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Abstract
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Advisor: Dr. José Antonio de la O Serna
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One of the most common phasor estimation techniques used nowadays is
the one-cycle Fourier filter which estimate the phasor as the fundamental Fourier
coefficient of the digital Fourier transform (DFT). It achieve exact estimates and has
full harmonic rejection with steady-state input signals. But its phasor estimates are
always delayed because it corresponds to the implementation of a symmetric finite
impulse response (FIR) filter. The Kalman filter was also proposed in the eighties
assuming also a static signal model (constant amplitude, frequency and phase) for
the input voltage or current signals. At that time, it was demonstrated that it was
equivalent to the Fourier filter and was quickly abandoned in the literature. In this
work, we propose to extend the static signal model to a dynamic one, in which
amplitude, frequency and phase are represented by band limited time functions.
A Taylor approximation to those dynamic functions provides a state transition
matrix that can be used in the Kalman algorithm. As the state vector contains
the instantaneous first derivatives of the dynamic phasor, this signal model allows
to estimate not only the dynamic phasor but also its first derivatives. The Taylor
signal model together with the Kalman algorithm lead us to the Taylor®-Kalman
filter. Given the model, the traditional Kalman filter of the eighties corresponds

to the Taylor’-Kalman filter, And by extending its state transition matrix to each
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harmonic frequency, we arrive to the Taylor-Kalman-Fourier filter which offer an
alternative to calculate the digital Fourier transform, but with causal infinite impulse
response (IIR) filters. This means that its estimates are instantaneous (no delay at
all), with much less infiltrated harmonic errors, as compared with the FFT estimates,
and reducing the computational complexity.

The main contribution of this thesis is to have found the state-transition matrix
of a state space dynamic signal model corresponding to the K-th order Taylor
approximation to a power oscillation signal. With these transition matrices, the
Kalman filter algorithm can be applied to find observers able to estimate the dynamic
phasor and its first derivatives. The estimates obtained through this technique, are
not only synchronous but also instantaneous, which is an important attribute for
control applications. They also provide frequency estimates. The new filters reduce
the total vector error achieved with the traditional Kalman filter; are much more
stable, with settling times five times lower; and improve the phasor estimates of
oscillations with frequency offset.

On the other hand one of the anomalies of the differentiators implemented with
linear-phase finite impulse response (FIR) filters is their constant delay. Control
applications require instantaneous estimates. Here we present a new family of
derivative estimators referred to as Taylor™-Kalman filters. They achieve ideal
differentiator gains about the fundamental frequency for K > 2. By including the
half sampling frequency component, their high sideband gain is mitigated, leading
to low-pass (LP) filters. But the best gain reduction is obtained when the signal
model incorporates the whole set of harmonic frequencies, obtaining the Taylor-
Kalman-Fourier differentiators, which are able to estimate the derivatives of the
complex envelope at each harmonic frequency. They preserve the ideal differentiator
gain not only in the fundamental frequency, but also at each included harmonic
frequency. When the spectral load of the input signal falls under the ideal operation
bands, they operate as ideal differentiators, mapping the signal into its derivatives,
making a Taylor-Fourier decomposition. But their main advantage is they provide
instantaneous derivative estimates, very useful for control applications.

With the new Taylor™ -Kalman(T"-K) filters for K > 2 are able to form a zero-
flat phase response around the fundamental frequency, and to produce instantaneous
oscillating phasor estimates. The frequency response of the zeroth and second order

filters are established and illustrated. Their high sensitivity to noise lead us to design

vil



more robust filters referred to as Taylor-Kalman-Fourier, because they incorporate
the whole set of harmonics in their signal model. The bank of comb filters achieved
with K = 0 is equivalent to that of the Discrete Fourier Transform (DFT), and
the bank of fence filters achieved with K = 2 is similar to that of the Taylor?-
Fourier transform, except that their oscillating harmonic estimates are instantaneous
(without delay). In addition, the computational complexity of these extended filters
is much more lower (6/Logs(NN) for N > 64) than that of the Fast Fourier Transform

(FFT), so they are very useful for control applications of power systems.
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Chapter 1
Introduction

The principal objective in estimation theory is to achieve the most precise estimation
in shortest time; i.e. the closest to the real value, no matter how complex the
conditions can be: signal corrupted by noise, or with abrupt changes, etc. If it
is possible to obtain better results under the last conditions, then the method
is successful. That is why estimation theory is required in different areas, as
communication systems, digital signal processing, control, among many others; and
with diverse applications such as measurement, monitoring, filtering, and so on.
One of the well known estimation algorithm is the least squares (LS) method,
that was developed by Gauss in 1795, and was inspired by the observation of the
comets. He used that method for estimating the trajectory of comets, based in the
a posteriori measurements taken by a telescope [1|. The main disadvantage of this
method is that it depends on certain number of observations, and its estimates are
always delayed. This is a disadvantage when it is desirable no to have any delay at

all in the estimates.

Problem statement

In physics and engineering, a phasor, is complex number used to represent a sine wave
whose amplitude (Ag), phase (), and angular frequency (w) are time-invariant. The
traditional method to obtain phasor estimates is the FF'T, which is a special case
of LS. Its disadvantage is that it needs several samples for having good estimation.
In addition, it assumes a static signal model, i.e. it assumes amplitude, phase and

frequency constant, so when the signal has perturbations or the electrical system



moves, the phasor estimates become erroneous. A more convenient estimation
method must take into account its fluctuations. On the other hand the Kalman
filter does not need to have a big number of samples for achieving a good estimation,
it only needs a good state transition matrix, i.e. a signal model.

One of the first publications on phasor estimation using Kalman filter is |2,
but its state transition matrix was based also on a steady-state sinusoidal model. In
[3] a method was proposed for measurement the rate and severity of periodic voltage
fluctuations. In || the Kalman filter was implemented on a Zoran ZR34161 Vector
Signal Processor (VSP), but again with a static signal model, even if it includ a dc
component to estimate the offset together with the phasor. Other references that
used a steady-state sinusoidal signal model are [5]-[8]. And since then Kalman filter
disappeared in subsecuent publications on phasor estimation and one-cycle Fourier
filter prevailed. In this work we show that the problem lies not in the Kalman
algorithm, but in the signal model. Kalman filter is an excellent estimator when it
works with a good signal model. So, in this sense, this work resuscitates the Kalman
filter in the phasor estimation area.

The left side of Fig. 1.1 shows a static phasor, with constant amplitude A
and phase ¢, marking a fixed point, and on the right side, a phasor following a line
with dynamic amplitude a(t) and phase ¢(t). The second one can better follow the

fluctuations of the power system than the first, which is doomed to be constant.

S AL $0 S
a(t)
\ \ o(t)
Re Re
Static Phasor Dynamic Phasor

Fig. 1.1: Difference between static and dynamic phasor.

Phasors estimated with such a dynamic signal model, are more flexible and

suitable for fluctuating signals, because they can better inherit the movement,



because they are more flexible than the static one. So in this sense, they are
truly dynamic in amplitude and phase. With a Taylor polynomial it is possible to
approximate the dynamic signal model to the input signal. With this polynomial and
its derivatives a state transition matrix for the Kalman algorithm can be established.
So, this technique is able to obtain not only better phasor estimates, but also its
derivatives. The transient time of these estimates are faster than those of the steady-
state signal model used in the traditional Kalman filter, and with the advantage of
being instantaneous estimates, for Taylor orders higher or equal to two. Also, for
K = 0 and when the state transition matrix is extended to includ the whole set of
harmonic frequencies, it is possible to obtain the FF'T, but with less computational
cost. Similarly, with K > 2 the Taylor-Fourier transform can be calculated with

less computational cost and with non delayed estimates.

Objective

The principal objective in this work is to develop a methodology for improving the

phasor estimates, under smooth oscillations. Other objectives are:

e Study and compare the developed methodology with others methodologies.

e Determine its advantages and disadvantages: in speed, computational load,

versatility and exactitude.

e Obtain good results under smooth oscillations or when the signal is corrupted

by noise.

The technique leads to a new bank of differentiators with instantaneous

derivative estimates for Taylor orders greater or equal to two.

Organization of the thesis
The thesis is organized as follow:

Chapter 2 Develops the Taylor®-Kalman filter. For Taylor orders greater than
zero, this filter reduces the phasor estimation error of the traditional Kalman

filter (K = 0) under oscillation conditions, abrupt changes and when the signal



is corrupted by white Gaussian noise (WGN), because subspaces with K > 0

include the zeroth subspace and provide room for oscillatory signals.

Chapter 3 Presents the frequency response of the Taylor®-Kalman filters, and an
extension to the full set of harmonics referred to as the Taylor®-Kalman-
Fourier, reduces sideband gain and provides full rejection around all the
included harmonic frequencies. In addition, this filter bank is able to estimate
the phasor (the complex envelope) and its derivatives at each harmonic
frequency. For K = 0 it is equivalent to the DFT, and for K # 0 is equivalent

to the digital Taylor-Fourier transform.

Chapter 4 Deals with the bank of differentiators, focusing our attention to the null
frequency, or baseband. This bank is very useful when the interest is placed in
estimating the derivatives of a smooth signal (non modulated signal) such as

in control applications.

Chapter 5 Summarizes the conclusions of this research work.



Chapter 2

Instantaneous Oscillating Phasor
Estimates with TaylorK -Kalman
Filters

2.1 Introduction

Phasor estimation under transient conditions is a hot topic today due to the recent
review of the synchrophasor standard [9]. On one hand, the introduction of dynamic
conditions to the classical phasor concept broke a very old and fundamental schema
very useful in power engineering. On the other, a lack of a unifying theory to explain
the behavior and the relationships among the different phasor estimating techniques
makes extremely difficult to recommend one.

There are many algorithms for phasor estimation under transient conditions.
Even if the standard [9] does not specify a particular phasor estimation method [10],
it mentions without referencing them [9, Annex C, Figs: C.1 and C.2] the following
three examples: 1 Cycle Rectangular [11], 3 Cycle flat-top |12], and 4 Cycle Raised-
Cosine [13]. Attempts to improve the first method under transient conditions and
in view of frequency estimation are reported in [14, 15], and [16].

The dynamic phasor concept was first proposed in [17] to follow the dynamics
of the deviations from the periodic behavior of current and voltages signals in power
systems. However, it was defined as the successive estimation of the first Fourier
coefficient by a short-time Fourier transform of one cycle, which uses the same

static signal model (a signal with constant amplitude, phase and frequency) as the



Fourier filter proposed in [I1]. Note that this dynamic qualifier, widely reported
in the literature [18], refers more to the inherent recursive nature of the estimation
process than to its postulated signal model. It was in [19]-[20] where an estimation
improvement was suggested by relaxing amplitude and phase to time functions.
Phasors estimated with such a dynamic signal model are therefore more flexible
and suitable for fluctuating signals, inheriting their movement flexibility. So in this
sense, they are truly dynamic.

The possibility to approach the dynamic phasor with a Taylor polynomial
through the least squares method led to the inclusion of Taylor terms to the Fourier
transform. This technique, referred to as Taylor-Fourier transform [21], uses the
weighted least squares (WLS) approximation to find a set of finite impulse response
(FIR) filters that provide the best estimates (in the WLS sense) not only of the
phasor, but also of its first derivatives, at the middle of the time observation window.
One of the main concerns of this technique is the delay of the estimates, due to its
time extended signal model.

The main idea of this paper is to use the Kalman filter as an observer able
to build (estimate) the input signal with the instantaneous dynamic phasor and its
derivatives in a state space vector. It is based on the fact that Kalman filter is a
very good signal estimator provided its model fits the input. In our case, the signal
estimates depend only on the instantaneous phasor and its complex conjugate. And
for the second-order model, the estimates are very good.

Kalman filter was proposed for phasor estimation in protection applications in
[22]-[23]. The problem is that its use was intrinsically related to the old static-phasor
paradigm (steady-state sinusoidal signal model) as it can be confirmed in [24]-[25].
This also explains why subsequent publications |26]|-|27| refer to the Kalman filter
as if it were only one. In [ 1], for example, Kalman filter was compared to the half-
cycle Fourier filter when the process noise is zero and measurement noise is constant;
and since then, the Fourier filter prevailed over the Kalman filter in subsequent
publications on phasor estimation. But this comparison did not take into account
that the phasor estimates provided by a Fourier signal decomposition are delayed,
while those obtained through a Kalman signal decomposition are instantaneous for
oscillatory signals. Besides, it is well known that Kalman filter estimates depend
fundamentally on its state-space signal model [28|, and that its performance is

remarkable when it coincides with the input signal.



In this chapter we present the use of the Kalman filter algorithm for finding
good observers able to estimate, not only the dynamic phasor, but also its derivatives.
The state-space signal model used in the heart of the Kalman algorithm is obtained
from the derivatives of the Kth-order Taylor polynomial modeling the oscillation
envelope. This corresponds to a Taylor approximation to its lowpass signal. The
bandpass signal is obtained by a simple modulation operated by a rotation at that
fundamental frequency in the complex plane. The main contribution of this chapter
is to provide a state-transition matrix with a sinusoidal signal model relaxed by a
Kth Taylor polynomial to approach the amplitude and phase fluctuations between
one signal sample and the next with the Kalman procedure. This flexibility allow
the Kalman filter to estimate oscillatory signals with higher accuracy and, at the
same time, to provide estimates not only of the instantaneous phasor itself, but also
of its derivatives, which are included in the state vector. The estimates obtained in
an oscillation example, and the benchmark test signals defined in [9, Appendix G]
illustrate the improved performance of this new phasor estimation technique.

The new approach is then very different to the one reported in [15|, which
estimates the dynamic frequency from two consecutive phasor estimates using a
finite-difference equation. In this case errors due to the dynamic conditions propagate
to the frequency estimates, which in addition are very sensitive to noise due to the
fact that they are based in a finite-difference equation.

The chapter is organized as follows: In section 2.2, the state-space signal model
is defined. Then, in Section 2.3, the equations of the Kalman filter as implemented to
obtain the results are declared, together with its main reference. Finally, in Sections
2.4, and 2.5 the main results using a zeroth-order and second-order signal model
are presented and discussed. The main conclusion of this chapter is that Kalman
filter is able to provide, under oscillation conditions, better instantaneous estimates
(synchronized and without delay), not only for the phasor itself but also for at least
its first derivative. These results are promising and surely will have a positive impact
on the conformation of the new synchrophasor norm, because under oscillations these
estimates are instantaneous (no delay) while they preserve their synchrony, a crucial

attribute for their application.



2.2 Signal Model

In [19, 20] a bandpass signal model was proposed for power system oscillations:
s(t) = a(t) cos(2m f1t + (1)) (2.1)

in which, a(t) is the amplitude and ¢(¢) the phase of the signal s(t). Bandpass
signals are assumed to be narrowband around the central frequency f;. This means
that amplitude and phase variations are slow with respect to the cyclic wave.

In terms of the complex exponential function the signal model can be simplified

as
1 ‘ .
s(t) = §(p(t)632“f”+15(t)6_]2”f”)
. T T
= Re{p(t)ef* '}, 3 St<g (2.2)

in which p(t) = a(t)e’¥® is referred to as dynamic phasor.
The complex dynamic phasor function p(t), can be approximated by a Kth

Taylor polynomial centered at tg:
(t —to)*
K!
T T
t0—§§t§t0+§. (2.3)

p(t) = p(to) + p(to)(t — to) + - - + p* (to)

A state transition matrix can be easily obtained from the derivatives of each Taylor

truncated dynamic phasor. For 7 =t — 5 we have:
. N Ky \TH
pic(t) = plto) +plto)7 + plto) o7 + -+ " (o) 15

pK(t) = p(to) +].)'(t0)7' + - —l—p(K) (to) TK_l

=T (2.4)

PO = p®(ty)

Finally, the state transition will be given by:

Pi(t) = ®x(T)PK(lo). (2.5)



where py (1) is the state vector, and the state transition matrix is of the form:

7.2 7_K'
17 oo

17 ,
B (1) = 1o 2 (2.6)

For a given polynomial order, this approximation is all the more exact as t —
if p(t) is a smooth function. The truncated model can then be applied at any time
instance ty with sufficient precision provided that the size of the time interval 7 be
short. This condition is accomplished between any two digital signal samples because
samplers usually apply very short sampling periods with respect to the fundamental
period T} = % We assume that the signal is sampled at N; = 64 samples per
cycle, so 7 = T;/64. This is a very short period of time with respect to the slow
fluctuations of p(t).

The truncated signal model is given by:
si(t) = Re{h py(t)e?*™ '} = Re{hTry(t)} (2.7)

where r(t) is the rotated vector in the time ¢, and h” extracts its first component,
i.e. h" =[10 --- 0], with K zeros.

In terms of the rotated vector, Eq. (2.5) becomes
rr(t) = ®p (7)™ T (). (2.8)

Assuming tg = (n—1)T and t = nT}, where Ty is the sampling period (T = 1/Ny f1),

we have the following state transition between the discrete rotated vectors:
rr(n) = @x(T)Pirk(n—1) (2.9)

where v, is the phase factor ¢, = €%, corresponding to the fundamental radian

frequency (0, = 27 f;Ts = 2w /N;). Finally, by defining the state transition equation

( ’I:K(n) ) _ ( 1@k (T's) ) 0 ) ( ":K(n_ 1) ) , (2.10)
Pr(n) 0 U P (Ts) rr(n—1)

the truncated signal model is given by:

< W BT ) ( :222; ) , (2.11)

as

N —

si(n) =
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This equation shows the instantaneous dependence of the signal model on the
dynamic phasor. The Taylor-Kalman filter is a signal follower that operates as an
instantaneous signal decomposer. Its best dynamic rotor estimates will be provided
when it reaches its smallest signal estimation error, and this in turn happens when
the input signal is in the subspace spanned by the signal model. This is precisely
the case of smooth oscillations in a second order subspace (K = 2), as we will see in
the numerical results, in which signal estimation errors of millionths are reached.

The state transition matrix in (2.10) is complex 2(K +1) x 2(K +1) and works
with the rotated phasors, so to get the dynamic phasor estimates with the Kalman
filter they must be anti-rotated to eliminate the its factor. Note that the state space
model in (2.10) contains genetic information of the development of the complex
trajectory from one sample to the next. The steady-state signal model (K = 0)
would oblige the phasor to move in circles from one sample to the next. With the
Taylor state transition matrix in (2.6), the phasor estimates are allowed to move in
more flexible trajectories, bounded by the highest order term in the polynomial.

In the next section, we consider how these truncated signal models are used
in the Kalman filter. This filter decompose the input signal into the state-vector
components. The Kalman decomposition and its estimates are instantaneous under

oscillatory conditions, without the delay of the Fourier filter decomposition.

2.3 Kalman Filter

In this section the development of the Kalman filter in |29, pp. 381-384] is followed.

Other references can be found in [30, 28, 11]. The state vector model is
x(n) = ®x(n — 1)+ T'v(n), (2.12)
in which the state transition matrix is the one in (2.10) and T" = ( BT A7)

since white Gaussian noise (WGN) v(n) is assumed to affect only rotated phasor
component, i.e., the derivatives are not affected by noise.

On the other hand, the observation (or measurement) model is
s(n) = Hx(n) + w(n) (2.13)

We also assume the signal is affected by additive WGN through w(n). Finally for
both models we have H = ( b7 R ).
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The Kalman recursive process will be defined by the following sequence for the

nth cycle:

1. Time update:

(a) State prediction

z (n) =dx(n—1) (2.14)
(b) A priori error covariance
P~ (n)=®P(n—1)®" + 1’0? (2.15)
2. Measurement update

(a) Kalman gain:
K(n) =P (n)H'(HP™ (n)H" 4 02)! (2.16)

(b) State update
z(n) =2 (n)+ K(n)(s(n) — Hx (n)) (2.17)

(c) A posteriori error covariance
P(n)=I—-K(n)H)P™ (n) (2.18)

Where 02 and o2 are the variances of the input and measurement noise respectively.
The process starts with (0) = 0, and P(0) = 10°I for the initial unknown state
error covariance matrix. Note that once the optimal Kalman gains are established,
the computational burden of the filtering process is reduced only to Eqgs. (2.14),
(2.17), and the anti-rotation.

2.4 Numerical Results

2.4.1 Signal Test

The signal in (2.1) with the following amplitude and phase time functions will be
taken as signal test:
a(t) = ag + aq sin(27 f,t) (2.19)
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@(t) = po + 1 8in(27 f,t) (2.20)

with the following parameters in amplitude: ag = 1, a; = 0.1, and f, = 5Hz, and
phase: ¢g =1, p1 = 0.1, f, = 5Hz. And 02 = 0.01 and 02 = 10~* which corresponds
to a signal to noise ratio (SNR) of 37 dB, equivalent to the one produced by analog
to digital converter of 6 bits. In addition to white noise, the algorithms were tested
with pink noise [31] and basically the same error thresholds and behavior were found.
It is worth mentioning that the IEEE standard of synchrophasors for power systems
|9] does not contain any specification concerning the analog to digital conversion of
the input signal in the phasor measurement unit [10] and less still any reference to

different types of noise.

Zeroth-order Model

The following are the results obtained with the zeroth-order truncation model ®,

which correspond to a zeroth-order Taylor polynomial.

Signal Estimation
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Figure 2.1: Signal (amplitude, per unit (pu)) and error estimation with zeroth-order signal
model.

As can be seen in Fig. 2.1, the Kalman filter with the zeroth-order state

transition matrix provides good signal estimates. It achieves signal estimation errors



13

Phasor Estimation

----- a()
Estimate |

=
[N

Amplitude (pu)
o
© -

o
©
o
ok
=L
o
L
o
N L
o
N L
al
w |
o

----- 900

Estimate |4

Phase (rad)

| |
0 5 10 15 20 25 30
Normalized time (Cycles)

Figure 2.2: Amplitude and phase estimation using the zeroth-order signal model.

in the order of magnitude of 107°. Unfortunately our problem is not to estimate
the input signal but the phasor. The ideal amplitude and phase components of the
phasor are shown in Fig. 2.2 in lines and point, while their estimates in continuous
lines. Note that a lag and a lead, of about a quarter of a cycle, are perceptible
in the amplitude and phase estimates, indicating the presence of a group delay in
the transfer function of the filter. The estimates exhibit an undesirable corrugated
behavior similar to the infiltrations on the celebrated one-cycle Fourier filter (see
Fig. 5 in [13]). This behavior can be perceived with more clarity in the complex
path followed by the estimates as shown in Fig. 2.3. The Kalman gains are real and
converge to 0.9902 after the first three fundamental cycles. Fig. 2.4 illustrates the
behavior of the total vector error (TVE), which is similar to the one in Fig. 10 in
[13]. As we can see, even if the Kalman filter provides good signal estimates with
the zero-th order model, its phasor estimates are not as good as desired because its
undesirable corrugation. In addition, with the zeroth-order model it is impossible
to estimate the speed or the acceleration of the phasor. In the next subsection the
improvement of the estimates obtained with the Kalman filter using the second-order

signal model is shown.
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Phasor Complex Path

Phasor (central line)
Estimate (corrugated line)

Figure 2.3: Phasor complex path (— line) and estimate(— - line and point) produced with

the zeroth-order signal model.

Second-order Model

Once the optimal Kalman gains are established it is possible to use the Kalman filter

as an observer with the following Eqs:
& (n) =Px(n—1)

and
#(n) = & (n) + K (n)(s(n) — Ha" (n)).

The following results are obtained with the second-order model (®5), for which
the state transition matrix is 6 x 6. We apply the same noise levels of the previous
case, 02 = 0.01 and 02 = 107*, and the same starting matrix covariance matrix
P(0).

It can be seen in Fig. 2.5 that the signal estimates are improved. With this
model, the order of magnitude of the signal estimation error is reduced by one. The
increase in model order improves also the phasor estimates, which are now closer to
the ideal amplitude and phase sequences as can be seen in Fig. 2.6. It is apparent

that the corrugate effect on the previous estimates has disappeared. The lead-lag
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Figure 2.4: Total vector error achieved with the zeroth-order truncated model.

of the previous estimates have also disappeared, indicating that the phase response
of this filter is zero flat about the fundamental frequency. So, in this case, the
estimates have no amplitude or phase distortion, and therefore are instantaneous.
The fluctuation around 0 cycle are due to the adaptive process of the Kalman filter,
which starts with free gains at the origin, but they are frozen when they arrive to
their first steady-state. The disappearance of the corrugation effect can be confirmed
in Fig. 2.7, which illustrates a smoother complex path closer to the ideal one given
by the dots. Finally, Fig. 2.8, shows the behavior of the TVE, which is reduced by

a factor of ten with respect to the previous case.
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reduced by a factor of ten.
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Figure 2.6: Amplitude and phase estimation with the second-order signal model and the

error estimate.

With the second-order model it is possible to obtain estimates of the first phasor
derivative as it can be seen in Fig. 2.9, in which the first derivative of amplitude and
phase are shown (solid lines) with their estimates (dashed lines). These derivatives
correspond to the amplitude speed of the oscillation and to the frequency offset
(with respect to the fundamental frequency) respectively. It is apparent that these
estimates are not as smooth as the phasor estimates, due to their apparent wavering
behavior. However, these results are better than those shown in |28, Chapter 5,
Fig. 5.17|. The wavering effect is most evident in Fig. 2.10, which illustrates the
error of the estimates normalized by the peak values. Due to the fact that phasor
derivatives cross through zero, TVE cannot be applied. Instead, the normalized rms
error (NRMSE) of speed and frequency offset are calculated, and equal to 0.0332
and 0.0560, respectively.
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Figure 2.7: Phasor complex path (dots) and estimate(line) obtained with the second-order

signal model.
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Figure 2.8: Total vector error (TVE) achieved with the second-order truncated model. It

is reduced by a factor of ten.
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Signal estimation error is reduced ten times more with the fourth-order model,
however a slighter reduction in TVE and NRMSE error level is achieved by further
increasing the order of the signal model.

The Kalman gain vector of this example was taken from its first steady-state
period occurring at the end of the first fundamental cycle. It was observed that
in the first five fundamental cycles, the estimates behave like those shown in the
previous figures, but after that interval of time degraded to a behavior very similar
to that of the zeroth-order model. So the Kalman gain vector of the first steady-
state period, as it can be seen in Fig. 2.11 was frozen in the observer whose results
were shown. The vector gain for the first half of the state vector is the following:
K = (0.99208 — 1.60514, 167.21 — 406.19, 8538.9 — 4,4603.04)”. The second half is

the complex conjugate of the first one.
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Figure 2.9: Speed and frequency estimates obtained with the second-order signal model.



Speed

Frequency

0.1

0.05

0.1

0.05

Normalized Error in Derivatives of Amplitude and Phase

25

30

5 10 15 20
Normalized time (Cycles)

25

30

20

Figure 2.10: Speed and frequency normalized error obtained with the second-order model.

Elements of Kalman Gain vector

0.5 1 15 2 2.5
Normalized time u:t/T1

Figure 2.11: Magnitude of the Kalman gains.



21

TVE Reduction

It is interesting to analyze the behavior of TVE when the sampling frequency or the
order of the Taylor polynomial used in the signal model change. Fig. 2.12 shows the
root mean square of the TVE in percent as a function of those parameters. The rms

is defined as:

rms(TVE) = (2.21)

over the samples in an integer number of oscillation cycles. This is a good measure
of the mean error level (given in %). As can be seen in that figure, the error levels
with K = 0 are almost equal to those with K = 1; and also for K = 2,3 and 4. This
behavior indicates that the quadratic Taylor element in the signal model is crucial
for reducing the error of the phasor estimates. These results indicate that the high
estimation errors of the filters for K = 0,1 are mainly due to their phase distortion
(delay). These filters are unable to form a flat-null phase gain at the fundamental
frequency, in contrast to those for K > 2. This inability to form a flat-null gain is
also a shortcoming of the Fourier filter which has a constant delay. As the sampling
frequency increases, a finer continuous shape emerge in the waveforms of the TVE
error, as those illustrated in Figs. 2.4 or 2.8. The slow error level augmentation
at the higher sampling frequencies in the second curve can be explained by a slight
increase in sensitivity to noise at those high frequencies. On the other hand, it was
also observed that the estimates of the derivatives are improved when the order of the
Taylor polynomial is increased. In the K = 0, 1 cases, Kalman gains converge quickly
to constant values, however in the K = 2,3, and 4, the gains have a steady-state
period, like the one illustrated in Fig. 2.11. All those Kalman observers used the
gains achieved at the center of those steady-state periods, determined by a different
sample index, depending on the sampling frequency, but almost the same for each
of the three different orders.
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Figure 2.12: Root mean square of the TVE (in %) as a function of sampling frequency
(M = 2™ samples per cycle) and degree K of the Taylor polynomial.

2.4.2 Magnitude and Phase Step Estimates

To illustrate the transient response of the filters, both magnitude and phase steps
of the benchmark tests in [9, Annexes G.2 and G.3| were mixed together in the
analyzed signal. Fig. 2.13 illustrates amplitude and phase transients of the phasor
estimates obtained with the zeroth- and second-order Kalman filters from the tested
signal. These correspond to the step response of the Kalman filters and are formed by
the dominant poles of the corresponding transfer functions. The zeroth-order filter
produces long amplitude and phase swings, which correspond to a spiral trajectory
in the complex plane centered at the final phasor value, as it can be seen in Fig.
2.14. This transient lasts around twelve cycles, indicating the presence of resonant
poles close to the unit circle in the z plane. The second-order filter transient is
much lower and shorter (around two-cycles long) than the preceding one. Finally,
the estimates of the phasor first derivative provided by the second-order filter are
illustrated in Fig. 2.15. It is apparent that the magnitude and phase derivative
transient responses last again around two cycles with large estimated values close to

the origin, as it was expected from the derivative of a step changes. This high value
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is due to the amplitude and phase discontinuities at zero of the test signal, in which
the Taylor model is not as appropriate as in the former case of smooth amplitude

and phase fluctuations.

Phasor Estimation

2 T T
a(t)
31_5, ! . - = =K=0 |
~ \ ] - K=2
3 vty oy -
= 1 |\/' \ — LA l’\ P SRS N S - b
= - - \l - ~— -
g i! Y oo
05’ 1 " 1 .
< |, v
O \I Il Il Il Il Il
0 2 4 6 8 10 12
3r ‘ h
t
O 1l N
@ 2 '/\ a .I\ AV ENEE. S o o |
= ALY A R
(&) A/ N\
L —_t) |4
f_-ué 1 \ @)
- = =K=0
o
0 K=2 |4
Il Il Il Il Il Il
0 2 4 6 8 10 12

Normalized time (Cycles)

Figure 2.13: Magnitude and phase estimates obtained with the zeroth- and second-order

Kalman filter for the magnitude and phase step signal.
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Figure 2.14: Phasor trajectories of the zeroth- and second-order filters. The spiral
corresponds to the estimates obtained with the zeroth-order filter, and lasts twelve

fundamental cycles.

2.4.3 Frequency Step Estimates

Finally, the estimates of the frequency step test (+5 Hz) in |9, Annex G.4] are shown.
Fig. 2.16 shows the magnitude and phase estimates obtained with the compared
filters. Note that both filters have comparable performance in the phase estimates
but not in the magnitude estimates. This discrepancy is better understood in Fig.
2.17 which shows the phasor trajectory of the estimates in the complex plane. The
zeroth-order filter produces considerable magnitude error due to its cycloid behavior
in the complex plane. Finally, Fig. 2.18 shows the phasor derivative estimates
obtained with the second-order filter. Note that the frequency estimates converge
to the ideal frequency step after two cycles. A perceptible error is inevitable due
to the fact that the frequency step signal moves away from the frequency of the
rotation imposed to the signal model. The small swings after the second cycle are

certainly due to the infiltration of the negative fundamental component because that
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Figure 2.15: Estimates of amplitude and phase first derivatives obtained with the second-

order Kalman filter from the amplitude and phase step signal.

component is seen from 65Hz at —130Hz. The gain around the negative frequency
is not zero flat for K = 0, and almost zero flat for K = 2, but in both cases the
error is perceptible. The period of such an infiltration would be of 130/60 = 2.1667
cycles per fundamental period, which precisely corresponds to the period of the error
wave perceived in Figs. 2.16 and 2.18. However, more research must be done for

improving the response of the derivative estimates before sharp transients.
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Figure 2.16: Magnitude and phase estimates obtained with the zeroth and second-order

Kalman filter from the frequency step test signal.
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Figure 2.17: Phasor trajectories obtained with the zeroth- and second-order filters from

the frequency step test signal.

2.5 Experimental Results

The model used in this paper is based on a band-pass signal. In reality, power system
signals may be polluted by harmonics or dc offset which are not covered by this model
(see Egs. (2.10) and (2.11)). In this section the proposed method is applied to a
practical signal taken with a PMU from one substation. Fig. 2.19 illustrates the
signal as well as the level of estimation error achieved with the zeroth- and second-
order estimator. This signal was sampled at 48 samples per cycle. Because it is a
signal taken from one substation no further noise was added. Note that the signal
estimation error is extremely low, confirming that Kalman filter is a very good signal
estimator. The phasor (amplitude and phase) estimates as well as their derivatives
are shown in Fig. 2.20. It is apparent that the estimates are noisy. This is due to
the presence of a fifth harmonic that infiltrates the estimates according to a spectral

analysis applied to the signal. One solution to this shortcoming would be prefiltering
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Figure 2.18: Estimates of amplitude and phase first derivatives obtained with the second-

order Kalman filter from the frequency step test signal.

the signal with a bandpass filter, but this costs a delay of one or two cycles, plus
the additional computation of a convolution per sample. The best solution consists
in extending the state transition matrix in (2.10) by including in its diagonal a
matrix ¢f® and its complex conjugate per harmonic h, where h is the index of
the desired harmonic. This option is more appropriate because it only increases
the quantity of Kalman gains by a factor equal to twice the amount of harmonics
we want to exclude. Fig. 2.21 shows the estimates obtained through this solution.
The improvement in the estimates is apparent, and this implementation needs only
double the Kalman gains. we can see that the estimates are very good (the average
error in amplitude was reduced from 0.7748 + 0.3897i to 0.7735 + 0.38857). This
extended method allows us to estimate the Taylor-Fourier coefficients |20] or the
Fourier coefficients (DFT) with the Kalman filter. The number of products per
state estimate is (2H + 1)[(K 4+ 1)2 + 2(K + 1)] when the signal model contains H

harmonics and the dc component.
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obtained with the second-order Kalman filter from the test signal.
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Figure 2.21: Improved estimates without the fifth harmonic interference.

2.6 Discussion

The interest of phasor estimation, in the computer relaying context, is much more
placed on signals with abrupt changes than on signals under oscillations. This
emphasis explains why the one-cycle Fourier filter is the prototype of this particular
application, because in a sudden change it reaches good estimates from one static
state to the following one. It also explains that the synchrophasor standard |9, is
up to now based on a static phasor model, in a clear contradiction with the dynamic
nature of oscillations. And even when it is applied recursively, its estimates inherit
that strong static condition.

The dynamic phasor is not dynamic because it is applied recursively, but
because provided with a dynamic signal model, it fits better to fluctuating signals.
Under oscillations, it is not the same series of static phasor estimates than a
series of dynamic ones. Estimates of the Fourier filter are poor under oscillations
because the higher derivatives of the oscillation infiltrate into its estimates, as it was
demonstrated in the theoretical and practical examples in |21, p. 808]. A kind of
Taylor aliasing, in which, the higher derivatives excluded by the signal model have

projections on the lower derivatives accepted in it, due to the non-orthogonality of
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Taylor terms.

By extending its signal subspace to higher derivatives, the Taylor-Kalman
filter is able to follow smooth fluctuations with better precision, by preventing the
infiltration of the derivatives incorporated into its signal model. Of course, before
abrupt changes, when much more higher derivatives are significant in the signal
state, the Taylor-Kalman filter, as any dynamic system, will be characterized by
its transient response. But between the subspace of the static state (K = 0) and
the transient state (K = o0), there is a series of subspaces that allocate much
more room to the derivatives of smooth fluctuations, offering better estimates. This
chapter discovers the advantages of the second (K = 2) subspace with respect to the
static (K = 0) subspace.

In our view, the main conclusions of this chapter are doing is to create a
new field of application for phasor estimation, much more appropriate to PMU
applications. Its main contribution is to provide a new theoretical instrument for
measuring the oscillations of a power system, in conditions that overshoot the precise

boundaries of the relaying context.

2.7 Conclusions

State transition matrices are possible to represent Taylor approximations to the
envelope of a power oscillation as a linear combination of the dynamic phasor and its
first K derivatives. The Taylor-Kalman filter can be applied to power signals under
oscillations to obtain much better instantaneous estimates of the dynamic phasor and
its first derivatives, by its ability to follow smooth variations. The estimates achieved
with the second order model reduce by a factor of ten the TVE error achieved with the
zeroth-order model (traditional Kalman filter). The second-order filter is much more
stable than the zeroth-order with settling times in the transient responses around
five times lower (from twelve cycles to two cycles). The second-order filter improves
also the zeroth-order phasor estimates in oscillations with frequency offset, with
the advantage of providing frequency estimates together with the dynamic phasor
estimates. Despite the shortcomings mentioned in the former section, these results
open the way to new phasor estimation techniques using other kind of observers. The
computational complexity of the estimator could also be reduced by exploiting the

symmetry of the complex signal models. But the main advantage of these dynamic
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phasor estimates, as compared with the Fourier filter ones is that, under oscillations,

they are instantaneous (no delay at all) while they preserve their synchrony.



Chapter 3

Frequency Response of
TaylorK -Kalman-Fourier Filter for
Instantaneous Oscillating Phasor

Estimates

3.1 Introduction

Phasor estimation under dynamic conditions is an interesting research area today
due to the proliferation of synchrophasor applications in wide area networks (WANSs).
It is also motivated by the increasing need not only of dynamic synchronized phasor
measurements during oscillations, or severe system disturbances, but also of the
power system frequency and its rate of change under those conditions. It is all the
more important because the synchrophasor standard is under review to include the
precedent dynamic aspects to the static signal model in which its phasor definition|9,
Section 4.1] is based.

Phasor estimation under dynamic conditions was explored in [20]-[21] using the
weighted least square (WLS) method leading to the Taylor-Fourier transform, which
is more adequate under dynamic conditions than the traditional Discrete Fourier
Transform (DFT), which is appropriate only for periodic signals with constant
coefficients. The estimates of this method however contain a systematic delay. In
order to solve this problem, the Kalman filter was proposed in [32]-[33] to estimate

oscilating phasors, conducting to an instantaneous phasor estimator under these
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conditions. But in these works the frequency response of the so called Taylor-
Kalman filter was not taken into account. The purpose of this chapter is to show
those frequency responses that help us to understand the behavior of the phasor
estimates when the signals contain noise or components not contemplates into the
signal model. At the same time, their interpretation will give us to an extended
filter, the Taylor®-Kalman-Fourier filter, that is able to perform the FFT or the
Taylor-Fourier transform (TFT) with much less computation effort using the Kalman
algorithm.

In phasor measurement applications the traditional Kalman filter has been used
with a static signal model, i.e. assuming constant frequency, amplitude and phase.
Its frequency response has been obtained separately for each state in [31], or for
its real and imaginary parts in [27]. Their interpretation in both cases is difficult
because, in the first case, you need to think in terms of two filters, and the procedure
complicates when the number of states increases; and in the second case, you obtain
two frequency responses, one for the real filter and the other for the imaginary one.
So it is difficult to have an idea of the whole frequency response of the complex filter.
On the other hand, the problem with [35] is that the illustrated frequency responses
are obtained without freezing the Kalman gains, so it is hard to understand what a
frequency response means in the case of an adaptive filter. Other papers refer to the
frequency response of the Kalman filter but in other applications, such as |36, which
makes a combination of the KF operating in the time domain and the Wiener filter in
the frequency domain; or [37] that uses its time-frequency characteristics for tracking
Multiple-Input Single-Output (MISO) systems for Orthogonal Frequency-Division
Multiplexing (OFDM) applications; or [38], which smooths the spectra obtained
through Fast Fourier Transform (FFT) with a Kalman filter. Finally, in [39] the
design of navigation systems with multi sensors is described using the continuous
time KF and classical frequency response techniques, such as Bode diagrams. So
compared to the abundance of references on Kalman filter, the papers dealing with
its frequency response are rather scarce, specially in our particular application.

The Taylor-Kalman filter proposed in [33] is based on a state-space signal
model that incorporates derivatives of the complex envelope of the oscillation. With
the advantage that it can estimate not only the phasor but also its derivatives. Its
frequency response helps to assess the behavior of its estimates when the input signal

has components not considered into the signal model. Its behavior in frequencies
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other than the fundamental one can be improved by incorporating them into its
signal model. We demonstrate here that it is possible to estimate the DF'T or the
TFT with the Taylor-Kalman-Fourier filter, with the advantage of eliminating the
delays implicit in their finite impulse response (FIR') filters.

Our investigation was motivated by the fact that there were several optimal
solutions in phasor estimation such as Weighted Least Squares (WLS), Kalman,
Shanks, etc. So our departing question was: what is the optimum optimorum from
these methods? And our response now is that optimality depend basically on the
signal subspace built by the method. For example, the subspace of the WLS solution
is generated by vectors containing centered segments of the Taylor terms. They
produce anticausal FIR filters. In the Shanks’ case, the subspace is formed by the
autoregressive and moving average (ARMA) causal vectors. The subspace of the
Taylor-Kalman filter is generated by the state vector in the state-space signal model,
which is also causal. In the last two cases, the responses are not implicitly delayed
as in the first one.

The work in this chapter is based in the classical Kalman filter algorithm.
Its main contribution is to provide its frequency response using the state transition
matrix, and to show how it can be extended to the whole set of harmonics. It
discusses how to do spectral analysis, including its derivatives, with the Kalman
filter algorithm, with much less computational cost than the traditional FFT.

The chapter is organized as follows: in section 3.2, the state space signal
model with its transition matrix and the Kalman filter equations are established.
In section 3.3 the frequency response of the Taylor-Kalman filters are established
and illustrated. Its extension to the full set of harmonics leads to the Taylor-
Kalman-Fourier filter in section 3.4, in which its frequency response and numerical
performance are compared with those of the FF'T. Finally, phasor estimates of an

oscillation with harmonics are discussed in section 3.5.

3.2 Signal Model and Kalman Filter

The signal model of the Taylor®-Kalman filter comes from the Taylor approximation
to the bandpass signal model proposed in [19] for power system oscillations. Its

Kalman filter implementation was developed in [33]. In this section we make a

!Finite Impulse Response.
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reference to the algorithms illustrated in the previous sections 2.2 and 2.3.

3.3 Taylor-Kalman filter Frequency Response

The frequency response of the Taylor-Kalman filter can be obtained through the z

transform of its update state equation
z(n) =®x(n—1)+ K(n)(s(n) — H®x(n — 1)) (3.1)
with the steady-state Kalman gains in K. The z-transform of (3.1) is
&(2) = @2z '2(2) + K(s(2) — H®z '2(2)), (3.2)
and solving for &(z) we have
[I—®:"'+ KH®: " &(z) = Ks(z) (3.3)

So the transfer functions between the states of the signal model and the input signal
is given by
G(z)=[I+(KH-T)®:"'] 'K, (3.4)

and the frequency responses of the state filters are obtained evaluating the transfer

functions in G(2) at z = €/, for —7 < 0 < 7.

3.3.1 Signal Test

To obtain the Kalman gains of the filters, a signal test of the form in (2.1) is built

with the following amplitude and phase functions:
a(t) = ag + a1sin(2m fut) (3.ba)

(p(t) = o + (,018’i7l(277'f4pt) (35b)

and the following parameters: ag = 1, a; = 0.1, and f, = 5Hz, for the amplitude;
and pg = 1, 1 = 0.1, f, = 5Hz for the phase. We also use the following parameters
for the Kalman filter: ¢ = 0.01 and 02 = 10~%, which corresponds to a signal to
noise ratio (SNR) of 37 dB.
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3.3.2 Taylor’-Kalman Filter Frequency Responses

In Fig. 3.1 the frequency responses of the Taylor’-Kalman filter are shown for
different sampling frequencies. Note that they are asymmetrical, indicating they
pertain to complex filters. It is easy to see that when the input signal corresponds to
a steady-state signal, it works appropriately with a gain equal to two at the positive
fundamental frequency and zero at the negative one. They exhibit a resonance at
the null frequency, indicating the presence of a pole close to z = 1 in the transfer
function. The pole approaches more and more to one as the sampling frequency
increases. It is well known that Kalman filter does not work appropriately when
the input signal does not correspond to its signal model. In this case, the signal
model corresponds to a rotatory signal with two components, one rotating at the
fundamental frequency, and the other counter rotating. So the filter fails to extract
a phasor from a constant signal, due to its non rotatory nature. The phase response is

not zero flat at the fundamental frequency indicating a small delay in the estimates.
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Figure 3.1: Frequency responses of the Taylor’-Kalman filter at different sampling

frequencies.

The magnitude response of the Taylor’-Kalman filter illustrated in Fig. 3.1 is
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Figure 3.2: At the top, magnitude responses of Real and Imaginary parts of the Kalman

filter as illustrated in [34] and at the bottom magnitude response of the complex gain.

equivalent to the one analyzed in |31, p. 103|. In that case, the variables of the
state vector are the real and imaginary parts of the phasor. Using the parameters
provided in that paper, we were able to reproduce the magnitude responses of the real
and imaginary state variables in the top graph of Fig. 3.2. Note the similitude with
those illustrated in Figs. 12-15in [31]. The magnitude response (of the complex gain)
built from the precedent ones is shown at the bottom. Note that it corresponds to a
Taylor’-Kalman filter, but with its resonance slanted to the right, due to the different
parameters of the examples. This corresponds also to the Kalman filter developed
in |11, p. 102|. In that publication, it is demonstrated that before unknown initial
conditions, and constant error covariance, Kalman filter estimates correspond exactly
to those of the half-a-cycle Fourier filter. Since then, Kalman filter was silenced in
the area of phasor measurement. However, note how different is the Kalman filter
frequency response from that of the Fourier filter, which has the shape of a cardinal
sine function. They only coincide in the two and zero gains at the positive and
negative fundamental frequencies, respectively.

The resonance at the null frequency can be resolved by adding a zero at z = 1.
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Magnitude Response of TO—K + dc Filter
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Figure 3.3: Magnitude responses of the Taylor’-Kalman-dc filter for different sampling

frequencies.

This is achieved introducing a dc component to the rotatory signal model:

10 0
=0 0 [, h=(143) (3.6)
0 0

Note in Fig. 3.3 that its magnitude response has now a zero gain at the null frequency.
In addition a lowpass filter is obtained from the first state variable (dc), its magnitude
response is illustrated in Fig. 3.4. Note that it behaves as a low pass filter due to
its flat gain at null frequency. These kind of filters are used in telecommunications

to detect when the frequency of a signal goes out of a given interval.

3.3.3 Taylor>-Kalman Filter Frequency Response

The Taylor?-Kalman filter provides not only estimates of the phasor but also of the
two first derivatives. Fig. 3.5 shows the magnitude and phase response of the phasor
estimator filter. Note the flat gains around the fundamental frequencies (positive and

negative). The filter exhibits again a resonance frequency close to the null frequency
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Magnitude Response of dc Filter
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Figure 3.4: Magnitude responses of the dc filter for different sampling frequencies.

and has high gains at harmonic greater than one. So the filter works well only when
the signal spectrum is confined into the intervals under the flat gains. The main
feature of this filter is in its phase response. Note the null phase in the interval
around the fundamental frequency, it means that the phasor estimates of this filter
are instantaneous, i.e. without any delay when the spectrum of the oscillation is
the bandpass signal assumed in our signal model. The abrupt phase change in the

negative fundamental frequency is insignificant due to the null gain in that interval.

3.4 Taylor"-Kalman-Fourier Filter

The precedent Taylor’-Kalman filter achieves ideal differentiator gains only around
the fundamental frequency. To obtain those gains about every harmonic, the
transition matrix of the signal model needs to be extended to all the harmonics
of interest. For example, if the signal is sampled at N = 2¢ samples per period, and

all of the harmonics are to be included, then the extended transition matrix is of the
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Frequency Response of T°-K Filter
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Figure 3.5: Frequency response or T2-K filter for several sampling frequencies.

form

B(r) = . (3.7)

P (1)

The extended matrix is (K +1)N x (K +1)N; however, the computational cost
of calculating a state transition is not [(K +1)N|?, but (K +1)(K +2)N/2 due to its
diagonal nature, and the superior triangular form of ®k. This reduction is important
because once the Kalman gains are established, the filtering algorithm is performed
only with the state prediction (2.14) and the state update (2.17) equations. The
vector H of the output equation (2.13), for K = 2, is of the form

1
H:§[200100-~-100. (3.8)

so it requires only N products to estimate the signal from the state vector. So the
computational cost of the whole filtering algorithm is (K + 1)(K + 2)N/2 + 2N.
For example, for K = 0, it is 3N, and for K = 2, 8N. Comparing them with the
cost of an FFT of a signal with N samples, which is (%N), we can see that

TH_K-F filter is much more lower than the FFT. In the next section, we show that
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when all the harmonics are included into the model, the frequency responses of the
TO-K-F is the same of the DFT, and that of the T?2-K-F filter, the same of the T?-F
transform without delay. So the T°-K-F filter implementation is a faster algorithm

to do harmonic analysis than the famous FFT.

3.4.1 Taylor’-Kalman-Fourier Filter

Our first example is the Taylor’-Kalman-Fourier filter for a sampling frequency of
N = 16 samples per cycle. Its transition matrix is a diagonal matrix with the
phase rotating factors {¢*,k = 0,1...,15} descending through the diagonal. Its
frequency response is plotted in Fig. 3.6 together with the frequency response of
the one-cycle Fourier filter. Note that they are exactly the same, and indicates
that the Taylor’-Kalman-Fourier (T°-K-F) allows the calculation of the DFT with
the Kalman algorithm. Note in its phase response that estimates of the Taylor®-
Kalman-Fourier will have exactly the same delay as those of the one-cycle Fourier

filter, which is a half a cycle.
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Figure 3.6: Frequency response to the 70 — K — F filter.
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3.4.2 Taylor’>-Kalman-Fourier Filter

The second example is the Taylor>-Kalman-Fourier filter. Now its transition matrix
has in its diagonal the submatrix ®, multiplied by the phase rotating factors
{* k=0,1...,15}.

Fig. 3.7 shows the magnitude and phase response of the T?-K-F filter of the
first harmonic. The magnitude appears together with the response of the one-cycle
Fourier filter to appreciate the transformation due to the change from the zero to
two in the order of the Taylor polynomial. The comb filter is transformed into
a fence filter, i. e. a filter that extracts one oscillating harmonic, rejecting the
rest of harmonics. Note that despite of the widening and increase of the mainlobe
and sidelobe levels, the gains in the harmonic bands improve a lot because of their
flatness. Those gains improve the filtering by avoiding the magnitude and phase
distortion at the harmonic of interest and by having a better rejection of the rest
of harmonics. Note in the phase response that the phase under the passband is
a zero flat, indicating no delay in the phasor estimates. This means that phasor
estimates can be truly synchronized with a time stamp in the nanosecond scale. A
huge advantage of these estimates, extremely useful for control applications. In the
next section we demonstrate this fact in a numerical example. With the second-
order Taylor signal model is also possible to obtain estimates of the first and second
derivatives of the oscillation. Fig. 3.8, shows the magnitude responses for the first
and second phasor derivatives respectively. Note that close to the fundamental
frequency the magnitude responses exhibit the ideal differentiator gains (line and
parabolic shapes).

Before going to the numerical example, a few words about subspaces. The
development of the Taylor®-Kalman-Fourier filter by including one by one the full set
of harmonics shows that the subspace of the Taylor’-Kalman filter, whose frequency
response is illustrated in Fig. 3.1, grows little by little until reaching the full Fourier
subspace, with the frequency response illustrated in Fig. 3.6; or that of the Taylor?-
Kalman filter in Fig. 3.5 with that of Fig. 3.7. That is why it is possible to perform
the DFT with the T°-K-F, and T?-F transform with the T2-K-F filter, without the
delay of the FIR filters.
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Frequency Response of T°-K-F Filter
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Figure 3.7: Frequency response to the 72 — K — F filter.

3.5 Numerical Results

In this section we test the T°-K-F and the T?-K-F filters with an oscillatory signal
to which a 3rd and 5th harmonics are added at a certain instant of time. The signal
is sampled at N = 64 samples per fundamental cycle. The performance on phasor

estimation of those filters using N = 64 harmonics is analyzed.
Test Signal

s(t) = a(t)cos(2m fit + p(t))
+u(t) [%cos@wi’)ﬁt + p3(t))

+%é)cos(27r5f1t + @5(15))} (3.9)
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Magnitude Response of T?-K~F Filter
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Figure 3.8: Magnitude response of the first and second differentiators associated with the
T2K-F filter.

where

0, fort<15/f1
1, fort>15/f

a(t) = aog+ aysin(2mfut) (3.11)
p(t) = wo+pisin(2mfot) (3.12)
es(t) = 0.9¢(t) (3.13)
es(t) = 0.8p(t) (3.14)

and the following parameters in amplitude: ay = 1, a; = 0.1, f, = 5H z; and phase,
o =1, 1 = 0.1, f, = 5Hz. The noise variances in the Kalman filter are: o2 = 0.01
and o2 =10~

The test signal and its estimates are illustrated in Fig. 3.9. As you can see
in (3.10), the injection of the harmonics starts at the 15th cycle. Signal estimates
are very good for both filters, that is why no differences between the three curves
are perceptible. It is well known that Kalman filter is good when the input signal

corresponds to its model. The estimation error (bottom graph) indicates however a
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Signal Estimation
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Figure 3.9: Signal and error estimates.

higher error for the T°-K-F filter with an important transient immediately after the
harmonic injection instance. But we are using Kalman filter to estimate not the input
signal but its phasor. In the left column of Fig. 3.10, the phasor estimates obtained
with both filters are shown. The TO-K-F filter produces estimates with a perceptible
corrugated shape, and delayed half a cycle from the smother estimates obtained
with the T2-K-F filter. These estimates are closer to the ideal phasor, except at
the transient occurring immediately after the injection of the harmonics, due to the
discontinuity of their step change when they appear. This is a very important result,
that shows that the zero Taylor polynomial model is unable to suppress the delay
in the estimates, and the second order Taylor polynomial together with the Kalman
filter algorithm produces instantaneous estimates that can be truly synchronized
with a precise time stamp. Finally, the first derivative estimates obtained with the
second order Taylor filter are shown in the right column of Fig. 3.10. These estimates
are not so good as the phasor estimates but they could be improved by using a model

of higher order.
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Phasor Estimation @ First Phasor Derivative Estimation
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Figure 3.10: At the left, phasor estimates with the zeroth and 2nd order Taylor models
and at the right first derivative estimates with K = 2.

3.6 Conclusions

Frequency responses of the Taylor®-Kalman filter developed in the first part of
the chapter indicate that this filter is very sensitive to noise and that its good
performance in phasor estimation depend on the concurrence of the input signal with
its signal model. The extension of the signal model to the full set of harmonics lead
to the Taylor®-Kalman-Fourier filter. It was shown that Taylor’-Kalman-Fourier
filter has the same performance in harmonic analysis as DFT, but with much less
computational burden, even than in its FF'T implementation. On the other hand, the
Taylor’-Kalman-Fourier filter is a fence filter able to perform in real time the Taylor?-
Fourier transform, but with much less computational effort; and most importantly,
without delay. The inclusion of a second order Taylor polynomial in the signal
model achieves a flat magnitude and phase response about every harmonic producing
harmonic oscillating phasor estimates without magnitude or phase distortion (no
delay). These instantaneous estimates can be truly synchronized to the microsecond

time scale, and therefore are very useful for control applications of the power system.



Chapter 4

TaylorK -Kalman-Fourier
Differentiators for Instantaneous

Derivative Estimates

4.1 Introduction

Digital differentiators are very useful in signal processing, monitoring [10]-[12], and
control |13]-[15] applications. In some applications derivatives are more important
than the signal itself. Such is the case, for example, of the speed estimator of a target
in a radar, or the estimation of the frequency variations on a power system under
oscillations. One of the most popular implementations of digital differentiators is
using a finite impulse response (FIR) filter |16]. The problem of estimates obtained
with linear phase FIR filters is that they have inevitable delay, by half the length of
its impulse response. Such is the case of the Parks-McClellan implementation [17],
or the filter bank of maximally flat differentiators recently proposed in [18].

Other well known FIR implementations can be found in [19], in the case of
low-pass filters designed with the maximally flat criterion, or [50] -[51] in the case
of full-band differentiators. In [55] digital linear-phase differentiators are designed
based on a relationship between the coefficients of a digital differentiator and those of
the generic fractional delay filter. And finally, in [56], the interrelationships between
the digital differentiator, the digital Hilbert transformer (DHT), and the half-band
low-pass filter are established.

Even if a systematic delay is not a problem in communications applications,

48
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which are always delayed at least one symbolic period, this anomaly exclude the FIR
implementation from control applications, due to the potential instability provoked
by a delay in the control loop. In this case, instantaneous estimates are preferable.
This is achieved with digital differentiators implemented with infinite impulse
response (IIR) filters. These filters use much less coefficients than the equivalent
FIR filters, but they have non-linear phase response, because they are causal or time
asymmetrical. This means they produce phase and amplitude distortion. Such is the
case of the full-band IIR differentiators designed in |[57] based on the formulation of
a generalized eigenvalue problem using the Remez multiple exchange algorithm, or
the low-pass IIR digital differentiators in [58], whose numerators have a predominant
linear phase, at least over the frequency interval of operation.

Observers can be classified as another kind of digital differentiators, even if
they also provide IIR filters. The problem with observers of dynamic systems is
they estimate the state space variables of a dynamic system, which not necessary
coincide with the derivatives of the output signal of interest. One of the most common
observers is the Kalman filter. In |[59] the conditions for obtaining the first derivatives
of a dynamic system with the Kalman algorithm when the state space equations
of the system are known. This method achieves an optimum differentiator, which
obtains the minimum variance unbiased estimates of the first derivatives in the state
vector of a known dynamic system.

In this work, we present other set of optimum digital differentiators that do
not require at all a priori knowledge of any dynamic system. Instead, the Kalman
algorithm is applied to approach a signal with its Taylor signal model, expressed by a
state transition matrix that depends only on the sampling time, and the desired order
of the Taylor polynomial. The subspace generated by this signal model is similar to
the one developed in [18]. But instead of obtaining the derivative estimates through
the least squares (LS) method, which leads to FIR filters, we use the Kalman filter to
project the input signal into the Taylor signal model subspace. We are going to show
that for Taylor orders greater than, or equal to two, the achieved frequency responses
are very close to those of the ideal differentiators on the frequency baseband, which
in turn means instantaneous and undistorted estimates, provided the spectrum of
the input signal be on that band. The filters achieved with this method are referred
to as Taylor®-Kalman (TX-K) filters. Their problem is that they have lateral high

gains, or high sensitivity to noise. But that gain can be mitigated by extending
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the signal model through the inclusion of harmonic components. This extended
solution leads to the Taylor®-Kalman-Fourier (T*-K-F) filters proposed in [33] for
instantaneous oscillating phasor estimates. With this method is possible to estimate
the digital Fourier transform (DFT) with the Kalman Algorithm using a zeroth-
order Taylor polynomial, with much less computational effort than that of the
fast Fourier transform (FFT). It is also possible to estimate the Taylor-Fourier
transform proposed in [21] by increasing the order of the Taylor polynomial.

The main goal of our investigation was to find an unifying theory for obtaining
the best derivative estimator through the many options available today: least
squares, Kalman filter, maximum likelihood, etc. Our initial question was to find
the best among the best, or the optimum optimorum. Here, we use the traditional
Kalman algorithm. So, our main contribution consists in expressing the Taylor signal
model in terms of a state transition matrix, so the traditional Kalman algorithm can
be applied over one, or the whole set of harmonic frequencies. And, of course, to
find a method able to provide instantaneous and undistorted estimates of the first
derivatives of a signal, provided its spectral load be over the frequency intervals
under flat magnitude and phase response of the differentiators.

The spectral condition of the differentiator ideal operation corresponds to
oscillating signals. The derivative estimates are good in time intervals where the
oscillation is smooth and without discontinuities. We develop the frequency response
of the filters to assess the behavior of the estimates when the signal contains
discontinuities or noise. The order of the Taylor polynomial can be increased, but
there is a limit imposed by the size of the sampling time, because the elements of
the state transition matrix are integer powers of this parameter, so for high sampling
frequencies, they vanish. But with an order of three it is already possible to estimate
position, speed and acceleration.

The chapter is organized as follows: in section 4.2 shows the Taylor-
Kalman differentiators, the state space signal model by differentiators is defined
and the frequency responses of the Taylor®-Kalman differentiators, in section 4.3
the mitigation of the high gain with the low-pass Taylor-Kalman differentiator is
illustrated. In section 4.4 the TX-K-F filter is developed and an example of frequency
response is illustrated. Finally in section 4.5 the main results using a second-order

and third-order differentiators are presented and discussed.
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4.2 Taylor®-Kalman Differentiators

In this section we develop the three components of the Taylor®-Kalman
differentiators. First, we introduce the Taylor signal model represented in state
space equations. Its state transition matrix makes possible the use of the Kalman

algorithm. Finally, we develop the equations for obtaining the frequency responses.

4.2.1 Taylor Signal model

Let s(t) be a signal with up to its Kth derivative continuous in the time interval
T ={t: |t —to] < T,n}, with Taylor interval of size Tm. It is always possible to
approach it in that interval by a Kth-order Taylor polynomial centered at %:

(t—to)¥
K!

T, T,
to—— <t<t — 4.1
0 5 S Sto+ 7 (4.1)

SK(T,) = S(to) + S(to)(t — t(]) + ...+ S(K) (to)

By successively differentiating sk (¢) in (4.1) as follows:

swlt) = s(to) +3(to)T + 8lto) 3y + ..+ 5" (t0) 3
Srclt) = é(t0)+§(t0)r+...+sK(to)(I§7__1)! (4.2)

s = s (ty)

with 7 =t —tg. And by defining the state vector sy (), with the first K derivatives

of the Taylor signal model sk (t), we see that (4.2) can be written in matrix form as:

SK(t) = @K(T)SK(to) (43)

in which ®(7) is the state transition matrix between ¢, and ¢:

T2 TK
L 5 il
TKfl
1 = ... R=)1
TK72
P (r) = 1 (K—2)! (4.4)
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note that is the same matrix in 2.6 but without the phase rotation factor .

Under this representation, the Taylor signal model is then given by:
si(t) = h'sk(t) (4.5)

where k' =1 0 ... 0 ], with K zeros.
Finally, assuming to = (n — 1)T and t = nT', where T is the sampling period,

we have the following discrete state transition equation:
sg(n) =®g(T)skg(n—1) (4.6)

In the next section, we show how these signal model can be used in the Kalman
filter to estimate the derivatives contained in the state vector from a given signal.
Once the Kalman filter reaches its steady-state gains, it will decompose the input

signal s(t) into the state-vector components of the signal model sg ().

4.2.2 Differentiator Frequency responses

The frequency response of the Taylor-Kalman filter can be obtained through the z

transform of its update state equation
2(n) = ®x(n — 1)+ K(s(n) — H®&(n — 1)) (4.7)
with the steady-state Kalman gains in K. The z-transform of (4.7) is
2(2) = @27 '2(2) + K(s(2) — H®2'2(2)), (4.8)
and solving for &(z) we have
[I—-®:"'+ KH®z"| &(2) = Ks(). (4.9)

So the transfer functions between the states of the signal model and the input signal

are given in the following polynomial vector:
Gi)=[I+(KH-1)%:"'] K (4.10)

and the frequency responses are obtained evaluating G(z) at z = %%, for —m <0 <

.
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4.2.3 Taylor’>-Kalman Differentiator Frequency response

Fig. 4.1 shows the magnitude and phase responses of the zeroth derivative (position)
estimates of the T2-K differentiators. The responses are shown for different sampling
frequencies measured in samples per fundamental period, assuming a fundamental
frequency of f; = bH0Hz. Note that both responses are flat about the null
frequency, corresponding to the gain of an ideal signal estimator. If the spectrum
of the input signal is confined under the flat frequency response, approximately
0.2f; = 10Hz, then the filter will not distort the signal, neither in magnitude
nor in phase. This means that, provided the signal spectrum be confined in the
ideal operation frequency band, the estimates are not delayed (instantaneous) or
attenuated at all. The magnitude response of the first and second derivative (speed
and acceleration) estimators are shown in Fig. 4.2. Note again that, in the
neighborhood centered at the zero frequency, they have the gains of the corresponding
ideal differentiator, diverging with high constant values outside the ideal operation
band. The corresponding phase responses are shown in Fig. 4.3. They also approach
the ideal differentiator phase responses (jw and (jw)?) close to the null frequency.
There, they approach a Sign function of size m and 27 in frequency corresponding
to the j and 52 factors. So, derivative estimates are also instantaneous. Then, they
operate as ideal differentiators when the input signal spectrum is confined inside the
ideal operation frequency band. In the time counterpart, it means that they operate
as ideal differentiators when the input signal is clean of noise and sufficiently smooth

as to be approached with enough precision by a second-order Taylor polynomial.

4.3 Low-Pass Taylor”*-Kalman Differentiator

One way to mitigate the high gains of the T*-K differentiator consists in extending
the transition matrix in (4.4) by including a new angular frequency component at /™,
corresponding to the half-band frequency. The incorporation of the first derivatives
of the complex envelope at this frequency will be seen from the dc component (&%)
as an extraction, so the gain of the low-pass differentiators will go down in the
half-band. These filters will be referred to as low-pass Taylor®-Kalman (LP T*-K)
differentiators . The new transition matrix will be:

( @ (T)

&(T) = (4.11)

@K(T)ej“ )
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Figure 4.1: Magnitude and phase response of the zeroth T2-K differentiator. The frequency

response is flat around the null frequency.
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Figure 4.2: Magnitude response of the first and second T2-K differentiators. Note the

linear and parabolic gains around the null frequency.

with the following state transition equation
sig(n)=®(T)skg(n—1) (4.12)

and the signal model
si(n) = Hsg(n) (4.13)

where H = (h” h"), because sk (t) contains now also the derivatives of the half-band
frequency.

Fig. 4.4 shows the frequency response of the zeroth compensated differentiator.
Note that now the gain goes down to a flat zero at the halfband frequency, while
the flat frequency response close to the null frequency is preserved. This effect
appears completely illustrated only for the case of the lower sampling frequency, but
it happens for all. The same holds for the first and second differentiator frequency
responses illustrated in Figs. 4.5 and 4.6.

In the next section, the transition matrix will be extended to the whole set of

harmonic frequencies to obtain the TX-Kalman-Fourier differentiators.
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4.4 Taylor®-Kalman-Fourier Differentiators

The state transition matrix can be extended to the full set of harmonic frequencies.
These differentiators will be referred to as Taylor™ -Kalman-Fourier differentiators,
because they can estimate the first derivatives of the complex envelope at each
harmonic frequency. This bank of filters was first proposed in [33] and can also
be seen as a Taylor extension of the digital Fourier transform (DFT).

The extended state transition matrix is now:

®(T) = . (4.14)
‘I)K(T)wN_l

with ¢ = eI for a sampling frequency of N fi. The size of the state transition
matrix is (K + 1) x N. The state vector contains the derivatives of the whole set of

harmonics and its output vector is:
H=|h Bl .. hn%]|. (4.15)

with a size of 1 x (K + 1)N, therefore N row vectors deffide by A* = [1 0 ... 0],
with K zeros.

The magnitude response of the T2-K-F differentiators including 32 harmonics
is shown in Fig. 4.7. Note that now the gain of all the differentiators goes down as
the frequency increases, ensuring full rejection with flat null gain at every harmonic
frequency. The phase responses are illustrated in Fig. 4.8. It can be seen that
ideal phase responses are preserved around the null frequency. The illustrated case
corresponds to a sampling frequency of 32 samples per cycle. But the main advantage
of the estimates is that they are instantaneous, as it can be confirmed by the phases
responses close to the zero frequency.

Another advantage of this filter bank is that the first derivatives of the full set
of harmonic frequencies can be obtained at once. If the signal spectrum is confined in
the ideal operation interval, then the differentiators operate a digital transformation,
mapping the signal into the first derivatives of the complex envelope of each harmonic

frequency. In the next section we consider numerical examples.
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Figure 4.7: Magnitude response of the first three Taylor™ -Kalman-Fourier differentiators
for K = 2,3, and 32 harmonics. Note that ideal differentiator gains are achieved about null

frequency and full rejection about harmonic frequencies.
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Phase Response
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Derivative Estimates with T°-K Differentiators
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Figure 4.9: Signal, speed and acceleration estimates obtained with T?-K differentiators.

4.5 Numerical Results
In this section we test the TX-K Differentiators with the following signal
s(t) =1—e2cos(t) (4.16)

sampled with N; = 64 samples per fundamental cycle. It is assumed that the signal
is affected with additive white Gaussian noise (WGN) at the input of the state
equations and at the output equation, with 0% = 0.01 and 02 = 107° respectively.
The results are obtained with the second and third T*-K differentiators.

4.5.1 Taylor®-Kalman Differentiators

The derivative estimates obtained with the second-order (T%-K) differentiators are
shown in Fig. 4.9. It is apparent that the signal estimate and the first derivative are
very close to the corresponding expected signals, but in the case of the acceleration
estimates, noise is perceptible.

The estimates obtained with the T3-K differentiator are shown in Fig. 4.10.

We can see that the acceleration estimates are quite improved. It is rare to see
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Figure 4.10: Signal, speed and acceleration estimates obtained with T3-K differentiators.

acceleration estimates as these. Derivatives estimated with finite difference equations

are very sensitive to noise.

4.5.2 Low-Pass Taylor”-Kalman Differentiators

The results obtained with the Low-Pass (LP) TX-K differentiators are shown in
Fig. 4.11 for K=2. It is apparent that they are better than those obtained without
halfband gain mitigation. The estimates obtained with the LP T3-K differentiators
are illustrated in Fig. 4.12. These differentiators can also obtain the third derivative,

but they are not shown here.

4.5.3 Taylor®-Kalman-Fourier Differentiators

Finally we present the estimates obtained with the TX-K-F differentiators for K = 2
and 3, including 32 harmonics. The results are illustrated in Fig. 4.13. Note that
they are very close each other. The transient at the beginning is due to the time
needed to reach the permanent Kalman gains. It can be seen that the noise in the

estimates has almost disappeared. It was observed that the transient response of
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Figure 4.11: Derivative estimates obtained with the LP T2-K differentiators.
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Figure 4.13: Derivative estimates obtained with the TX-K-F differentiators for K = 2,3

and including 32 harmonics.

the filters increases when more harmonics are included in the differentiators. Here
we illustrated the derivatives of the zeroth harmonic, but this type of differentiators
estimate the derivatives of the complex envelope of all the harmonic frequencies
incorporated in the signal model. In the next example, we look at the derivatives of

the complex envelope of the fundamental frequency.

4.5.4 Power Swing Signal Decomposed by T%-K-F

Differentiators

Finally, the current signal of the power swing shown in the last example treated
in [18] is taken again to illustrate the performance of the Kalman instantaneous
differentiators. The Taylor’-Kalman-Fourier filter with harmonics {0,1,3,5,7} was
applied. The error of the signal approximation achieved by the Kalman filter is on the
order of magnitude of —5. Fig. 4.14 shows the amplitude and its derivative estimates.
It corresponds to a real case of a current signal of a power swing in a European
country (at 50Hz). The current signal is not shown. Note that the amplitude
estimates have noise at the top of the crests, which is reflected in the corresponding
derivative estimates. At the bottom, phase and its derivative (frequency) estimates
are shown. Frequency in Hz was amplified four times to make it visible in that

scale. The perceptible frequency offset is negative (-0.05Hz) because the system
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Figure 4.14: At the top, amplitude (continuous line) and derivative (dash line)
instantaneous estimates of a swing current (in dots) in a power system at 50Hz. At the
bottom, the instantaneous phase (continuous line) and frequency (dashed line) estimates

of the same signal. Those estimates were obtained with the T2-K-F differentiators.

is overloaded. Abrupt changes in phase occur at zero amplitude instants, and are
estimated by frequency (phase derivative) peaks. Note that amplitude and phase
estimates are able to detect and measure the frequency peak occurring about 2.5s.
In this case, we illustrate the estimates of the first harmonic, but they are available
for the whole set of harmonics, So, the T?-K-F differentiators work as an extended

spectrum analyzer of the signal.

4.6 Conclusions

Instantaneous derivative estimates were obtained with the TX-K-F differentiators by
applying the Kalman algorithm to a Taylor-Fourier signal model expressed in a state
transition matrix. Several design possibilities were offered depending of the expected
spectral load of the input signal. They perform as ideal differentiators with oscillating
signals. Differentiator pass-bands and stop-bands can be adapted to the frequencies

of interest, when they are known. They can be interpreted as an extension of the
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DFT, and of the Taylor-Fourier transform, for K > 0, with much less computational
burden than that of the FFT. They can be used as simple differentiators on the
baseband, or as spectral analyzers of oscillating periodic signals, estimating not
only the standard spectrum (amplitude and phase at each harmonic), but also their
corresponding derivatives. In contrast to FFT, they provide instantaneous derivative

estimates, very useful for control or synchronized monitory applications.



Chapter 5
Conclusions

The new state transition matrices built with Taylor approximations to the dynamic
phasor it is possible to obtain better instantaneous phasor estimates and its
derivatives under oscillation conditions through the Taylor-Kalman-Fourier filter.
The estimates achieved with the second order model reduce by a factor of ten
the TVE error and are much more stable than those obtained with the traditional
(zeroth-order) Kalman filter, with settling times five times lower. The extension of
the signal model to the full set of harmonics was necessary to reduce the high noise
sensitivity to the Taylor-Kalman filter. With the Taylor’-Kalman-Fourier filter it
is possible to obtain the DFT Fourier coefficients of the signal. For orders greater or
equal to two, the Taylor®-Kalman-Fourier filters offer flat null phase response around
harmonic frequencies. This means that their Fourier estimates are instantaneous (no
delay at all). It is also possible to estimate the first derivatives of the oscillation.
Finally, they can also be used as spectral analyzers of oscillating periodic signals.

The following conclusions can be drawn from the Taylor®-Kalman filters: the
Taylor signal model provides a state-transition matrix to model with better accuracy
a power oscillation; a new technique for phasor estimation improves the phasor
estimates of the traditional Kalman filter; the main advantage of the phasor estimates
obtained with the TX-K filter (for K > 2) is that they are instantaneous (no delay at
all), preserving their synchrony with the signal, and with lower errors for oscillatory
signals; finally, they reduce the computational cost as compared with the one cycle
Fourier filter.

The following conclusions from the Taylor®-Kalman-Fourier filters: By
extending the signal model to the full set of harmonic frequencies, harmonic and
noise rejection is improved; for K = 0, this filter bank obtains the DF'T, but with

68
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much less computational burden than the FFT; for K > 0, estimates of the complex
envelope and its first derivatives can be estimated at every harmonic frequency,
performing the Taylor-Fourier transform, when the spectrum of the input signal falls
under the ideal differentiator gains; in the frequency domain, ideal differentiator
gains are achieved around the harmonic frequencies, so when the spectral load of the
input signal is confined in those bands, very good derivative estimates are achieved;
finally, the new derivative estimates obtained with these filters are instantaneous (for

K > 2) and therefore, good estimators of oscillating signals and their derivatives.

5.1 Contributions

The main contribution of the thesis is the dynamic signal model of the Taylor
approximation to an oscillating signal. Before this contribution only static signal
models existed. Better (instantaneous, more precise and fast) phasor estimates were
achieved with the TX-K filter. The TX-K-F filter obtain instantaneous estimations
for K > 2 with shorter transient times and improved the sensitivity to noise of the
TX_K filter. In addition to the phasor, they can estimate the first derivatives at
each harmonic frequency. Spectral analysis can be done with those filters, obtaining
instantaneous Fourier coefficients, and with much less computational burden as

compared with the FF'T algorithm.

5.2 Future Work

e To develop a new model for obtaining faster results when the signal has abrupt

changes.

e Using the combination of gains obtained with Ackermann algorithm and the
new kind of observers (using the Taylor®-Kalman-Fourier Filters as observers)

to obtain quicker estimates before abrupt changes.

e [t was shown that it is possible to obtain the FFT with the Taylor-Kalman-
Fourier filter, but it will be interesting to determine the advantages and

disadvantages of these different methods.
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2010, pp. 1-6.

e J. de la O, J. Rodriguez-Maldonado, “Instantaneous Oscillating Phasor
Estimates with Taylor®-Kalman Filters”, in IEEE Trans. Power Syst,
DOI:10.1109/TPWRS.2011.2157539, electronically available through IEEE
Xplore.

e J.dela O, J. Rodriguez-Maldonado, “Frequency Response of Taylor®-Kalman-
Fourier filter for Instantaneous Oscillating Phasor Estimates”, in IEEE Trans.

Power Syst, In Review.

e J. de la O, J. Rodriguez-Maldonado, “Taylor®-Kalman-Fourier Differentiators
for Instantaneous Derivative Estimates”, in FLSEVIER, Digital Signal
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