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Abstra
tInstantaneous Estimation of Os
illating Phasorswith TaylorK-Kalman-Fourier FiltersPubli
ation No.Johnny Rodríguez MaldonadoUniversidad Autónoma de Nuevo LeónFa
ultad de Ingeniería Me
áni
a y Elé
tri
aAdvisor: Dr. José Antonio de la O SernaAug 2011One of the most 
ommon phasor estimation te
hniques used nowadays isthe one-
y
le Fourier �lter whi
h estimate the phasor as the fundamental Fourier
oe�
ient of the digital Fourier transform (DFT). It a
hieve exa
t estimates and hasfull harmoni
 reje
tion with steady-state input signals. But its phasor estimates arealways delayed be
ause it 
orresponds to the implementation of a symmetri
 �niteimpulse response (FIR) �lter. The Kalman �lter was also proposed in the eightiesassuming also a stati
 signal model (
onstant amplitude, frequen
y and phase) forthe input voltage or 
urrent signals. At that time, it was demonstrated that it wasequivalent to the Fourier �lter and was qui
kly abandoned in the literature. In thiswork, we propose to extend the stati
 signal model to a dynami
 one, in whi
hamplitude, frequen
y and phase are represented by band limited time fun
tions.A Taylor approximation to those dynami
 fun
tions provides a state transitionmatrix that 
an be used in the Kalman algorithm. As the state ve
tor 
ontainsthe instantaneous �rst derivatives of the dynami
 phasor, this signal model allowsto estimate not only the dynami
 phasor but also its �rst derivatives. The Taylorsignal model together with the Kalman algorithm lead us to the TaylorK-Kalman�lter. Given the model, the traditional Kalman �lter of the eighties 
orrespondsto the Taylor0-Kalman �lter, And by extending its state transition matrix to ea
hvi



harmoni
 frequen
y, we arrive to the TaylorK-Kalman-Fourier �lter whi
h o�er analternative to 
al
ulate the digital Fourier transform, but with 
ausal in�nite impulseresponse (IIR) �lters. This means that its estimates are instantaneous (no delay atall), with mu
h less in�ltrated harmoni
 errors, as 
ompared with the FFT estimates,and redu
ing the 
omputational 
omplexity.The main 
ontribution of this thesis is to have found the state-transition matrixof a state spa
e dynami
 signal model 
orresponding to the K-th order Taylorapproximation to a power os
illation signal. With these transition matri
es, theKalman �lter algorithm 
an be applied to �nd observers able to estimate the dynami
phasor and its �rst derivatives. The estimates obtained through this te
hnique, arenot only syn
hronous but also instantaneous, whi
h is an important attribute for
ontrol appli
ations. They also provide frequen
y estimates. The new �lters redu
ethe total ve
tor error a
hieved with the traditional Kalman �lter; are mu
h morestable, with settling times �ve times lower; and improve the phasor estimates ofos
illations with frequen
y o�set.On the other hand one of the anomalies of the di�erentiators implemented withlinear-phase �nite impulse response (FIR) �lters is their 
onstant delay. Controlappli
ations require instantaneous estimates. Here we present a new family ofderivative estimators referred to as TaylorK-Kalman �lters. They a
hieve idealdi�erentiator gains about the fundamental frequen
y for K ≥ 2. By in
luding thehalf sampling frequen
y 
omponent, their high sideband gain is mitigated, leadingto low-pass (LP) �lters. But the best gain redu
tion is obtained when the signalmodel in
orporates the whole set of harmoni
 frequen
ies, obtaining the TaylorK-Kalman-Fourier di�erentiators, whi
h are able to estimate the derivatives of the
omplex envelope at ea
h harmoni
 frequen
y. They preserve the ideal di�erentiatorgain not only in the fundamental frequen
y, but also at ea
h in
luded harmoni
frequen
y. When the spe
tral load of the input signal falls under the ideal operationbands, they operate as ideal di�erentiators, mapping the signal into its derivatives,making a Taylor-Fourier de
omposition. But their main advantage is they provideinstantaneous derivative estimates, very useful for 
ontrol appli
ations.With the new TaylorK-Kalman(TK-K) �lters forK ≥ 2 are able to form a zero-�at phase response around the fundamental frequen
y, and to produ
e instantaneousos
illating phasor estimates. The frequen
y response of the zeroth and se
ond order�lters are established and illustrated. Their high sensitivity to noise lead us to designvii



more robust �lters referred to as TaylorK-Kalman-Fourier, be
ause they in
orporatethe whole set of harmoni
s in their signal model. The bank of 
omb �lters a
hievedwith K = 0 is equivalent to that of the Dis
rete Fourier Transform (DFT), andthe bank of fen
e �lters a
hieved with K = 2 is similar to that of the Taylor2-Fourier transform, ex
ept that their os
illating harmoni
 estimates are instantaneous(without delay). In addition, the 
omputational 
omplexity of these extended �ltersis mu
h more lower (6/Log2(N) for N > 64) than that of the Fast Fourier Transform(FFT), so they are very useful for 
ontrol appli
ations of power systems.
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Chapter 1Introdu
tionThe prin
ipal obje
tive in estimation theory is to a
hieve the most pre
ise estimationin shortest time; i.e. the 
losest to the real value, no matter how 
omplex the
onditions 
an be: signal 
orrupted by noise, or with abrupt 
hanges, et
. If itis possible to obtain better results under the last 
onditions, then the methodis su

essful. That is why estimation theory is required in di�erent areas, as
ommuni
ation systems, digital signal pro
essing, 
ontrol, among many others; andwith diverse appli
ations su
h as measurement, monitoring, �ltering, and so on.One of the well known estimation algorithm is the least squares (LS) method,that was developed by Gauss in 1795, and was inspired by the observation of the
omets. He used that method for estimating the traje
tory of 
omets, based in thea posteriori measurements taken by a teles
ope [1℄. The main disadvantage of thismethod is that it depends on 
ertain number of observations, and its estimates arealways delayed. This is a disadvantage when it is desirable no to have any delay atall in the estimates.Problem statementIn physi
s and engineering, a phasor, is 
omplex number used to represent a sine wavewhose amplitude (A0), phase (ϕ0), and angular frequen
y (ω) are time-invariant. Thetraditional method to obtain phasor estimates is the FFT, whi
h is a spe
ial 
aseof LS. Its disadvantage is that it needs several samples for having good estimation.In addition, it assumes a stati
 signal model, i.e. it assumes amplitude, phase andfrequen
y 
onstant, so when the signal has perturbations or the ele
tri
al system1



2moves, the phasor estimates be
ome erroneous. A more 
onvenient estimationmethod must take into a

ount its �u
tuations. On the other hand the Kalman�lter does not need to have a big number of samples for a
hieving a good estimation,it only needs a good state transition matrix, i.e. a signal model.One of the �rst publi
ations on phasor estimation using Kalman �lter is [2℄,but its state transition matrix was based also on a steady-state sinusoidal model. In[3℄ a method was proposed for measurement the rate and severity of periodi
 voltage�u
tuations. In [4℄ the Kalman �lter was implemented on a Zoran ZR34161 Ve
torSignal Pro
essor (VSP), but again with a stati
 signal model, even if it in
lud a d

omponent to estimate the o�set together with the phasor. Other referen
es thatused a steady-state sinusoidal signal model are [5℄-[8℄. And sin
e then Kalman �lterdisappeared in subse
uent publi
ations on phasor estimation and one-
y
le Fourier�lter prevailed. In this work we show that the problem lies not in the Kalmanalgorithm, but in the signal model. Kalman �lter is an ex
ellent estimator when itworks with a good signal model. So, in this sense, this work resus
itates the Kalman�lter in the phasor estimation area.The left side of Fig. 1.1 shows a stati
 phasor, with 
onstant amplitude A0and phase ϕ0, marking a �xed point, and on the right side, a phasor following a linewith dynami
 amplitude a(t) and phase ϕ(t). The se
ond one 
an better follow the�u
tuations of the power system than the �rst, whi
h is doomed to be 
onstant.
ℑm

ℜe
b
A0∡ϕ0

Stati
 Phasor
ℑm

ℜea(t)

ϕ(t)

Dynami
 PhasorFig. 1.1: Di�eren
e between stati
 and dynami
 phasor.Phasors estimated with su
h a dynami
 signal model, are more �exible andsuitable for �u
tuating signals, be
ause they 
an better inherit the movement,



3be
ause they are more �exible than the stati
 one. So in this sense, they aretruly dynami
 in amplitude and phase. With a Taylor polynomial it is possible toapproximate the dynami
 signal model to the input signal. With this polynomial andits derivatives a state transition matrix for the Kalman algorithm 
an be established.So, this te
hnique is able to obtain not only better phasor estimates, but also itsderivatives. The transient time of these estimates are faster than those of the steady-state signal model used in the traditional Kalman �lter, and with the advantage ofbeing instantaneous estimates, for Taylor orders higher or equal to two. Also, for
K = 0 and when the state transition matrix is extended to in
lud the whole set ofharmoni
 frequen
ies, it is possible to obtain the FFT, but with less 
omputational
ost. Similarly, with K ≥ 2, the Taylor-Fourier transform 
an be 
al
ulated withless 
omputational 
ost and with non delayed estimates.Obje
tiveThe prin
ipal obje
tive in this work is to develop a methodology for improving thephasor estimates, under smooth os
illations. Other obje
tives are:� Study and 
ompare the developed methodology with others methodologies.� Determine its advantages and disadvantages: in speed, 
omputational load,versatility and exa
titude.� Obtain good results under smooth os
illations or when the signal is 
orruptedby noise.The te
hnique leads to a new bank of di�erentiators with instantaneousderivative estimates for Taylor orders greater or equal to two.Organization of the thesisThe thesis is organized as follow:Chapter 2 Develops the TaylorK-Kalman �lter. For Taylor orders greater thanzero, this �lter redu
es the phasor estimation error of the traditional Kalman�lter (K = 0) under os
illation 
onditions, abrupt 
hanges and when the signal



4is 
orrupted by white Gaussian noise (WGN), be
ause subspa
es with K ≥ 0in
lude the zeroth subspa
e and provide room for os
illatory signals.Chapter 3 Presents the frequen
y response of the TaylorK-Kalman �lters, and anextension to the full set of harmoni
s referred to as the TaylorK-Kalman-Fourier, redu
es sideband gain and provides full reje
tion around all thein
luded harmoni
 frequen
ies. In addition, this �lter bank is able to estimatethe phasor (the 
omplex envelope) and its derivatives at ea
h harmoni
frequen
y. For K = 0 it is equivalent to the DFT, and for K 6= 0 is equivalentto the digital Taylor-Fourier transform.Chapter 4 Deals with the bank of di�erentiators, fo
using our attention to the nullfrequen
y, or baseband. This bank is very useful when the interest is pla
ed inestimating the derivatives of a smooth signal (non modulated signal) su
h asin 
ontrol appli
ations.Chapter 5 Summarizes the 
on
lusions of this resear
h work.



Chapter 2Instantaneous Os
illating PhasorEstimates with TaylorK-KalmanFilters
2.1 Introdu
tionPhasor estimation under transient 
onditions is a hot topi
 today due to the re
entreview of the syn
hrophasor standard [9℄. On one hand, the introdu
tion of dynami

onditions to the 
lassi
al phasor 
on
ept broke a very old and fundamental s
hemavery useful in power engineering. On the other, a la
k of a unifying theory to explainthe behavior and the relationships among the di�erent phasor estimating te
hniquesmakes extremely di�
ult to re
ommend one.There are many algorithms for phasor estimation under transient 
onditions.Even if the standard [9℄ does not spe
ify a parti
ular phasor estimation method [10℄,it mentions without referen
ing them [9, Annex C, Figs: C.1 and C.2℄ the followingthree examples: 1 Cy
le Re
tangular [11℄, 3 Cy
le �at-top [12℄, and 4 Cy
le Raised-Cosine [13℄. Attempts to improve the �rst method under transient 
onditions andin view of frequen
y estimation are reported in [14, 15℄, and [16℄.The dynami
 phasor 
on
ept was �rst proposed in [17℄ to follow the dynami
sof the deviations from the periodi
 behavior of 
urrent and voltages signals in powersystems. However, it was de�ned as the su

essive estimation of the �rst Fourier
oe�
ient by a short-time Fourier transform of one 
y
le, whi
h uses the samestati
 signal model (a signal with 
onstant amplitude, phase and frequen
y) as the5



6Fourier �lter proposed in [11℄. Note that this dynami
 quali�er, widely reportedin the literature [18℄, refers more to the inherent re
ursive nature of the estimationpro
ess than to its postulated signal model. It was in [19℄-[20℄ where an estimationimprovement was suggested by relaxing amplitude and phase to time fun
tions.Phasors estimated with su
h a dynami
 signal model are therefore more �exibleand suitable for �u
tuating signals, inheriting their movement �exibility. So in thissense, they are truly dynami
.The possibility to approa
h the dynami
 phasor with a Taylor polynomialthrough the least squares method led to the in
lusion of Taylor terms to the Fouriertransform. This te
hnique, referred to as Taylor-Fourier transform [21℄, uses theweighted least squares (WLS) approximation to �nd a set of �nite impulse response(FIR) �lters that provide the best estimates (in the WLS sense) not only of thephasor, but also of its �rst derivatives, at the middle of the time observation window.One of the main 
on
erns of this te
hnique is the delay of the estimates, due to itstime extended signal model.The main idea of this paper is to use the Kalman �lter as an observer ableto build (estimate) the input signal with the instantaneous dynami
 phasor and itsderivatives in a state spa
e ve
tor. It is based on the fa
t that Kalman �lter is avery good signal estimator provided its model �ts the input. In our 
ase, the signalestimates depend only on the instantaneous phasor and its 
omplex 
onjugate. Andfor the se
ond-order model, the estimates are very good.Kalman �lter was proposed for phasor estimation in prote
tion appli
ations in[22℄-[23℄. The problem is that its use was intrinsi
ally related to the old stati
-phasorparadigm (steady-state sinusoidal signal model) as it 
an be 
on�rmed in [24℄-[25℄.This also explains why subsequent publi
ations [26℄-[27℄ refer to the Kalman �lteras if it were only one. In [11℄, for example, Kalman �lter was 
ompared to the half-
y
le Fourier �lter when the pro
ess noise is zero and measurement noise is 
onstant;and sin
e then, the Fourier �lter prevailed over the Kalman �lter in subsequentpubli
ations on phasor estimation. But this 
omparison did not take into a

ountthat the phasor estimates provided by a Fourier signal de
omposition are delayed,while those obtained through a Kalman signal de
omposition are instantaneous foros
illatory signals. Besides, it is well known that Kalman �lter estimates dependfundamentally on its state-spa
e signal model [28℄, and that its performan
e isremarkable when it 
oin
ides with the input signal.



7In this 
hapter we present the use of the Kalman �lter algorithm for �ndinggood observers able to estimate, not only the dynami
 phasor, but also its derivatives.The state-spa
e signal model used in the heart of the Kalman algorithm is obtainedfrom the derivatives of the Kth-order Taylor polynomial modeling the os
illationenvelope. This 
orresponds to a Taylor approximation to its lowpass signal. Thebandpass signal is obtained by a simple modulation operated by a rotation at thatfundamental frequen
y in the 
omplex plane. The main 
ontribution of this 
hapteris to provide a state-transition matrix with a sinusoidal signal model relaxed by a
Kth Taylor polynomial to approa
h the amplitude and phase �u
tuations betweenone signal sample and the next with the Kalman pro
edure. This �exibility allowthe Kalman �lter to estimate os
illatory signals with higher a

ura
y and, at thesame time, to provide estimates not only of the instantaneous phasor itself, but alsoof its derivatives, whi
h are in
luded in the state ve
tor. The estimates obtained inan os
illation example, and the ben
hmark test signals de�ned in [9, Appendix G℄illustrate the improved performan
e of this new phasor estimation te
hnique.The new approa
h is then very di�erent to the one reported in [15℄, whi
hestimates the dynami
 frequen
y from two 
onse
utive phasor estimates using a�nite-di�eren
e equation. In this 
ase errors due to the dynami
 
onditions propagateto the frequen
y estimates, whi
h in addition are very sensitive to noise due to thefa
t that they are based in a �nite-di�eren
e equation.The 
hapter is organized as follows: In se
tion 2.2, the state-spa
e signal modelis de�ned. Then, in Se
tion 2.3, the equations of the Kalman �lter as implemented toobtain the results are de
lared, together with its main referen
e. Finally, in Se
tions2.4, and 2.5 the main results using a zeroth-order and se
ond-order signal modelare presented and dis
ussed. The main 
on
lusion of this 
hapter is that Kalman�lter is able to provide, under os
illation 
onditions, better instantaneous estimates(syn
hronized and without delay), not only for the phasor itself but also for at leastits �rst derivative. These results are promising and surely will have a positive impa
ton the 
onformation of the new syn
hrophasor norm, be
ause under os
illations theseestimates are instantaneous (no delay) while they preserve their syn
hrony, a 
ru
ialattribute for their appli
ation.



82.2 Signal ModelIn [19, 20℄ a bandpass signal model was proposed for power system os
illations:
s(t) = a(t) cos(2πf1t + ϕ(t)) (2.1)in whi
h, a(t) is the amplitude and ϕ(t) the phase of the signal s(t). Bandpasssignals are assumed to be narrowband around the 
entral frequen
y f1. This meansthat amplitude and phase variations are slow with respe
t to the 
y
li
 wave.In terms of the 
omplex exponential fun
tion the signal model 
an be simpli�edas

s(t) =
1

2

(

p(t)ej2πf1t + p̄(t)e−j2πf1t
)

= Re{p(t)ej2πf1t}, −
T

2
≤ t ≤

T

2
(2.2)in whi
h p(t) = a(t)ejϕ(t) is referred to as dynami
 phasor.The 
omplex dynami
 phasor fun
tion p(t), 
an be approximated by a KthTaylor polynomial 
entered at t0:

pK(t) = p(t0) + ṗ(t0)(t− t0) + · · ·+ p(K)(t0)
(t− t0)

K

K!
,

t0 −
T

2
≤ t ≤ t0 +

T

2
. (2.3)A state transition matrix 
an be easily obtained from the derivatives of ea
h Taylortrun
ated dynami
 phasor. For τ = t− t0 we have:

pK(t) = p(t0) + ṗ(t0)τ + p̈(t0)
τ 2

2!
+ · · ·+ p(K)(t0)

τK

K!

ṗK(t) = ṗ(t0) + p̈(t0)τ + · · ·+ p(K)(t0)
τK−1

(K − 1)!
(2.4)... ...

p
(K)
K (t) = p(K)(t0)Finally, the state transition will be given by:

pK(t) = ΦK(τ)pK(t0). (2.5)



9where pK(t) is the state ve
tor, and the state transition matrix is of the form:
ΦK(τ) =



















1 τ τ2

2!
· · · τK

K!

1 τ · · · τK−1

(K−1)!

1 · · · τK−2

(K−2)!. . . ...
1



















(2.6)
For a given polynomial order, this approximation is all the more exa
t as t→ t0if p(t) is a smooth fun
tion. The trun
ated model 
an then be applied at any timeinstan
e t0 with su�
ient pre
ision provided that the size of the time interval τ beshort. This 
ondition is a

omplished between any two digital signal samples be
ausesamplers usually apply very short sampling periods with respe
t to the fundamentalperiod T1 = 1

f1
. We assume that the signal is sampled at N1 = 64 samples per
y
le, so τ = T1/64. This is a very short period of time with respe
t to the slow�u
tuations of p(t).The trun
ated signal model is given by:

sK(t) = Re{hTpK(t)e
j2πf1t} = Re{hTrK(t)} (2.7)where r(t) is the rotated ve
tor in the time t, and hT extra
ts its �rst 
omponent,i. e. hT = [1 0 · · · 0], with K zeros.In terms of the rotated ve
tor, Eq. (2.5) be
omes

rK(t) = ΦK(τ)e
j2πf1τrK(t0). (2.8)Assuming t0 = (n−1)Ts and t = nTs, where Ts is the sampling period (Ts = 1/N1f1),we have the following state transition between the dis
rete rotated ve
tors:

rK(n) = ΦK(τ)ψ1rK(n− 1) (2.9)where ψ1 is the phase fa
tor ψ1 = ejθ1, 
orresponding to the fundamental radianfrequen
y (θ1 = 2πf1Ts = 2π/N1). Finally, by de�ning the state transition equationas
(

rK(n)

r̄K(n)

)

=

(

ψ1ΦK(Ts) 0

0 ψ̄1ΦK(Ts)

)(

rK(n− 1)

r̄K(n− 1)

)

, (2.10)the trun
ated signal model is given by:
sK(n) =

1

2

(

hT hT
)

(

rK(n)

r̄K(n)

)

. (2.11)



10This equation shows the instantaneous dependen
e of the signal model on thedynami
 phasor. The Taylor-Kalman �lter is a signal follower that operates as aninstantaneous signal de
omposer. Its best dynami
 rotor estimates will be providedwhen it rea
hes its smallest signal estimation error, and this in turn happens whenthe input signal is in the subspa
e spanned by the signal model. This is pre
iselythe 
ase of smooth os
illations in a se
ond order subspa
e (K = 2), as we will see inthe numeri
al results, in whi
h signal estimation errors of millionths are rea
hed.The state transition matrix in (2.10) is 
omplex 2(K+1)×2(K+1) and workswith the rotated phasors, so to get the dynami
 phasor estimates with the Kalman�lter they must be anti-rotated to eliminate the its fa
tor. Note that the state spa
emodel in (2.10) 
ontains geneti
 information of the development of the 
omplextraje
tory from one sample to the next. The steady-state signal model (K = 0)would oblige the phasor to move in 
ir
les from one sample to the next. With theTaylor state transition matrix in (2.6), the phasor estimates are allowed to move inmore �exible traje
tories, bounded by the highest order term in the polynomial.In the next se
tion, we 
onsider how these trun
ated signal models are usedin the Kalman �lter. This �lter de
ompose the input signal into the state-ve
tor
omponents. The Kalman de
omposition and its estimates are instantaneous underos
illatory 
onditions, without the delay of the Fourier �lter de
omposition.2.3 Kalman FilterIn this se
tion the development of the Kalman �lter in [29, pp. 381-384℄ is followed.Other referen
es 
an be found in [30, 28, 11℄. The state ve
tor model is
x(n) = Φx(n− 1) + Γv(n), (2.12)in whi
h the state transition matrix is the one in (2.10) and Γ

T = ( hT hT )sin
e white Gaussian noise (WGN) v(n) is assumed to a�e
t only rotated phasor
omponent, i.e., the derivatives are not a�e
ted by noise.On the other hand, the observation (or measurement) model is
s(n) = Hx(n) + w(n) (2.13)We also assume the signal is a�e
ted by additive WGN through w(n). Finally forboth models we have H = ( hT hT ).



11The Kalman re
ursive pro
ess will be de�ned by the following sequen
e for the
nth 
y
le:1. Time update:(a) State predi
tion

x̂−(n) = Φx̂(n− 1) (2.14)(b) A priori error 
ovarian
e
P−(n) = ΦP (n− 1)ΦH + ΓΓ

Tσ2
v (2.15)2. Measurement update(a) Kalman gain:

K(n) = P−(n)HT (HP−(n)HT + σ2
w)

−1 (2.16)(b) State update
x̂(n) = x̂−(n) +K(n)(s(n)−Hx̂−(n)) (2.17)(
) A posteriori error 
ovarian
e

P (n) = (I −K(n)H)P−(n) (2.18)Where σ2
v and σ2

w are the varian
es of the input and measurement noise respe
tively.The pro
ess starts with x(0) = 0, and P (0) = 109I for the initial unknown stateerror 
ovarian
e matrix. Note that on
e the optimal Kalman gains are established,the 
omputational burden of the �ltering pro
ess is redu
ed only to Eqs. (2.14),(2.17), and the anti-rotation.2.4 Numeri
al Results2.4.1 Signal TestThe signal in (2.1) with the following amplitude and phase time fun
tions will betaken as signal test:
a(t) = a0 + a1 sin(2πfat) (2.19)
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ϕ(t) = ϕ0 + ϕ1 sin(2πfϕt) (2.20)with the following parameters in amplitude: a0 = 1, a1 = 0.1, and fa = 5Hz, andphase: ϕ0 = 1, ϕ1 = 0.1, fϕ = 5Hz. And σ2

v = 0.01 and σ2
w = 10−4 whi
h 
orrespondsto a signal to noise ratio (SNR) of 37 dB, equivalent to the one produ
ed by analogto digital 
onverter of 6 bits. In addition to white noise, the algorithms were testedwith pink noise [31℄ and basi
ally the same error thresholds and behavior were found.It is worth mentioning that the IEEE standard of syn
hrophasors for power systems[9℄ does not 
ontain any spe
i�
ation 
on
erning the analog to digital 
onversion ofthe input signal in the phasor measurement unit [10℄ and less still any referen
e todi�erent types of noise.Zeroth-order ModelThe following are the results obtained with the zeroth-order trun
ation model Φ0whi
h 
orrespond to a zeroth-order Taylor polynomial.
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Figure 2.1: Signal (amplitude, per unit (pu)) and error estimation with zeroth-order signalmodel.As 
an be seen in Fig. 2.1, the Kalman �lter with the zeroth-order statetransition matrix provides good signal estimates. It a
hieves signal estimation errors
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Figure 2.2: Amplitude and phase estimation using the zeroth-order signal model.in the order of magnitude of 10−5. Unfortunately our problem is not to estimatethe input signal but the phasor. The ideal amplitude and phase 
omponents of thephasor are shown in Fig. 2.2 in lines and point, while their estimates in 
ontinuouslines. Note that a lag and a lead, of about a quarter of a 
y
le, are per
eptiblein the amplitude and phase estimates, indi
ating the presen
e of a group delay inthe transfer fun
tion of the �lter. The estimates exhibit an undesirable 
orrugatedbehavior similar to the in�ltrations on the 
elebrated one-
y
le Fourier �lter (seeFig. 5 in [13℄). This behavior 
an be per
eived with more 
larity in the 
omplexpath followed by the estimates as shown in Fig. 2.3. The Kalman gains are real and
onverge to 0.9902 after the �rst three fundamental 
y
les. Fig. 2.4 illustrates thebehavior of the total ve
tor error (TVE), whi
h is similar to the one in Fig. 10 in[13℄. As we 
an see, even if the Kalman �lter provides good signal estimates withthe zero-th order model, its phasor estimates are not as good as desired be
ause itsundesirable 
orrugation. In addition, with the zeroth-order model it is impossibleto estimate the speed or the a

eleration of the phasor. In the next subse
tion theimprovement of the estimates obtained with the Kalman �lter using the se
ond-ordersignal model is shown.
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  1

Phasor Complex Path

 

 
Phasor (central line)
Estimate (corrugated line)

Figure 2.3: Phasor 
omplex path (− line) and estimate(− · line and point) produ
ed withthe zeroth-order signal model.Se
ond-order ModelOn
e the optimal Kalman gains are established it is possible to use the Kalman �lteras an observer with the following Eqs:
x̂−(n) = Φx̂(n− 1)and

x̂(n) = x̂−(n) +K(n)(s(n)−Hx̂−(n)).The following results are obtained with the se
ond-order model (Φ2), for whi
hthe state transition matrix is 6 × 6. We apply the same noise levels of the previous
ase, σ2
v = 0.01 and σ2

w = 10−4, and the same starting matrix 
ovarian
e matrix
P (0).It 
an be seen in Fig. 2.5 that the signal estimates are improved. With thismodel, the order of magnitude of the signal estimation error is redu
ed by one. Thein
rease in model order improves also the phasor estimates, whi
h are now 
loser tothe ideal amplitude and phase sequen
es as 
an be seen in Fig. 2.6. It is apparentthat the 
orrugate e�e
t on the previous estimates has disappeared. The lead-lag
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Figure 2.4: Total ve
tor error a
hieved with the zeroth-order trun
ated model.of the previous estimates have also disappeared, indi
ating that the phase responseof this �lter is zero �at about the fundamental frequen
y. So, in this 
ase, theestimates have no amplitude or phase distortion, and therefore are instantaneous.The �u
tuation around 0 
y
le are due to the adaptive pro
ess of the Kalman �lter,whi
h starts with free gains at the origin, but they are frozen when they arrive totheir �rst steady-state. The disappearan
e of the 
orrugation e�e
t 
an be 
on�rmedin Fig. 2.7, whi
h illustrates a smoother 
omplex path 
loser to the ideal one givenby the dots. Finally, Fig. 2.8, shows the behavior of the TVE, whi
h is redu
ed bya fa
tor of ten with respe
t to the previous 
ase.
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Figure 2.6: Amplitude and phase estimation with the se
ond-order signal model and theerror estimate.With the se
ond-order model it is possible to obtain estimates of the �rst phasorderivative as it 
an be seen in Fig. 2.9, in whi
h the �rst derivative of amplitude andphase are shown (solid lines) with their estimates (dashed lines). These derivatives
orrespond to the amplitude speed of the os
illation and to the frequen
y o�set(with respe
t to the fundamental frequen
y) respe
tively. It is apparent that theseestimates are not as smooth as the phasor estimates, due to their apparent waveringbehavior. However, these results are better than those shown in [28, Chapter 5,Fig. 5.17℄. The wavering e�e
t is most evident in Fig. 2.10, whi
h illustrates theerror of the estimates normalized by the peak values. Due to the fa
t that phasorderivatives 
ross through zero, TVE 
annot be applied. Instead, the normalized rmserror (NRMSE) of speed and frequen
y o�set are 
al
ulated, and equal to 0.0332and 0.0560, respe
tively.
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Figure 2.7: Phasor 
omplex path (dots) and estimate(line) obtained with the se
ond-ordersignal model.
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19Signal estimation error is redu
ed ten times more with the fourth-order model,however a slighter redu
tion in TVE and NRMSE error level is a
hieved by furtherin
reasing the order of the signal model.The Kalman gain ve
tor of this example was taken from its �rst steady-stateperiod o

urring at the end of the �rst fundamental 
y
le. It was observed thatin the �rst �ve fundamental 
y
les, the estimates behave like those shown in theprevious �gures, but after that interval of time degraded to a behavior very similarto that of the zeroth-order model. So the Kalman gain ve
tor of the �rst steady-state period, as it 
an be seen in Fig. 2.11 was frozen in the observer whose resultswere shown. The ve
tor gain for the �rst half of the state ve
tor is the following:
K = (0.99208− 1.6051i, 167.21− 406.19i, 8538.9− 4, 4603.0i)T . The se
ond half isthe 
omplex 
onjugate of the �rst one.
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21TVE Redu
tionIt is interesting to analyze the behavior of TVE when the sampling frequen
y or theorder of the Taylor polynomial used in the signal model 
hange. Fig. 2.12 shows theroot mean square of the TVE in per
ent as a fun
tion of those parameters. The rmsis de�ned as:
rms(TV E) =

√

√

√

√

1

N

N
∑

n=1

TV E2
n (2.21)over the samples in an integer number of os
illation 
y
les. This is a good measureof the mean error level (given in %). As 
an be seen in that �gure, the error levelswith K = 0 are almost equal to those with K = 1; and also for K = 2, 3 and 4. Thisbehavior indi
ates that the quadrati
 Taylor element in the signal model is 
ru
ialfor redu
ing the error of the phasor estimates. These results indi
ate that the highestimation errors of the �lters for K = 0, 1 are mainly due to their phase distortion(delay). These �lters are unable to form a �at-null phase gain at the fundamentalfrequen
y, in 
ontrast to those for K ≥ 2. This inability to form a �at-null gain isalso a short
oming of the Fourier �lter whi
h has a 
onstant delay. As the samplingfrequen
y in
reases, a �ner 
ontinuous shape emerge in the waveforms of the TVEerror, as those illustrated in Figs. 2.4 or 2.8. The slow error level augmentationat the higher sampling frequen
ies in the se
ond 
urve 
an be explained by a slightin
rease in sensitivity to noise at those high frequen
ies. On the other hand, it wasalso observed that the estimates of the derivatives are improved when the order of theTaylor polynomial is in
reased. In the K = 0, 1 
ases, Kalman gains 
onverge qui
klyto 
onstant values, however in the K = 2, 3, and 4, the gains have a steady-stateperiod, like the one illustrated in Fig. 2.11. All those Kalman observers used thegains a
hieved at the 
enter of those steady-state periods, determined by a di�erentsample index, depending on the sampling frequen
y, but almost the same for ea
hof the three di�erent orders.
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Figure 2.12: Root mean square of the TVE (in %) as a fun
tion of sampling frequen
y(M = 2m samples per 
y
le) and degree K of the Taylor polynomial.2.4.2 Magnitude and Phase Step EstimatesTo illustrate the transient response of the �lters, both magnitude and phase stepsof the ben
hmark tests in [9, Annexes G.2 and G.3℄ were mixed together in theanalyzed signal. Fig. 2.13 illustrates amplitude and phase transients of the phasorestimates obtained with the zeroth- and se
ond-order Kalman �lters from the testedsignal. These 
orrespond to the step response of the Kalman �lters and are formed bythe dominant poles of the 
orresponding transfer fun
tions. The zeroth-order �lterprodu
es long amplitude and phase swings, whi
h 
orrespond to a spiral traje
toryin the 
omplex plane 
entered at the �nal phasor value, as it 
an be seen in Fig.2.14. This transient lasts around twelve 
y
les, indi
ating the presen
e of resonantpoles 
lose to the unit 
ir
le in the z plane. The se
ond-order �lter transient ismu
h lower and shorter (around two-
y
les long) than the pre
eding one. Finally,the estimates of the phasor �rst derivative provided by the se
ond-order �lter areillustrated in Fig. 2.15. It is apparent that the magnitude and phase derivativetransient responses last again around two 
y
les with large estimated values 
lose tothe origin, as it was expe
ted from the derivative of a step 
hanges. This high value



23is due to the amplitude and phase dis
ontinuities at zero of the test signal, in whi
hthe Taylor model is not as appropriate as in the former 
ase of smooth amplitudeand phase �u
tuations.
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Figure 2.13: Magnitude and phase estimates obtained with the zeroth- and se
ond-orderKalman �lter for the magnitude and phase step signal.
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Figure 2.14: Phasor traje
tories of the zeroth- and se
ond-order �lters. The spiral
orresponds to the estimates obtained with the zeroth-order �lter, and lasts twelvefundamental 
y
les.2.4.3 Frequen
y Step EstimatesFinally, the estimates of the frequen
y step test (+5 Hz) in [9, Annex G.4℄ are shown.Fig. 2.16 shows the magnitude and phase estimates obtained with the 
ompared�lters. Note that both �lters have 
omparable performan
e in the phase estimatesbut not in the magnitude estimates. This dis
repan
y is better understood in Fig.2.17 whi
h shows the phasor traje
tory of the estimates in the 
omplex plane. Thezeroth-order �lter produ
es 
onsiderable magnitude error due to its 
y
loid behaviorin the 
omplex plane. Finally, Fig. 2.18 shows the phasor derivative estimatesobtained with the se
ond-order �lter. Note that the frequen
y estimates 
onvergeto the ideal frequen
y step after two 
y
les. A per
eptible error is inevitable dueto the fa
t that the frequen
y step signal moves away from the frequen
y of therotation imposed to the signal model. The small swings after the se
ond 
y
le are
ertainly due to the in�ltration of the negative fundamental 
omponent be
ause that
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Figure 2.15: Estimates of amplitude and phase �rst derivatives obtained with the se
ond-order Kalman �lter from the amplitude and phase step signal.
omponent is seen from 65Hz at −130Hz. The gain around the negative frequen
yis not zero �at for K = 0, and almost zero �at for K = 2, but in both 
ases theerror is per
eptible. The period of su
h an in�ltration would be of 130/60 = 2.1667
y
les per fundamental period, whi
h pre
isely 
orresponds to the period of the errorwave per
eived in Figs. 2.16 and 2.18. However, more resear
h must be done forimproving the response of the derivative estimates before sharp transients.
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Figure 2.17: Phasor traje
tories obtained with the zeroth- and se
ond-order �lters fromthe frequen
y step test signal.
2.5 Experimental ResultsThe model used in this paper is based on a band-pass signal. In reality, power systemsignals may be polluted by harmoni
s or d
 o�set whi
h are not 
overed by this model(see Eqs. (2.10) and (2.11)). In this se
tion the proposed method is applied to apra
ti
al signal taken with a PMU from one substation. Fig. 2.19 illustrates thesignal as well as the level of estimation error a
hieved with the zeroth- and se
ond-order estimator. This signal was sampled at 48 samples per 
y
le. Be
ause it is asignal taken from one substation no further noise was added. Note that the signalestimation error is extremely low, 
on�rming that Kalman �lter is a very good signalestimator. The phasor (amplitude and phase) estimates as well as their derivativesare shown in Fig. 2.20. It is apparent that the estimates are noisy. This is due tothe presen
e of a �fth harmoni
 that in�ltrates the estimates a

ording to a spe
tralanalysis applied to the signal. One solution to this short
oming would be pre�ltering
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Figure 2.18: Estimates of amplitude and phase �rst derivatives obtained with the se
ond-order Kalman �lter from the frequen
y step test signal.the signal with a bandpass �lter, but this 
osts a delay of one or two 
y
les, plusthe additional 
omputation of a 
onvolution per sample. The best solution 
onsistsin extending the state transition matrix in (2.10) by in
luding in its diagonal amatrix ψh
1Φ and its 
omplex 
onjugate per harmoni
 h, where h is the index ofthe desired harmoni
. This option is more appropriate be
ause it only in
reasesthe quantity of Kalman gains by a fa
tor equal to twi
e the amount of harmoni
swe want to ex
lude. Fig. 2.21 shows the estimates obtained through this solution.The improvement in the estimates is apparent, and this implementation needs onlydouble the Kalman gains. we 
an see that the estimates are very good (the averageerror in amplitude was redu
ed from 0.7748 + 0.3897i to 0.7735 + 0.3885i). Thisextended method allows us to estimate the Taylor-Fourier 
oe�
ients [20℄ or theFourier 
oe�
ients (DFT) with the Kalman �lter. The number of produ
ts perstate estimate is (2H + 1)[(K + 1)2 + 2(K + 1)] when the signal model 
ontains Hharmoni
s and the d
 
omponent.
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Figure 2.19: Test signal and signal estimation error.
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Figure 2.20: Estimates of amplitude and phase with K = 0, 2 and their �rst derivativesobtained with the se
ond-order Kalman �lter from the test signal.
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Figure 2.21: Improved estimates without the �fth harmoni
 interferen
e.2.6 Dis
ussionThe interest of phasor estimation, in the 
omputer relaying 
ontext, is mu
h morepla
ed on signals with abrupt 
hanges than on signals under os
illations. Thisemphasis explains why the one-
y
le Fourier �lter is the prototype of this parti
ularappli
ation, be
ause in a sudden 
hange it rea
hes good estimates from one stati
state to the following one. It also explains that the syn
hrophasor standard [9℄, isup to now based on a stati
 phasor model, in a 
lear 
ontradi
tion with the dynami
nature of os
illations. And even when it is applied re
ursively, its estimates inheritthat strong stati
 
ondition.The dynami
 phasor is not dynami
 be
ause it is applied re
ursively, butbe
ause provided with a dynami
 signal model, it �ts better to �u
tuating signals.Under os
illations, it is not the same series of stati
 phasor estimates than aseries of dynami
 ones. Estimates of the Fourier �lter are poor under os
illationsbe
ause the higher derivatives of the os
illation in�ltrate into its estimates, as it wasdemonstrated in the theoreti
al and pra
ti
al examples in [21, p. 808℄. A kind ofTaylor aliasing, in whi
h, the higher derivatives ex
luded by the signal model haveproje
tions on the lower derivatives a

epted in it, due to the non-orthogonality of



31Taylor terms.By extending its signal subspa
e to higher derivatives, the Taylor-Kalman�lter is able to follow smooth �u
tuations with better pre
ision, by preventing thein�ltration of the derivatives in
orporated into its signal model. Of 
ourse, beforeabrupt 
hanges, when mu
h more higher derivatives are signi�
ant in the signalstate, the Taylor-Kalman �lter, as any dynami
 system, will be 
hara
terized byits transient response. But between the subspa
e of the stati
 state (K = 0) andthe transient state (K = ∞), there is a series of subspa
es that allo
ate mu
hmore room to the derivatives of smooth �u
tuations, o�ering better estimates. This
hapter dis
overs the advantages of the se
ond (K = 2) subspa
e with respe
t to thestati
 (K = 0) subspa
e.In our view, the main 
on
lusions of this 
hapter are doing is to 
reate anew �eld of appli
ation for phasor estimation, mu
h more appropriate to PMUappli
ations. Its main 
ontribution is to provide a new theoreti
al instrument formeasuring the os
illations of a power system, in 
onditions that overshoot the pre
iseboundaries of the relaying 
ontext.2.7 Con
lusionsState transition matri
es are possible to represent Taylor approximations to theenvelope of a power os
illation as a linear 
ombination of the dynami
 phasor and its�rst K derivatives. The Taylor-Kalman �lter 
an be applied to power signals underos
illations to obtain mu
h better instantaneous estimates of the dynami
 phasor andits �rst derivatives, by its ability to follow smooth variations. The estimates a
hievedwith the se
ond order model redu
e by a fa
tor of ten the TVE error a
hieved with thezeroth-order model (traditional Kalman �lter). The se
ond-order �lter is mu
h morestable than the zeroth-order with settling times in the transient responses around�ve times lower (from twelve 
y
les to two 
y
les). The se
ond-order �lter improvesalso the zeroth-order phasor estimates in os
illations with frequen
y o�set, withthe advantage of providing frequen
y estimates together with the dynami
 phasorestimates. Despite the short
omings mentioned in the former se
tion, these resultsopen the way to new phasor estimation te
hniques using other kind of observers. The
omputational 
omplexity of the estimator 
ould also be redu
ed by exploiting thesymmetry of the 
omplex signal models. But the main advantage of these dynami




32phasor estimates, as 
ompared with the Fourier �lter ones is that, under os
illations,they are instantaneous (no delay at all) while they preserve their syn
hrony.



Chapter 3Frequen
y Response ofTaylorK-Kalman-Fourier Filter forInstantaneous Os
illating PhasorEstimates
3.1 Introdu
tionPhasor estimation under dynami
 
onditions is an interesting resear
h area todaydue to the proliferation of syn
hrophasor appli
ations in wide area networks (WANs).It is also motivated by the in
reasing need not only of dynami
 syn
hronized phasormeasurements during os
illations, or severe system disturban
es, but also of thepower system frequen
y and its rate of 
hange under those 
onditions. It is all themore important be
ause the syn
hrophasor standard is under review to in
lude thepre
edent dynami
 aspe
ts to the stati
 signal model in whi
h its phasor de�nition[9,Se
tion 4.1℄ is based.Phasor estimation under dynami
 
onditions was explored in [20℄-[21℄ using theweighted least square (WLS) method leading to the Taylor-Fourier transform, whi
his more adequate under dynami
 
onditions than the traditional Dis
rete FourierTransform (DFT), whi
h is appropriate only for periodi
 signals with 
onstant
oe�
ients. The estimates of this method however 
ontain a systemati
 delay. Inorder to solve this problem, the Kalman �lter was proposed in [32℄-[33℄ to estimateos
ilating phasors, 
ondu
ting to an instantaneous phasor estimator under these33



34
onditions. But in these works the frequen
y response of the so 
alled TaylorK-Kalman �lter was not taken into a

ount. The purpose of this 
hapter is to showthose frequen
y responses that help us to understand the behavior of the phasorestimates when the signals 
ontain noise or 
omponents not 
ontemplates into thesignal model. At the same time, their interpretation will give us to an extended�lter, the TaylorK-Kalman-Fourier �lter, that is able to perform the FFT or theTaylor-Fourier transform (TFT) with mu
h less 
omputation e�ort using the Kalmanalgorithm.In phasor measurement appli
ations the traditional Kalman �lter has been usedwith a stati
 signal model, i.e. assuming 
onstant frequen
y, amplitude and phase.Its frequen
y response has been obtained separately for ea
h state in [34℄, or forits real and imaginary parts in [27℄. Their interpretation in both 
ases is di�
ultbe
ause, in the �rst 
ase, you need to think in terms of two �lters, and the pro
edure
ompli
ates when the number of states in
reases; and in the se
ond 
ase, you obtaintwo frequen
y responses, one for the real �lter and the other for the imaginary one.So it is di�
ult to have an idea of the whole frequen
y response of the 
omplex �lter.On the other hand, the problem with [35℄ is that the illustrated frequen
y responsesare obtained without freezing the Kalman gains, so it is hard to understand what afrequen
y response means in the 
ase of an adaptive �lter. Other papers refer to thefrequen
y response of the Kalman �lter but in other appli
ations, su
h as [36℄, whi
hmakes a 
ombination of the KF operating in the time domain and the Wiener �lter inthe frequen
y domain; or [37℄ that uses its time-frequen
y 
hara
teristi
s for tra
kingMultiple-Input Single-Output (MISO) systems for Orthogonal Frequen
y-DivisionMultiplexing (OFDM) appli
ations; or [38℄, whi
h smooths the spe
tra obtainedthrough Fast Fourier Transform (FFT) with a Kalman �lter. Finally, in [39℄ thedesign of navigation systems with multi sensors is des
ribed using the 
ontinuoustime KF and 
lassi
al frequen
y response te
hniques, su
h as Bode diagrams. So
ompared to the abundan
e of referen
es on Kalman �lter, the papers dealing withits frequen
y response are rather s
ar
e, spe
ially in our parti
ular appli
ation.The Taylor-Kalman �lter proposed in [33℄ is based on a state-spa
e signalmodel that in
orporates derivatives of the 
omplex envelope of the os
illation. Withthe advantage that it 
an estimate not only the phasor but also its derivatives. Itsfrequen
y response helps to assess the behavior of its estimates when the input signalhas 
omponents not 
onsidered into the signal model. Its behavior in frequen
ies



35other than the fundamental one 
an be improved by in
orporating them into itssignal model. We demonstrate here that it is possible to estimate the DFT or theTFT with the Taylor-Kalman-Fourier �lter, with the advantage of eliminating thedelays impli
it in their �nite impulse response (FIR1) �lters.Our investigation was motivated by the fa
t that there were several optimalsolutions in phasor estimation su
h as Weighted Least Squares (WLS), Kalman,Shanks, et
. So our departing question was: what is the optimum optimorum fromthese methods? And our response now is that optimality depend basi
ally on thesignal subspa
e built by the method. For example, the subspa
e of the WLS solutionis generated by ve
tors 
ontaining 
entered segments of the Taylor terms. Theyprodu
e anti
ausal FIR �lters. In the Shanks' 
ase, the subspa
e is formed by theautoregressive and moving average (ARMA) 
ausal ve
tors. The subspa
e of theTaylor-Kalman �lter is generated by the state ve
tor in the state-spa
e signal model,whi
h is also 
ausal. In the last two 
ases, the responses are not impli
itly delayedas in the �rst one.The work in this 
hapter is based in the 
lassi
al Kalman �lter algorithm.Its main 
ontribution is to provide its frequen
y response using the state transitionmatrix, and to show how it 
an be extended to the whole set of harmoni
s. Itdis
usses how to do spe
tral analysis, in
luding its derivatives, with the Kalman�lter algorithm, with mu
h less 
omputational 
ost than the traditional FFT.The 
hapter is organized as follows: in se
tion 3.2, the state spa
e signalmodel with its transition matrix and the Kalman �lter equations are established.In se
tion 3.3 the frequen
y response of the TaylorK-Kalman �lters are establishedand illustrated. Its extension to the full set of harmoni
s leads to the TaylorK-Kalman-Fourier �lter in se
tion 3.4, in whi
h its frequen
y response and numeri
alperforman
e are 
ompared with those of the FFT. Finally, phasor estimates of anos
illation with harmoni
s are dis
ussed in se
tion 3.5.3.2 Signal Model and Kalman FilterThe signal model of the TaylorK-Kalman �lter 
omes from the Taylor approximationto the bandpass signal model proposed in [19℄ for power system os
illations. ItsKalman �lter implementation was developed in [33℄. In this se
tion we make a1Finite Impulse Response.



36referen
e to the algorithms illustrated in the previous se
tions 2.2 and 2.3.3.3 Taylor-Kalman �lter Frequen
y ResponseThe frequen
y response of the Taylor-Kalman �lter 
an be obtained through the ztransform of its update state equation
x̂(n) = Φx̂(n− 1) +K(n)(s(n)−HΦx̂(n− 1)) (3.1)with the steady-state Kalman gains in K. The z-transform of (3.1) is
x̂(z ) = Φz−1x̂(z ) +K(s(z)−HΦz−1x̂(z)), (3.2)and solving for x̂(z) we have
[

I −Φz−1 +KHΦz−1
]

x̂(z) = Ks(z) (3.3)So the transfer fun
tions between the states of the signal model and the input signalis given by
G(z) =

[

I + (KH − I)Φz−1
]

−1
K, (3.4)and the frequen
y responses of the state �lters are obtained evaluating the transferfun
tions in G(z) at z = ejθ, for −π < θ ≤ π.3.3.1 Signal TestTo obtain the Kalman gains of the �lters, a signal test of the form in (2.1) is builtwith the following amplitude and phase fun
tions:

a(t) = a0 + a1sin(2πfat) (3.5a)
ϕ(t) = ϕ0 + ϕ1sin(2πfϕt) (3.5b)and the following parameters: a0 = 1, a1 = 0.1, and fa = 5Hz, for the amplitude;and ϕ0 = 1, ϕ1 = 0.1, fϕ = 5Hz for the phase. We also use the following parametersfor the Kalman �lter: σ2

v = 0.01 and σ2
w = 10−4, whi
h 
orresponds to a signal tonoise ratio (SNR) of 37 dB.



373.3.2 Taylor0-Kalman Filter Frequen
y ResponsesIn Fig. 3.1 the frequen
y responses of the Taylor0-Kalman �lter are shown fordi�erent sampling frequen
ies. Note that they are asymmetri
al, indi
ating theypertain to 
omplex �lters. It is easy to see that when the input signal 
orresponds toa steady-state signal, it works appropriately with a gain equal to two at the positivefundamental frequen
y and zero at the negative one. They exhibit a resonan
e atthe null frequen
y, indi
ating the presen
e of a pole 
lose to z = 1 in the transferfun
tion. The pole approa
hes more and more to one as the sampling frequen
yin
reases. It is well known that Kalman �lter does not work appropriately whenthe input signal does not 
orrespond to its signal model. In this 
ase, the signalmodel 
orresponds to a rotatory signal with two 
omponents, one rotating at thefundamental frequen
y, and the other 
ounter rotating. So the �lter fails to extra
ta phasor from a 
onstant signal, due to its non rotatory nature. The phase response isnot zero �at at the fundamental frequen
y indi
ating a small delay in the estimates.
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Figure 3.1: Frequen
y responses of the Taylor0-Kalman �lter at di�erent samplingfrequen
ies.The magnitude response of the Taylor0-Kalman �lter illustrated in Fig. 3.1 is
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Figure 3.2: At the top, magnitude responses of Real and Imaginary parts of the Kalman�lter as illustrated in [34℄ and at the bottom magnitude response of the 
omplex gain.equivalent to the one analyzed in [34, p. 103℄. In that 
ase, the variables of thestate ve
tor are the real and imaginary parts of the phasor. Using the parametersprovided in that paper, we were able to reprodu
e the magnitude responses of the realand imaginary state variables in the top graph of Fig. 3.2. Note the similitude withthose illustrated in Figs. 12-15 in [34℄. The magnitude response (of the 
omplex gain)built from the pre
edent ones is shown at the bottom. Note that it 
orresponds to aTaylor0-Kalman �lter, but with its resonan
e slanted to the right, due to the di�erentparameters of the examples. This 
orresponds also to the Kalman �lter developedin [11, p. 102℄. In that publi
ation, it is demonstrated that before unknown initial
onditions, and 
onstant error 
ovarian
e, Kalman �lter estimates 
orrespond exa
tlyto those of the half-a-
y
le Fourier �lter. Sin
e then, Kalman �lter was silen
ed inthe area of phasor measurement. However, note how di�erent is the Kalman �lterfrequen
y response from that of the Fourier �lter, whi
h has the shape of a 
ardinalsine fun
tion. They only 
oin
ide in the two and zero gains at the positive andnegative fundamental frequen
ies, respe
tively.The resonan
e at the null frequen
y 
an be resolved by adding a zero at z = 1.
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Figure 3.3: Magnitude responses of the Taylor0-Kalman-d
 �lter for di�erent samplingfrequen
ies.This is a
hieved introdu
ing a d
 
omponent to the rotatory signal model:
Φ =









1 0 0

0 ψ1 0

0 0 ψ̄1









, h =
(

1 1
2

1
2

)

. (3.6)Note in Fig. 3.3 that its magnitude response has now a zero gain at the null frequen
y.In addition a lowpass �lter is obtained from the �rst state variable (d
), its magnituderesponse is illustrated in Fig. 3.4. Note that it behaves as a low pass �lter due toits �at gain at null frequen
y. These kind of �lters are used in tele
ommuni
ationsto dete
t when the frequen
y of a signal goes out of a given interval.3.3.3 Taylor2-Kalman Filter Frequen
y ResponseThe Taylor2-Kalman �lter provides not only estimates of the phasor but also of thetwo �rst derivatives. Fig. 3.5 shows the magnitude and phase response of the phasorestimator �lter. Note the �at gains around the fundamental frequen
ies (positive andnegative). The �lter exhibits again a resonan
e frequen
y 
lose to the null frequen
y
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Figure 3.4: Magnitude responses of the d
 �lter for di�erent sampling frequen
ies.and has high gains at harmoni
 greater than one. So the �lter works well only whenthe signal spe
trum is 
on�ned into the intervals under the �at gains. The mainfeature of this �lter is in its phase response. Note the null phase in the intervalaround the fundamental frequen
y, it means that the phasor estimates of this �lterare instantaneous, i.e. without any delay when the spe
trum of the os
illation isthe bandpass signal assumed in our signal model. The abrupt phase 
hange in thenegative fundamental frequen
y is insigni�
ant due to the null gain in that interval.3.4 TaylorK-Kalman-Fourier FilterThe pre
edent Taylor2-Kalman �lter a
hieves ideal di�erentiator gains only aroundthe fundamental frequen
y. To obtain those gains about every harmoni
, thetransition matrix of the signal model needs to be extended to all the harmoni
sof interest. For example, if the signal is sampled at N = 2ℓ samples per period, andall of the harmoni
s are to be in
luded, then the extended transition matrix is of the
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Figure 3.5: Frequen
y response or T2-K �lter for several sampling frequen
ies.form
Φ(τ) =















ΦK(τ)ψ0

ΦK(τ)ψ1 . . .
ΦK(τ)ψN−1















(3.7)The extended matrix is (K+1)N×(K+1)N ; however, the 
omputational 
ostof 
al
ulating a state transition is not [(K+1)N ]2, but (K+1)(K+2)N/2 due to itsdiagonal nature, and the superior triangular form ofΦK. This redu
tion is importantbe
ause on
e the Kalman gains are established, the �ltering algorithm is performedonly with the state predi
tion (2.14) and the state update (2.17) equations. Theve
tor H of the output equation (2.13), for K = 2, is of the form
H =

1

2

[

2 0 0 1 0 0 · · · 1 0 0
]

. (3.8)so it requires only N produ
ts to estimate the signal from the state ve
tor. So the
omputational 
ost of the whole �ltering algorithm is (K + 1)(K + 2)N/2 + 2N .For example, for K = 0, it is 3N , and for K = 2, 8N . Comparing them with the
ost of an FFT of a signal with N samples, whi
h is ( log2(N)
2

N), we 
an see thatTK-K-F �lter is mu
h more lower than the FFT. In the next se
tion, we show that



42when all the harmoni
s are in
luded into the model, the frequen
y responses of theT0-K-F is the same of the DFT, and that of the T2-K-F �lter, the same of the T2-Ftransform without delay. So the T0-K-F �lter implementation is a faster algorithmto do harmoni
 analysis than the famous FFT.3.4.1 Taylor0-Kalman-Fourier FilterOur �rst example is the Taylor0-Kalman-Fourier �lter for a sampling frequen
y of
N = 16 samples per 
y
le. Its transition matrix is a diagonal matrix with thephase rotating fa
tors {ψk, k = 0, 1 . . . , 15} des
ending through the diagonal. Itsfrequen
y response is plotted in Fig. 3.6 together with the frequen
y response ofthe one-
y
le Fourier �lter. Note that they are exa
tly the same, and indi
atesthat the Taylor0-Kalman-Fourier (T0-K-F) allows the 
al
ulation of the DFT withthe Kalman algorithm. Note in its phase response that estimates of the Taylor0-Kalman-Fourier will have exa
tly the same delay as those of the one-
y
le Fourier�lter, whi
h is a half a 
y
le.
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Figure 3.6: Frequen
y response to the T 0 −K − F �lter.



433.4.2 Taylor2-Kalman-Fourier FilterThe se
ond example is the Taylor2-Kalman-Fourier �lter. Now its transition matrixhas in its diagonal the submatrix Φ2 multiplied by the phase rotating fa
tors
{ψk, k = 0, 1 . . . , 15}.Fig. 3.7 shows the magnitude and phase response of the T2-K-F �lter of the�rst harmoni
. The magnitude appears together with the response of the one-
y
leFourier �lter to appre
iate the transformation due to the 
hange from the zero totwo in the order of the Taylor polynomial. The 
omb �lter is transformed intoa fen
e �lter, i. e. a �lter that extra
ts one os
illating harmoni
, reje
ting therest of harmoni
s. Note that despite of the widening and in
rease of the mainlobeand sidelobe levels, the gains in the harmoni
 bands improve a lot be
ause of their�atness. Those gains improve the �ltering by avoiding the magnitude and phasedistortion at the harmoni
 of interest and by having a better reje
tion of the restof harmoni
s. Note in the phase response that the phase under the passband isa zero �at, indi
ating no delay in the phasor estimates. This means that phasorestimates 
an be truly syn
hronized with a time stamp in the nanose
ond s
ale. Ahuge advantage of these estimates, extremely useful for 
ontrol appli
ations. In thenext se
tion we demonstrate this fa
t in a numeri
al example. With the se
ond-order Taylor signal model is also possible to obtain estimates of the �rst and se
ondderivatives of the os
illation. Fig. 3.8, shows the magnitude responses for the �rstand se
ond phasor derivatives respe
tively. Note that 
lose to the fundamentalfrequen
y the magnitude responses exhibit the ideal di�erentiator gains (line andparaboli
 shapes).Before going to the numeri
al example, a few words about subspa
es. Thedevelopment of the TaylorK-Kalman-Fourier �lter by in
luding one by one the full setof harmoni
s shows that the subspa
e of the Taylor0-Kalman �lter, whose frequen
yresponse is illustrated in Fig. 3.1, grows little by little until rea
hing the full Fouriersubspa
e, with the frequen
y response illustrated in Fig. 3.6; or that of the Taylor2-Kalman �lter in Fig. 3.5 with that of Fig. 3.7. That is why it is possible to performthe DFT with the T0-K-F, and T2-F transform with the T2-K-F �lter, without thedelay of the FIR �lters.
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Figure 3.7: Frequen
y response to the T 2 −K − F �lter.3.5 Numeri
al ResultsIn this se
tion we test the T0-K-F and the T2-K-F �lters with an os
illatory signalto whi
h a 3rd and 5th harmoni
s are added at a 
ertain instant of time. The signalis sampled at N = 64 samples per fundamental 
y
le. The performan
e on phasorestimation of those �lters using N = 64 harmoni
s is analyzed.Test Signal
s(t) = a(t)cos(2πf1t+ ϕ(t))

+u(t)
[a(t)

10
cos(2π3f1t + ϕ3(t))

+
a(t)

20
cos(2π5f1t+ ϕ5(t))

] (3.9)
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Figure 3.8: Magnitude response of the �rst and se
ond di�erentiators asso
iated with theT2-K-F �lter.where
u(t) =







0, for t < 15/f1

1, for t ≥ 15/f1
(3.10)

a(t) = a0 + a1sin(2πfat) (3.11)
ϕ(t) = ϕ0 + ϕ1sin(2πfϕt) (3.12)
ϕ3(t) = 0.9ϕ(t) (3.13)
ϕ5(t) = 0.8ϕ(t) (3.14)and the following parameters in amplitude: a0 = 1, a1 = 0.1, fa = 5Hz; and phase,

ϕ0 = 1, ϕ1 = 0.1, fϕ = 5Hz. The noise varian
es in the Kalman �lter are: σ2
v = 0.01and σ2

w = 10−4.The test signal and its estimates are illustrated in Fig. 3.9. As you 
an seein (3.10), the inje
tion of the harmoni
s starts at the 15th 
y
le. Signal estimatesare very good for both �lters, that is why no di�eren
es between the three 
urvesare per
eptible. It is well known that Kalman �lter is good when the input signal
orresponds to its model. The estimation error (bottom graph) indi
ates however a
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Figure 3.9: Signal and error estimates.higher error for the T0-K-F �lter with an important transient immediately after theharmoni
 inje
tion instan
e. But we are using Kalman �lter to estimate not the inputsignal but its phasor. In the left 
olumn of Fig. 3.10, the phasor estimates obtainedwith both �lters are shown. The T0-K-F �lter produ
es estimates with a per
eptible
orrugated shape, and delayed half a 
y
le from the smother estimates obtainedwith the T2-K-F �lter. These estimates are 
loser to the ideal phasor, ex
ept atthe transient o

urring immediately after the inje
tion of the harmoni
s, due to thedis
ontinuity of their step 
hange when they appear. This is a very important result,that shows that the zero Taylor polynomial model is unable to suppress the delayin the estimates, and the se
ond order Taylor polynomial together with the Kalman�lter algorithm produ
es instantaneous estimates that 
an be truly syn
hronizedwith a pre
ise time stamp. Finally, the �rst derivative estimates obtained with these
ond order Taylor �lter are shown in the right 
olumn of Fig. 3.10. These estimatesare not so good as the phasor estimates but they 
ould be improved by using a modelof higher order.
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Figure 3.10: At the left, phasor estimates with the zeroth and 2nd order Taylor modelsand at the right �rst derivative estimates with K = 2.3.6 Con
lusionsFrequen
y responses of the TaylorK-Kalman �lter developed in the �rst part ofthe 
hapter indi
ate that this �lter is very sensitive to noise and that its goodperforman
e in phasor estimation depend on the 
on
urren
e of the input signal withits signal model. The extension of the signal model to the full set of harmoni
s leadto the TaylorK-Kalman-Fourier �lter. It was shown that Taylor0-Kalman-Fourier�lter has the same performan
e in harmoni
 analysis as DFT, but with mu
h less
omputational burden, even than in its FFT implementation. On the other hand, theTaylor2-Kalman-Fourier �lter is a fen
e �lter able to perform in real time the Taylor2-Fourier transform, but with mu
h less 
omputational e�ort; and most importantly,without delay. The in
lusion of a se
ond order Taylor polynomial in the signalmodel a
hieves a �at magnitude and phase response about every harmoni
 produ
ingharmoni
 os
illating phasor estimates without magnitude or phase distortion (nodelay). These instantaneous estimates 
an be truly syn
hronized to the mi
rose
ondtime s
ale, and therefore are very useful for 
ontrol appli
ations of the power system.



Chapter 4TaylorK-Kalman-FourierDi�erentiators for InstantaneousDerivative Estimates
4.1 Introdu
tionDigital di�erentiators are very useful in signal pro
essing, monitoring [40℄-[42℄, and
ontrol [43℄-[45℄ appli
ations. In some appli
ations derivatives are more importantthan the signal itself. Su
h is the 
ase, for example, of the speed estimator of a targetin a radar, or the estimation of the frequen
y variations on a power system underos
illations. One of the most popular implementations of digital di�erentiators isusing a �nite impulse response (FIR) �lter [46℄. The problem of estimates obtainedwith linear phase FIR �lters is that they have inevitable delay, by half the length ofits impulse response. Su
h is the 
ase of the Parks-M
Clellan implementation [47℄,or the �lter bank of maximally �at di�erentiators re
ently proposed in [48℄.Other well known FIR implementations 
an be found in [49℄, in the 
ase oflow-pass �lters designed with the maximally �at 
riterion, or [50℄ -[54℄ in the 
aseof full-band di�erentiators. In [55℄ digital linear-phase di�erentiators are designedbased on a relationship between the 
oe�
ients of a digital di�erentiator and those ofthe generi
 fra
tional delay �lter. And �nally, in [56℄, the interrelationships betweenthe digital di�erentiator, the digital Hilbert transformer (DHT), and the half-bandlow-pass �lter are established.Even if a systemati
 delay is not a problem in 
ommuni
ations appli
ations,48



49whi
h are always delayed at least one symboli
 period, this anomaly ex
lude the FIRimplementation from 
ontrol appli
ations, due to the potential instability provokedby a delay in the 
ontrol loop. In this 
ase, instantaneous estimates are preferable.This is a
hieved with digital di�erentiators implemented with in�nite impulseresponse (IIR) �lters. These �lters use mu
h less 
oe�
ients than the equivalentFIR �lters, but they have non-linear phase response, be
ause they are 
ausal or timeasymmetri
al. This means they produ
e phase and amplitude distortion. Su
h is the
ase of the full-band IIR di�erentiators designed in [57℄ based on the formulation ofa generalized eigenvalue problem using the Remez multiple ex
hange algorithm, orthe low-pass IIR digital di�erentiators in [58℄, whose numerators have a predominantlinear phase, at least over the frequen
y interval of operation.Observers 
an be 
lassi�ed as another kind of digital di�erentiators, even ifthey also provide IIR �lters. The problem with observers of dynami
 systems isthey estimate the state spa
e variables of a dynami
 system, whi
h not ne
essary
oin
ide with the derivatives of the output signal of interest. One of the most 
ommonobservers is the Kalman �lter. In [59℄ the 
onditions for obtaining the �rst derivativesof a dynami
 system with the Kalman algorithm when the state spa
e equationsof the system are known. This method a
hieves an optimum di�erentiator, whi
hobtains the minimum varian
e unbiased estimates of the �rst derivatives in the stateve
tor of a known dynami
 system.In this work, we present other set of optimum digital di�erentiators that donot require at all a priori knowledge of any dynami
 system. Instead, the Kalmanalgorithm is applied to approa
h a signal with its Taylor signal model, expressed by astate transition matrix that depends only on the sampling time, and the desired orderof the Taylor polynomial. The subspa
e generated by this signal model is similar tothe one developed in [48℄. But instead of obtaining the derivative estimates throughthe least squares (LS) method, whi
h leads to FIR �lters, we use the Kalman �lter toproje
t the input signal into the Taylor signal model subspa
e. We are going to showthat for Taylor orders greater than, or equal to two, the a
hieved frequen
y responsesare very 
lose to those of the ideal di�erentiators on the frequen
y baseband, whi
hin turn means instantaneous and undistorted estimates, provided the spe
trum ofthe input signal be on that band. The �lters a
hieved with this method are referredto as TaylorK-Kalman (TK-K) �lters. Their problem is that they have lateral highgains, or high sensitivity to noise. But that gain 
an be mitigated by extending



50the signal model through the in
lusion of harmoni
 
omponents. This extendedsolution leads to the TaylorK-Kalman-Fourier (TK-K-F) �lters proposed in [33℄ forinstantaneous os
illating phasor estimates. With this method is possible to estimatethe digital Fourier transform (DFT) with the Kalman Algorithm using a zeroth-order Taylor polynomial, with mu
h less 
omputational e�ort than that of thefast Fourier transform (FFT). It is also possible to estimate the TaylorK-Fouriertransform proposed in [21℄ by in
reasing the order of the Taylor polynomial.The main goal of our investigation was to �nd an unifying theory for obtainingthe best derivative estimator through the many options available today: leastsquares, Kalman �lter, maximum likelihood, et
. Our initial question was to �ndthe best among the best, or the optimum optimorum. Here, we use the traditionalKalman algorithm. So, our main 
ontribution 
onsists in expressing the Taylor signalmodel in terms of a state transition matrix, so the traditional Kalman algorithm 
anbe applied over one, or the whole set of harmoni
 frequen
ies. And, of 
ourse, to�nd a method able to provide instantaneous and undistorted estimates of the �rstderivatives of a signal, provided its spe
tral load be over the frequen
y intervalsunder �at magnitude and phase response of the di�erentiators.The spe
tral 
ondition of the di�erentiator ideal operation 
orresponds toos
illating signals. The derivative estimates are good in time intervals where theos
illation is smooth and without dis
ontinuities. We develop the frequen
y responseof the �lters to assess the behavior of the estimates when the signal 
ontainsdis
ontinuities or noise. The order of the Taylor polynomial 
an be in
reased, butthere is a limit imposed by the size of the sampling time, be
ause the elements ofthe state transition matrix are integer powers of this parameter, so for high samplingfrequen
ies, they vanish. But with an order of three it is already possible to estimateposition, speed and a

eleration.The 
hapter is organized as follows: in se
tion 4.2 shows the TaylorK-Kalman di�erentiators, the state spa
e signal model by di�erentiators is de�nedand the frequen
y responses of the TaylorK-Kalman di�erentiators, in se
tion 4.3the mitigation of the high gain with the low-pass TaylorK-Kalman di�erentiator isillustrated. In se
tion 4.4 the TK-K-F �lter is developed and an example of frequen
yresponse is illustrated. Finally in se
tion 4.5 the main results using a se
ond-orderand third-order di�erentiators are presented and dis
ussed.



514.2 TaylorK-Kalman Di�erentiatorsIn this se
tion we develop the three 
omponents of the TaylorK-Kalmandi�erentiators. First, we introdu
e the Taylor signal model represented in statespa
e equations. Its state transition matrix makes possible the use of the Kalmanalgorithm. Finally, we develop the equations for obtaining the frequen
y responses.4.2.1 Taylor Signal modelLet s(t) be a signal with up to its Kth derivative 
ontinuous in the time interval
T = {t : |t − t0| < Tm}, with Taylor interval of size Tm. It is always possible toapproa
h it in that interval by a Kth-order Taylor polynomial 
entered at t0:

sK(t) = s(t0) + ṡ(t0)(t− t0) + . . .+ s(K)(t0)
(t− t0)

K

K!

t0 −
Tm
2

≤ t ≤ t0 +
Tm
2

(4.1)By su

essively di�erentiating sK(t) in (4.1) as follows:
sK(t) = s(t0) + ṡ(t0)τ + s̈(t0)

τ 2

2!
+ . . .+ sK(t0)

τK

K!

ṡK(t) = ṡ(t0) + s̈(t0)τ + . . .+ sK(t0)
τK−1

(K − 1)!
(4.2)... ...

s
(K)
K (t) = s(K)(t0)with τ = t− t0. And by de�ning the state ve
tor sK(t), with the �rst K derivativesof the Taylor signal model sK(t), we see that (4.2) 
an be written in matrix form as:

sK(t) = ΦK(τ)sK(t0) (4.3)in whi
h ΦK(τ) is the state transition matrix between t0 and t:
ΦK(τ) =



















1 τ τ2

2!
. . . τK

K!

1 τ . . . τK−1

(K−1)!

1 . . . τK−2

(K−2)!. . . ...
1



















. (4.4)



52note that is the same matrix in 2.6 but without the phase rotation fa
tor ψ1.Under this representation, the Taylor signal model is then given by:
sK(t) = hTsK(t) (4.5)where hT =

[ 1 0 . . . 0 ], with K zeros.Finally, assuming t0 = (n− 1)T and t = nT , where T is the sampling period,we have the following dis
rete state transition equation:
sK(n) = ΦK(T )sK(n− 1) (4.6)In the next se
tion, we show how these signal model 
an be used in the Kalman�lter to estimate the derivatives 
ontained in the state ve
tor from a given signal.On
e the Kalman �lter rea
hes its steady-state gains, it will de
ompose the inputsignal s(t) into the state-ve
tor 
omponents of the signal model sK(t).4.2.2 Di�erentiator Frequen
y responsesThe frequen
y response of the Taylor-Kalman �lter 
an be obtained through the ztransform of its update state equation

x̂(n) = Φx̂(n− 1) +K(s(n)−HΦx̂(n− 1)) (4.7)with the steady-state Kalman gains in K. The z -transform of (4.7) is
x̂(z ) = Φz

−1x̂(z ) +K(s(z )−HΦz
−1x̂(z )), (4.8)and solving for x̂(z ) we have

[

I −Φz−1 +KHΦz−1
]

x̂(z) = Ks(z). (4.9)So the transfer fun
tions between the states of the signal model and the input signalare given in the following polynomial ve
tor:
G(z ) =

[

I +
(

KH − I
)

Φz−1
]

−1
K (4.10)and the frequen
y responses are obtained evaluating G(z ) at z = e

jθ, for −π ≤ θ ≤

π.



534.2.3 Taylor2-Kalman Di�erentiator Frequen
y responseFig. 4.1 shows the magnitude and phase responses of the zeroth derivative (position)estimates of the T2-K di�erentiators. The responses are shown for di�erent samplingfrequen
ies measured in samples per fundamental period, assuming a fundamentalfrequen
y of f1 = 50Hz. Note that both responses are �at about the nullfrequen
y, 
orresponding to the gain of an ideal signal estimator. If the spe
trumof the input signal is 
on�ned under the �at frequen
y response, approximately
0.2f1 = 10Hz, then the �lter will not distort the signal, neither in magnitudenor in phase. This means that, provided the signal spe
trum be 
on�ned in theideal operation frequen
y band, the estimates are not delayed (instantaneous) orattenuated at all. The magnitude response of the �rst and se
ond derivative (speedand a

eleration) estimators are shown in Fig. 4.2. Note again that, in theneighborhood 
entered at the zero frequen
y, they have the gains of the 
orrespondingideal di�erentiator, diverging with high 
onstant values outside the ideal operationband. The 
orresponding phase responses are shown in Fig. 4.3. They also approa
hthe ideal di�erentiator phase responses (jω and (jω)2) 
lose to the null frequen
y.There, they approa
h a Sign fun
tion of size π and 2π in frequen
y 
orrespondingto the j and j2 fa
tors. So, derivative estimates are also instantaneous. Then, theyoperate as ideal di�erentiators when the input signal spe
trum is 
on�ned inside theideal operation frequen
y band. In the time 
ounterpart, it means that they operateas ideal di�erentiators when the input signal is 
lean of noise and su�
iently smoothas to be approa
hed with enough pre
ision by a se
ond-order Taylor polynomial.4.3 Low-Pass TaylorK-Kalman Di�erentiatorOne way to mitigate the high gains of the TK-K di�erentiator 
onsists in extendingthe transition matrix in (4.4) by in
luding a new angular frequen
y 
omponent at ejπ,
orresponding to the half-band frequen
y. The in
orporation of the �rst derivativesof the 
omplex envelope at this frequen
y will be seen from the d
 
omponent (ej0)as an extra
tion, so the gain of the low-pass di�erentiators will go down in thehalf-band. These �lters will be referred to as low-pass TaylorK-Kalman (LP TK-K)di�erentiators . The new transition matrix will be:

Φ(T ) =

(

ΦK(T )

ΦK(T )e
jπ

) (4.11)
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Figure 4.1: Magnitude and phase response of the zeroth T2-K di�erentiator. The frequen
yresponse is �at around the null frequen
y.
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Figure 4.2: Magnitude response of the �rst and se
ond T2-K di�erentiators. Note thelinear and paraboli
 gains around the null frequen
y.with the following state transition equation
sK(n) = Φ(T )sK(n− 1) (4.12)and the signal model

sK(n) = HsK(n) (4.13)whereH = (hT hT ), be
ause sK(t) 
ontains now also the derivatives of the half-bandfrequen
y.Fig. 4.4 shows the frequen
y response of the zeroth 
ompensated di�erentiator.Note that now the gain goes down to a �at zero at the halfband frequen
y, whilethe �at frequen
y response 
lose to the null frequen
y is preserved. This e�e
tappears 
ompletely illustrated only for the 
ase of the lower sampling frequen
y, butit happens for all. The same holds for the �rst and se
ond di�erentiator frequen
yresponses illustrated in Figs. 4.5 and 4.6.In the next se
tion, the transition matrix will be extended to the whole set ofharmoni
 frequen
ies to obtain the TK-Kalman-Fourier di�erentiators.
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Figure 4.3: Phase response of the �rst and se
ond T2-K di�erentiators. Close to the zerofrequen
y, they have the ideal phase responses (jω, and (jω)2).
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Figure 4.4: Magnitude and phase response of the zeroth LP T2-K di�erentiator.
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Figure 4.5: Magnitude response of the �rst and se
ond LP T2-K di�erentiators.
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Figure 4.6: Phase response of the �rst and se
ond LP T2-K di�erentiators.



594.4 TaylorK-Kalman-Fourier Di�erentiatorsThe state transition matrix 
an be extended to the full set of harmoni
 frequen
ies.These di�erentiators will be referred to as TaylorK-Kalman-Fourier di�erentiators,be
ause they 
an estimate the �rst derivatives of the 
omplex envelope at ea
hharmoni
 frequen
y. This bank of �lters was �rst proposed in [33℄ and 
an alsobe seen as a Taylor extension of the digital Fourier transform (DFT).The extended state transition matrix is now:
Φ(T ) =















ΦK(T )

ΦK(T )ψ
1 . . .

ΦK(T )ψ
N−1















(4.14)with ψ = ej
2π

N for a sampling frequen
y of Nf1. The size of the state transitionmatrix is (K + 1)×N . The state ve
tor 
ontains the derivatives of the whole set ofharmoni
s and its output ve
tor is:
H =

[

hT
1 hT

2 . . . hT
N

]

. (4.15)with a size of 1 × (K + 1)N , therefore N row ve
tors de�de by hT = [1 0 . . . 0],with K zeros.The magnitude response of the T2-K-F di�erentiators in
luding 32 harmoni
sis shown in Fig. 4.7. Note that now the gain of all the di�erentiators goes down asthe frequen
y in
reases, ensuring full reje
tion with �at null gain at every harmoni
frequen
y. The phase responses are illustrated in Fig. 4.8. It 
an be seen thatideal phase responses are preserved around the null frequen
y. The illustrated 
ase
orresponds to a sampling frequen
y of 32 samples per 
y
le. But the main advantageof the estimates is that they are instantaneous, as it 
an be 
on�rmed by the phasesresponses 
lose to the zero frequen
y.Another advantage of this �lter bank is that the �rst derivatives of the full setof harmoni
 frequen
ies 
an be obtained at on
e. If the signal spe
trum is 
on�ned inthe ideal operation interval, then the di�erentiators operate a digital transformation,mapping the signal into the �rst derivatives of the 
omplex envelope of ea
h harmoni
frequen
y. In the next se
tion we 
onsider numeri
al examples.
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Figure 4.7: Magnitude response of the �rst three TaylorK -Kalman-Fourier di�erentiatorsfor K = 2, 3, and 32 harmoni
s. Note that ideal di�erentiator gains are a
hieved about nullfrequen
y and full reje
tion about harmoni
 frequen
ies.
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Figure 4.9: Signal, speed and a

eleration estimates obtained with T2-K di�erentiators.4.5 Numeri
al ResultsIn this se
tion we test the TK-K Di�erentiators with the following signal
s(t) = 1− e−t/2cos(t) (4.16)sampled with N1 = 64 samples per fundamental 
y
le. It is assumed that the signalis a�e
ted with additive white Gaussian noise (WGN) at the input of the stateequations and at the output equation, with σ2

v = 0.01 and σ2
w = 10−5 respe
tively.The results are obtained with the se
ond and third TK-K di�erentiators.4.5.1 TaylorK-Kalman Di�erentiatorsThe derivative estimates obtained with the se
ond-order (T2-K) di�erentiators areshown in Fig. 4.9. It is apparent that the signal estimate and the �rst derivative arevery 
lose to the 
orresponding expe
ted signals, but in the 
ase of the a

elerationestimates, noise is per
eptible.The estimates obtained with the T3-K di�erentiator are shown in Fig. 4.10.We 
an see that the a

eleration estimates are quite improved. It is rare to see
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1Figure 4.10: Signal, speed and a

eleration estimates obtained with T3-K di�erentiators.a

eleration estimates as these. Derivatives estimated with �nite di�eren
e equationsare very sensitive to noise.4.5.2 Low-Pass TaylorK-Kalman Di�erentiatorsThe results obtained with the Low-Pass (LP) TK-K di�erentiators are shown inFig. 4.11 for K=2. It is apparent that they are better than those obtained withouthalfband gain mitigation. The estimates obtained with the LP T3-K di�erentiatorsare illustrated in Fig. 4.12. These di�erentiators 
an also obtain the third derivative,but they are not shown here.4.5.3 TaylorK-Kalman-Fourier Di�erentiatorsFinally we present the estimates obtained with the TK-K-F di�erentiators for K = 2and 3, in
luding 32 harmoni
s. The results are illustrated in Fig. 4.13. Note thatthey are very 
lose ea
h other. The transient at the beginning is due to the timeneeded to rea
h the permanent Kalman gains. It 
an be seen that the noise in theestimates has almost disappeared. It was observed that the transient response of
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1Figure 4.13: Derivative estimates obtained with the TK-K-F di�erentiators for K = 2, 3and in
luding 32 harmoni
s.the �lters in
reases when more harmoni
s are in
luded in the di�erentiators. Herewe illustrated the derivatives of the zeroth harmoni
, but this type of di�erentiatorsestimate the derivatives of the 
omplex envelope of all the harmoni
 frequen
iesin
orporated in the signal model. In the next example, we look at the derivatives ofthe 
omplex envelope of the fundamental frequen
y.4.5.4 Power Swing Signal De
omposed by T2-K-FDi�erentiatorsFinally, the 
urrent signal of the power swing shown in the last example treatedin [48℄ is taken again to illustrate the performan
e of the Kalman instantaneousdi�erentiators. The Taylor2-Kalman-Fourier �lter with harmoni
s {0, 1, 3, 5, 7} wasapplied. The error of the signal approximation a
hieved by the Kalman �lter is on theorder of magnitude of−5. Fig. 4.14 shows the amplitude and its derivative estimates.It 
orresponds to a real 
ase of a 
urrent signal of a power swing in a European
ountry (at 50Hz). The 
urrent signal is not shown. Note that the amplitudeestimates have noise at the top of the 
rests, whi
h is re�e
ted in the 
orrespondingderivative estimates. At the bottom, phase and its derivative (frequen
y) estimatesare shown. Frequen
y in Hz was ampli�ed four times to make it visible in thats
ale. The per
eptible frequen
y o�set is negative (-0.05Hz) be
ause the system
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Figure 4.14: At the top, amplitude (
ontinuous line) and derivative (dash line)instantaneous estimates of a swing 
urrent (in dots) in a power system at 50Hz. At thebottom, the instantaneous phase (
ontinuous line) and frequen
y (dashed line) estimatesof the same signal. Those estimates were obtained with the T2-K-F di�erentiators.is overloaded. Abrupt 
hanges in phase o

ur at zero amplitude instants, and areestimated by frequen
y (phase derivative) peaks. Note that amplitude and phaseestimates are able to dete
t and measure the frequen
y peak o

urring about 2.5s.In this 
ase, we illustrate the estimates of the �rst harmoni
, but they are availablefor the whole set of harmoni
s, So, the T2-K-F di�erentiators work as an extendedspe
trum analyzer of the signal.4.6 Con
lusionsInstantaneous derivative estimates were obtained with the TK-K-F di�erentiators byapplying the Kalman algorithm to a Taylor-Fourier signal model expressed in a statetransition matrix. Several design possibilities were o�ered depending of the expe
tedspe
tral load of the input signal. They perform as ideal di�erentiators with os
illatingsignals. Di�erentiator pass-bands and stop-bands 
an be adapted to the frequen
iesof interest, when they are known. They 
an be interpreted as an extension of the



67DFT, and of the Taylor-Fourier transform, for K > 0, with mu
h less 
omputationalburden than that of the FFT. They 
an be used as simple di�erentiators on thebaseband, or as spe
tral analyzers of os
illating periodi
 signals, estimating notonly the standard spe
trum (amplitude and phase at ea
h harmoni
), but also their
orresponding derivatives. In 
ontrast to FFT, they provide instantaneous derivativeestimates, very useful for 
ontrol or syn
hronized monitory appli
ations.



Chapter 5Con
lusionsThe new state transition matri
es built with Taylor approximations to the dynami
phasor it is possible to obtain better instantaneous phasor estimates and itsderivatives under os
illation 
onditions through the Taylor-Kalman-Fourier �lter.The estimates a
hieved with the se
ond order model redu
e by a fa
tor of tenthe TVE error and are mu
h more stable than those obtained with the traditional(zeroth-order) Kalman �lter, with settling times �ve times lower. The extension ofthe signal model to the full set of harmoni
s was ne
essary to redu
e the high noisesensitivity to the TaylorK-Kalman �lter. With the Taylor0-Kalman-Fourier �lter itis possible to obtain the DFT Fourier 
oe�
ients of the signal. For orders greater orequal to two, the TaylorK-Kalman-Fourier �lters o�er �at null phase response aroundharmoni
 frequen
ies. This means that their Fourier estimates are instantaneous (nodelay at all). It is also possible to estimate the �rst derivatives of the os
illation.Finally, they 
an also be used as spe
tral analyzers of os
illating periodi
 signals.The following 
on
lusions 
an be drawn from the TaylorK-Kalman �lters: theTaylor signal model provides a state-transition matrix to model with better a

ura
ya power os
illation; a new te
hnique for phasor estimation improves the phasorestimates of the traditional Kalman �lter; the main advantage of the phasor estimatesobtained with the TK-K �lter (for K ≥ 2) is that they are instantaneous (no delay atall), preserving their syn
hrony with the signal, and with lower errors for os
illatorysignals; �nally, they redu
e the 
omputational 
ost as 
ompared with the one 
y
leFourier �lter.The following 
on
lusions from the TaylorK-Kalman-Fourier �lters: Byextending the signal model to the full set of harmoni
 frequen
ies, harmoni
 andnoise reje
tion is improved; for K = 0, this �lter bank obtains the DFT, but with68



69mu
h less 
omputational burden than the FFT; for K ≥ 0, estimates of the 
omplexenvelope and its �rst derivatives 
an be estimated at every harmoni
 frequen
y,performing the Taylor-Fourier transform, when the spe
trum of the input signal fallsunder the ideal di�erentiator gains; in the frequen
y domain, ideal di�erentiatorgains are a
hieved around the harmoni
 frequen
ies, so when the spe
tral load of theinput signal is 
on�ned in those bands, very good derivative estimates are a
hieved;�nally, the new derivative estimates obtained with these �lters are instantaneous (for
K ≥ 2) and therefore, good estimators of os
illating signals and their derivatives.5.1 ContributionsThe main 
ontribution of the thesis is the dynami
 signal model of the Taylorapproximation to an os
illating signal. Before this 
ontribution only stati
 signalmodels existed. Better (instantaneous, more pre
ise and fast) phasor estimates werea
hieved with the TK-K �lter. The TK-K-F �lter obtain instantaneous estimationsfor K ≥ 2 with shorter transient times and improved the sensitivity to noise of theTK-K �lter. In addition to the phasor, they 
an estimate the �rst derivatives atea
h harmoni
 frequen
y. Spe
tral analysis 
an be done with those �lters, obtaininginstantaneous Fourier 
oe�
ients, and with mu
h less 
omputational burden as
ompared with the FFT algorithm.5.2 Future Work� To develop a new model for obtaining faster results when the signal has abrupt
hanges.� Using the 
ombination of gains obtained with A
kermann algorithm and thenew kind of observers (using the TaylorK-Kalman-Fourier Filters as observers)to obtain qui
ker estimates before abrupt 
hanges.� It was shown that it is possible to obtain the FFT with the Taylor-Kalman-Fourier �lter, but it will be interesting to determine the advantages anddisadvantages of these di�erent methods.
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