et al. [2001] and Barrera et al.

[2010], focused on feature extraction in medical images using expert systems. In

Matesin et al. [2001], a rule-based algorithm was developed for segmenting CT brain

scans into different regions, such as the background, skull, and gray matter. Mean-

while, Barrera et al. [2010] used a rule-based approach as an auxiliary tool for diag-

nosing cervical lesions in colonoscopic images.

These rule-based implementations provided valuable support to medical ex-

perts, significantly enhancing the accuracy and efficiency of medical diagnoses. This

triggered a wave of research, surveys, and performance analyses on case-based medi-

cal data, later termed as “knowledge discovery in medicine.” Pioneering surveys, like

the one by Kahn [1991], delved into the validation and evaluation of various expert

systems used in medical imaging. These studies measured the potential impact and

utility of such systems for future applications.

Despite the progress made with rule-based algorithms, not all such methods

withstood rigorous testing and evaluation, underscoring the ongoing quest for reli-

able computer-aided diagnostic tools. This quest has now extended into artificial

intelligence with the advent of statistical learning and machine learning. These

newer, more powerful methods have significantly transformed the CAD landscape,

enabling systems to analyze large and complex medical data sets better, thereby

leading to more accurate and personalized diagnostics (Foster [2023]).
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3.1.1 Statistical Learning in CAD

Statistical learning techniques, such as logistic regression and support vector ma-

chines (SVM), paved the way for more complex models in the medical diagnostic

field. These algorithms, which primarily focus on finding statistically significant rela-

tionships in the data, offered improved prediction accuracy over traditional methods.

Hastie et al. [2009] and Erus et al. [2014] demonstrate the application of statistical

learning techniques in identifying critical features from medical images for various

diagnostic purposes.

Before the rise of machine learning and deep learning, statistical learning was

a cornerstone in developing early CAD systems. Works like Sande et al. [2021] show

how statistical learning techniques often focus on finding a mathematical model

that describes the underlying structure of the data. These models are grounded

in statistical theory and offer interpretability and robustness, essential traits for

medical diagnosis.

One of the seminal contributions of statistical learning to CAD was in the

area of feature selection. Techniques like Principal Component Analysis (PCA)

and Linear Discriminant Analysis (LDA) were frequently employed to reduce the

dimensionality of medical image data while preserving the most relevant informa-

tion for diagnosis. Regression models like logistic regression were another staple in

early CAD systems for task prediction of disease outcomes based on various features

(Hastie et al. [2009]).

Statistical hypothesis testing also found its place in CAD systems, often used

for validating the efficacy of diagnostic features and comparing different diagnostic

models. Techniques such as the Chi-square test, t-tests, and ANOVA were instru-

mental in verifying whether the features used in CAD systems were statistically

significant (Wang and Zheng [2013]).

Despite the significant contributions, the manual feature extraction process was
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one limitation of early statistical learning methods. This was a time-consuming and

often domain-specific task that required extensive medical expertise. The advent

of machine learning and deep learning automated much of this feature extraction,

allowing for more rapid development and deployment of CAD systems.

Nonetheless, statistical learning methods are far from obsolete. They often

serve as a benchmark for newer techniques and are frequently combined with machine

learning models to enhance reliability and interpretability Hastie et al. [2009]. As

a result, statistical learning continues to hold a significant place in the continually

evolving landscape of CAD systems.

3.1.2 Machine Learning in CAD

The limitations of statistical learning, particularly in handling high-dimensional data

and capturing complex relationships, led to adopting machine learning algorithms.

Methods like decision trees, random forests, and neural networks have proven highly

effective in automating the diagnosis process, as they can learn intricate patterns

from data without explicit programming (Géron [2020]). For instance, Litjens et al.

[2017] applied deep learning methods to achieve remarkable accuracy in diagnosing

specific diseases from medical images.

The shift from statistical learning to machine learning in CAD systems rep-

resents a paradigm shift. While statistical learning methods are still been used in

evaluation metrics, machine learning techniques, especially deep learning, are in-

creasingly favored for their ability to scale with data and learn from raw features

without much manual intervention. As computational power increased and large

datasets became more accessible, machine learning (ML) played a critical role in

advancing CAD systems. Unlike statistical learning methods, which often require

manual feature extraction and selection, many machine learning algorithms can au-

tomatically identify relevant features, making them highly effective for complex tasks
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like medical imaging. In this area, many medical surveys discuss the potential of

these types of tools, such as works by Bakator and Radosav [2018], and Litjens et al.

[2017].

Among the first machine learning techniques adopted for CAD were Support

Vector Machines (SVMs). These provided a powerful mechanism for classifying im-

ages into different categories based on their features. After this, Random Forests and

Gradient Boosting algorithms were employed to improve the system’s performance

further.

The rise of Neural Networks marked a significant shift. Initially, simpler archi-

tectures like Multi-Layer Perceptrons (MLP) were employed. These could capture

more complex relationships in the data but were soon overshadowed by more spe-

cialized neural networks optimized for image data, such as Convolutional Neural

Networks (CNNs) (Dong et al. [2021]).

One of the most impactful developments was the introduction of Transfer

Learning. This approach allowed pre-trained models on large generic datasets to

be fine-tuned for specific medical tasks, dramatically reducing the need for large

annotated medical datasets and accelerating the development cycle (Esteva et al.

[2021]). Natural Language Processing (NLP) techniques, another subset of machine

learning, have also been applied to CAD systems, particularly in extracting useful

information from clinical text data to aid in image diagnosis (Houssein et al. [2021]).

Moreover, machine learning methods have been integral in developing real-time

diagnostic tools, predictive modeling for patient outcomes, and even automating

the very labor-intensive data annotation process, which is crucial for training more

robust models. The evolution of machine learning in CAD systems has not been

without challenges. The black-box nature of many ML algorithms can be a hurdle

in clinical settings where interpretability and understanding the decision-making

process are critical. Yet, advancements in explainable AI are starting to bridge this

gap (Dong et al. [2021]).
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As computational power increases and algorithms evolve, machine learning

is poised to become even more central in the development of future CAD systems,

offering the promise of more accurate, faster, and more interpretable tools for medical

diagnosis.

3.1.3 Pushback and Challenges for Medical CAD

Systems

While Computer-Aided Diagnostics (CAD) systems have made significant advance-

ments, they have not been without controversy or pushback within the medical

community. Several factors have contributed to this resistance, ranging from tech-

nical limitations to ethical concerns. Works such as Esteva et al. [2021], Ahishakiye

et al. [2021], Litjens et al. [2017], Panayides et al. [2020], Castiglioni et al. [2021],

Chugh et al. [2021], show a very interesting perspective outside of the field of com-

puter vision or artificial intelligence and more on the side of the concerns and needs

of the medical community. Here, we compile some of the most prominent ones that

helped us change our view of CAD systems in general.

3.1.3.1 Technical Limitations

Early versions of Computer-Aided Diagnostic (CAD) systems often faced criticism

due to their high rates of false positives and negatives, resulting in clinicians’ dis-

trust. These inaccuracies could lead to incorrect treatment plans and worsen patient

outcomes (Sollini et al. [2023]).

Addressing these inaccuracies, the effectiveness of a CAD system was found to

be heavily dependent on the quality and quantity of the data it is trained on. Incon-

sistent or poor-quality data could propagate unreliable results, creating a challenge

particularly when many medical datasets presented an imbalance; they contained



Chapter 3. Literature Review 60

far more examples of common conditions than rare ones, leading to the development

of biased models (Park et al. [2023], Lin et al. [2023]).

This data quality and quantity follows into the problem of overfitting, where

a model, although performing exceptionally well on the training data, generalizes

poorly to new, unseen data. This aspect is a critical concern when a model is trained

with a benchmark data set, which is a common practice for regular computer vision

problems and something that does not translate well in medical settings, emphasizing

the necessity for models that can generalize effectively and reliably to real-life clinical

data sets (Berrones-Reyes et al. [2023]).

Accommodating the need for more generalized models, CAD systems have

evolved to incorporate more complex algorithms, including deep learning models.

This evolution, while promising, has significantly increased the demand for compu-

tational resources, which holds implications for the often necessary real-time pro-

cessing and analysis in medical settings (Labrada and Barkana [2023]).

This introduction to deep learning models often carries the “black-box” nature

inherent to some machine learning and deep learning algorithms. This opacity in

operation makes it difficult for medical professionals trained to make decisions based

on understanding pathology and physiology to interpret the results, thus forming a

substantial barrier to adoption and, in some cases, even encouraging other medical

fields not to trust machine learning unless it goes with comprehensive explanations.

(Hernandez et al. [2023]).

Lastly, a persistent obstacle facing many CAD systems is the lack of external

validation. The frequent practice of training, tuning, and testing models on the same

datasets has led to overly optimistic performance estimates, which often falter in real-

world clinical settings. Despite these limitations and challenges, concerted efforts

are underway to improve the reliability and user-friendliness of CAD systems. The

focus is on mitigating false positives and negatives, elevating model interpretability,

and enforcing robust validation practices to ensure the systems’ clinical efficacy
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(Melarkode et al. [2023]).

3.1.4 Data Sharing and Privacy

In addressing the challenges within CAD systems, another issue emerges: stan-

dardization, which is crucial for making these systems broadly applicable. The

healthcare landscape is diverse across countries, with various providers utilizing

Electronic Health Records (EHR) systems, imaging modalities, and data storage

formats (Wang et al. [2022]). This diversity poses a significant challenge, as it needs

a level of compatibility within a CAD system to seamlessly integrate with all existing

infrastructure, ensuring its widespread applicability.

Another concern is data privacy and sharing in light of the quest for standard-

ization and integration. The need to share patient data across different platforms for

enhanced diagnosis is frequently slowed down by strict privacy laws and regulations.

These regulations are not uniform but vary by jurisdiction, further complicating the

sharing process and adding another layer of complexity to deploying effective and

universally applicable CAD systems (Yu and Shi [2023]).

3.1.5 Challenges Faced by Developing Countries

Developing countries are often faced with challenges that are less prevalent in their

developed counterparts. These constraints often refer to limited financial resources

and a shortage of trained medical professionals and technical experts essential for the

operation and maintenance of CAD systems (Leming et al. [2023], Lv et al. [2023]).

In addition to the human resource constraints, technological limitations in

these countries, particularly limited internet connectivity in rural or remote areas,

can pose significant obstacles. Implementing cloud-based CAD solutions becomes
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particularly challenging in these regions, unlike in developed countries, where a more

robust internet infrastructure is typically in place.

Moreover, the majority of CAD systems are initially developed within the con-

text of Western medicine. This can translate into models unsuitable for addressing

local diseases or conditions prevalent in developing countries. Further complicating

the landscape is the absence of centralized data for medical imaging in many de-

veloping regions. Without a centralized database, ensuring consistent, high-quality

care becomes a formidable challenge, and navigating the intricate legal obligations

around data storage and access becomes even more complex (Yu and Shi [2023]).

3.1.6 Professional Resistance

Despite the promising capabilities of CAD systems, many healthcare professionals

remain skeptical. For many doctors, outsourcing critical tasks to a machine can

evoke feelings of losing control. Trusting a computer system with life-and-death

decisions is difficult, especially when the algorithms behind these systems are often

considered “black boxes” (Hernandez et al. [2023]).

Interestingly, a stigma is attached to errors made by computers instead of

humans. While doctors are generally forgiving of human error as an inevitable aspect

of the medical profession, mistakes made by computers are less readily accepted.

This double standard can make gaining professional credibility for CAD technologies

difficult (Cho [2021]). Another form of resistance comes from professionals who

perceive CAD systems as threatening their role and expertise. The potential for

automation to replace some aspects of human labor can create anxiety and resistance

among healthcare providers.

Beyond individual healthcare providers, systemic resistance also exists. Medi-

cal facilities are often slow to adapt to new technologies due to budget constraints,

a lack of understanding, or bureaucracy. Clinicians are often concerned about the



Chapter 3. Literature Review 63

safety and security of patient data, especially in systems that require cloud-based

processing. These concerns add another layer of resistance to adopting new tech-

nologies.

Overcoming this professional resistance will require concerted efforts across

educational, organizational, and policy levels to ensure that CAD systems can reach

their full potential in aiding medical diagnoses. With advancements in interpretable

machine learning and more robust validation studies, CAD systems continue to make

inroads into mainstream medical practice (Norori et al. [2021]).

3.1.7 Current State and Future Directions: The Role

of Deep Learning in CAD

Tackling challenges in developing countries paves the way for the next step in CAD

systems through machine learning. In particular, deep learning methods are ushering

in an era of more precise and efficient diagnostics. Research is also focusing on

integrating explainable AI to make these systems more user-friendly and gain the

trust of healthcare providers.

Deep learning, a key subset of machine learning, is becoming a game-changer

for CAD systems. It uses deep neural networks to learn high-level features from

data, setting it apart from traditional techniques. Convolutional Neural Networks

(CNNs) are gaining popularity for image-based diagnostics. They have shown great

accuracy in identifying anomalies in various medical images like X-rays and MRI

scans. Similarly, Recurrent Neural Networks (RNNs) and Long Short-Term Memory

Networks (LSTMs) are useful for sequence-based tasks such as ECG interpretation.

The use of transfer learning methods is also on the rise. This approach could reduce

the need for large annotated medical datasets, addressing privacy concerns.

A survey conducted in the United States by Schmidt [2023] gathered insights
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from 1,027 participants spanning various age groups, shedding light on their per-

spectives regarding integrating artificial intelligence (AI) technologies in the medical

domain. Figure 3.2 illustrates a notable contrast between the attitudes of younger

and older generations, underscoring the divisive nature of employing AI in medical

procedures.

Figure 3.2: Statistics about an American survey made in 2023 about the attitude dif-

ferent generations have towards AI being used in the medical field (Schmidt [2023]).

The survey yielded a significant finding, indicating that 64% of respondents

place more trust in a diagnosis made by AI than one provided by human doctors.

Despite the evident advancements in public understanding of the scope and scientific

principles underpinning artificial intelligence in recent years, there persists a degree

of apprehension. The primary apprehension revolves around concerns related to the

utilization and safeguarding of patient data, as highlighted in Figure 3.3. The top

concerns include the accuracy of diagnoses and technical limitations, topics which

we delve into extensively in this study.

Looking ahead, there is growing interest in making deep learning more inter-

pretable. As medical professionals need clear explanations and diagnoses, future

CAD systems will likely be more transparent while maintaining accuracy. Integrat-

ing deep learning with other AI forms could also lead to significant advances in

personalized medicine.
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Figure 3.3: Graphical representation of the main concerns of the general population

of an American survey regarding the use of AI in medicine (Schmidt [2023]).

In conclusion, combining deep learning with CAD will bring a new era in

medical diagnostics, aiming for accuracy, efficiency, and personalization.
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Methodology

In this section, we describe the materials used for all of our experiments and the

tools used to achieve our proposed methodology. This includes our data sets, their

description, and their characteristics. We then describe the software and the cru-

cial libraries to handle the images and construct our models. Finally, a detailed

description of our hardware specifications for reproducibility.

We then move on to explain the three stages of our methodology. These are

presented in this way because the result of the first is the input for the second stage,

and the result of this second stage is the input for the third and final stages. Each

of these steps can be done separately at the need of the medical specialist, so each

one has a pre-processing stage at the beginning of the experimentation.

4.1 Materials

In this Section we mention the data sets used to train, and test our tools. We

present hardware specifications for our experiments’ reproducibility and describe

the essential libraries and software needed to complete the models.

66
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4.1.1 Data Sets

In the literature review, we mentioned some of the more popular benchmark data

sets used to build classification and diagnostic models for mammography. There is

the Mini-MIAS data set and the DDSM set.

In the case of the first two data sets presented, the Mini-MIAS and the DDSM

are both public data sets that are free and available. For the case of both these

public data sets, the format and way of acquiring them were old and antiquated,

so to use these popular datasets as benchmarks for new algorithms, the Cancer

Imaging Archive updated and standardized the version of DDSM and Minimias into

the Curated Breast Imaging Subset of Digital Database for Screening Mammography

(CBIS-DDSM). (See Appendix A for more information about this joint data set).

Lastly, we have a third data set, YERAL, from a private Mexican hospital. This first

section of the methodology will give more thorough information about each data set.

4.1.1.1 Mini-MIAS

The Mini-MIAS (Mammographic Image Analysis Society) is an organization of re-

search groups in the United Kingdom whose work has been generated as a digital

mammography data set available online since 1994. It contains 322 images, of which

121 present an anomaly, and the rest are described as normal (without anomalies).

Alongside the images is a description that specifies the type of anomaly and its lo-

cation. For this reason, these images have been used as a benchmark for several

articles on segmentation and classification.

This data set comes with a .csv file that mentions the type of anomaly the

images present, where the anomaly is located, and a summary of the type of character

background tissue divided into fatty, fatty glandular, and dense glandular.
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4.1.1.2 DDSM

DDSM stands for Digital Database for Screening Mammography. This database was

reviewed and annotated by radiology experts from the University of South Florida

and the General Hospital of Massachusetts from the Department of Engineering and

Computational Science. This data set has around 2,500 case studies, each of which

has two images of each breast, including relevant information about the patient (age,

the density of the tissue, location of the anomaly, etc.) without having any personal

feature.

In the case of this data set, a version is available that contains all the collection

of scanned film mammography in a DICOM format, including the complete mam-

mogram, the cropped anomaly, the ROI segmentation and bounding boxes, and the

segmented masks. The DICOM file does not need an extra file with the description

of the images since the title has all the required information.

This data set and the Mini MIAS data set that we previously described are the

most often used mammography benchmark for the literature review. For this, the

CBIS-DDSM data set was created. (curated breast imaging subset of DDSM). These

include the DDSM, the Mammographic Imaging Analysis Society (MIAS) database,

and the Image Retrieval in Medical Applications (IRMA) project.

4.1.1.3 YERAL

This data set was initially reviewed in 2012 in search only for anomalies. In 2018, it

was reviewed again for feature extraction. The Instituto Nacional de Canceroloǵıa in

Mexico City provided it. It was then revised by the FUCAM (Fundacion de Cancer

de Mama), a private non-profit institution in Mexico and Latin America. FUCAM

offers specialized breast cancer treatment through its highly specialized unit in Mex-

ico City. This data set has 200 mammography images with anomalies and 120
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without them. These images have 1024×1024 pixels, but the quality is far supe-

rior to the MiniMias data set since we already experimented with convolutions and

filters. This data set could have more alterations than the Mini MIAS without be-

ing too distorted. It also has an RGB colour channel, which gives a better resolution.

One crucial remark in the surveys of deep learning applied to medical imaging

referenced in the literature review section is that only some studies present externally

validated results (actual clinical data). The resulting issue with this practice is that

the results on the benchmark data sets give an expectation for these computational

tools that are not often achievable with external data. Alternatively, in the cases

where the authors used a validation set, they compared the model’s performance us-

ing the same sample. Therefore, we focused on properly using data sets for training,

develop, and test evaluations to avoid that weakness.

Our last validation set is refered as the test set, as it contains only images

from the target data set YERAL. This work focuses primarily on giving experts a

good computer-aided diagnosis tool. We use the standard practice of distributing

the training and developing sets. Many ML books argue that these two data sets

(training and developing) must contain at least some of the images that the model

will classify (Géron [2020], Chollet [2021], Ng [2019], Harrington [2012]). Since there

is already a small amount of data, the test set contains 50 images with anomalies

and 50 without, only from the YERAL data set.

An important discovery in our methodology was the big impact that data

imbalance had on our results, and for that, we combined the updated DDSM dataset

with some of the images from the YERAL dataset. Having them all together we

gathered 2,594 images without anomalies and 8,401 with anomalies. This newfound

imbalance helped uncover a very big bias in the resulting performance of the two

classes.

To prove this bias results, we used the most used performance metrics for
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Table 4.1: Using the most popular performance metrics for AI tools, we compare

the validation data set when we have an unbalanced and a balanced data. For

this example, we only explore the use of a simple Alexnet architecture described by

Krizhevsky et al. [2012].

Unbalanced data set Balanced data set

Normal Anomaly Normal Anomaly

Precision 64% 90% 82% 86%

Recall 82% 78% 83% 85%

F1 score 76% 73% 86% 82%

Accuracy 79% 84%

image recognition, which are F1 score and accuracy. The goal was to find a balance

to improve the overall accuracy and avoid biases. At random, we removed some

images only from the DDSM dataset. In the end, the balanced data set consisted of

2,594 normal images and 2,900 images with anomalies. Table 5.5 shows the impact

of a balanced data set in popular metrics.

The final balanced dataset is going to be referred as DDSM YERAL, and the

additional validation test set was YERAL.

4.1.2 Hardware

For this section, we specify two different setups since we started with one computer

at the beginning of the experimentation. We had to upgrade to another one to be

able to finish our experimentations:

For the first setup, we have:

• iMac 2020

• CPU: 3.8 GHz Intel Core i7, 8 cores
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• GPU: AMD Radeon Pro 5500 XT 8GB

• RAM: 16 GB 2667 MHz DDR4

• OS: Ventura 13.5.1

For the second setup, we upgraded to:

• Gigabyte AMD Ryzen 3000

• CPU: AMD RYZEN 7 5800X, 3.8GHz, 8 Cores

• GPU: ASRock AMD Radeon RX6900XT GDDR6 16GB

• RAM: DDR4 32GB 3200 MHz.

• OS: Windows 11

Since the specifications of both of the computers we used for our experimenta-

tion can be considered high specs (in particular, the second setup, which was used to

sustain the bulk of the computationally heavier experimentation), in the experimen-

tal part, we will discuss the best parameters to move around in case the computer

used to replicate the experiment has less computational power. That being said, it

is important to note that basic computers (like Chrome books or older computers

from 2012 or older) are not equipped to handle the basic requirements for machine

learning algorithms. We recommend looking into cloud computing to compensate

for the lack of adequate hardware for those options.

4.1.3 Software

We do not separate the tools into the categories of segmentation, feature extrac-

tion, classification, etc., because most tools were used to complete different parts

of all three stages. For all the software tools listed below, we are considering the
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programming language of Python (Van Rossum and Drake Jr [1995]), version (3.8).

This language is often used as a tool for data science. It is developed under an

OSI-approved open-source license and hosts thousands of standard and community-

contributed third-party modules.

• Keras: Keras (Chollet et al. [2015]) is a high-level networks API that runs

with the library of TensorFlow or Theano. They allow the use of both CPU

and GPU for the processing of data, which is a desirable capability when us-

ing complex information like images. This library has built-in capabilities for

designing the blocks for neural networks, including convolutional and recur-

rent networks, that allow, alongside the more traditional blocks, to train deep

learning models.

• Tensorflow: Tensorflow (Abadi et al. [2015]) is an open-source library for nu-

merical computation that helps to develop machine learning and deep learning

models faster. It uses programming languages like Python or JavaScript as

a front-end API to build applications that help train deep learning models.

This library can run on various tools, such as a cluster in the cloud, local ma-

chines, CPUs, or GPUS. Tensorflow is supported only on Python from version

3.7 through 3.10. While it may work on earlier versions, not all modules are

guaranteed to do so.

• Pillow: Pillow (and its predecessor PIL) (Clark [2015]) is a Python library

that helps to manipulate and process images. Many of the modules described

in this library helped with the pre-processing part of this methodology.

• Scikit-learn: This is a Python library (Pedregosa et al. [2011b]) that has

access to built-in modules with classification, regression, clustering, and more

machine-learning algorithms. It also comes with various options for different

data structures, and it has some externally built applications specific to certain

problems, such as PyBrain or TorchIO.
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• Scipy: This library (Virtanen et al. [2020]) is an essential part of the statistic

portion of our methodology. It provides algorithms for interpolation, optimiza-

tion, and algebraic equations. This last one is of particular importance when

working with image transformations.

• Opencv: This library (Bradski and Kaehler [2008]) was created as the Open

computer vision library in 2000 by the Intel Corporation. Today, the OpenCV

library is a pillar of real-time computer vision problems. It has many areas

of applications, and the main ones we are going to be using are segmentation

and object recognition, as well as the human-computer interactive part of our

problem.

4.2 Classification Process

As mentioned before, the stages of this methodology are set like a process but could

be used individually, depending on the stage the medical expert is interested in

using. This first part considers the main bottleneck represented and discussed in the

background section.

Recent efforts for the conscientization of breast cancer have generated a signif-

icant amount of information, and the number of medical experts that can use this

information is dwarfed in comparison. For this, the first stage of our methodology

tries to unload the information the medical personnel must go through to get to a

diagnosis. With this, we aim to optimize the process by giving a “first glance” at

the images and dividing between the images with and without an anomaly. For this,

we use what we describe later as a binary classification.

Following our primary objective for this methodology, we want to use the

methods proposed here as separate stages, so in each case, we start by pre-processing

the images. If the process is used as a whole, we advise that the pre-processing stage

be done just at the beginning.
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Figure 4.1: Steps involved in the classification stage of the methodology.

In Figure 4.1, we see the steps for this classification stage. After the pre-

processing part, we use deep learning and machine learning models to achieve the

best possible accuracy in our data set. Lastly, we must ensure our models’ accuracy

matches the accuracy obtained in the target data set since that is one of the main

criticisms reported on medical surveys about artificial intelligence tools used for

medical imaging.

4.2.1 Pre-processing

The first step in all data analysis exploration is to pre-process the information.

We can explore data normalization and standardization in computer vision in many

ways, but this process is much more selective for medical images. We use the different

data sets explained previously for the experimentation. Normalizing the images is

essential to using data sets with other distributions. The first step in both cases is to

remove any unnecessary data that can identify any information about the patients.

There are labels on top of every image for the YERAL data set, which we

remove by using bounding boxes in the Python code using the Pillow library. It is

important to remark that this bounding box was only used for the YERAL data
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set since all the other data sets from this experiment did not have the information

labels on the image, so we used a binarization option that allowed us to remove the

tag of the type of image. Since the text is on top of the image for the YERAL set,

we needed to remove the whole label.

Figure 4.2: Removal of patient information and unnecessary labels from the YERAL

data set. The patient information is blurred for privacy concerns.

Figure 4.2 shows the label removal before and after. For the DDSM data set,

this information has already been removed. The only thing that can cause noise on

the images is the labels that indicate which type of image it is (RMLO, LMO, RL,

etc.). For this, we use a different algorithm first to binarize the image and identify

the biggest “blob” inside. This will allow us to identify the breast section as the

most prominent white part and the little label as the smaller one. We then cut

out this small portion and return the image to normal. In the end, we successfully

removed noise from those images. Figure 4.3 represents the process of binarization

of the image, removal of unnecessary tags, and the final processed image.

1 import matplotlib.pyplot as plt

2 import matplotlib.patches as patches

3 from PIL import Image , ImageDraw , ImageChops

4 import numpy as np



Chapter 4. Methodology 76

5 import cv2

6 import os

7

8 if __name__ == "__main__":

9 for f in os.listdir(’.’):

10 if f.endswith(’.png’):

11 im = Image.open(f)

12 fn, fext = os.path.splitext(f)

13 img_draw = ImageDraw.Draw(im)

14 img_draw.rectangle ((0, 0, 350, 95), fill=’black ’)

15 img_draw.rectangle ((1024 , 0, 550, 95), fill=’black ’)

16 try:

17 im.save(’{}. png’.format(fn))

18 except AttributeError:

19 print("Not found {}".format(img))

Listing 4.1: Python code to crop the confidential information of the patients

mammogram

In 4.1, lines 14 and 15 need adjustments depending on the images used. In our

case, it is specific to the size and location of the labels. All of them had the exact

coordinates. In line 6, we use the os library, and the way we call it in line 9 means

that this code needs to be inside the folder of the images it will modify. Line 10

ensures that it only considers images with the termination of .png, so if there is any

other format of image, it needs to be changed beforehand. It also means that it will

not send an error if more code files are inside the folder.

As for the computational features that need to be considered, this format

changes the original image and updates it to the censored one, so if we want to

maintain the original data set without changes, line 17 can be changed to save it

into another folder. If this is the case, ensure at least double the memory storage

space of the original data set.

For the DDSM and some of the YERAL images that still held the indicative

RMLO, LMO, and RL for the angle of the image, we used the code referenced in
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Figure 4.3: Pre-processing for the CBIS DDSM data set contains the DDSM, Mini

Mias, and IRMA project images.

A as Imageprocessingforpng.py. This code has several functions needed to clean

the images. We explain each function and the order that needs to be done for each

type of image.

1. get filepaths(directory): This function takes the root directory of the

image folder as input. It is important to note that this function expects a

folder, not a file.

2. CropBorders(img): This function takes as input a single image and outputs

the same images but is now borderless.

3. Binarisation(img, maxval): This function takes a single image as a param-

eter and the maximum value of the threshold for the binarization process. The

recommended value for this is 1.0. This function’s output is the four image

thresholds (up, down, right and left). These thresholds are used later on.

4. OwnGlobalBinarise(img, thresh, maxval): This function takes an image

as input and returns a binarised image’s mask. Here, the thresh value and

maxval serve to assign the global binarization. It needs to be inside that

interval; otherwise, it is assigned a 0 pixel or black. Thresh is recommended

to be 0.1.
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5. OpenMask(mask, ksize=(23, 23), operation = ’open’): This function only

expects as input the mask to edit (the output of the OwnGlobalBinarise func-

tion) to perform opening and closing functions from the OpenCV library. Figure

4.4 shows the use of both functions and how they affect the binarized image.

6. SortContoursByArea(contours, reverse = True): This function takes the

clean binarized image and forms a bounding box around it, which will output

the mask as close to the border as possible.

7. XLargerstBlobs(mask, topX = None): This function takes the output of the

SortContoursByArea function and finds the largest contour in the image. This,

in turn, outputs only the bigger mask. This means that any label (which repre-

sents a smaller contour) will disappear, and the bigger mask (the mammogram)

will remain.

8. InPaint(img, mask, flags = "telea", inpaintRedius = 30): This func-

tion takes as input the original image and the generated mask from the largest

blobs function. The output restores the original image to the areas the mask

image indicates.

9. HorizontalFlip(mask): This function inputs the restored image and figures

if it needs to be flipped. The correct orientation is the breast being on the left

(i.e. facing right) and it being the right side up. i.e. When the mammogram

is oriented correctly, the breast is expected to be found in the bottom left

quadrant of the frame.

10. clahe(img): This function applies the Contrast-Limited Adaptive Histogram

Equalisation filter to a given image.

11. Pad(img): This function pads a given image with black pixels along its shorter

side into a square and returns the square image. This normalizes all images to

be the same shape, and when they are resized, they do not lose their original

shape. Figure 4.5 shows the result of the padding and later resizing process

for the mamograms.
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At the end of all these functions, a self-called function allows all the steps to

be followed. In the same way as the cropping program, there are two ways of storing

the images: one changes the original images and the other stores them in a different

folder. The same recommendation of allocating enough space for the second option

applies here.

(a) Opening. (b) Closing.

Figure 4.4: Morphological transformation operations from the OpenCV library.

Opening is the function of erosion followed by dilation, and Closing is dilation fol-

lowed by erosion. Both of them are used to remove noise from binary images.

Next comes the size of the images. Some deep learning methodologies, espe-

cially CNN architectures, expect a normalized size for the input images since the

first layer is set to receive only one information size, in this case, the exact size of

pixels and the same channel of the colour. For the classification process, we left the

images of the format RGB, and we established the desired size as 224×224 pixels

since we explored the use of transfer learning. For this type of algorithm, this size

is mandatory.

Since we wanted to distort the images as little as possible, we needed to use

some padding not to change the final image’s shape. The area of interest is not a

square shape. After removing the labels and noise, the size is a square. So, the final

step for the pre-processing for the classification stage is to pad the images so they

are all the same size without unnaturally stretching the image. In Figure 4.5, we

see the process of padding and resizing the image. In this case, the padding will not

cause too much trouble in training the models since most of them use the dropout
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parameter to help, which we will explain later.

Figure 4.5: Process of padding and resizing the images to 224 × 224 pixels.

4.2.1.1 Wavelets

We identified potential noise manipulation in our data set during our experimenta-

tion, further detailed in the Results (Section 5). Thus, part of our pre-processing

aimed at noise removal from images using wavelet transforms, known for effectively

localizing information in both spatial and frequency domains. The wavelet transform

decomposed the image into varied scale components. A thresholding step minimized

noise, preserving essential details, followed by an inverse transform to yield a de-

noised image, accentuating critical areas for medical examination.

It is vital to recognize that wavelet-based denoising, while powerful, requires

precise tuning and validation for particular applications.

This code can also be found in Section A under the name of wavelet.py.

In the same way that the binarization process is a big code, this is also way too

extensive to explain line by line, so we are going to mention the three important
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functions you need to consider for the wavelets to work and what aspects can be

changed depending on the specific hardware features.

1. WaveletTransformAxisY(batch img): This function, as well as the transform

for axis X, uses the library of Keras and the function of tensor slices and

permute dimensions to apply the use of Texture classification using wavelet

CNN.

2. Wavelet(): This function uses both transforms for axis x and y to form two

decomposition levels. By experiment, we found that two decomposition levels

were enough for our images since the example we found had four decomposition

levels (each level adds more computational complexity).

3. getwaveletcnnmodel(): This whole function details the layers for the wavelet

for two decompositions. This can be extended if more decompositions are

needed.

4.2.2 Binary Classification Process

In machine learning algorithms, classification predicts a class or label for the input

data. Depending on the class label we are working with is the classification algorithm

we can use. That is not to say there is a road map to knowing what algorithm is indi-

cated for specific problems. It is usually recommended that experiments take place

to discover which algorithm and configuration work best for a giver classification

task.

The most common types of classification tasks we can encounter are:

• Binary classification: Typically, this type of classification involves a normal

class, and another is the abnormal class. They are often assigned the value

of 0 to the normal and 1 to the abnormal class labels. In the case of this
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experimentation, the 0 will represent the normal images or images without

anomalies, and the 1 represents images with an anomaly.

• Multi-class classification: This classification refers to tasks with more

than two class labels. This classification is unnecessary since there can not be

an image with and without anomaly simultaneously.

• Multi-label classification: The multi-label classification refers to the clas-

sification tasks with two or more labels. In this case, the difference between

class and label is that with the labels, we can identify the different types of

anomalies that we found in the classification portion of our methodology so

that multi-label classification will be referenced again in the feature extraction

portion of our method.

As mentioned before, we use binary classification for our method’s classification

stage. An output of 1 will refer to images with anomalies and 0 to normal images

without any anomalies. Since this is a computer-aided diagnostic, the result of our

model classifier will not be zero or one. Instead, we are using probabilities. A

binary classification will typically return a probability between 0% and 100%. Since

we need to go from the likelihood of the image having an anomaly to the actual

decision about which class the image belongs to, we establish a threshold. The

standard threshold for binary problems is right down in the middle. Any prediction

below 50% will be interpreted as a normal image, while above that percentage will

be considered in the anomaly class.

Now that the decision for the threshold has been made, how will we measure the

performance of our classification model? When building a predictive classification

system, we need metrics that reflect the classifier’s performance. In the literature

review, the most used metric is accuracy. Still, as we explain in the background

section, other metrics, such as precision, recall, and F1, are also important to note

since they can give us more information about the balance of our data set.
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We have established now that the classification task is binary and the metrics

we need to measure the performance. Now, we discuss the algorithms used to build

our classification models.

4.2.2.1 Convolutional Neural Networks

The literature review (Section 3) has a portion on deep learning methods for medical

imaging. Popular tools used for breast cancer were CNN architectures, such as VGG-

16, Alexnet, and Inception V3. The VGG-16 and Inception architectures are two of

the most often used for transfer learning. The experimentation showed promising

results that went from 80% accuracy to 95%. CNN architectures are divided into

shallow and linear model types, such as Alexnet and VGG-16, and deep model types,

like Inception and all the other architectures, that use built-in modules, which makes

them more complex. Table 5.6 shows that transfer learning from VGG-16 is the most

effective in keeping a slight difference between the developing and test sets’ accuracy.

Inception, however, only shows promising results in the training and developing sets

but not in the test set. This behaviour could mean that there are better options

than a deeper network, but it does not take ML algorithms off the table.

In our methodology (Section 4), we try the architectures mentioned in the

literature reviews the same way they are used: first, by using the architectures

and training the models from scratch with the images we have, and then by transfer

learning. With transfer learning, the difference is that the weights of the architecture

are already pre-trained with the data set of IMAGENET, which we mentioned in

the background section.

The architectures were used with the same features described in their papers;

however, they do not provide the code. We took the features from different pages and

adapted the related features into Python code using the Keras library. All authors

and their pages are listed in Section A. Here, we explain some features that can be
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changed to adapt to specific hardware requirements.

• Alexnet: We need to change certain parameters for this example code. If we

go to line 25, the image shape can change to smaller in case the memory load

is too heavy. The number of classes also needs to be specific to the number

of classes we are trying to classify. In our case, it changes to two. In the last

layer, the number of neurons in the dense and convolutional layers can also

be downsized if hardware constraints are important. We cannot recommend a

specific number for these features, so it is more of a trial and error.

• Vgg: All of the changeable features from the Alexnet architecture also apply

to Vgg (number of neurons in layers, size of the image, and in the case of the

Vgg, we can also choose between the 16 and 19 architecture depending on the

amount of data we have available and hardware restrictions.

• Inception and ResNet50: We will not recommend using both these archi-

tectures if there are hardware limitations. Alexnet and Vgg have the advantage

of being linear architectures, and since these two networks use modules and

recursive/residual learning, it is more complex to avoid heavy computational

complexity. Also, for these networks, there needs to be a substantial amount

of data available for training since the architecture complexity may lead to

overfitting for small datasets.

Using a pre-trained structure saves a lot of processing power and time on

training, which is desirable if we train the model constantly to add more images. It

is also highly regarded in the literature review because it has yielded the best results.

For the transfer learning part of our process, we explored the Vgg architecture

of ResNet50 since Alexnet is not commonly used for transfer learning for its simplic-

ity. In Section A, we have mentioned the code for transfer learning, but in Listing

4.2, we show the important code snippet that could be modified depending on the

resources.
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1 from tensorflow.keras.applications.vgg16 import VGG16

2

3 vgg_model = VGG16(weights=’imagenet ’, include_top=False ,

input_shape =(Lng , Hg, 3))

4

5 # Freeze four convolution blocks

6 for layer in vgg_model.layers [:15]:

7 layer.trainable = False

8

9 x = vgg_model.output

10 x = Flatten ()(x) # Flatten dimensions to for use in FC layers

11 x = Dense (512, activation=’relu’)(x)

12 x = Dropout (0.2)(x) # Dropout layer to reduce overfitting

13 x = Dense (256, activation=’relu’)(x)

14 x = Dense(2, activation=’sigmoid ’)(x) # Softmax for multiclass

15 transfer_model = Model(inputs=vgg_model.input , outputs=x)

16

17

18

19 transfer_model.compile(loss="binary_crossentropy", optimizer= "sgd"

, metrics =["acc"])

20 H = transfer_model.fit(train_datagen.flow(trainX , trainY ,

batch_size=BS),

21 validation_data =(testX , testY),

22 validation_steps = 1000,

23 steps_per_epoch =1000 ,

24 epochs=EPOCHS)

Listing 4.2: Python code to use transfer learning form the Keras library. This

example shows the Vgg16 net.

From Listing 4.2 in line 1, we import the Vgg-16 architecture from the Keras

library, but this can be changed to import several different trained architectures such

as Vgg, ResNet, Inception, etc. 1

1For more pre-trained transfer learning architectures and examples of the use of each one, please

refer to the Applications module of Keras https://keras.io/api/applications/

https://keras.io/api/applications/
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We freeze four convolutional blocks for this experiment and make changes to

the last five layers of the architecture. In the same way, we explain how they can

be downsized, a different number of neurons, the size of dropout, and the number of

iterations and epochs can be adjusted to the amount of data we have or resources

available. The optimizer can also be changed depending on the task, but in the

Keras documentation, they have sgd as the primary recommendation.

Similar features can be changed for the ResNet50 and Inception architectures.

In the results (Section 5), we discuss the pros and cons of the final metrics for

this experiment. Since the final performance was not what we had hoped for, we

began to see alternatives to improve our accuracy and overall performance, consid-

ering the results in other reviewed works. For this, we explored the statistical part

of machine learning and developed ensemble algorithms.

4.2.2.2 Ensemble Learning

Ensemble learning refers to the type of algorithms that combine the predictions from

two or more models. For this broad description, we can say there are unlimited ways

to present this algorithm. However, we explore three main classes of an ensemble,

the most common and discussed in machine learning work for classification.

It is also important to note that, despite looking to use machine learning al-

gorithms, we did not want to leave altogether the deep learning methodologies we

explored in the past, so in our case, we combine the use of deep learning with this

type of ensemble to help improve our performance. In the literature, the terms for

machine learning and for deep learning are sometimes used interchangeably. How-

ever, as established before in this work, in many applications, deep learning is “too

big a hammer” for problems in which we have fewer data or limited computational

resources. Ensemble methods present a powerful alternative to building a robust

model in these cases.



Chapter 4. Methodology 87

Ensemble learning is a general technique often used to seek better predictive

performance of machine learning algorithms, combining multiple models’ predictions.

An example of how an ensemble learning algorithm would look from a real-life per-

spective can apply to how a real team of doctors handles patient data to make a

diagnostic decision. At the start, there is some data from patients needing a diagno-

sis. This data is handed out to several experts in the area. Each of them will analyze

separately and independently suggest a diagnostic. Ultimately, the last expert or

team leader considers all opinions and adds his own to the final diagnosis.

Thus, an ensemble learning algorithm can be defined as an ML algorithm that

seeks to improve the performance of a task by using multiple estimators.

However, traditional machine learning is not often used as a method for com-

puter vision, less so for medical imaging. This is due mainly to the complexity of

the data. However, ensemble learning does not constrain itself by only being able to

use machine learning as its component. For this methodology, we combine some of

the more computationally accessible deep learning features with traditional machine

learning algorithms in an ensemble learning structure.

We explain each ensemble structure shortly, but first, we need to address how

we use deep learning to deconstruct the data to train a machine learning model.

The process is called feature extraction, which uses the same concept as transfer

learning. Feature extraction is a part of the dimensionality reduction process, in

which an initial data set is divided and reduced to a more manageable format. This

process helps to get the best feature from the data sets by selecting and combining

variables into features. These features are easy to process but can still accurately

describe the actual data set.

In this work for the feature extraction, we focus only on using the weights of

the Vgg pre-trained structure since it was the best-performing architecture for the

transfer learning experiment. This code can also be found in Section A; in this case,

no changes are advised since it does not use too much computational power. The
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only constraint to consider is the feature file’s size. Before running this code, it is

necessary to have at least 20% of the size of the original dataset.

• Bagging or bootstrap aggregation

Bootstrap aggregation, or bagging for short, is an ensemble learning technique

that seeks diverse ensemble features by varying the training data. It is a statistical

technique that averages the estimates from multiple small data samples using esti-

mates from a complete population. It is constructed by drawing observations from

an extensive data set and returning them after they have been chosen. This method

is called sampling with replacement.

Figure 4.6: Example of the bagging algorithm. This example shows the CNN struc-

tures of Alexnet, then VGG-16, and lastly with Inception. Following the function of

an ensemble, the final result is finally passed on in a final voting.

Figure 4.6 shows the Bootstrap aggregation graphically. Multiple equally sized

subsets with replacements are taken from the original data, and a CNN with the

same architecture runs on each one. Finally, the outputs from all the separate

models are aggregated and voted into a single prediction. The experiment with

Alexnet considers the same hyperparameters shown in their original publication.
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For VGG-16 and Inception, we used the pre-trained weights using IMAGENET. We

performed all the tests without compromising the computational complexity of other

deep learning architectures by the nature of this ensemble algorithm.

Since the bootstrap method is used to estimate the quantity of the population,

it takes small samples, calculates statistics, and takes the average of those statistics.

Before fitting the model or tuning the hyper-parameter, data preparation must occur

within the data sample’s for-loop. This process is used to avoid data leakage, where

the model uses knowledge of the data set to improve the model and causes overfitting.

The goal for the use of the bagging ensemble is to average the predictions across

models, and it is expected that the resulting prediction will improve by having more

than one model fit on the training data.

• Stacking ensemble learning

Stacking involves fitting different ML models or estimators. Ultimately, it does

not just average the results but uses the predictions from other models to feed a new

model, which takes those predictions and builds its own based on them and the

model chosen for this last step. In this case, the models have their terminology

where the zero-level models are the ones used in the first step of the ensemble and

are known as the weak learners, and the first-level model is the one that combines

the predictions. It often uses the two-level hierarchy but can also use many more

layers.

In this case, transfer learning can take the stacking ensemble into the deep

learning perspective. As mentioned in the Background Section, transfer learning is

often used in the literature to consider pre-trained weights and architectures to lower

the computational load and facilitate the use of more complex architectures.

Since these transfer learning architectures have been trained with natural im-

ages, not medical images specifically, how much they help the classification process
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is often a point of discussion. In this work, the first level of the stacking process uses

transfer learning with the VGG-16 architecture to apply what is known as feature

extraction. It allows harnessing the power of a deep-learning algorithm and com-

plements it with other models. Then, in place of VGG-16, the transfer learning will

take place with the Inception architecture to compare the best.

It is essential to mention that, in the same case as the bagging ensemble al-

gorithms, transfer learning was not considered for the Alexnet architecture because

it is regarded as a low-complexity network that shows better results when trained

from scratch.

Figure 4.7: example of the stacking ensemble, where each model represents the weak

learner used for intermediate predictions. In the end, consider logistic regression as

a final estimator.

Using pre-trained weights to extract features from images produces a vector of

numbers that can be used as an input of a new ML model since they describe the

specific features of the image in a format that is more “digestible” for traditional

ML algorithms. Stacking can come with more processing time, so we use feature

extraction first to make the data more manageable.
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As shown in Figure 4.7, we use popular ML algorithms as the receiving models

of the extracted features like decision tree, random forest, k- nearest neighbors, and

support vector classifier. These models can be found in the sklearn python library

(Pedregosa et al. [2011a]).

For the stacking process, we combined the use of DL and ML algorithms by

using DL only at the beginning of the process. In the end, for the process of averaging

results, we use a logistic regression estimator, that functions as a final prediction.

This is known as stacked generalization, and it is a method that is often used to

reduce the biases of past estimators by combining them. The use of the logistic

estimator at the end aligns with the decision of balancing our data set.

• Boosting algorithms

This type of ensemble works differently than the bagging and stacking algo-

rithms. In Figure 4.8, the models are fitted and added to the ensemble sequentially.

In the sequence, a model attempts to correct the predictions of the previous one, and

so on. This ensemble aims to develop a strong learner at the end of all the iterations.

The main difference between this boosting algorithm and ensembles like bagging is

that, in this case, boosting takes knowledge from the previously generated classifiers

and increasingly focuses on the miss-classified elements. Bagging has an individual

set for each iteration, so there is no such “learning”.

In this work, we combine this ensemble with deep learning in the same way

as in stacking. It means we perform feature extraction by transfer learning before

we feed the models into the boost. Again, the architectures for feature extraction

are VGG-16 and Inception. Although we have mentioned combining weak learners

to turn them into strong learners, in this ensemble, we focus on Adaptive boosting

(AdaBoost), one of the first successful boosting approaches to be implemented in

classification problems.

In Figure 4.8, the weak classifier for AdaBoost is a decision tree. This algorithm
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Figure 4.8: example of the boosting algorithm, where a decision tree classifier repre-

sents the weak learners. This process is set to be iterated until the complete training

data fits without error. The other stop function is a specified number of estimators.

In this case is set to 200.

is the most common weak classifier for AdaBoost, and in the training process, the

user needs to set the number of iterations.

The desired output for this section is the division of the images into normal

images and images with one or more anomalies. We present the accuracy of these

experimentations in the results section. Following the methodology, we expect these

results to be the input images for the next stage, the segmentation process.

The ensemble codes are referenced in Section A.

4.3 Segmentation process

The goal of this next stage is to use all the images that present one or more anomalies

and segment the anomalies to mask the possible position of the anomaly inside the

image. For this part of the methodology, we are again using the CBIS-DDSM data

set to perform some of the methods and some of the images from the YERAL data
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(a) Image Classification (b) Object detection (c) Image Segementation

Figure 4.9: Example of the difference between image classification and different

segmentation types.

set for the experimentation with the results since, at the time of the experimentation

of this thesis, there is no segmentation annotation or masks made for the data set.

We only have the ground truth made by other colleagues, and they are used only as

guides since they are not verified.

The CBIS-DDSM data set also contains the segmented binary mask of all the

anomalies found on each image. This mask is also known as the ground truth. If

we use this image as an overlay, we can locate where in the image the anomaly is

detected.

Same as in the case of the classification stage, the segmentation process has

different types of segmentation. Since the classification process tells us what is in the

image, the segmentation involves localizing, detecting, and segmenting the object of

interest.

The two primary forms we have to locate the object of interest in an image are

bounding boxes or masks. In Figure 4.9, we see the example of the segmentation

between the bounding box and mask. We have four main techniques commonly used

in computer vision problems to locate objects.

1. Object localization: This involves locating the class object or label from an

image. This involves a cropped bounding box centred around the object. In

this case, this type of segmentation usually comes with the classification label
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of the object.

2. Object detection: This involves detecting multiple object classes in one im-

age. Following a pattern similar to object localization, this also uses bounding

boxes around every detected object in the image.

3. Semantic segmentation: This type of segmentation predicts the object

class for each pixel in the image, which can be two or more object classes. All

objects need to be labelled for this to work, and the output of this method will

be the predicted mask.

4. Instance segmentation: This is the more elaborated version of semantic

segmentation since this method can identify and differentiate two instances of

the same object class. For example, if we have multiple anomalies that fall

into the same type of malignancy, they will have the same label but different

masks.

Unlike the classification stage, the segmentation process has another way of

determining the model’s performance. The most commonly used metric is the In-

tersection over union (IoU), which measures the performance of object detection

and deep learning algorithms.

The results are much the same as the accuracy for binary classification in

that we have a result between 0 and 1, whereas the closest is to 1, the better the

accuracy of the mask or bounding box. For the IoU, however, it is more complex.

For example, in the case of segmentation, it is very unlikely that the coordinates of

our predicted mask will match precisely the coordinates for the ground truth. This

could be because of the feature extraction method we use or the sliding window size

of the image, so instead of taking it as true or false positive/negative outcomes, we

define the evaluation metric that rewards the predicted bounding boxes or masks for

overlapping more heavily with the ground truth of the image.

In Figure 4.10, we have an example of how the overlapping on the ground truth
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(a) Poor (b) Good (c) Excellent

Figure 4.10: Example with bounding boxes of the intersection over unions (IoU).

computes the IoU. As we can see, a good IoU is closer to 1 than 0.

The last main difference between this stage and the classification stage is that

we need other things from the data set. Besides the actual images, we need the

bounding boxes or masks associated with the image. These images have the ground

truth on the exact coordinates of the object in the image.

4.3.1 Pre-processing

The pre-processing for this section follows much the same process as the pre-processing

from the classification stage. In this case, we will also need to apply the padding

method to the images with the ground truth so they are the same size. Another thing

added to the full images is the Clahe filter to improve the contrast of the images.

This was not added to the classification method because previous experimentation

with these enhancement tools made the performance poorer, so we discarded it.

The Clahe enhancement was introduced in this section because the majority of
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the images are from the CBIS-DDSM data set, and some of those images have a poor

contrast on the breast tissue, which can result in a lack of texture and meaningful

difference between the mass abnormalities. With this enhancement, we leave these

images as similar to our target data set as possible.

Clahe stands for Contrast Limited Adaptive Histogram Equalization and is

often used in computer vision to enhance the contrast of grayscale images. Because

this enhancement can also focus on the background noise of the image (although it

appears black, sometimes it is not complete), we need to do this enhancement after

the normalization, binarization, and removal of labels.

For the masks, there is no need for pre-processing other than the padding of

the image since the images are binary, and their only purpose is to serve as labels

to calculate the error during training.

In Figure 4.11, we see the example of the masks that came with the data

set. Lastly, for us to use our method, it is necessary that if an image has several

masks (because it has several anomalies), we must stack them together in one single

summed-up mask since this stage does not require that we classify what type of

malignancy, it is not necessary to differentiate them. The end goal of this stage is

to create a new set of ground truths for new images and have a cropped set of the

anomalies to identify the type of malignancy in the next stage. Figure 4.12 shows

the example of the summed mask.

4.3.2 Convolutional Neural Networks

For this next segmentation model, we consider the experimentations and results

made from the binary classification portion of the methodology. In that case, the

VGG-16 with transfer learning with and without the help of the ensembles showed

better results than the other CNN architectures. Following that good performance,

we explore using the same architecture with the U-Net architecture.
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Figure 4.11: Example with bounding boxes of the CBIS-DDSM data set.

Figure 4.12: example of the final summed mask for the segmentation process.



Chapter 5

Results

This chapter presents the diverse results of our extensive experimentation, exploring

the right fit between statistical, machine, and deep learning. As we explained in the

Background (Section 2) and Literature Review (Section 3), these distinct yet con-

nected domains under the umbrella term of artificial intelligence hold the potential

to improve each other, depending on the nature of the problem being addressed. Our

focal point has been the enhancement of the classification model’s accuracy, a journey

initiated in Berrones-Reyes [2019]. This chapter delineates the various milestones

and pivotal moments we encountered during our research, beginning with stating

the problem we set to address and then following with the different approaches we

employed to navigate each challenge.

5.1 Classification

In this work, we aimed to enhance the classification model initially developed in our

master’s thesis. The primary goal of the original project was to address the needs

of a specific hospital that provided us with annotated images. The hospital sought

a cost-effective tool to assist doctors in swiftly and accurately identifying image

anomalies. This need arose due to the massive volume of annual breast cancer data.

Governmental efforts to combat this disease primarily consisted of designating dates

98
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for awareness and facilitating public check-ups.

However, the effectiveness of this system was challenged by the scarcity of

specialists available to process the influx of information. Waiting periods lengthened,

and measures introduced to mitigate this issue proved inadequate. As discussed in

the Literature Review (Section 3), the criteria used to prioritize patients were based

on global statistics and general information, leading to impractical generalizations

when comparing developing and developed countries. Consequently, the incidence

of breast cancer remained high.

In addressing these issues, we followed the state-of-the-art, which advocated

for deep learning, to build a reliable classification model. For a detailed overview

of the various iterations of our experiments, we refer to the comprehensive work

by Berrones-Reyes [2019]. This document presents our new experimentation’s final

outcomes and starting point. Table 5.1 displays the best models chosen for further

study. In most instances, while training and validation sets achieved near-perfect ac-

curacy, the test set experienced a notable decline in all other metrics. We recognized

this as a clear sign of overfitting and aimed to correct this error.

It’s crucial to clarify that the models outlined in Table 5.1 are based on simpler

architectures of convolutional networks. At that point, our focus was more on the

varied hyperparameters of the layers than on the actual architecture. The param-

eters that we found were more influential on the best results where the optimizer,

and the size of the image. While this approach enhanced our understanding of

CNN architectures, it became clear that a more complex network was necessary for

substantial improvement in evaluation metrics without succumbing to overfitting.

Subsequently, we explored more intricate architectures of convolutional net-

works. Given our ongoing computational capacity limitations, our exploration ranged

from simpler to more sophisticated models. During this phase, we employed the ini-

tial hardware configuration, as described in the Methodology (Section 4). With this

configuration, we were only able to achieve results up to the VGG-16 architecture.
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Table 5.1: Results of the best models for binary mammography classification ex-

tracted from the complete table by Berrones-Reyes [2019]. The number represented

in the column model refers to the parameters of each model.

Accuracy Other metrics

Model Training Validation Test Precision Recall F1

1211 99% 99% 70% 80% 83% 81%

1231 99% 99% 69% 80% 81% 81%

1215 95% 97% 68% 80% 81% 80%

1315 94% 97% 68% 79% 81% 80%

1226 99% 99% 70% 79% 85% 82%

1136 99% 99% 66% 79% 80% 79%

2221 99% 100% 63% 79% 75% 77%

2131 99% 99% 72% 80% 86% 83%

2115 96% 97% 61% 78% 72% 75%

2135 96% 97% 61% 78% 72% 75%

2226 99% 99% 65% 78% 79% 78%

2236 99% 99% 64% 79% 75% 77%
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Table 5.2: Factors of Lenet5 models.

Optimizer Image size Data set Model Accuracy Time epoch Temp (C)

Adam 80×200 Minimias m001 0.74 43 seg 65 to 69

Adam 160×400 Minimias m002 0.74 158 seg 65 to 69

Adam 80×200 DDSM m003 0.87 44 seg 65 to 69

Adam 160×400 DDSM m004 0.88 168 seg 65 to 69

Adadelta 80×200 Minimias m005 0.75 39 seg 63 to 67

Adadelta 160×400 Minimias m006 0.72 193 seg 63 to 67

Adadelta 80×200 DDSM m007 0.86 38 seg 63 to 67

Adadelta 160×400 DDSM m008 0.86 206 seg 63 to 67

We understand now that this is likely due to the linear properties of the three ar-

chitectures (Lenet5, Alexnet, and VGG). Table 5.2, 5.3, and 5.4 display the name of

the optimizer, the two different sizes we translated from previous experimentations,

and the dataset used for each experiment in their columns.

At this juncture, we were also investigating the discrepancy in accuracy be-

tween the training and validation sets compared to the test set in our first round of

experiments. A common suggestion for addressing discrepancies in computer vision

problems was to separate the different datasets and assess if significant differences

existed among the three datasets we mentioned in the Methodology (Section 4),

Minimias, DDSM and YERAL. Accordingly, we added a column in Tables 5.2, 5.3,

and 5.4 to denote the dataset we used. We focused solely on accuracy to compare

the differences and considered both the time taken to train and the temperature of

the hardware components. One constraint was that, since our computer was not

designed to handle intensive computing tasks, the temperature was not allowed to

exceed 80 degrees Celsius.

For Tables 5.2 and 5.3 we see that the difference in accuracy temperature and

time favors Lenet5. While in Table 5.4 we were only able to experiment with one of

the dataset (the smallest) until we reached our threshold of temperature.

As we can see in all the previous tables of results, none of them have information

about the YERAL dataset, which is our target dataset that contains real clinical
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Table 5.3: Factors of Alexnet models.

Optimizer Image size Data set Model Accuracy Time per epoch Temp (C)

Adam 80×200 Minimias m009 0.60 222 seg 70 to 79

Adam 160×400 Minimias m010 0.75 436 seg 70 to 79

Adam 80×200 DDSM m011 0.76 235 seg 70 to 79

Adam 160×400 DDSM m012 0.73 458 seg 70 to 79

Adadelta 80×200 Minimias m013 0.70 139 seg 70 to 76

Adadelta 160×400 Minimias m014 0.69 486 seg 70 to 76

Adadelta 80×200 DDSM m015 0.76 144 seg 70 to 76

Adadelta 160×400 DDSM m016 0.75 513 seg 70 to 76

Table 5.4: Factors of VGG-16 models.

Optimizer Image size Data set Model Accuracy Time per epoch Temp (C)

Adam 80×200 Minimias m017 0.75 1,088 seg 80 to 90

data. DDSM and Minimias are known as benchmark datasets. In Figure 5.1, we see

one example of the accuracy reached when training with Alexnet, but with all three

architectures, it showed similar results. As we can see, the loss is way to high, and

the accuracy never goes up the 50% mark, which is basically a random prediction.

These results marked our first checkpoint, where we had to consider alternatives

to see what was happening with our images. Since our experimentations indicated

that both of the benchmark datasets performed accordingly, we began to look into

the pre-processing of our target dataset to see if there was something we could do

to improve the accuracy.

We began to look into some topics of statistical learning and landed on the use

of wavelets. This is explained in the Methodology Section 4, so here we explain how

we used it and how it helped us solve this problem.

Just to set thing into perspective, we have Figure 5.2 where we see that the

accuracy and loss of both datasets gets stuck in the random point, which means that

it is a 50/50 chance it would classify correctly in real life. We have a score of 0.56

on accuracy and 0.72 on loss for the training set, and in the test set we have a 0.51
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Figure 5.1: Training loss and accuracy for YERAL images.

in accuracy and 0.87 in loss. Then, we train our model with our modified Wavelet

transform.

Digital image textures tell us how color or pixel intensity spreads out in space.

Different patterns in this spread match up with different looks and feels of the

material in the picture. Wavelet scattering moves the image through several wavelet

transforms, nonlinear actions, and averaging processes (Hastie et al. [2009]).

This concept in particular, was beneficial since it gave us the idea we needed

to fully understand how we could use the concept of wavelets for our classification

problem.

Possible advantages of using wavelets:

• Wavelet scattering is the equivalent of a deep convolutional network. Some of

the examples we investigated are very similar to the pooling method since it

takes some of the features of the images to take forward.

• It has proved to yield stable representations against deformations and robust
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Figure 5.2: Training loss and accuracy for YERAL images with the Alexnet archi-

tecture.

to noise.

In Figure 5.3, we see how the accuracy finally escapes the random state it was

stuck in, and the loss also starts to behave normally1.

After this pre-processing, we set out to improve the primary objective again,

which was classification accuracy. From this point forward, we change the hard-

ware specification from the first to the second one described in the Methodology

(Section 4).

1The whole experimentation and moving of parameters can be seen in

https://github.com/mayraberrones94/Tesis codigos



Chapter 5. Results 105

Figure 5.3: Training loss and accuracy for YERAL images after being subjected to

a wavelet processing.

Table 5.5: Using the most popular metrics for validation data performance, we com-

pare the use of an unbalanced with a balanced data set using the Alexnet architecture

with the same weights described by Krizhevsky et al. [2012].

Unbalanced Data Set Balanced Data Set

Normal Anomaly Normal Anomaly

Precision 64% 90% 82% 86%

Recall 82% 78% 83% 85%

F1 score 76% 73% 86% 82%

Accuracy 79% 84%

Following common practice of computer vision problems, we need to train a

model with a data set that represents well the features of a data set they may

encounter in a real-life setting. In many deep-learning medical imaging studies,

surveys show that most do not use genuine clinical data for external validation. In

the rare cases that do, the model’s performance is often tested against the same
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sample (Liu et al. [2019], Varoquaux and Cheplygina [2021]). Our study focused on

correctly using data sets for training, development, and testing.

Surveys in medical imaging highlight the DDSM (Digital Database for Screen-

ing Mammography) as the primary benchmark for mammography (Liu et al. [2019],

Litjens et al. [2017]). It has 2620 mammography studies of normal, benign, and

malignant cases. However, the original DDSM, hosted by the University of South

Florida, used an outdated lossless JPEG format (.LJPEG). This was updated in the

improved DDSM, which uses the .PNG format (Lekamlage et al. [2020]).

We also utilized the private YERAL dataset from a Mexican hospital, reviewed

by FUCAM (Fundación de Cancer de Mama). FUCAM is a leading nonprofit in

Mexico and Latin America, specializing in breast cancer care in Mexico City. The

YERAL dataset includes 641 images with confirmed anomalies and 302 without.

In this work, our “test set” only includes images from the YERAL data set,

aligning with our goal to offer hospital experts a robust computer-aided diagnosis

tool. Adhering to standard practices, we separated the training and development

sets (Ng [2019], Chollet [2021], Brownlee [2016], Raschka and Mirjalili [2019]). Many

recommend that training and development sets should encompass some images the

model will later classify. Given our data constraints, the test set features 50 images

with anomalies and 50 without, all from YERAL.

By merging the updated DDSM and remaining YERAL images, we had 2594

non-anomalous and 8401 anomalous images. This imbalance led to a bias, resulting

in excessive false positives for non-anomalous images. As accuracy and F1 score are

key metrics in medical imaging, balancing the data set was crucial to mitigate bias

and enhance accuracy (Varoquaux and Cheplygina [2021], Ng [2019]). We randomly

excluded some anomalous images (from DDSM only), leading to a balanced set

of 2594 normal and 2900 anomalous images. Table 5.5 highlights the benefits of

this balance. Henceforth, the balanced training and development sets are termed

DDSM YERAL, and the separate test set as YERAL.
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Table 5.6: Performance results on the more popular architectures for image classifi-

cation. Rows 1, 2, and 4 are the results introduced in the Literature Review Section.

Rows 3 and 5 are the architectures that combine the use of transfer learning, and

uses the unfreezing method for the last pooling layers.

DDSM YERAL YERAL

Training Set Developing Set Test Set

Model Loss Acc Loss Acc Acc Prec Rec F1

Alexnet 0.36 82% 0.31 84% 60% 57% 76% 65%

VGG-16 0.39 79% 0.35 82% 52% 51% 90% 65%

VGG-16 TF 0.25 87% 0.28 87% 79% 82% 74% 77%

Inception 0.35 81% 0.38 83% 57% 53% 93% 69%

Inception TF 0.39 80% 0.55 71% 55% 52% 90% 66%

Having defined the datasets used for training and testing, we began experi-

menting with prevalent CNN architectures identified in the literature review. Table

5.6 showcases the results from the training and validation sets, aligning with an-

ticipated strong performance from these architectures. However, accuracy results

shifted dramatically when tested with the target data set, YERAL.

Table 5.6 also presents the F1 score for the target data set, a metric frequently

cited in the literature review due to its distinctive property of balancing error class

results. As discussed in the Background Section 2, true positives, false positives,

true negatives, and false negatives each uniquely influence metrics. Both accuracy

and F1 scores indicate that the models are not performing optimally on the target

dataset.

Figure 5.4 presents a visual depiction of each model’s behaviour, highlighting

VGG-16 with transfer learning as notably stable compared to the rest.

A pivotal point in our investigation arose when our literature review and ex-

ploration of state-of-the-art image classification models indicated that these archi-
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(a) Alexnet. (b) VGG-16.

(c) VGG-16 transfer learning. (d) Inception.

(e) Inception transfer learning.

Figure 5.4: Graphs of the performance of the popular CNN architectures tested for

this work. On each image we have the accuracy and loss for the set epochs, showing

the validation and training outcome. Subfigures (a), (b), and (c) are related to

the classical architectures, while subfigures (c) and (e) correspond to the ones with

transfer learning.
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tectures were optimal for adept classification within a complex dataset. Guided by

the checklist necessary for training a proficient deep learning model, transfer learn-

ing emerged as a pivotal strategy, especially given our dataset—while more robust

than our starting point—was significantly smaller than expansive datasets like IM-

AGENET.

Concern arose post-analyzing the results in Table 5.6, where the peak perfor-

mance hovered just below 80%. This prompted a retrospective step back to explore

alternative AI tools that could enhance our accuracy without undermining our ex-

isting advancements and insights garnered from transfer learning outcomes.

This journey brought us to a hybrid approach, intertwining statistical and deep

learning methodologies. Due to our good transfer learning outcomes, our attention

shifted towards feature extraction. Revisiting the concept outlined in the Back-

ground (Section 2), feature extraction in the realm of Convolutional Neural Networks

(CNNs) for image processing fundamentally involves isolating critical characteristics

or patterns from raw image data pertinent to specific tasks such as classification.

This process translates image data into a representation that simplifies machine

interpretation and analysis.

In this context, deep learning serves to “digest” intricate image features, em-

ploying feature extraction to inform other machine learning algorithms. These al-

gorithms, not inherently designed to process image inputs, can thus leverage the

distilled data effectively.

This goes back to another previously discussed concept: ensemble learning. En-

semble learning orchestrates multiple models, or “weak learners”, training them to

converge and create a more robust “ensemble” model. This collective of “weak learn-

ers” amalgamates to formulate a “strong learner”. Here, predictions from various

models are synthesized, with the ensemble model making a conclusive prediction,

typically through a voting or averaging mechanism, generally elevating predictive

performance relative to singular model applications.
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Table 5.7: Final result of the expected performance using the ensemble algorithms

compared with the predictions for the target dataset, YERAL

DDSM YERAL YERAL

Developing Set Test Set

Model Acc Acc Prec Rec F1

Alexnet Bagging 84% 70% 67% 76% 71%

VGG-16 TF Bagging 91% 82% 79% 86% 82%

Stacking VGG-16 TF 84% 78% 85% 78% 77%

Stacking Inception TF 82% 74% 78% 74% 73%

AdaBoost VGG-16 TF 83% 76% 82% 76% 75%

AdaBoost Inception TF 80% 71% 75% 71% 70%

We utilized bagging, boosting, and stacking as ensemble learning models, exem-

plified in the Methodology section 4. Table 5.7 showcases the results of each model.

The feature extraction from the transfer learning model, specifically the VGG-16

architecture—since it delivered the best independent performance—was employed.

Evident from the outcomes in Table 5.7, the bagging model yields the highest

overall accuracy, achieving 91% on the development set. Furthermore, the accuracy

and F1 results from the same model hold strong at 82% each. These outcomes un-

derscore how melding deep learning with machine and statistical learning enhanced

the performance of our models for our targeted data set.

It is important to note that while still not achieving the promised 90 to 98

percent of accuracy shown in state of the art publications about benchmark dataset,

we developed an alternative to solve the different contstrants we found when trying

to implement AI for our specific problem. With this work we expect to spark a

conversation around the different uses of AI in medical imaging, how to work around

difficulties that are not mentioned in the most highly scored algorithms, and the path

moving forward with these technologies.
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5.2 Segmentation

For the segmentation process, we had the same perspective as the classification.

In this case, at the time of this investigation, the segmentation process was halted

because not all of the YERAL data set was annotated with the ground truth. In

the meantime, we applied several other machine learning applications to the images

to see which ones we could approach later on to compare to the use of the U-net.

5.2.0.1 Kernel soothing methods

Kernel smoothing methods are widely used in image segmentation to reduce noise

and improve the distinction between different regions in an image (Hastie et al.

[2009]). The concept involves using a kernel (a small matrix) to navigate the im-

age and apply a mathematical operation at each pixel position. In the context of

segmentation, kernel smoothing can help delineate clear boundaries between various

segments by reducing the impact of noise and minor color variations.

For this, we use a code in Python that, as shown in Figure 5.5, starts with the

original image, where each box represents the matrix or kernel of operations we will

be using. The smoothing process aids in eliminating noise by averaging pixel values

in a localized area defined by the kernel, thereby providing a smoother transition

between pixel values across the image.

OpenCV has a module that allows the operations of erosion and dilation that

essentially expands the white region (or foreground) in the binary image (typically

used to accentuate features and join broken parts of objects) and then shrinks the

white region in the binary image, typically used to eliminate noise, separate objects,

and make them distinct.

These two operations, erosion and dilation, are often used in tandem for various
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(a) Normal Image (b) Binarization (c) Image with erosion

(d) Image with dilation (e) Image with dilation then erosion

Figure 5.5: Dilation and Erosion function from the OpenCV library.
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image processing tasks like getting the outline of objects, filling holes, and removing

noise.

Kernel smoothing effectively minimizes localized variations and enhances global

features in an image, thus improving the accuracy and robustness of subsequent

segmentation.

This idea was especially appealing to us since we have limited data from our

target dataset. Still, after several tries, we realized that the computational load

would be too much. The experiments we saw yielded very poor images as a result.

We also tried to apply the best bandwidth estimator for the small image experiment

we first had, but it took way too much time to compile, so we moved on to the next

one.

5.2.0.2 K-Nearest Neighbors

In publications and examples, we saw when looking for information about this algo-

rithm, we found that the best contender for image segmentation, other than simple

image manipulation, is the k-Nearest Neighbors.

The k-Nearest Neighbors (k-NN) algorithm, while traditionally used for classi-

fication and regression, has a tangible potential in the domain of image segmentation

as well. Image segmentation aims to partition an image into segments, where pixels

in the same segment share certain visual characteristics, such as color or texture.

Using k-NN for image segmentation in complex datasets can introduce several

challenges and may not always be the optimal choice. Images, especially high-

resolution ones, inherently have high-dimensional feature spaces. The effectiveness

of k-NN tends to diminish in high-dimensional spaces, so calculating distance metrics

in a high-dimensional space is computationally intensive. It can be time-consuming

for large or complex datasets.
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(a) Detailed tool (b) Sharpening (c) Delete farthest pixel

(d) Binarize (e) Join closest pixels

Figure 5.6: Manual image transformations using a function of clustering that helps

us identify the major pixel clusters and eliminate what we consider noise, such as

the mass of the breast.
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Figure 5.7: Manual image transformations using a function of clustering that helps

us identify the major pixel clusters and eliminate what we consider noise, such as

the mass of the breast.

Figure 5.7, we put our images through several transformations, following the

behavior of clustering, where we eliminate the pixels that are farthest away from

each other and cluster together the closest ones. Finally, we contour our image to

find out the most prominent features to see if they match with what we know of the

area of interest.

Although this process shows promise in helping clear images with too much

noise due to the density of the muscle or fatty tissue of the patient, it is still a very

time and resource-consuming process.

Finally, in the final iteration of k-NN algorithms, we let the threshold build

until it found the suitable mask for the main anomaly on the image. The process

was computationally expensive, and it took a long time to process, and in the end,

we decided to stop it at 500 iterations. This yielded good results, but again, the

computational load is not worth it if we had a larger dataset, since, comparing the

computational load for the small amount of images we had in this experiment, the

bottleneck for classification would intensify with more images.
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Figure 5.8: Different sizes of k for the k-Nearest Neighbor experiment.
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Conclusions

Through the intensive exploration of deep learning and its application to medical

image classification, this thesis made a journey through several experimental phases

to help improve methodologies suitable for breast cancer detection via mammogra-

phy. With a foundational grounding in the initial model construction we developed

(Berrones-Reyes [2019]), we embarked on an exploratory pathway where the relation-

ship between statistical learning, machine learning, and deep learning was explored,

illustrating the complexities and potential of artificial intelligence in enhancing each

one of these fields.

The experiential knowledge gained from the initial classification model served

as a base for this investigation, addressing the urgent need of a specific hospital for

an economical and proficient diagnostic tool. The importance of this tool was high-

lighted by the conspicuous gap in specialist availability versus the number of data

generated by governmental breast cancer awareness initiatives, presenting substan-

tial waiting periods and ineffective preliminary measurements to tackle this chal-

lenge.

Our focused endeavor in refining the accuracy of the classification model was

met with various challenges and learning checkpoints, particularly the realization

of overfitting in our initial models and the subsequent adaptations made to mit-
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igate this. Delving into more complex convolutional network architectures, our

experimentation went between simplicity and complexity, constrained by compu-

tational capacity but enriched by the learning from each architectural application,

from Lenet5 through to VGG-16.

In addressing the recognized limitations in external validation within medi-

cal imaging studies using deep learning, our study emphasized the importance of

appropriately dividing data sets into training, development, and testing sets that

were balanced correctly to avoid unnecessary bias. Notably, our use of the renowned

DDSM database, despite its earlier setbacks in format, and the private YERAL data

set offered a foundational base for our experimental processes.

Moreover, our experimental approach also leaned into the complexities of data

balancing to mitigate bias and optimize accuracy, navigating through the intricacies

of data anomalies and ensuring meticulous data validation. The subsequent creation

of the DDSM YERAL and additional validation test set YERAL substantiates our

commitment to ensuring a robust dataset that aligns with our research objectives.

Our work shed light on the importance of thorough pre-processing, for image

denoising, and optimizing image clarity while preserving critical structural details.

The layers of challenges, adaptations, and discoveries within our experimenta-

tions highlight not only the potential within the use of artificial intelligence and all

its different ramifications, but also the importance of continual exploration, adap-

tation, and validation in ensuring the safe and effective implementation of these

technologies within medical practice.

6.1 Contributions

This investigation seamlessly integrates the profundities of deep and statistical learn-

ing, establishing a robust methodology that capitalizes on the strengths of transfer
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learning with the VGG-16 architecture and ensemble learning strategies within image

classification contexts. The experimentation traverses various CNN architectures, of-

fering keen insights into their dynamics and performance metrics, particularly when

engaged with the challenging YERAL dataset.

We proposed in our initial hypothesis that by combining deep learning with

traditional machine learning algorithm we could enhance the accuracy of previously

designed classification models, keeping in mind computational constraints. In this

aspect, we wanted to address the major discrepancy found in the result of using deep

learning for image classification publications, and the results we where getting by

using those same methods with a new data set.

Thanks to the constant feedback of our associate team on the FUCAM we

where able to determine how and why these deep learning methods might not be

adequate for the tasks at hand. As we have previously stated, many of the deep learn-

ing requirements and practices are not always scalable from regular computational

vision problems, to medical imaging. With all of the experimentations mentioned in

this work, we addressed those issues and how we went about fixing them.

In this sense, we also fulfill the main and secondary objectives we set for the

completion of this work. We set out to develop a computer-aided diagnostic tool to

assist medical experts on diagnosing medical images. For this, one of the outputs

that we have available is the interface we developed to make the use of our trained

models easy for medical experts. This also aligns to another propose we had, which

was to alleviate as much of the computational load for the medical team, since we

worked in our end to have good hardware to be able to experiment and choose the

best artificial intelligence model for them.

With this we also made sure to ensure data integrity and optimize our combined

resources for computational efficiency, which was part of some of our secondary

objectives.

By using varied AI methodologies to build a medical classifier, we fulfilled
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some other secondary objectives, like the integration of deep learning to reduce the

complexity of our data and be able to enhance our performance by using ensemble

learning techniques. Along our experimentation journey, we also made sure to follow

good practices for ethical AI, such as the comparison between existing methods,

exploring and mitigate the effect of data imbalance, to ensure data integrity and

avoid performance bias.

Furthermore, through a detailed exploration of alternative techniques, such as

k-NN for image segmentation and intricate image transformations, this work provides

pivotal insights into their potential and boundaries, thereby enriching the discourse

on feasible techniques in breast cancer imaging.

In the case of the segmentation process and the objectives we had planed for it,

the outline of the steps was so that after the classification portion, we would perform

image segmentation to locate an anomaly within the images classified as containing

an anomaly.

As we faced some delays with the masking process for the target data set, the

only contributions we have towards this goal were experiments based on different

machine learning and statistical learning algorithms on some of the images that

did have the masks. However, due to the small portion of YERAL images that

had masks at the time of the experimentations, the output of this section of the

methodology are solely recommended paths for the same concept we used for the

binary classification; the combination between traditional machine learning and deep

learning techniques to adapt to computational and data constraints.

6.2 Future Work

There are some open ended possibilities that we can continue to explore in any of

the stages proposed in this work. As time passes by, many new developments have

come forward to enable a more accessible use of tools for machine learning and deep
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learning methods, without having the constraint of certain hardware features.

Cloud computing offers a new window of opportunity for researchers and devel-

opers of CAD systems. The only issue at the moment with this technologies remains

the very restricted system still in place for the use and sharing of medical imaging

among a centralized data set.

Another field that keeps improving is the research into ethical AI and the

use of such tools in more critical aspects of decision making. There have been

recent advances in the transparency of the use of generative AI for different fields of

study to avoid data imbalances, encourages data diversity to include minorities and

marginalized groups, which in turn help to avoid harmful biases.

As mentioned before, the medical field might move a little bit slower when it

comes to the acceptance and use of AI tools, but as concerns about unintentional

biases and misdiagnosis by computer systems are still very prevalent, it is important

to continue to question and test every different scenario that can present itself so

we help to avoid this barriers and encourage transparency on the use of AI tools for

medical use, which in turn will avoid misconceptions.

Moving forward, the availability of labeled images for segmentation opens new

avenues to merge deep and machine learning methodologies in our research, partic-

ularly leveraging the capabilities of U-Net for biomedical image segmentation. The

intent is to integrate U-Net with previously utilized ensemble learning methods to

refine further the segmentation and delineation of areas of interest within mammo-

grams.

This exploration aims to enhance diagnostic capabilities by developing a hybrid

model proficient in both advanced image classification and meticulous segmentation,

thereby augmenting the technological toolkit in medical imaging and diagnosis.

In Section A we share the progress we made for the segmentation process with

deep learning, in preparation of the availability of more revised and approved masks
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for the images of our target data set. Because of time constraints, we were not able

to deploy these codes, but plan to develop them in the future, and encourage readers

to use them, hoping they can be helpful in any way.

6.3 Research output

6.3.1 Publications

• BerronesReyes, M. C., SalazarAguilar, M. A., CastilloOlea, C. (2023). Use of

Ensemble Learning to Improve Performance of Known Convolutional Neural

Networks for Mammography Classification. Applied Sciences, 13(17), 9639.

6.3.2 Invited talks and seminars

• Conversatorio de mujeres en la ciencia. Universidad Santiago de Cali (March

2023)

• Department of Physical-Mathematical Sciences. Seminar of computational

science: Data Science. (March 2023)

• Department of mechanical and electrical engineering. Seminar: Challenges and

areas of opportunity for deep learning applied to the medical area. (November

2022)

• CONACYT and Women in Data. Seminar: Opportunities and challenges of

artificial intelligence in solving tasks for social betterment. (September 2021)

• Vision to the future of systems engineering. Round table with teachers and

students to enhance the graduate program of System Engineering. (December

2021)
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Appendix A

Datasets and codes

As mentioned in the materials sections, there are several datasets available to per-

form mammography classification and segmentation, such as DDSM and Minimias,

which can be found in the following repositories:

• Mini MIAS dataset http://peipa.essex.ac.uk/info/mias.html

• CBIS DDSM dataset https://wiki.cancerimagingarchive.net/pages/

viewpage.action?pageId=22516629

For the Mini MIAS dataset, the download format of the data is PGM. There

are ways to use the images in this format, however, all images have to be normalized

in order for them to be used on a single CNN. The Pillow library in Python can help

in this conversion, however, a clean version on png can be available by contacting

the author of this work.

The YERAL dataset is a private dataset provided by the FUCAM Institute. All

the images have been expertly annotated and labeled as normal or with anomalies.

The process of segmenting the images and annotate them by hand by experts it is

still an ongoing effort. The availability of the images for further experimentation

can be discussed with the author.

All of the codes available below can be used and modified freely. If more
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information is needed from any of the codes, please contact the author.

Code Information:

For the first part of our experimentation, we normalized our images. For this,

we used the codes in the Tf FE folder at https://github.com/mayraberrones94/

Tesis codigos/tree/main/Tf FE:

• black box.py This code draws a small black box on top of the data of the

patients for the YERAL data set.

• crop2.py Is the code to crop the black mask of the mammography. This

was only used for the YERAL data set, and it was later replaced with the

binarization process for the segmentation stage.

For the experimentations with the Alexnet architecture, they can be found at:

https://github.com/mayraberrones94/Tesis codigos/tree/main/Code Alexnet.

This folder has all the iterations of the different methodologies we tried for our pro-

cess. The file used for the final results is redv4 alex.py.

• red Alexnet 01.py This code has the same features of the Alexnet architec-

ture directed on their original paper. We only changed the flattening layer with

the activation function. Different form the article, we only have two classes to

classify, so we changed softmax for sigmoid in the activation function, and the

last flattening layer, the number of neurons is 2. This is the same in all of the

other iterations of Alexnet architecture.

• red Alexnet 02.py In this code, we changed the loss function to the hinge

loss function. This function is explained in more detail in the experimental

repository mentioned below.

• red Alexnet 03.py This is the code where we attempted our first ensemble

algorithm of bootstrapping with Alexnet and the original features described

https://github.com/mayraberrones94/Tesis_codigos/tree/main/Tf_FE
https://github.com/mayraberrones94/Tesis_codigos/tree/main/Tf_FE
https://github.com/mayraberrones94/Tesis_codigos/tree/main/Code_Alexnet
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in code red Alexnet 01.py. As mentioned before, Alexnet is a simple enough

architecture that feature extraction was not needed. However, since boot-

strapping is basically training models several times, it should consider the

RAM capabilities of the computer when choosing the number of batches. In

this code we have five.

• red Alexnet 04.py This code is the same bootstrap experiment from code

red Alexnet 03.py, but this time with the features we changed for code

red Alexnet 02.py.

• red Alexnet 05.py For this experimentation, we used the AdaBoostClassi-

fier from the Keras library as a last artificial neural network estimator. The

features for this architecture are the same as code red Alexnet 01.py.

For the experimentation of the Vgg architecture, we have similar experiments

with the Alexnet. The codes can be found at: https://github.com/mayraberrones94/

Tesis codigos/tree/main/Code Vgg

• red vgg 01.py: In this case, we had to downsize the number of neurons for

the last layer, as well as make the changes to the flattening layer and last

activation function.

• red vgg 02.py: Same features as the last version, and this time we changed

the loss function from binary to hinge.

• red vgg 03.py: We added the bootstrap method with the same features as

the first experiment.

• redv4 vgg.py: This is the version that we added for the final results, where

we keep the features as they are, and use the adam optimizer at the end. We

change it to binary crossentropy, but leave the softmax activation function at

the end of the architecture.

https://github.com/mayraberrones94/Tesis_codigos/tree/main/Code_Vgg
https://github.com/mayraberrones94/Tesis_codigos/tree/main/Code_Vgg
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• redvgg tf bootstrap.py: In this code, instead of using bootstrap with the

features of the second version, we use transfer learning for each batch, which

reduced significantly the training time.

For the Inception architecture, there where only two experimentations. The

red inception v1.py has the same modules as the original architecture, but in

all of the cases the number of neurons for each layer were downsized. For the

red inception tf.py we used the library of keras with the same features described.

Both these codes can be found in the Code V3 folder.

For the feature extraction, we experimented with both Vgg and Inception, but

Inception did not have great results, so we only continued with the Vgg. The code

extract features 02.py is for the Vgg architecture and the extract features.py

is for the Inception architecture.

For the ensembles of stacking and boosting, we have the code of red stacked1.py

and adaboost class.py respectively. Both of these codes do not take as input the

images, but the features resulting from the feature extraction of the Vgg model.

These codes can be found in the Tf FE folder.

Lastly, we added a folder into our GitHub with the interface to load the trained

models and make predictions of new images. It can be found in the CLASIFICADOR

folder.

A.1 Experimental results

For the experimental results that we mention in the Results (Section 5) we have

a whole description inside the GitHub page, and it can be found at: https://

github.com/mayraberrones94/Aprendizaje

Finally, we added the several experimental code we tried for the benchmark

https://github.com/mayraberrones94/Aprendizaje
https://github.com/mayraberrones94/Aprendizaje
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datasets for the segmentation process, in hope that can be useful later on. There are

at: https://github.com/mayraberrones94/Tesis codigos/tree/main/Segmentation

• Image enhance.py: This code has the binarization and normalization process

described in the Methodology Section 4. This code needs to be used on the

mammograms only, not the masks.

• Image masks.py: This code, similar to the last one is to normalize images, but

in this case is only the masks. Since the mask do not need to remove noise,

they just need to be the same size (and form) of the other images.

• Segment VggUnet.py: This code is only to organize the data in a way that the

Unet an read it. It organizes and names the folders. Please be mindful that

this alters the original data set. If you want it instead to only copy and paste

images in another folder, you need to change the functions to reflect that.

• Unet v1.py: This, as well as versions 2 and 3 are the several changes we came

up with for the Unet architecture to make it more manageable. All of them

use the Vgg architecture to use the pre trained weights.

• merging masks.py: This code was made to merge different masks of the same

image into a single mask. This was because some of the images from the data

set separated them, and the original code did not accept an image with more

than one separate mask.

Contact information:

• Author: Mayra Cristina Berrones Reyes

• Email: mayra.berronesrys@uanl.edu.mx

https://github.com/mayraberrones94/Tesis_codigos/tree/main/Segmentation
mayra.berronesrys@uanl.edu.mx
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• Universidad Autónoma de Nuevo León. Facultad de Ingenieŕıa Mecánica y
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