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Abstract: Ti and Ti alloys are employed in demanding industries such as aerospace, automotive, 
biomedical, aeronautic, structural, naval, and chemical, thanks to their resistance to corrosion due 
to the formation of the TiO2 film on the surface. Diverse research has established that different cor-
rosive media could attack the oxide layer. One way to generate a stable, compact, and continuous 
oxide film is through anodizing treatment. The efficiency of anodization depends on diverse factors 
such as the microstructure, chemical composition of alloys, pH of electrolyte, time, and temperature 
of anodizing. This review aims to examine the corrosion resistance of the anodized layer on Ti and 
Ti alloys, with different parameters. The discussion is centered on the influence of the different pa-
rameters and alloy properties in the effectivity of anodizing when they are characterized by electro-
chemical techniques while studying the behavior of oxide. 
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1. Introduction 
Midway through the 1940s, titanium alloys were created for use in aircrafts. Due to 

their higher density, mechanical properties, superior formability, biocompatibility, and 
corrosion resistance when compared to rival materials like aluminum, steel, and superal-
loys, two post-World War II alloys—commercially pure titanium (CPTi) and Ti-6Al-4V—
remain the two most used titanium alloys in the aerospace, aeronautics, biomedical, pet-
rochemical, chemical, and automotive industries [1–5]. 

The four Ti alloy types are Ti, near to, α + β, and metastable, where the microstructure 
depends on the stabilizer (Mo, V, Cr, Ni, Fe, or Ta). Commercially pure (CP) and highly 
pure titanium alloys are distinguished by interstitial elements like oxygen and nitrogen, 
which boost titanium’s mechanical resistance but reduce its ductility. Al, Zr, or Sn are 
added to some alloys as stabilizers for cryogenic or high-temperature applications. Near 
alloys have a 2% stabilizer if combined with α + β alloys’ thermal solid resistance, high 
mechanical resistance, and other qualities. More recently, Si (0.1%–0.5%) is added to en-
hance their high-temperature capabilities [6–8]. α + β alloys can feature more than one 
stabilizer phase, such as interstitial, and can have up to 6% of these phases. Ti-6Al-4V is 
the most widely used Ti alloy worldwide, accounting for over 50% of production [8]. Ti 
alloys can have a martensitic microstructure and a high percentage of stabilizers. The mi-
crostructure may, therefore, be more complicated [8,9].  
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Titanium and its alloys have properties against corrosion superior to other metals 
because titanium generates an oxide layer of natural TiO2. However, the environment 
where the alloys work can provoke a corrosion process by a break in the passive layer 
because it does not develop in a uniform way (especially when the alloy has different 
phases), generating a break and regeneration of the passive layer, but making them sus-
ceptible to corrosion attacks [10–16]. Some authors have related the chemical composition 
of alloys with the properties of the passive layer; adding elements such as Mn, Va, and/or 
Al reduces the protective properties of the oxide layer. On the other hand, elements such 
as Pa, Ru, Mo, and/or Zr increase the protective properties [16–20]. It is important to men-
tion that the Ti alloy microstructure plays an important role in forming the oxide layer. 

In the presence of HCl and H2SO4, the titanium oxide layer can be dissolved, activat-
ing the degradation of the surface and making the alloy susceptible to corrosion attacks in 
exposed areas. Also, titanium alloys are susceptible to Cl− ion attacks on coated and un-
coated surfaces [21,22]. Titanium has been considered a metal that does not have corrosion 
problems. However, it is susceptible to different corrosion attacks. This review presents a 
bibliography of the corrosion properties of titanium and titanium anodizing in different 
environments and the factors that provoke the corrosion. 

2. Titanium Classification  
The titanium classification is based on the crystallographic structure of alloys. This is 

due to the allotropic properties of titanium, with a crystalline structure, hexagonal close-
packed (HCP) when it is at least than 882 °C (α phase). Ti over 882 °C presents a body-
centered cubic structure (BCC) known as the β phase. However, in a pure state, maintain-
ing the β phase is difficult, and the titanium trend returns to the α phase. To keep the β 
phase at low temperature, it is necessary to add different elements (β stabilizers), and the 
percentage of β stabilizer determines the type of Ti alloy. Different authors have classified 
α, near to α, α + β, β metastable, and β stable titanium [23]. Figure 1 shows the diagram 
of titanium and its alloys.  

 
Figure 1. Diagram of titanium and its alloys. 

Figure 2 shows how the different elements and β stabilizers can change the behavior 
of phase diagrams because some βs are isomorphous (V, Mo, Nb, Ta, and Re), and Cr, Fe, 
Ni, Mn, Ni, Co, Si, Fe, and Cu are eutectoids, changing the microstructure of the alloy [24–
26]. The α stabilizers increase the temperature and stability of the alloy so that the alloys 
will not present with important changes to their microstructure. On the other hand, the β 
stabilizer decrease the transformation temperature to conserve the β phase, thermically 
working [24,27,28]. 
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Figure 2. Phase diagrams for different elements: (a) α stabilizer, (b) β eutectoid, (c) β isomorphous, 
and (d) neutral stabilizer. 

2.1. Titanium Alpha (α) 
Usually, it is known as commercial pure (CP) and high-purity titanium. Also, α alloys 

can be obtained by alloying with α stabilizers such as Al or other neutral elements such as 
Sn and Zr (see Figure 2). CP alloys commonly present interstitial elements such as O, N, 
and H, and the percentage of those elements will classify the purity grade. These alloys 
are employed mainly in the chemical industry due to their good properties against corro-
sion and their ductility [24,29,30]. 

2.2. Titanium near to α 
These alloys are employed due to their properties against high temperatures because 

they combine the resistance to creep in the α phase with the resistance to high stress in α 
+ β alloys. The operation is limited to 500 to 550 °C [30–32]. The limit of the percentage of 
β stabilizers is 2%. The first alloy used was the Ti-8-1-1, with 8% aluminum, but the actual 
near to α alloys did not have 6% aluminum; this is because the alloy with 8% presented 
susceptibility to cracking and SCC. Some alloys have 0.1% of Si, and when employed at 
high temperatures use 0.5% [33,34]. 
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2.3. Titanium α + β 
These alloys have a balance between the two phases (α and β). These alloys contain 

one or more α stabilizers or an interstitial, and one or more β stabilizers in different per-
centages. α + β alloys are more susceptible to heat treatment. Usually, α + β alloys present 
Al between 5 and 6%, and from 4 to 6% in β stabilizers [35]. 

α + β alloys are the most employed in the industry. Around 70% of Ti alloys used in 
the world are the α + β alloys. The operating temperature of the alloys is between 350 and 
450 °C [36]. 

2.4. Titanium Beta (β) 
β alloys present low concentrations of α stabilizers, between 10 to 15% of β alloys. 

These alloys facilitate wide application with cool or different hardening methods. Also, 
their fatigue resistance is higher than that of the α + β alloys [8,9,33]. The alloys are em-
ployed in structural applications with high requirements due to the low elastic modulus 
and good resistance against corrosion [37,38]. 

When the β stabilizer is over 30%, the alloy is called β stable, but this type is not 
employed in any industry. The biomedical industry is studying the possibilities of implant 
applications due to biocompatibility [39–41]. 

3. Corrosion in Titanium 
Titanium presents high resistance against corrosion due to the aggressive reaction of 

Ti with the O in the air or the aqueous solutions. The reaction generates a TiO2 protective 
layer (it can present a crystalline structure or can be amorphous) of anatase or rutile. It is 
important to mention that recent research demonstrates that the alloying elements play 
an essential role in the protective properties of the Ti passive layer; elements such as Mn, 
Va, and Al decrease the efficiency of the protective layer. Meanwhile, Pa, Ru, Mo, and Zr 
increase the protective layer properties [42]. 

Authors have reported that the reduced acids (HCl and H2SO4) dissolve the titanium 
oxide layers, activating the degradation at contact with the surface and making the alloy 
susceptible to corrosion attacks in the uncovered zones. Also, Ti alloys presented suscep-
tibility to pitting attacks by Cl− ions in contact with metal and coating [43,44]. 

Another factor that influences Ti alloy corrosion is the variation in pH electrolytes. 
This can increase the corrosion rate of material due to the change in the potential corrosion 
(Ecorr), which can provoke the dissolution of the oxide layer. Another important factor is 
the temperature, because pH and temperature determine the properties of the oxide layer, 
changing parameters such as porosity, adherence, and thickness, just to mention some of 
the most important. Also, the regeneration of the passive layer after a localized attack is 
influenced by pH and temperature of the electrolyte [45–48]. 

When the pH is localized in acid environments (down 4), the oxide layers are dis-
solved, converting the titanium into a susceptible and active metal (eliminating the pas-
sivity) at potentials between 0.7 and 0.3 V vs. SCE. The composite that damages the Ti is 
the H2Ti; if the electrolysis process generates that composite, the corrosion kinetic will 
increase [48]. 

When Ti presents a potential equal to or higher than −0.3 V vs. SCE, the titanium will 
be passive, generating oxygen evolution on the surface; if the alloys are α and exposed to 
those potentials, breaking the passive layer is very difficult. However, if the alloy presents 
elements as Al, V, or Mn, a localized process will probably occur on the surface. In chloride 
environments, the energy necessary to begin a corrosion process is higher, so the corrosion 
occurs as an interstitial process, and the porosities will attack it. When the temperatures 
increase to 70 °C, the passive layers will be weak and more porous [42,49–51]. 
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3.1. Corrosion Mechanisms 
Also, corrosion can be classified into different types; aqueous corrosion processes will 

have two fundamental reactions. When the conditions are anaerobic, the water will con-
vert into an oxidant agent, creating metal oxides, hydroxides, or hydratase oxides with 
gaseous hydrogen according to Equation (1) [52–54]: 

M + n · H2O ↔ M(OH)n +
n
2

· H2 (1) 

The aerobics reactions when oxygen is the oxidizing agent are similar to Equation (1), 
but in this case, the hydrogen formation did not occur, as Equation (2) shows [42,55]: 

M + n · H2O +
n
2

· O2 ↔ M(OH)2n (2) 

The autoprotolysis in the corrosion system can change pH concentration, affecting 
the material surface or coating. Also, both reactions can occur simultaneously; the aerobic 
reaction occurs in a preferent way, so the material will present a trend to passivation and 
higher corrosion resistance [56]. 

Different corrosion types can occur on Ti, which can be uniform, localized (crevice or 
pitting), caused by stress, fatigue, hydrogen, or tribocorrosion. Figure 3 shows the Pour-
baix diagram; when Ti is not hydrated, Figure 3a, the passive zone is higher than when it 
is hydrated, Figure 3b. When it is hydrated, the corrosion zone increases from pH 0 to 8. 
In the corrosion zone, there is an unstable TiO2 layer that can be dissolved even in acid 
and basic pH. Therefore, Ti is considered vulnerable to corrosion when the potential is 
negative and oxygen reduction occurs [57–60]. The dashed lines (orange color) in Figure 
3 indicate the potential dependence of the hydrogen “a” and the oxygen “b” electrodes. 

 
Figure 3. Pourbaix diagram of titanium in the presence of water at 25 °C: (a) Ti is not hydrated (b) 
Ti hydrated [58]. 

A uniform attack on the material surface characterizes uniform corrosion. This type 
of corrosion can be presented in preferential zones because some corrosion products can 
localize in some zones. Uniform corrosion can present on Ti when the temperature and 
the acid concentration increase, dissolving the oxide layer and creating a metal ion soluble 
as in the next equation [57,61]. 

Ti → Ti3+ + 3e− (3) 
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With Ti3+ being more unstable than Ti4+, the unstable forms of Ti are II and III. The 
basic reaction equation of Ti corrosion is Equation (4). However, the Ti4+ is uncommon in 
aqueous solutions due to the high charge density that occurs by the deprotonation of OH- 
ions. From this, the stable layer of TiO2·nH2O is generated [62,63]. 

Ti + 4H2O ↔ Ti(OH)4 + 2H2 (4) 

3.2. Crevice Corrosion 
The crevice corrosion is the most common in Ti alloys. Various authors consider this 

corrosion localized because it occurs in a zone with a metal–metal interface that avoids 
oxygen reduction. This is damaging because if H+ ions are free to interact with electrons, 
the pH can be reduced, causing a material dissolution. Crevice corrosion is very common 
in union and paint zones; the principal causative of the degradation is the diffusion of Cl− 
and OH− ions because of anodic–cathodic reactions [58,64,65].  

The crevice corrosion theory consists of the necessity of energy for the corrosion pro-
cess. According to Fontana, the mechanism that acts can be divided into different stages. 
The first stage (Equations (5) and (6)) consists of anodic and cathodic reaction that occurs 
inside and out of the crevice, where the ions are balanced electrostatically by OH− ions. In 
the second stage, the cathodic reaction consumes the crevice’s oxygen. In the third stage, 
the diffusion process begins; in this case, Cl− is taken as an example. The Cl− and OH− ions 
are diffused into the crevice, decreasing the system’s energy and forming a metallic chlo-
ride. Equation (7) explains the metal chloride hydrolysis at low pH inside the crevice. Fi-
nally, in the fourth stage, the M+ and Cl− ions decrease the pH of the crevice, increasing 
the material dissolution by generating more metal ions [55,56]. 

M → Mn+ (5) 

O2 + 2H2O + 4e− → 4OH− (6) 

MCln + nH2O → M(OH)n + nHCl (7) 

Equation (7) describes the process of metal and chloride ions, resulting in the chloride 
acid and hydroxide of the metal being very aggressive on the surface [62]. This type of 
corrosion limits the application of titanium in all industries due to the complex process. 
Betts and Boulton [66] resume the crevice corrosion reaction according to the media that 
occurs in Table 1. 

Table 1. Reactions according to the crevice corrosion in different media [66]. 

Media Reaction 
Acid (oxygen reduction) O2 + 4H+ + 4e− → 2H2O 

Neutral/alkaline (oxygen reduction) O2 + 2H2O + 4e− → 4OH− 
Chloride reduction (acid) Cl2 + 2e− → 2Cl− 

Hypochlorite reduction (near to neutral) HClO + H+ + 2e− → 2H2O + Cl− 
Hypochlorite reduction (alkaline) Cl− + H2O + 2e− → 2OH− + Cl− 

Sulfur reduction S + 2H+ + 4e− → H2S 
Thiosulfate reduction S2O3

2− + 6H+ + 4e− → 2S + 3H2O 
Hydrogen evolution (discharge) 2H+ + 2e− → H2 

Hydrogen evolution (neutral/alkaline) 2H2O + 2e− → H2 + 2OH− 

Figure 4 shows the scheme of crevices’ corrosion. The barrier can be painted, another 
metal (noble), or anodized. It is very important to mention that the mechanism inside the 
crevice is very similar to the pitting mechanism, with the difference that in the pitting 
corrosion, it is not probable that an oxygen reduction changes the pH of the solution [67]. 
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Figure 4. Scheme of crevices’ corrosion. 

3.3. Pitting Corrosion 
Pitting corrosion occurs in passive metal due to an aggressive attack on anions. The 

halides are the principal causative of pitting corrosion on the oxide layer, provoking ma-
terial dissolution in the zone of localized attack. The Cl− ion is the principal pitting gener-
ator in a marine environment, but it is not exclusive to the marine environment, highway 
(deicing salt), food, and chemical industry. There are four pitting stages: The first is the 
passive layer breaking, followed by pitting nucleation, growth and repassivation. The cor-
rosion mechanism will depend on material and environmental conditions [68]. 

The passive layer-breaking mechanism and the crevice corrosion are similar pro-
cesses. Figure 5 shows the division of the pitting process caused by Cl− and SO4− to NaCl 
and H2SO4. The scheme suggests the passive layer will break, exposing a metal zone to 
ions. Finally, in the adsorption phase, ions are adsorptive in the metal–oxide layer inter-
face, accelerating the metal’s and passive layer’s dissolution [69–74]. 
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Figure 5. Pitting formation process: (a) electrochemical nucleation, (b) oxide layer breaking, and (c) 
ions adsorption mechanism [74]. 

Macdonald et al. [75–77] developed a repassivation and passive layer-breaking 
model due to the oxide layer vacancies. They assumed that the cations go from the oxide–
electrolyte interface to that of the metal–oxide, generating a mass transfer process. The Cl− 
can affect the vacancy diffusion process [78]. 

4. Coatings 
Different coatings can be applied to increase the titanium corrosion resistance. Tech-

niques such as thermal oxidation, sol–gel, sputtering, electrodeposition, passivation, and 
anodizing have been used to generate a resistance oxide layer [79–81]. The problem with 
the passivation process is the coating’s low thickness, generating an oxide layer with het-
erogeneities; a heterogeneous layer is susceptible to localized attacks. The oxide film ac-
complished by the sol–gel technique is rich in Ti-OH and it has a thickness lower than 10 
µm [82,83]. Plasma electrolytic oxidation (PEO) is another method that can be very effec-
tive, but the requirement of special equipment and the difficulty of processing big pieces 
increase the manufacturing cost. An excellent option to generate oxide layers is anodiza-
tion. This process can generate a more uniform coating than that obtained by passivation. 
Moreover, anodization reduces the cost of finished products compared to PEO because it 
can be applied to big pieces [44,83–87]. The anodization technique is a fast and low-cost 
technique that allows for a more effortless and uniform growth of the passive layer, giving 
good control of its thickness, composition, and morphology [88–94]. 

4.1. Anodizing 
The anodizing process is an electrochemical treatment to improve the artificial 

growth of the oxide layer in the metal surface, creating a micrometric oxide layer. This 
oxide layer is formed on metals when the current and/or potential are optimized. In Ti 
alloys, the anodizing can be in Ti4+ or Ti3+, the last one being the most stable in solid dis-
solution with O2− or OH− anions, forming in the oxide–solution interface with H+ evolution 
from H2O [95,96]. 

To propitiate the ion migration through the oxide layer, a large electrical field must 
be applied, allowing for the oxide layer to grow. The high electric field can be provoked 
by the potential decrease caused by the metal oxide properties in the metal–oxide–elec-
trolyte interface. The metal ions can sometimes be expulsed to the electrolyte as a disso-
lution [96–98].  

Besides the oxide generated by the reaction, other secondary reactions can occur re-
lated to the alloy’s chemical composition or the electrolyte; the reaction will have a signif-
icant impact on the anodizing efficiency. The alloys can present a deposition of dissolved 
alloying elements, creating secondary oxides [99–105].  

The factors influencing the anodizing process are the potential applied, pH, current, 
electrolyte concentration, and temperature. To obtain a more defined structure, all the fac-
tors must be controlled, or at least one of them must be. The temperature controls the 
diffusion rate, and the porosity of the system and the pH control the pore size. Another 
variable is the time, this determines the type of layer that is generated: a unique barrier, 
porous, or with a nanotube array [104–106]. 

In fact, the electric field’s intensity depends on electrolyte properties; a high electric 
field generates more and bigger breakdowns of the oxide layer, generating anodizing with 
bigger porosity diameters [107]. If the porous or nanotube diameters need to be small, it 
is necessary to employ organic electrolytes. Neutral and viscous electrolytes allow for the 
generation of large tubes [107,108]. Also, the electrolyte concentration affects the diameter 
of porosities and the porous structure [107,109]. 
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It is important to mention that electrolyte concentration plays a fundamental role in 
the anodization; authors reported that Ti anodized in H2SO4 presented greater oxide layer 
growth at 0.5 M than at 2 M [110,111]. 

Barrier-type anodization forms quickly after exposition or with neutral pH. When 
neutral pH is employed to achieve anodization, it is more difficult to establish the poten-
tial and current because of the low ion transference in the system. The application for 
those electrolytes is low, and the oxide layer generated is very thin, with nanometric val-
ues. It occurs due to the low ion transfer [94,103]. 

On the other hand, when the oxide layer begins to be dissolved in the electrolyte, it 
generates a porous layer. The surface finish depends on the industry in which it will be 
applied. Aeronautical and aerospace industries require a porous layer. The pores or tubes 
will present an ordered array if the anodizing time is high. Usually, the barrier layer is 
situated on the base of the pores [105,112].  

The barrier layer is first formed, and the pore’s nucleation begins after that stage. The 
layer thickness will be proportional to the voltage applied or the ion transference. An ion’s 
continuous flow stimulates the growth of the porosities, but it does not mean constant 
growth. The oxide layer stops growth gradually as it increases, and this is due to dielectric 
constant increases. Figure 6 shows the four stages of oxide growth: the (a) station shows 
the barrier layer created at the beginning, (b) is the porosity generation, (c) is the ordering 
of porosity to finish in, and (d) is a structured nanotubular array [112–114]. 

 
Figure 6. The 4 stages of oxide growth: (a) station shows the barrier layer created at beginning, (b) 
is the porosity generation, (c) is the ordering of porosity to finish in, and (d) is the structured nano-
tubular array. 

The classic anodizing process included alkaline cleaning, activation in acid, and the 
anodization of the electrolyte. According to various authors, acid cleaning should be per-
formed on HF and HNO3 to remove TiO2 generated naturally, as well as surface impurities 
such as Fe and other particles. However, standards exist that establish how to perform the 
anodizing, such as aeronautical standards (SAE) that suggest only an alcohol cleaning 
[115,116]. 

Kumar [117] mentioned that the H2SO4 electrolyte produces a stable and homoge-
nous layer. 

Authors [118,119] reported that nanotubes were formatted after 6 h at 4.5–6 pH, but 
other authors concluded that nanotubes could not be formed at pH greater than 6. In an-
other study, at pH values 8–9, forming long nanotubes is more efficient than in an acid 
solution. Sreekantan et al. [119] support the Feng results and conclude that nanotubes can 
be generated at neutral pH. In that research, they found that the nanotube formation rate 
can be controlled by pH. Also, the crystallographic structure can be controlled by an an-
nealing treatment. However, two types of oxides can be present (anatase and rutile). 
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Regardless, if the cleaning is performed with an acid or alcohol, the titanium will be 
the anode, and platinum the cathode. To monitor the potential, some authors have added 
the Ag/AgCl reference electrode [115,120]. Figure 7 shows the anodize mechanism with 
the respective chemical reactions and the diffusion process. The oxide layer is more resis-
tive than the electrolyte and titanium, so the applied voltage will decrease due to the oxide 
[120,121]. 

 
Figure 7. Anodization mechanism with the respective chemical reactions and the diffusion pro-
cess. 

Equations (8) and (9) describe the process that occurs in all the interfaces: 

Ti ↔ Ti4+ + 4e− (8) 

Ti4+ + 2H2O ↔ TiO2 + 4H+ (9) 

Various authors conclude that when two-phase Ti alloys are anodized, the oxide for-
mation is different based on the alloy element of each phase. The α phase presents a more 
porous structure. Meanwhile, the β phase does not present that behavior [115,120]. 

The current decrease is related to the delay between the potential applied and the 
protective barrier under the pore. Some authors reported that an oxide with varying mor-
phology is created when the potential decreases, generating fine pores. In contrast, a new 
layer is created when the potential and current increase. The anodizing efficiency in-
creases with the potential to generate a double porous layer with a barrier layer [122,123]. 

Diverse authors recommend using AC to realize the anodizing. However, other au-
thors reported that the AC anodizing in H2SO4 as an electrolyte generated a heterogeneous 
surface with sulfur deposits on low-quality porosities. Also, the AC generates a hydrogen 
evolution, interrupting the passive layer growth [102,124].  

The current density employed directly affects pore size because of a high current in-
crease in the electrical field. Therefore, it is normal to find different porosities when the 
current is changed. It is important to consider that when the current is increased, the break 
of the first oxide layer is more aggressive, and the formation of porosities is faster [125–
127]. 

During anodization, it is important to consider the mass transference process and a 
heat transfer. Anodizing generates heat based on Joule’s heating law, which explains that 
heat is generated due to the ionic transference in the resistive oxide layer. The temperature 
directly affects the oxide layer morphology; high electrolyte temperature increases poros-
ity diameters near the oxide–electrolyte interface. This effect is caused by the high aggres-
siveness of electrolytes at high temperatures, accelerating the dissolution of oxide. The 
oxide layer thickness decreases when the metal–oxide interface is closed. The pore diam-
eter is proportional to the voltage applied to the barrier zone [116,128]. 

Different authors reported that at temperatures over 40 °C, the anodizing presented 
an irregular surface; however, it is mechanically functional [129]. The porosity formation 
increases with an increase in anodizing temperatures. This is related to the viscosity of 
electrolytes; if the viscosity is low, the etching is faster due to faster ions’ mobility. At high 
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viscosity, the ion transference is lower; so, at low temperatures, the pores are more irreg-
ular [130–133]. 

The time affects the oxide layer formation. If the anodizing time is short, pore or tube 
formation is impossible. To form nanotubes, it is necessary to employ at least 15 min. Po-
rosities can be generated for 5 min (this factor will depend on electrolyte and pH). If the 
structure desired is porous, is necessary to anodize for a long time (more than 20 min) and 
use electrolytes with non-neutral pH. However, if the pH is neutral, the anodizing time 
will be longer (more than 1 h). The porosity will depend on the industry in which the 
anodizing will be applied [134,135]. 

4.2. Corrosion in Anodizing Titanium 
The corrosion resistance that presents different titanium alloys directly depends on 

the alloy’s chemical composition [51]. Authors such as Palka et al. [136] mentioned that 
material porosity influences titanium’s mechanical and chemical behavior and alloys, 
making the material more susceptible to localized corrosion and a repassivation process 
[137]. For this reason, small pores propitiate the oxygen reactions, being very important 
to the development of TiO2. With all the interconnected porosities, the electrolyte flow 
generates an easier oxygen diffusion.  

The effect of the oxide layer generated can be related to the Ecorr values. Authors such 
as Dabrowki et al. [138] related the increase in porosity with the passive layer, indicating 
that materials with less porosity presented less corrosion resistance than porous materials, 
increasing the Ecorr values [139]. For this reason, and sustaining that mentioned previously, 
the surface finish has important relevance to the generation of the oxide layer; if surface is 
porous, the oxide layer generated will present better properties against corrosion than in 
the surface without. Some authors also related the last SiC sandpaper used to finish the 
material [140–143]. 

Although the porous metal generates a good oxide layer, is important to consider the 
porosity of the oxide layer, which is related to the electrolyte anodizing employed or the 
pH. Different processes have been reported regarding the formation of the porous layer. 
Ti anodized presented a cathodic–anodic behavior at CPP, it occurs when the electrolyte 
concentration changed due to a pH variation and an oxygen reduction. When it occurs, 
the protective layer is reduced by an OH− attack; it is most common in heterogenous sur-
face (different porosity diameters) or passivation zones [144–149]. 

When anodizing media is an acid such as H3PO4, the oxide layer is bigger and more 
porous. Some authors mentioned a better performance of H3PO4 over H2SO4, which is a 
most common anodizing electrolyte. The Ti anodized on H3PO4 trends to present a diffu-
sion process due to the low ionic resistance [150–156]. 

Authors such as Martinez et al. [157] related the Ecorr increase with a passive layer that 
does not help against corrosion. Further, an increase in passivation current density with 
chlorine and oxygen evolution occurs on the surface, making Ti alloys anodized and sus-
ceptible to corrosion. 

When Cl− attacks the anodized surface, the absorption will depend on the surface 
charge. If the surface is positively charged, the Cl− attack will be easier when Ecorr presents 
positive values. The Cl− attacks as an interstitial element, so the anodized porosity is im-
portant. The Cl− induces localized attacks by oxychloride accumulates in the metal–layer 
interface, breaking the passive layer and generating pitting corrosion [158–161]. 

However, alloying elements are vital because elements such as Mo, Zr, and Nb are 
reported to inhibit Cl− (absorption), protecting the anodizing of Cl− (attacks). 

When evaluated with different electrochemical techniques, Ti alloys anodized with 
the presence of Mo presented better properties against corrosion. They commonly present 
with double-layer behavior. 

Sadek et al. [162,163] mentioned that the formation of Ti (OH)x Oy is normal due to 
the oxidation process limitation by an increase in the oxide layer. The porosities propitiate 
the generation of the hydroxide and generate a posterior diffusion [164–166]. Nyquist’s 
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diagrams show that hydroxide and secondary oxide generation generate a capacitive re-
sponse [167]. 

Karambakhsh et al. [168] mentioned that the anodizing in H2SO4 decreased the cor-
rosion rate due to a more stable anodic film. Also, the higher anodizing potential was as-
sociated with higher corrosion rates due to a porosity increase. 

However, other authors have mentioned that an increase in anodizing voltage in-
creases the film thickness, porosity, and crystallinity, and that anodized samples present 
with a reduced corrosion rate compared to non-anodized samples. However, the potential 
increases the porosity of titanium, and at high potentials (over 80 V), the corrosion rate 
will be higher at 10 V because of the anodized porosity [169,170]. 

The anodizing process can increase the oxide thickness to develop corrosion re-
sistance and in turn release ions; the effect on the anodizing samples is an increase in cor-
rosion resistance, independently of the anodizing electrolyte [171,172]. 

Prando et al. [173] related the potential with corrosion rate when the titanium was 
treated at potentials lower than 40 V, presenting better performance against corrosion. 
They attributed that behavior to forming one amorphous compact oxide layer, reducing 
the system’s porosity. This information suggests that a compact oxide layer is better than 
a porous oxide layer against corrosion behavior. 

Anodized titanium is susceptible to pitting by salt anions; the principals’ anions are 
F−, Cl−, Br−, and I−, because it provokes a local breakdown of the protective film and initi-
ates the pitting process [174–177]. Fluoride ions are the most aggressive halides. They form 
TiF4. As Nakagawa et al. [178] researched the electrolyte pH, they indicated that samples 
presented passive, non-passive, and active attacks when exposed to halide solution, indi-
cating that all the samples were susceptible to pitting attacks. 

Other authors consider the Br− ion as the most aggressive, generating localized cor-
rosion in a range of 2.5 to 3 V vs. SCE; at 1.2 V, the redox of Br begins, and the dissolution-
pitting begins [179]. The aggressive halides are Cl−, I−, Br−, and F−, with F being the most 
aggressive electrolyte. Also, Prando et al. [180] concluded that fluorides dissolve titanium 
oxide generated by anodization in H2SO4. Also, as chlorides do not generate localized cor-
rosion as fluorides, the corrosion rate increases with chloride concentration because it 
causes the oxide layer dissolution. 

Authors document that localized and uniform corrosion can occur on material sur-
faces. The electrochemical reaction of uniform corrosion implies that the whole area is 
generally slow. For localized corrosion, it occurs in preferent zones [51]. For that reason, 
is important to develop a uniform anodizing; if the anodizing is not completely uniform, 
corrosion processes can occur in specific areas (difference of porosity and morphology). 
Different researchers have shown that anodized morphology is very important. Anodiz-
ing in acid media presented a more uniform anodized surface than in alkaline media. The 
anodizing on NaOH and KOH at 1 M showed susceptibility to localized corrosion due to 
a non-heterogenous surface. This behavior was present in Ti-6Al-4V and Ti Beta-C. When 
the same alloys were anodized in H2SO4, they presented a homogenous surface and a 
trend to uniform corrosion. Additionally, other electrolytes such as alkaline media can be 
considered as substitutes of acid electrolytes, but it is important to mention that the ano-
dization efficiency will not be the same. 

The chemical composition of alloys plays an essential role in Ti anodization. Alloys 
with α + β phases commonly present more difficulty in generating a uniform oxide layer. 
If the β alloying element is V, it generates an unstable oxide layer. However, if the β sta-
bilizer element is Mo or Cr, the anodic layer created in the β phase will be a more stable 
oxide layer. This behavior is presented in anodized Ti-6Al-4V, which can present a heter-
ogeneous surface more susceptible to pitting than a Ti-6Al-2Sn-4Zr-2Mo alloy. The last 
alloy has Mo and Zr, so the anodized layer created is very stable, and anodizing is not 
susceptible to localized corrosion. Also, α alloys generate uniform anodized surfaces, alt-
hough the corrosion rate is higher than that of alloys with Mo, Zr, or Cr elements [181–
186]. 
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The corrosion mechanism will be very different for each anodizing treatment. Figure 
8 shows the different equivalent circuits obtained by ECS in different studies. The mech-
anism goes from a double-layer process to a Warburg diffusion process, and when ano-
dization presents great diversity in porosities, it is normal use a three-CPE system. When 
the CPE α value is lower, as in Figure 8b,d, it indicates an irregular anodizing surface, 
with differences in porosities; on the other hand, values near to 1 indicate a homogenous 
surface, Figure 8a,c. The susceptibility to pitting attacks is due to hydroxide formation in 
the anodization, as the hydroxide layer is porous, provoking a diffusion process [90,187–
194]. When the oxide layer is a small barrier (thin oxide layer), it will present the behavior 
shown in Figure 8a,b; the difference is the surface homogeneity. When the surface is ho-
mogeneous, the Nyquist diagram obtained will be as in Figure 8a. If the anodization pre-
sents a heterogeneous surface, the behavior is as shown in Figure 8b. On the other hand, 
when a double-layer system is presented, if the anodized porosity is homogenous, the α 
value will be near 1. The behavior presented will be similar to that in Figure 8c. In contrast, 
when the porosity is non-homogenous, the behavior will be similar to that in Figure 8d 
and the α values will be between 0.6 and 0.7. 

 
Figure 8. EIS results for (a) homogenous anodized surface, (b) heterogeneous anodized surface, (c) 
homogenous double-layer system, (d) second layer non-homogenous surface. 

Another behavior observed in anodized Ti is shown in Figure 9a, where the equiva-
lent circuit is similar to that in Figure 10d. That behavior is presented when the porosities 
have two different morphologies before arriving at a compact layer. The diffusion process 
is shown on Figure 9b, when the phase angle finishes on 45°, and it is related with a dif-
fusion process. The equivalent circuit is shown in Figure 10c. 
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Figure 9. (a) Three-CPE system; (b) diffusion process. 

Also, different authors have investigated the use of non-aggressive anodizing elec-
trolytes such as glycerol–water; however, is necessary to add NH4F in low percentages to 
facilitate the mobility of ions. Authors have reported good adherence of the oxide layer to 
Ti-10Mo-8Nb (β alloy) and the generation of different oxide layers such as TiO2, MoO2, 
and Nb2O5 [195,196] 
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Figure 10. Equivalent circuits presented in anodized Ti samples: (a) a CPE system, (b) Two CPEs 
system, (c) a CPE system and Warburg (diffusion process); (d) Three CPEs system. 

5. Future Directions for Anodized Titanium  
Choi and Jeong [197] experimented with the generation of TiO2 with NH4F and eth-

ylene glycol. They found that anodizing with the highest roughness presented hydro-
philicity, indicating that porosity plays an important role in electrolyte absorption 
[198,199]. Using glycol and relating the material surface with hydrophobics is important 
to future study on anodization. Choi and Jeong [196] variated the porosity with the ano-
dizing time from 10 to 60 min each 10 min; after that, a treatment on 1H, 1H, 2H, and 2H-
Perfluorooctyltrichlorosilane was realized and the transition from hydrophobic to super-
hydrophobic was achieved. Also, they related the corrosion resistance with the most hy-
drophobic sample (at 60 min). 

Other researchers focus on a two-step anodizing (TSA) process, consisting of ano-
dized Ti alloys, removing the anodization by ultrasonic cleaning and realizing the ano-
dization again. Authors found that single-step anodization (traditional) presented more 
heterogeneous porosities. Two-step anodization presented less porosity, and the structure 
was more homogenous; this is because the gases were dissolved and prevented pore gen-
eration [200–205]. When EIS characterized TSA, it presented better resistance against cor-
rosion with higher impedance values and a double-layer system. The TSA reduced the 
penetration of Cl- ions, that is, some of the most dangerous ions for Ti alloys and anodized 
samples. 

One of the most important uses of the anodization process for titanium is when it is 
applied on titanium intended for orthopedic use. The increasing use of β alloys as Ti-Ta 
alloys for biomedical applications indicates that it is important to conduct research on 
anodized samples. Different authors included this conclusion that agrees with our opin-
ion, more for the elements with biocompatibility such as Zr, Ta, Mo, or Nb. Also, different 
authors report that the oxide layer generated with those elements is more stable than with 
V or Fe, which are β stabilizers but not biocompatible [140–143]. Using anodizing paint 
provides a faster and more economical option than other coating processes. With the per-
fect electrolyte election and determination of a good potential or current density, anodiza-
tion presents a several applications for the aeronautical, aerospace, chemical, and biomed-
ical industries. 
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However, it is important to mention that the anodizing surface finish will depend on 
the application, and we cannot say that a non-porous layer is better for anodization due 
to some industries such as aeronautical needing a porous surface to apply primer to the 
surface; however, if the anodizing is the final surface, is important to consider a non-po-
rous surface. 

6. Conclusions 
This review aims to analyze an anodized layer’s corrosion resistance on titanium and 

its alloys, with different parameters. The main conclusions are summarized as follows: 
• The research results indicate that in an anodizing process, the chemical composition 

of the alloy is one of the first variables to be considered. The chemical composition 
can determine the phases of the alloy and the type of coating that will form. 
o Anodization shows better behavior against corrosion when it is carried out in 

acidic electrolytes. Alkaline media tend to generate a heterogeneous surface, 
while acidic media generate a uniform surface. 

o The biomedical industry tends to develop anodization in neutral media because 
a compact layer with nanometric porosities is required. One of the most used 
electrolytes is ethylene glycol and some anodizing salts. 

o Temperature influences anodization rates, porosity diameters, and anodization 
hardness. At high temperatures, it helps increase anodization rates; however, 
the anodization will present high porosity. 

• Recent research showed that two-step anodization (TSA) performs better in develop-
ing a homogenous anodized layer than conventional anodizing. Also, the TSA pre-
sented high resistance to Cl− ion penetration. 

• To generate a thin and compact oxide layer by anodization, it is necessary to apply a 
voltage between 10 and 50 V. Any voltage over that range will generate porosities on 
the anodized surface. This anodization voltage is used for biomedical Ti alloys. 

• Titanium alloys and their anodized variants will present corrosion susceptibility 
when exposed to solution with halides. In the environment, Cl generates a corrosion 
process in Ti alloys and its anodized variants. 

• Elements such as V generate an oxide layer susceptible to corrosion attacks; however, 
elements as Zr, Mo, Nb, and Cr help to generate a more stable oxide layer that avoids 
the corrosion process. 
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