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the learning mechanism of Capizzi and Masarotto (2020) on t-student and gamma observa-
tions under SNS, CSNSK, CSNSU, and SRT, the results obtained allow us guaranteeing a
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CHAPTER 1

INTRODUCTION

1.1 CONTEXT

A production process converts raw materials into products, which are expected to have

a desired level of quality reflected in the adjustment of each product to the established

design requirements, which are the characteristics that the product must have to satisfy the

consumer, (Qiu, 2014)

The quality of a product is reflected in essential metrics, which, in turn, represents the

quality of the process itself. These metrics can be modelled as random variables two pos-

sible sources of variability: common and assignable. Common causes of variation include

events that cannot be controlled; therefore, statistics tools are not used in these cases. Ins-

tead, other strategies such as insurance and emergency funds are employed. In this study

we focus on assignable causes, which encompass situations within the producer’s control,

so there exists a need to fix it. Checking and fixing the assignable causes of a process can

be formally conducted as part of the Statistical Process Control (SPC).

1



CHAPTER 1. INTRODUCTION 2

The monitoring process is commonly represented with a graph called control chart, which

illustrates the evolution of process quality over time. This chart features two horizontal lines,

a lower and an upper one, symbolizing the control limits. These limits represent values that,

if exceeded by the metrics, is detected an assignable cause of variation. At that point, the

process become out-of-control (OC). Conversely, if the metrics remain within these limits,

the process is considered in control (IC). The term ’control’ refers to variability in the

process only because of common causes.

Control charts are applied in a two-phase monitoring scheme. In phase I, a retrospective

analysis is conducted with a sample of observations. Subsequently, control limits are ad-

justed to these sample to identify assignable causes of variation. Observations with an as-

signable cause of variation (OC-observations) are removed from the sample. This process

is repeated until the sample no longer contains OC observations. This set of IC data then

serves as a reference sample to monitor the quality of the process in Phase II of monitoring,

(Montgomery, 2019)

In phase II, using the reference sample obtained in phase I, new quality observations from

the now IC process are monitored. Each sample is checked concerning the control limits

previously established to determine if the process remains IC or becomes OC. In the lat-

ter scenario, an alarm is issued to report the change, recording the number of monitored

observations before the change occurred. In this work, a phase II control chart is created.

Themost relevant monitoring schemes that exist are the Shewhart chart (1931) by Shewhart

(1926), mainly used to detect isolated and medium to significant changes in the process, the

CUSUM chart (1954) by Page (1954), and the EWMA chart (1959) by Robets (1959), these

last two employs cumulative information from the process to detect principally gradual and

minor changes.
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Different control charts exist for different monitor targets, such as the location, dispersion,

coefficient of variation, among others, which can be monitored alone or in conjunction

with others. Figure 1.1 presents example of a control chart to monitor the mean of a normal

process, as example.

FIGURA 1.1: Control chart

Each point on the graph in 1.1 represents a summary measure of process quality at a time

𝑡; the process is considered in control (IC) when a point falls within limits indicated by the

dotted lines. Otherwise, the process deemed out of control (OC), and a change signal is

issued. The time at which the process ceased to be in-control is denoted by the symbol 𝜏,

and it can be known either a priori or a posteriori. The size of the change is denoted by 𝛿,

representing the size of the change expressed in standard deviations.

After implementing a control chart tomeasure its performance inmonitoring, consideration

is given to the chart’s power to detect changes and its capacity to differentiate real changes

from those that are not, that is, its sensitivity and specificity. Typically, to evaluate the

performance of a control chart, we consider the number of monitored observations after
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the first alarm, known as run length (RL). Metrics based on the average RL, denoted as

ARL, are used to assess IC and OC performance. To study false alarms rates, it is common

to obtain the average of IC run-length 𝐴𝑅𝐿0. Traditional control charts are designed to

achieve a desired 𝐴𝑅𝐿0. To evaluate the power of the control chart, it is usual to assess

the 𝐴𝑅𝐿1 when a real change occurs. These metrics can be obtained through probability

theory, when feasible, or through simulation.

The metric 𝐴𝑅𝐿0 is typically set to achieve a good IC performance, observing the resultant

OC performance. Practitioners typically consider 370, 500, or 1000 as standards for 𝐴𝑅𝐿0.

However, the choice depends on the distribution of the process, alongwith its parameters, as

it determines the probability that the quality will surpass the control limits. In this context,

performance metrics can be obtained if the distribution function is a standard normal and

the parameters are known. However, if not, either parameter estimation or the distribution

of the data could affect the performance of the control chart.

While many existing control charts assume a standard normal probability distribution for

the process, in reality, processes are not always normal. Numerous non-parametric methods,

most based on ranks, exist to address this issue.

Solving the non-normal distribution problem can involve applying a non-parametric trans-

formation to carry the observations from any distribution to the standard normal without

affecting the nature of the data. However, the variation in the chart’s performance due to a

lack of knowledge about the distribution parameters could be more complex. This problem

was initially mentioned by Albers and Kallenberg (2004), and eventually became known as

practitioner-to-practitioner variation (PTP). Other authors, including Keefe et al. (2015a)

and Jardim et al. (2019a), have proposed strategies to reduce this effect, but with some di-

sadvantages. More recently, Capizzi and Masarotto (2020) introduced a new method called
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cautious learning, which combines learning capabilities and has a great power in change

detection with a low number of false alarms.

Albers and Kallenberg (2004) observed that, although 𝐴𝑅𝐿0 was reached on average, a

significant proportion of IC performances during the implementation of a control chart

was below the 𝐴𝑅𝐿0, as explained in Figure 1.3. Jardim et al. (2019a) proposed setting the

control limits to guarantee an in-control performance 95% of the time. However, it had the

limitation that the detection of changes was significantly affected, as it could not control

either the mean nor the variance of the IC performances.

The cautious learning approach by Capizzi and Masarotto (2020), detailed in Chapter 2,

guarantees a desired 𝐴𝑅𝐿0 with a high power to detect changes. This approach uses a mix

of the approach seen in Jardim et al. (2019a) and a learning propose by Hawkins (1987b).

The method involves updating the reference sample until the cumulative likelihood of the

phase II sample is sufficiently high, adding all the previous IC monitored observations, and

re-estimating the phase I parameters and the control limits, which are previously fixed to

obtain a minimum proportion of ARLs below the 𝐴𝑅𝐿0, generally around 5%. All of this

is under the assumption that the IC distribution function is standard normal.

Very few processes follows a normal distribution, so the cautious learning approach by

Capizzi and Masarotto (2020) may not be suitable for these processes. However, non-

parametric transformations allow the transition from data sets of any distribution to normal

observations using a function that preserves the main characteristics of the original data.

Here, we choose the sequential normal scores (SNS) proposed by Conover et al. (2017),

which employs ranks and the inverse transformation theorem. Additionally, the SNS can

be either Conditional Sequential Normal Scores with Known quantile (CSNSK) or Condi-

tional Sequential Normal Scores with unknown quantile (CSNSU) when the distribution
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is conditioned on the knowledge or the estimation of a sample’s quantile. In this work, the

SNS and its conditional versions CSNSK and CSNSU, with the median as a condition, are

used to monitor observations from any distribution, employing the same reference sample

and control limits re-configuration as in Capizzi and Masarotto (2020).

In summary, the present work proposes to link SNS with cautious learning to enhance

the control chart through guaranteed in-control performance, learning strategies, and non-

parametric transformations.

1.2 MOTIVATION

The reference sample affects the performance of the control chart. In order to illustrate the

practitioner-to-practitioner effect, a simulation experiment was conducted. It was assumed

that there are 35 subgroups of size 𝑛 =5 in control, each following a standard normal dis-

tribution, with the goal of achieving an 𝐴𝑅𝐿0 of 500 on a Shewhart control chart. In this

experiment, 10 000 run-lengths were obtained for compute each 𝐴𝑅𝐿0, and, 1 000 average

run-lengths are computed. Two scenarios are considered:

Known: In this scenario, the parameters of the in-control distribution were assumed

to be known

Estimated: In this scenario, the parameters had to be estimated using sample statistics
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FIGURA 1.2: The effect of parameter estimation on the in-control performance of

the Shewhart chart

As depicted in Figure 1.2, the impact of parameter estimation on the IC performance of

the Shewhart chart is significant.The variance of the 𝐴𝑅𝐿0 increases, and there there is

a notable amount of IC-performances below the desired 𝐴𝑅𝐿0, 21.80% in this example.

This discrepancy leads to a higher rate of false alarms, causing high costs for producers

and a reduction in process efficiency.
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In most real-life processes, the exact parameters or distribution function are often unknown.

Therefore, an improvement in traditional statistical control methods is needed.

Figure 1.3 displays the outcomes of two experiments, one in-control with a target perfor-

mance 𝐴𝑅𝐿0 = 500 and another out-of-control experiment aimed at detecting a 𝛿 =2 size

change occurring at the beginning of the process (𝜏 =1). The simulation details are identical

to those of the previous experiment, except that this time the cautious learning approach

proposed by Capizzi and Masarotto (2020) is employed.

FIGURA 1.3: In-control and out-of-control performance for a Shewhart chart using cautious learning

When using the cautious learning approach, only 5.90% of the in-control performances

fall below the desired 𝐴𝑅𝐿0. This approach shows high power in changes detection, as

reflected in the out-of-control results for a change of 𝛿=2 standard deviations.

Unfortunately, the cautious learning approach applied in the previous experiment was desig-

ned specifically for normal observations. Dealing with non-normal distributions introduces

challenges in the performance of the control chart, as illustrated in the example presented
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in Figure 1.4. In this instance, we utilize the cautious learning approach with 𝑡-student (4)

and gamma(0.5,1) distributions , resulting in all in-control performances falling below the

expected levels.

FIGURA 1.4: In-control performance for three different IC distributions

In this research, we propose employing the same control limits designed for cautious lear-

ning designedwith a normal distribution, following the SNS transformation. The R package

’CautiousLearning’ available onCRAN (https://cran.r-project.org/package=CautiousLearning),

developed by Capizzi and Masarotto (2020), is utilized for this purpose. Due to the conver-

gence of the SNS to a normal distribution, there is no need to re-calibrate new control limits,

this would require a high computational cost.

1.3 SCOPE

It is desired to analyze the effect of applying the SNS transformation for non-parametric

monitoring on false alarms and change detection in a control chart utilizing the cautious

learning approach. The study utilizes the same control limits established by Capizzi and

Masarotto (2020).
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1.3.1 RESEARCH QUESTION

Can the cautious learning approach, as proposed by Capizzi and Masarotto (2020), effec-

tively monitor non-normal processes, maintaining consistent results both in-control and

out-of-control, by employing the SNS transformation and utilizing the same control limits

designed for normal distributions?

1.3.2 HYPOTHESES

Given the convergence of the SNS transformation to a standard normal distribution, as

demonstrated by Conover et al. (2017), a non-parametric control chart utilizing this trans-

formation can effectively monitor a process of any distribution. This is achieved by imple-

menting the likelihood-based learning strategy proposed by Capizzi and Masarotto (2020),

allowing for consistent results without the necessity to re-calibrate the control limits.

1.4 OBJECTIVES

1.4.1 GENERAL OBJECTIVE

Develop a non-parametric control chart with guaranteed in-control performance that em-

ploys cautious learning to accurately monitor process observations from any distribution.
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1.4.2 SPECIFIC OBJECTIVES

Demonstrate that the control limits employed in Capizzi and Masarotto (2020) can

be used for monitoring any distribution after applying the SNS transformation, eli-

minating the need for re-calibration.

Compare the monitoring performance achieved under different distributions to pro-

vide general recommendations for implementing the chart in diverse contexts.

1.5 CONTRIBUTION

1.5.1 SCIENTIFIC CONTRIBUTION

To develop the first non-parametric control chart with cautious learning, which is characte-

rized by its guaranteed control performance and high power in detecting real change. This

involves implementing the cautious learning approach using the same control limits as pro-

posed by Capizzi and Masarotto (2020), combined with the SNS transformation presented

in Conover et al. (2017), leveraging its convergence to the standard normal distribution.

Remarkably, the proposed approach eliminates the need for additional calibration, thereby

saving significant computational cost.
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1.5.2 CONTRIBUTION FOR PRACTITIONERS

This work contributes a new non-parametric control chart that integrates cautious learning

and guaranteed-in-control performance. Its application allows for monitoring observations

from any distribution, guaranteeing a desired performance and offering higher power in

change detection compared to other traditional charts.



CHAPTER 2

THEORETICAL FRAMEWORK

Statistical process control (SPC) is the application of statistical tools named control charts

in quality process monitoring. Control charts use statistical tests to prove whether the qua-

lity value remains within established limits.

The following chapter will delve into the theoretical foundations of SPC, covering its ge-

neral structure, the design and implementation of the control charts with various monito-

ring schemes, the effect of estimation on chart performance and different methodologies

proposed in the literature to address this issue.This exploration starts from self-methods in-

troduced by Hawkins (1987b) to the cautious learning approach presented by Capizzi and

Masarotto (2020). All these aspects are crucial for the development of the current work.

2.1 PHASES OF SPC

At the moment of start implementing the SPC, the purpose behind its application is deter-

mined, whether to establish the initial conditions of the process or to monitor it. Two phases

13
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of SPC are considered:

I. Obtaining the IC distribution of the process

II. Monitoring of the process

Phase I: Obtaining an IC reference sample

Statistical control begins in this phase, involving the detection of assignable causes of va-

riation, seeking a reference sample with only common causes of variation. This process

is iterative, starting with an initial OC sample, and setting control limits as a function of

the distribution of this reference sample. These control limits aid in identifying potential

observations with assignable cause of variation. If an assignable cause is identified, it is

removed. This trial-and-error method is repeated until the sample becomes IC, meaning

that all variation in the process is due to common causes. This initial phase of SPC assists

practitioners in stabilizing the process before commencing monitoring.

Phase II: Monitoring

As the process generates units over time 𝑡, they are stored in random samples of independent

observations, each of size n, represented as follows:

𝑋𝑡 = 𝑋𝑡,1, 𝑋𝑡,2, ..., 𝑋𝑡,𝑛 ∀𝑡 = 1, 2, ..., (2.1)

each of these samples is referred to as a subgroup.

Subsequently, monitoring is conducted to determine if the process conditions remain stable,

as determined in the previous phase. A hypothesis test is performed for this purpose:

𝐻0 : 𝐹 (𝑋𝑡) = 𝐹0 𝑣𝑠 𝐻1 : 𝐹 (𝑋𝑡) ≠ 𝐹0 ∀𝑡 = 1, 2, ..., (2.2)
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here, 𝐹 (𝑋) represents the distribution function of the process at X, and 𝐹0 is the IC distri-

bution function obtained in the phase I.

The in-control distribution is typically assumed to be normal with parameters 𝜇0 and 𝜎2
0 .

Changes in the location and scale of the process are normally reviewed to evaluate possible

deviations in the mean and dispersion of the process. Under the assumption of normality,

sequential tests based on the sample mean and variance are used.

Commonly, the monitoring process is conducted using three widely found monitoring sche-

mes in the literature: the Shewhart chart, the EWMA chart, and the CUSUM chart; which

are explained in the next Subsection.

2.2 CONTROL CHART

A control chart is an statistical tool used in the monitoring process, offering flexibility in

choosing the statistic to use. Here, we will explore the three most commonly used monito-

ring schemes.

2.2.1 SHEWHART

The Shewhart control chart, proposed by Walter A. Shewhart in 1931 (Shewhart, 1931b)

after earlier studies in 1926 Shewhart (1926), was the first monitoring scheme. In the

Shewhart control chart, the quality of the process is monitored based on the current sam-

ple.Qiu (2014).



CHAPTER 2. THEORETICAL FRAMEWORK 16

However, it is essential to establish the objective for monitoring and decide whether to

monitor both the location and the scale of the process. In this work, the focus is on the

location parameter, considering that, besides the location parameter, no other parameter

changes. This reduces the hypothesis test from (2.2) to the following:

𝐻0 : 𝜇𝑖 = 𝜇0 𝑣𝑠 𝐻1 : 𝜇𝑖 ≠ 𝜇0 𝑖 > 0, (2.3)

𝜇0 is the in-control mean of the process, i.e., the location parameter of the 𝐹0 distribution.

As mentioned earlier, a summary measure of the process quality is obtained from each

subgroup, denoted by Ti:

𝑇𝑖 =
𝑛∑
𝑗=1

𝑋𝑖, 𝑗 − 𝜇0√
𝑛𝜎0

, (2.4)

In this way, the null hypothesis, stating that the mean in control has not changed, is tested.

𝐻0 is rejected if:

𝑇𝑖 < 𝐿𝑖 or 𝑇𝑖 > 𝑈𝑖, (2.5)

otherwise, the process remains in control.

𝐿𝑖 and 𝑈𝑖 represent the lower and upper control limits of the chart at time 𝑖, serving as

parameters to asses whether the process conditions are maintained.

It is important to note that the statistic 𝑇𝑖 possesses the following properties when the pro-

cess is IC:

𝑇𝑖 ∼ 𝑁 (0, 1) 𝑖 > 0, (2.6)

additionally , if the process becomes OC with 𝜇1 = 𝜇0+𝛿𝜎, i.e. a change of size 𝛿 standard

deviations at time 𝜏:

𝑇𝑖 ∼ 𝑁 (0, 1) 𝑖 < 𝜏 𝑇𝑖 ∼ 𝑁 (𝛿, 1) 𝑖 ≥ 𝜏 (2.7)
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2.2.2 CUMULATIVE SUM (𝐶𝑈𝑆𝑈𝑀)

While the Shewhart scheme works well for detecting large or isolated changes, it may not

be effective in identifying gradual or persistent changes due to its reliance on information

from the current period alone. In such cases, monitoring the process with a Shewhart chart

becomes less viable.

To address this limitation, alternative monitoring schemes were developed to detect small

and persistent changes more efficiently. The CUSUM chart, created by Page (1954) is based

on accumulating information from the beginning of phase II to the current period.

Considering individual data 𝑋1, 𝑋2, ...𝑋𝑛, the chart statistic is defined as:

𝐶𝑖 =
𝑖∑
𝑗=1

(𝑋 𝑗 − 𝜇0) 𝑖 > 0 (2.8)

this is equivalent to:

𝐶0 = 0 𝐶𝑖 = 𝐶𝑖−1 + (𝑋𝑖 − 𝜇0) 𝑖 > 0

The statistic 𝐶𝑖 has the following IC and OC distributions, assuming a change of size 𝛿 at

time 𝜏 :

𝐶𝑖 ∼ 𝑁 (0, 𝑖𝜎2
0 ) 𝑖 < 𝜏

𝐶𝑖 ∼ 𝑁 ((𝑖 − 𝜏 + 1)𝛿, 𝑖𝜎2
0 ) 𝑖 ≥ 𝜏

.

In his work, (Page, 1954) considered monitoring both positive and negative changes with

the following two charts.
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𝐶+
𝑖 = 𝑚𝑎𝑥

(
0, 𝐶+

𝑖−1 +
𝑋𝑖 − 𝜇0
𝜎0

− 𝑘

)
(2.9)

𝐶−
𝑖 = 𝑚𝑖𝑛

(
0, 𝐶−

𝑖−1 +
𝑋𝑖 − 𝜇0
𝜎0

+ 𝑘

)
, (2.10)

signaling a change if:

𝐶−
𝑖 < −ℎ or 𝐶+

𝑖 > ℎ (2.11)

where ℎ ≥0 represents the control limit used in the charts.

When a change is signaled,equations (2.9) and (2.10) denote the restart mechanism charac-

terizing this chart. In both positive and negative change detection, the value of the statistic

returns to 0 after a certain number of monitored observations.

However, one disadvantage of the CUSUM chart is its increasing variation, which becomes

more pronounced as the size of the monitored sample increases.

2.2.3 EXPONENTIALLY WEIGHTED MOVING AVERAGE (𝐸𝑊𝑀𝐴)

In 1959, five years after Page’s work with the CUSUM scheme, Robets (1959) proposed

the exponentially weightedmoving average (EWMA) control chart. That chart also involves

accumulating information but assigns weight to each observation in a way that the weight

decreases exponentially over time.

The chart statistic is given by:

𝐸0 = 𝜇0 𝐸𝑖 = 𝜆𝑋𝑖 + (1 − 𝜆)𝐸𝑖−1 𝑖 > 0 (2.12)
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𝜆 ∈ (0, 1] is the weighting parameter.

The chart statistic 𝐸𝑛 has the following IC distribution:

𝐸𝑖 ∼ 𝑁

(
𝜇0,

𝜆

2 − 𝜆

(
1 − (1 − 𝜆)2𝑖

)
𝜎2

)
𝑖 < 𝜏, (2.13)

for large samples the variance of 𝐸𝑖 becomes a constant:

lı́m
𝑖→∞

𝑉𝑎𝑟 (𝐸𝑖) = lı́m
𝑖→∞

𝜆

2 − 𝜆

(
1 − (1 − 𝜆)2𝑖

)
𝜎2 =

𝜆

2 − 𝜆
𝜎2,

given its mean, the distribution is now centered on 𝜇0 instead of 0. Unlike CUSUM, the

variability of the statistic remains the same with large sample sizes, making the EWMA

chart an excellent option for monitoring processes.

When the process becomes OC, i.e., turns to a 𝑁 (𝛿, 1) distribution at a point 𝜏, the variance

of 𝐸𝑛 remains the same as shown in (2.13). However, its OC mean is given by:

𝜇𝐸𝑖 ,𝜏 = 𝜇0 + [1 − (1 − 𝜆)𝑖−𝜏+1] (𝜇1 − 𝜇0) (2.14)

signalizing a change if:

𝐸𝑖 > 𝜇0 + 𝜌

√
𝜆

2 − 𝜆
𝜎0 or 𝐸𝑖 < 𝜇0 − 𝜌

√
𝜆

2 − 𝜆
𝜎0 𝑖 > 0 (2.15)

here, the 𝜌 value is chosen as a function of the 𝐴𝑅𝐿0 performance to be achieved.

In this way, three different monitoring schemes are employed, chosen based on the nature

of the change to be detected or for comparison. Shewhart charts are used for isolated or

medium to big changes; EWMA and CUSUM for gradual or small changes. It has been

observed that EWMA is the preferred option for detecting small shifts (Vera do Carmo

et al., 2004), especially when they occur early in the process, (Han et al., 2010)
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2.3 ANTECEDENTS OF THE REFERENCE SAMPLE EFFECT OVER

THE CHART’S PERFORMANCE

Regardless of the chosen monitoring scheme, the chart’s performance may vary due to

differences in the reference samples used by practitioners who implement them. This va-

riation arises during the estimation of distribution parameters and it is referred to as the

practitioner-to-practitioner effect. The performance of these charts is further influenced by

the prior estimation of in-control parameters, introducing variability to the results.

Parameter estimation from the phase I sample can lead to increased false alarms and im-

pact the efficiency of detecting real changes. (Does et al., 2020). Such effects depend on

the errors in estimating the actual parameter values. In the monitoring of localization, ove-

restimating the parameters results in fewer false alarms but slower detection of changes.

Conversely, underestimating the parameters leads to frequent false alarm but rapid detec-

tion. (Diko et al., 2020).

In this study, parameters updating is implemented, particularly for the initial mean and

standard deviation, including the mean and variance of the normal scores derived from the

Phase I sample. Additionally, the sample median is considered in the case of conditional

sequential normal scores, incorporating learning mechanisms shown in Capizzi and Masa-

rotto (2020). These estimates are dynamically updated during monitoring. Psarakis et al.

(2014) suggests that updating estimations during monitoring can mitigate the practitioner-

to-practitioner effect. However, but Huberts et al. (2019) warns that such updates might be

counterproductive if the chart fails to detect the real changes in the process. In this context,

our approach is supported by the findings of Capizzi and Masarotto (2020), demonstrating
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that applying cautious learning on normal observations is effective in change detection.

These results remain applicable to the sequential normal scores because its convergence to

a normal distribution, as indicated in Conover et al. (2017).

Over the years, various strategies have been proposed to reduce the practitioner-to-practitioner

effect. The key literature concerning on this topic is outlined below.

2.3.1 SELF-STARTING

In Hawkins (1987b), the self-starting approach for CUSUM charts is introduced, invol-

ving the expansion of the reference sample size by incorporating monitored observations

as they become available. This approach aims to reduce variability in IC performance by

diminishing estimation errors, resulting in larger 𝐴𝑅𝐿0 and smaller 𝐴𝑅𝐿1.

Subsequently, Keefe et al. (2015a) extended the self-starting approach to address the practitioner-

to-practitioner effect. Notably, this marked the first time in the literature where the effect

of the estimation error on the performance of a self-starting chart was systematically stu-

died. The study revealed minimal variance in performances for both small (𝑛 = 2, 5, 10)

and large (𝑛 = 1000, 2000, 5000) size samples. However, a challenge emerged during

implementation, particularly with small initial samples, where the addition of phase II ob-

servations to the reference sample had a substantial influence. If a change occurred in the

initial observations, it could be hidden due to the early update of the phase I sample with

OC data.

While the self-starting procedure aids in reducing the PPT effect, it carries a risk of not
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detecting premature changes in the process.

2.3.2 GUARANTEED IN-CONTROL PERFORMANCE (𝐺𝐼𝐶𝑃)

As an alternative to the self-starting approach, Jardim et al. (2019b) proposed a focus on

achieving the desired IC performance 𝐴𝑅𝐿0 instead of over the variation. They introduced

a GICP control chart under the exceedance criterion in probability:

𝑝𝛼 = 𝑃(𝐶𝐴𝑅𝐿0 ≥ (1 − 𝛼)𝐴𝑅𝐿0) = 1 − 𝛽, (2.16)

this criterion establishes that a sufficiently high proportion of in-control performances will

exceed the desired 𝐴𝑅𝐿0. The 𝛼 and 𝛽 parameters are chosen based on to the desired level

of guaranteed performance. In Albers and Kallenberg (2004), an equivalent application of

the exceedance-probability criterion is discussed.

To increase the ratio 𝑝𝛼, their proposed method involves calculating the control limits for

the chart while maintaining equation (2.16). According to their study, a reference sample of

at least 250 observations is required to have guaranteed IC performance at a level of 90%.

Furthermore, Jardim et al. (2019a) extend the analysis to the average and variance, AARL

and SDARL, of the in-control performances, revealing that the chart may not control these

values, potentially impacting change detection. Thus, although it is possible to guarantee

IC performance, balancing it with learning strategies is necessary.

Apart from Jardim et al. (2019a), there are few studies onGICP. Notably, Gandy andKvaløy

(2013) proposed bootstrapmethods to compute control limits guaranteeing IC performance.

Goedhart et al. (2017) addressed the PPT effect in the implementation of the 𝑋̄ Shewhart
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chart. Two years before Faraz et al. (2015) worked with the 𝑆2 chart monitoring variance.

Recently, Merlo et al. (2022), explored GICP in multivariate SPC, and Diaz Pulido et al.

(2023) implemented GICP in process with finite time horizons.

2.3.3 CAUTIOUS LEARNING WITH GICP

To guarantee IC performance without affecting change detection, Capizzi and Masarotto

(2020) introduced a methodology known as cautious learning, which is employed in moni-

toring normal processes. This approach combines self-starting and guaranteed in-control

performance, updating the reference sample until sufficient evidence is obtained that the

phase II distribution is equal to the IC distribution. Likelihood of the estimations for 𝜇0

and 𝜎0 based on cumulative phase II data serve as reference.

In the experiments conducted under this methodology, a guaranteed IC performance was

observed with variances and averages considerably lower than those reported by Jardim

et al. (2019a). In terms of change detection, it exhibited superior performance, showing a

significant reduction in variability for changes of any size and under any of the Shewhart,

EWMA, and CUSUM schemes.

The results presented by Capizzi andMasarotto (2020) represented an advancement, as they

achieved good IC performance alongside fast change detection. However, it is important to

note the constraint of assuming normality in the observations.
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2.4 NON-PARAMETRIC CONTROL CHARTS

Real-world monitoring conditions are often far from ideal, then, the distribution of the refe-

rence is frequently non-normal. To address this limitation, non-parametric were introduced

by Bhattacharya and Frierson Jr (1981). These charts utilize ranks transformations in the

data to obtain normal observations without altering their inherent characteristics. In the pre-

sent study, a control chart with guaranteed in-control performance, incorporating cautious

learning for samples of any distribution, is employed. For this purpose, a non-parametric

chart is introduced using the sequential normal scores transformation (SNS) as presented

in Conover et al. (2017). Additionally, for comparison purposes, the sequential ranks trans-

formation (SRT) mentioned in Parent (1965b) is considered.

To underscore the significance of employing non-parametric statistics in statistical process

control, one can refer to the works of Celano et al. (2016) on a Shewhart chart with the sign

statistic. Further insights into the power of these charts compared to the parametric ones can

be observed in Chakraborti and van de Wiel (2008). For a comprehensive review of non-

parametric control charts, Chakraborti et al. (2001), Chakraborti (2004) and Chakraborti

and Graham (2019b) provide insightful analyses.
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2.4.1 KEY POINTS IN THE RESEARCH

Keefe et al. (2015a) were the firs to consider the practitioner-to-practitioner varia-

tion in the application of self-starting charts. This consideration aimed to reduce

deviations in in-control performances. However, it introduced a potential problem in

change detection when adding observations to the reference sample too early.

Four years later Jardim et al. (2019a) proposed a method to guarantee an in-control

performance of the charts by estimating parameters based on the exceedance proba-

bility criterion. Although achieving a minimal proportion of below-target in-control

performance, this approach significantly altered the average performance and its de-

viation, potentially affecting change detection.

In an effort to balance the goals of guaranteeing in-control performance and maintai-

ning effective change detection, Capizzi and Masarotto (2020) introduced cautious

learning formonitoring location in normal processes. This new learning approach dif-

fers from self-starting in that the update to the reference sample is not instantaneous

but follows a likelihood criterion. It achieves good results in both in-control and out-

of-control scenarios but is limited by its reliance on the assumption of normality in

the observations.

Non-normality in observations would not be a problem if non-parametric transfor-

mations are employed. The SNS by Conover et al. (2017) and the SRT by Parent

(1965b) are well-suited to such situations.
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2.4.2 SUMMARY TABLE

The table below lists the most essential consulted papers during this work. In the table con-

tents, GICP refers to guaranteed in-control performance, CL refers to cautious learning,S-S

refers to self-starting, and PTP refers to practitioner-to-practitioner variation.
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Title Author(s) GICP Learning Conditional
performance

Observations

Are estimated control charts in con-

trol?

W. Albers & W.C.M.

Kallenberg

7 7 3 Introduce the exceedance probabi-

lity criterion to deal with the fact

that IC performance can be reached

on average but with a significant

proportion of performances below

𝐴𝑅𝐿0 due to the estimation error

Effect of the Amount of Phase I Da-

ta on the Phase II Performance of S-

2 and S Control Charts

Eugenio Kahn Epprecht

& Subha Chakraborti

3 7 3 A good option for addressing the es-

timation error is not treating control

limits like constants but as variables

that change during phase II

Some Recent Developments on the

Effects of Parameter Estimation on

Control Charts

Stelios Psarakis, Angeli-

ki K. Vyniou and Philip-

pe Castagliola

3 7 3 There is a need to develop new con-

trol charts that give more importan-

ce to the estimation error

On the design of control charts with

guaranteed conditional performan-

ce under estimated parameters

Ronald J.M.M. Does,

Rob Goedhart & Wi-

lliam H. Woodall

3 7 3 The exceedance probability crite-

rion proposed by Albers and Kallen-

berg (2004) is highly recommended

for dealing with the estimation ef-

fect

Self-Starting Cusum Charts for Lo-

cation and Scale

Douglas M. Hawkins 7 S-S 7 Self-starting charts do not require a

phase I reference sample because it

would be formed during the phase II

The Conditional In-Control Per-

formance of Self-Starting Control

Charts

Matthew J. Keefe, Wi-

lliam H. Woodall & L.

Allison Jones-Farmer

7 S-S 3 The S-S approach helps to reduce

variation in performance; however,

there is a risk of adding new obser-

vations too early, which may conta-

minate it.

Two perspectives for designing a

phase II control chart with estima-

ted parameters: The case of the

Shewhart 𝑋̄ Chart

Felipe S. Jardim, Subha-

brata Chakraborti & Eu-

genio K. Epprecht

3 7 3 While IC performance is guaran-

teed, there is no control over the

mean and variance of the ARL.

Guaranteed in-control control chart

performance with cautious parame-

ter learning

Giovanna Capizzi &

Guido Masarotto

3 CL 3 It has GICP and an excellent OC per-

formance. However, it is applicable

only for normal process monitoring

Adaptive CUSUM chart with cau-

tious parameter learning

Jun Li 3 CL 3 It serves as a good alternative to

the cautious learning of Capizzi and

Masarotto (2020)

Improved control chart performance

using cautious parameter learning

Leo C.E. Huberts, Rob

Goedhart & Ronald

J.M.M. Does

3 CL 3 Different selections of learning

constants A and B can improve the

chart’s performance



CHAPTER 3

METHODOLOGY

In this section, we will discuss two non-parametric methods: the Sequential Normal Scores

transformation (and its conditional variants) by Conover et al. (2017) and the Sequential

Ranks transformation by Parent (1965b).We adapt these non-parametric transformations in

a cautious learning approach and compare their performances across different distributions,

using the control limits proposed for normal processes in Capizzi and Masarotto (2020).

Additionally, we will describe key features of the proposed control chart approach, such

as guaranteed in-control performance (GICP) and the implementation of cautious learning

(CL).

3.1 NON-PARAMETRIC STATISTICS

In this subsection, we will discuss the non-parametric statistics used in the development of

this work, which include:

28
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Normal Scores transformation by (Conover et al., 2017)

Conditional Normal Scores transformation by (Conover et al., 2017)

Standardized Ranks transformation

A reference simple of sizem ,𝑌 = {𝑌1, 𝑌2, ..., 𝑌𝑚} andmonitoring subgroups 𝑋 = {𝑋1, 𝑋2, ..., 𝑋𝑛}

with 𝑋𝑖 = {𝑋𝑖1, 𝑋𝑖2, ..., 𝑋𝑖𝑛} 𝑖, 𝑛 ∈ Z+ will be considered.

The Normal Scores transformation

The simple range 𝑅𝑖 𝑗 of 𝑋𝑖 𝑗 𝑗 = 1, 2, ..., 𝑛 relative to 𝑌 is defined as:

𝑅𝑇𝑖 𝑗 =
∑
𝑌 𝑗∈𝑌

𝐼 (𝑌 𝑗 < 𝑋𝑖 𝑗 ) + 1, (3.1)

Normal Scores (NS) are then obtained from an estimator of 𝐹 (𝑥), denoted as 𝑃𝑖:

𝑃𝑖 𝑗 =
𝑅𝑇𝑖 𝑗 − 0.5
𝑚 + 1

(3.2)

Conover et al. (2017) demonstrated not only that the sequence {𝑃𝑖 𝑗} is mutually indepen-

dent but also that its distribution is uniform (0,1) according to the law of large numbers and

the Glivenko-Cantelli Theorem by Tucker (1959). With this, they generated independent

observations that converge to a standard normal distribution using the inverse transforma-

tion theorem:

𝑍𝑖 𝑗 = 𝜙−1 (
𝑃𝑖 𝑗

)
, (3.3)

here, 𝜙−1 represents the inverse of the normal distribution function. Furthermore, as a con-
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sequence of the central limit theorem:

𝑍𝑖 =

𝑛∑
𝑖=1

𝑍𝑖 𝑗

√
𝑛

∼ 𝑁 (0, 1) (3.4)

Conditional Normal Scores transformation

When information about a parameter (quantile) 𝜃 and its distribution function 𝐹 (𝜃) of the

sample 𝑌 is available, the 𝑁𝑆 are conditioned on that value:

𝑅𝑖 𝑗 |𝜃 =



∑
𝑌 𝑗∈𝑌𝐿

𝐼 (𝑌 𝑗 < 𝑋𝑖 𝑗 ) + 1 if 𝑋𝑖 𝑗 ≤ 𝜃∑
𝑌 𝑗∈𝑌𝑈

𝐼 (𝑌 𝑗 < 𝑋𝑖 𝑗 ) + 1 if 𝑋𝑖 𝑗 > 𝜃,

(3.5)

𝑌𝐿 represents a subset containing the 𝑌 𝑗 values lower than 𝜃, and 𝑌𝑈 a subset containing

the 𝑌 𝑗 values greater than 𝜃. The calculation of 𝑃𝑖 𝑗 , now 𝑃𝑖 𝑗 |𝜃 , is as follows:

𝑃𝑖 𝑗 |𝜃 =


𝐹𝜃

𝑅𝑇𝑖 𝑗 |𝜃 − 0.5
|𝑌𝐿 | + 1

if 𝑋𝑖 𝑗 ≤ 𝜃,

𝐹𝜃 + (1 − 𝐹𝜃)
𝑅𝑇𝑖 𝑗 |𝜃 − 0.5
|𝑌𝑈 | + 1

if 𝑋𝑖 𝑗 > 𝜃,

(3.6)

here, |𝑌𝐿 | and |𝑌𝑈 | are the cardinalities of 𝑌𝐿 and 𝑌𝑈 , respectively. Conditional Normal

Scores with a known quantile (CNSK), 𝑍𝑖 𝑗 |𝜃 , are obtained as:

𝑍𝑖 𝑗 |𝜃 = 𝜙−1(𝑃𝑖 |𝜃), (3.7)

and 𝑍𝑖 is obtained by applying (3.4) to (3.7).

When the value of 𝜃 is unknown, 𝜃 and 𝐹 (𝜃) are used to obtain the Conditional Normal

Scores with an unknown quantile (CNSU).
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The Standardized Ranks transformation

It’s evident that the ranks 𝑅𝑇𝑖 𝑗 defined in (3.1) are discretely uniform distributed in {1, 𝑚 +

1}. Therefore, the standardized sequential rank at time t=i of the j-th observation in the

subgroup , 𝑆𝑅𝑇𝑖 𝑗 , is computed as follows:

𝑆𝑅𝑇𝑖 𝑗 =
𝑅𝑇𝑖 𝑗 −

𝑚 + 2
2√

((𝑚 + 1)2 − 1)
12

,

similarly, as with 𝑍𝑖:

𝑆𝑅𝑇𝑖 =

𝑛∑
𝑖=1

𝑆𝑅𝑇𝑖 𝑗

√
𝑛

∼ 𝑁 (0, 1), (3.8)

The normal scores and standardized sequential ranks will be utilized to monitor observa-

tions from heavy-tailed ¹ and asymmetric distributions , complemented by the application

of learning strategies. Subsequently, their capacity to guarantee IC performance and detect

changes will be compared. The complete implementation will be thoroughly discussed in

subsection 3.2.1.

To illustrate how rank and normal score statistics work, as well as the difference it makes

to use a reference sample, the following example is given.

¹“Heavy-tailed” within the meaning of definition 2.4 and theorem 2.6 found in Foss et al. (2011)
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Suppose you have information about the grades of 20 high school students in a calculus

course. You want to obtain a measure that establishes the position of each student in the

group. For this you obtain the ranks and normal scores, as shown below.
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Student Grade Rank RT NS

1 72.30 14 0.61 0.00

2 47.50 6 -0.78 -0.67

3 95.00 18 1.30 0.97

4 14.90 2 -1.47 -1.15

5 17.30 3 -1.30 -0.52

6 93.30 17 1.13 0.67

7 80.40 15 0.78 0.37

8 98.80 20 1.65 1.53

9 98.40 19 1.47 0.97

10 55.60 9 -0.26 -0.39

11 50.20 7 -0.61 -0.47

12 59.30 11 0.09 -0.10

13 68.90 13 0.43 0.00

14 57.00 10 -0.09 -0.27

15 81.30 16 0.95 0.52

16 22.30 4 -1.13 -1.01

17 10.30 1 -1.65 -1.89

18 44.00 5 -0.95 -0.67

19 65.90 12 0.26 0.13

20 52.10 8 -0.43 -0.32

TABLA 3.1: Example: SNS and SRT without a reference sample



CHAPTER 3. METHODOLOGY 34

In the image above, the most outstanding students are highlighted in green, the students in

the middle are highlighted in black, and the students with the lowest scores in the group

are highlighted in red. You can see how each statistic reflects this by sending them to the

extreme values of the normal distribution.

Now, let’s imagine that in addition to the current group’s grades we have a record of the

previous generation, which consisted of 30 students. Now what is desired is a measure of

each student’s performance in relation to the grades obtained in the previous semester.
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Student Grade

1 34.9

2 56.8

3 37.2

4 5.1

5 13.6

6 66.4

7 49.9

8 51.8

9 72.0

10 46.0

11 78.2

12 73.9

13 91.4

14 30.8

15 92.1

16 2.8

17 67.8

18 37.3

19 85.1

20 20.8

TABLA 3.2: Example: Reference sample of 20 students
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Student Grade Rank | Ref RT | Ref NS | Ref

1 72.30 21 0.64 0.51

2 47.50 14 -0.17 -0.08

3 95.00 30 1.68 2.14

4 14.90 4 -1.33 -1.06

5 17.30 4 -1.33 -1.06

6 93.30 29 1.56 1.66

7 80.40 24 0.98 0.81

8 98.80 30 1.68 2.14

9 98.40 30 1.68 2.14

10 55.60 17 0.17 0.16

11 50.20 15 -0.06 0.00

12 59.30 18 0.29 0.25

13 68.90 20 0.52 0.42

14 57.00 18 0.29 0.25

15 81.30 24 0.98 0.81

16 22.30 6 -1.10 -0.81

17 10.30 3 -1.44 -1.21

18 44.00 13 -0.29 -0.16

19 65.90 18 0.06 0.08

20 52.10 16 0.06 0.08

TABLA 3.3: Example: SNS and SRT with a reference sample
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These measures have changed, and it is noticeable that now the top 3 students (students 3,

8 and 9) occupy the same position, because they outperform all the grades obtained in the

previous year. Whereas without the reference sample they occupied different positions.

3.2 CAUTIOUS LEARNING WITH GICP

A combination of self-starting and guaranteed in-control performance, as discussed in sec-

tions 2.3.1 and 2.3.2 is cautious learning by Capizzi and Masarotto (2020). This approach

is a parametric monitoring tool that updates the reference sample using a cumulative like-

lihood criterion and employs the same control limits as seen in Jardim et al. (2019a).

Assuming a Phase I reference sample following a standard normal distribution of size 𝑚,

𝑌1, 𝑌2, ..., 𝑌𝑚, cautious learning initially establishes control limits for monitoring with basis

on the fulfillment of condition 2.16. It employs the stochastic approximation algorithm by

Polyak and Juditsky (1992) and Ruppert (1988). Subsequently, monitoring begins with the

arrival of phase II data 𝑋1, 𝑋2, ...

Learning and updating in the reference sample occur according to the following parameter:

𝑑𝑖+1 =


1 if 𝑞𝑖 < 𝐴𝑑𝑖 − 𝐵,

𝑑𝑖 + 1 otherwise ,
(3.9)

where:

𝑞𝑖 =
𝑖∑

𝑟=𝑖−𝑑𝑖+1

(
𝑋𝑟 − 𝑌𝑖−𝑑𝑖

𝑠𝑖−𝑑𝑖

)2

(3.10)

𝑌𝑖 =
1

𝑚 + 𝑖

𝑚+𝑖∑
𝑗=1

𝑌 𝑗 𝑖 = 0, 1, ... (3.11)
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𝑠2
𝑖 =

1
𝑚 + 𝑖 − 1

𝑚+𝑖∑
𝑗=1

(𝑌 𝑗 − 𝑌𝑖)2; 𝑖 = 0, 1, ..., (3.12)

𝐴 and 𝐵 are learning constants established based on the size of the change to detect; for

the current context, 𝐴 = 1.5 and 𝐵 = 50 are appropriate. The parameter 𝑑𝑖 counts how

many observations were observed before the cumulative likelihood was sufficiently high.

Once its value return to 1, the chart learns from the information provided by those 𝑑𝑖 phase

II observations. Learning in the chart involves updating the IC estimations as 𝜇0 = 𝑌0

𝜎2
0 = 𝑠2

0. The control limits are recalculated as follows:

𝐿𝑖−𝑑𝑖 = 𝐿∞ + Δ𝐿

√
𝑚

𝑚 + 𝑖 − 𝑑𝑖
, (3.13)

where: 𝐿∞: the value that the parameter 𝐿𝑖−𝑑𝑖 would have in the case of known parameters

Δ𝐿: Parameter calculated to guarantee an IC performance.

Monitoring continues until an alarm is issued. Given: 𝐸

[
𝑖∑

𝑟=𝑖−𝑑𝑖+1

(
𝑋𝑟 − 𝑌𝑖−𝑑𝑖

𝑠𝑖−𝑑𝑖

)2]
= 1, the

chart learns in average every 100 observations.

𝐿𝑖 is not directly the control limit but serves to obtain it. For the three control charts des-

cribed in Chapter 2, the control limits are as follows:

UCL: Upper control limit LCL: Lower control limit

Recent studies shows other ways to re-estimate parameters under the idea of cautious lear-

ning. Li (2022) introduced an adaptive CUSUM chart used to update the parameters. Ad-

ditionally, Huberts et al. (2022) reviewed various choices from learning parameters A and

B in Capizzi and Masarotto (2020).
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Scheme LCL UCL

Shewhart 𝜇0 − 𝜎0𝐿𝑖−𝑑𝑖 𝜇0 + 𝜎0𝐿𝑖−𝑑𝑖

CUSUM −𝐿𝑖−𝑑𝑖 𝐿𝑖−𝑑𝑖

EWMA 𝜇0 − 𝜎0
√
𝜆/(2 − 𝜆)𝐿𝑖−𝑑𝑖 𝜇0 + 𝜎0

√
𝜆/(2 − 𝜆)𝐿𝑖−𝑑𝑖

TABLA 3.4: The control limits for each monitoring scheme

In this work, cautious learning with GICP is extended to monitoring data from non-normal

distributions. We assess the performance of the proposed chart with normal, 𝑡-sudent, and

gamma distributions in Shewhart, EWMA, and CUSUM schemes. We compare the per-

formance of the proposed chart with a sequential implementation of the NS, CNSK and

CNSU statistics, which are then referred to in this study as SNS, CSNSK and CSNSU. Ad-

ditionally, we evaluate the performance of the SRT transformations.

The following algorithm explains the proposed methodology.
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3.2.1 ALGORITHM I: A NON-PARAMETRIC CONTROL CHART WITH CAUTIOUS

LEARNING

0. Given a reference sample of size m 𝑌 (𝑌𝑖 ∼ 𝑁 (𝜇0, 𝜎0)), two learning constants A and B,

the learning parameters Δ𝐿 and 𝐿∞, and the GICP values 𝛼 and 𝛽:

1. Do 𝑖 = 1:

2. Receive 𝑋𝑖 and apply the selected no-parametric transformation with respect to 𝑌 .

Store the result in 𝑍𝑖.

3. Check 𝑍𝑖 with respect to the control limits of the selected monitoring scheme.

3.1. If the process is OC, set 𝑟 = 𝑖 and proceed to step 7

3.2. If the process remains IC, go to step 4

4. Calculate 𝑞𝑖 using equation (3.10).

5. If 𝑞𝑖 reaches the threshold from the equation (3.9):

4.1. Update 𝑌 by adding all the monitored observations after the last updating

4.2. Re-estimate the IC parameters 𝜇0 and 𝜎0 based on the updated 𝑌

Recalculate the control limits using equation (3.13).

6. Increment i by 1 and return to step 2.

7. Return r and exit

The following diagram graphically presents the described algorithm:
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FIGURA 3.1: This algorithm monitors the process until it gets out of control, with the option

to learn when there is sufficient evidence that what is currently monitored is indeed in-

control.
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EXPERIMENTAL RESULTS

This chapter evaluates the performance of the proposed chart based on the SNS transforma-

tion compared to the SRT transformation using the cautious learning approach. Key points

of interest include:

Compliance with the Exceedance Criterion in Probability: Tables 4.1, 4.2, and

4.3 review the ratio for all employed statistics , along with 𝐴𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0

metrics. The aim is to maintain the proportion of false alarms at approximately 5%,

ensuring 𝐴𝐴𝑅𝐿0 is close to 500 with minimal deviation.

Performance in control for observations with non-normal distribution: In the

same tables 4.1, 4.2, and 4.3, as well as in figures 4.1, 4.2, and 4.3, a detailed review of

these results is conducted. It presents an illustrative comparison between themethods

used for various sample sizes and IC distributions.

Due to the convergence of the employed transformations to the normal distribution,

control performance is expected to remain consistent across different distributions.

42
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Process shift detection: Figures 4.4 to 5.14 assess the out-of-control performance of

the chart, comparing CL with non-parametric counterparts SNS, CSNSK, CSNSU,

and SRT under different distributions and shifts. The proposed chart is expected to

enhance results compared to Capizzi and Masarotto (2020) for non-normal distribu-

tions and be a viable alternative under the assumption of normality.

4.1 IN-CONTROL PERFORMANCE

Monte Carlo simulations were conducted to measure the performance of the proposed chart

under different parameters.

Parameter Selection

Monitoring scheme Shewhart (5), EWMA (𝜌 =0.2), CUSUM (k=0.5)

Reference sample size 50, 100, 500

In-control distribution 𝑁 (0, 1), 𝑇4, 𝐺 (0.5, 1)

Method CL, SNS, CSNSK, CSNSU, SRT

Shewhart chart is evaluated with subgroups for optimal performance, while CUSUM and

EWMA charts exhibit good performance even with individuals.

Notation used in this chapter includes:

CL: Cautious learning

SNS: Sequential normal scores with cautious learning
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CSNSK: Conditional sequential normal scores to a known median with cautious

learning

CSNSU: Conditional sequential normal scores to an unknown median with cautious

learning

SRT: Standardized sequential ranks transformation with cautious learning
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Shewhart

Normal 𝑡-Student Gamma

Metric CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU

AARL0 857.08 851.53 2 951.14 743.07 758.69 193.51 841.10 2 946.18 749.83 754.76 123.43 832.51 2 937.22 741.08 749.02

SDARL0 189.90 370.42 452.19 155.98 206.51 167.44 167.44 423.09 189.56 169.61 73.00 175.74 429.65 159.25 196.70

𝑝0.10 0.058 0.018 0.000 0.040 0.041 0.996 0.012 0.000 0.060 0.065 1.000 0.024 0.000 0.038 0.054

EWMA

Normal 𝑡-Student Gamma

Metric CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU

AARL0 873.57 801.13 2 154.01 758.61 755.98 249.29 805.75 2 138.07 747.01 768.74 172.71 798.75 2 163.09 745.80 765.35

SDARL0 187.50 139.79 310.23 157.50 164.15 85.77 134.18 326.18 173.07 157.38 92.96 128.40 339.43 170.16 151.79

𝑝0.10 0.049 0.007 0.000 0.028 0.040 0.981 0.005 0.000 0.049 0.030 0.996 0.006 0.000 0.054 0.018

CUSUM

Normal 𝑡-Student Gamma

Metric CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU

AARL0 966.40 846.02 1 257.82 797.73 807.57 272.10 839.81 1 257.73 802.94 812.96 242.14 849.42 1 257.31 794.78 799.97

SDARL0 228.88 151.37 196.83 180.72 181.93 89.70 143.78 205.75 180.17 168.43 114.59 158.25 199.94 181.42 175.75

𝑝0.10 0.055 0.011 0.000 0.047 0.043 0.971 0.013 0.000 0.049 0.032 0.965 0.017 0.000 0.046 0.035

TABLA 4.1: Cautious Learning IC performance for 𝑚 = 50
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Shewhart

Normal 𝑡-Student Gamma

Metric CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU

AARL0 755.90 755.12 2 679.08 670.83 668.03 172.18 750.73 2 678.54 666.55 671.92 113.97 748.97 2 670.41 667.83 675.14

SDARL0 163.34 79.76 206.18 77.28 95.81 72.01 74.10 186.68 75.00 87.58 62.58 76.69 180.54 86.17 89.46

𝑝0.10 0.045 0.011 0.000 0.020 0.041 0.996 0.008 0.000 0.024 0.034 0.999 0.009 0.000 0.034 0.032

EWMA

Normal 𝑡-Student Gamma

Metric CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU

AARL0 743.00 715.32 2 024.62 658.36 668.43 249.29 713.36 2 020.53 662.96 668.73 161.71 710.52 2 027.25 665.53 670.30

SDARL0 159.05 67.05 198.36 93.78 79.10 85.77 63.71 201.33 87.01 77.63 79.66 65.25 206.39 84.06 75.97

𝑝0.10 0.051 0.006 0.000 0.038 0.023 0.981 0.005 0.000 0.029 0.016 0.994 0.007 0.000 0.027 0.021

CUSUM

Normal 𝑡-Student Gamma

Metric CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU

AARL0 770.90 709.46 1 053.10 656.64 664.98 335.70 713.09 1 053.70 656.84 663.66 196.14 709.8 1 048.34 657.54 666.27

SDARL0 169.70 64.91 86.79 91.38 78.78 120.70 66.39 84.37 87.56 78.85 95.21 56.07 88.64 89.03 76.69

𝑝0.10 0.045 0.012 0.000 0.037 0.031 0.864 0.012 0.000 0.036 0.032 0.986 0.004 0.000 0.040 0.028

TABLA 4.2: Cautious Learning IC performance for 𝑚 = 100
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Shewhart

Normal 𝑡-Student Gamma

Metric CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU

AARL0 668.51 657.7 2 370.00 619.64 619.48 160.54 655.98 2 370.83 619.04 618.13 101.95 659.93 2 366.12 618.46 622.03

SDARL0 128.88 41.55 47.27 46.30 30.56 51.37 43.28 64.97 43.52 43.46 37.53 42.36 69.51 43.86 41.40

𝑝0.10 0.042 0.000 0.000 0.000 0.002 0.997 0.001 0.00 0.001 0.000 1.000 0.000 0.000 0.001 0.001

EWMA

Normal 𝑡-Student Gamma

Metric CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU

AARL0 643.66 624.64 1 771.74 598.40 600.23 240.91 626.39 1 772.72 597.20 597.94 156.97 624.44 1 769.41 595.93 600.23

SDARL0 110.10 68.64 40.99 72.29 66.63 68.18 65.18 40.86 71.70 69.87 51.02 66.81 41.42 71.71 68.29

𝑝0.10 0.039 0.009 0.000 0.022 0.017 0.981 0.007 0.000 0.027 0.023 1.000 0.006 0.000 0.024 0.019

CUSUM

Normal 𝑡-Student Gamma

Metric CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU CL SNS SRT CSNSK CSNSU

AARL0 642.45 628.67 922.69 595.74 599.35 303.13 625.49 923.26 594.61 599.84 175.45 623.9 923.74 590.15 599.72

SDARL0 117.17 63.87 42.37 65.87 68.42 265.63 65.96 42.59 67.35 63.07 56.84 66.78 43.92 68.79 66.27

𝑝0.10 0.029 0.005 0.000 0.016 0.017 0.950 0.004 0.000 0.029 0.020 0.997 0.010 0.000 0.026 0.017

TABLA 4.3: Cautious Learning IC performance for 𝑚 = 500

SNS, CSNSU, CSNSK and SRT all work, as they are guaranteed to have a near 5% IC



CHAPTER 4. EXPERIMENTAL RESULTS 48

performance ratio below the 𝐴𝑅𝐿0. On the other hand, CL has practically only false alarms

during its monitoring of non-normal processes.

Even though SRT works by having few false alarms, it is of concern that it shows much

higher AARLs than the rest, especially in Shewhart and EWMA schemes. This can lead to

problems in detection because it would take longer for the chart to detect a real change. The

image at the end of this section illustrates the relationship between false alarm probabilities

and change detection.
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FIGURA 4.1: In-control performances from Shewhart (𝑛 = 5)

Box-plots represent the distribution of ARL conditional values. Lower and upper whiskers

were created with quantiles 0.05 and 0.95, respectively.
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FIGURA 4.2: In-control performances from EWMA (0.2)

Box-plots represent the distribution of ARL conditional values. Lower and upper whiskers

were created with quantiles 0.05 and 0.95, respectively.
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FIGURA 4.3: In-control performances from CUSUM (0.5)

Box-plots represent the distribution of ARL conditional values. Lower and upper whiskers

were created with quantiles 0.05 and 0.95, respectively.



CHAPTER 4. EXPERIMENTAL RESULTS 52

Under the assumption of normality in the observations, the non-parametric transformations

yield excellent in-control results, guaranteeing in-control performance, with a particular

emphasis on SNS and its variants. However, SRT proves to be highly conservative, resulting

in very large ARLS. The next step is to test the OC performance of the chart, considering

the exceptional results observed in the IC scenario.

4.2 OUT-OF-CONTROL PERFORMANCE

Having established the IC scenarios and confirmed the convergence of statistics to the nor-

mal distribution, this section examines the chart’s power. The comparison focuses on the

SNS, CSNSK, CSNSU, and SRT statistics.

Simulations were conducted to evaluate the out-of-control performance of the chart when

the change occurs at the start of monitoring (𝜏 =1) or after 150 observations (the chart’s

learning is every 100 on average). The goal is to explore the effectiveness of the proposed

tool compared to the parametric alternative, recognizing the limitations of the latter when

the normality assumption is not met. For any non-normal distribution, the review is limi-

ted to the non-parametric proposals, emphasizing the differences based on the monitoring

scheme and distribution.

Parameter Scenario
Monitoring scheme Shewhart, EWMA, CUSUM

Reference sample size 100
In-control distribution 𝑁 (0, 1), 𝑇4, 𝐺 (0.5, 1)

Method CL, SNS, CSNSK, CSNSU, SRT
𝛿 1
𝜏 1,150
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FIGURA 4.4: Out-of-control performances for N(0,1) distribution

Box-plots represent the distribution of ARL conditional values. Lower and upper whiskers

were created with quantiles 0.05 and 0.95, respectively.
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FIGURA 4.5: Out-of-control performances for 𝑇4 distribution

Box-plots represent the distribution of ARL conditional values. Lower and upper whiskers

were created with quantiles 0.05 and 0.95, respectively.
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FIGURA 4.6: Out-of-control performances for G(0.5,1) distribution

Box-plots represent the distribution of ARL conditional values. Lower and upper whiskers

were created with quantiles 0.05 and 0.95, respectively.
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In t-student or Gamma observations, it can be observed that under EWMA and CUSUM

schemes, there is no significant difference between SNS and SRT for positive changes. Both

transformations prove to be highly effective in change detection. However, under Shewhart,

the detection by SRT is dramatically slower. For negative changes in an asymmetric distri-

bution, SNS outperforms SRT, even reaching its best performance in the experiment.

The performance of CSNSK and CSNSU was practically the same as SNS, indicating that

the condition of the quantile does not significantly affect the chart’s performance.
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4.3 DISCUSSION

GUARANTEED IN-CONTROL PERFORMANCE

Tables 5.3, 5.4 and 5.5 demonstrate that the IC performance is guaranteed in prac-

tically all scenarios, with 𝑝0.10 values equal to or even below 5%, highlighting the

𝑆𝑅𝑇 with values close to 0.

Particularly for normal observations, the convergence of non-parametric statistics to

such a distribution helps achieve guaranteed in-control performances, as presented

in Capizzi and Masarotto (2020). It’s essential to note that 𝑆𝑅𝑇 is very conservati-

ve, having a practically null false alarm rate, and for this reason it obtain very high

𝐴𝐴𝑅𝐿0 values.

When the normality assumption is not fulfilled, the recorded 𝑝0.10 values show that

it is no longer possible to guarantee in-control performance under the parametric

scheme. It leads to practically only false alarms during monitoring. On the other

hand, for 𝑆𝑁𝑆 and 𝑆𝑅𝑇 , this is successfully achieved, obtaining results very similar

to those obtained following the normality assumption.

Figures 5.1, 5.2 and 5.3 provide a graphical summary, showcasing the difference

between 𝑆𝑅𝑇 results and the rest of the tested statistics while still remaining above

the desired performance. The variation between the 𝐴𝑅𝐿𝑠 is practically minimal,

decreasing as the sample size increases.
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OUT-OF-CONTROL PERFORMANCE

Figure 4.4 shows very similar results among almost all the statistics, with a nota-

ble exception under the Shewhart scheme. In this case, SRT, which had been very

conservative in the IC scenario, presents the slowest detection among the evaluated

statistics . On the side of EWMA and CUSUM schemes, the differences are prac-

tically imperceptible, with SRT being slightly faster than SNS and its variants for

change detection, especially for Gamma observations.

Figures 4.5 and 4.6 present the same observations as 4.4, with the difference that we

are evaluating a scenario where normality is not fulfilled in the observations, yielding

mixed results among the different statistics. In this case, there would not be a favorite

option, but any of these could serve as a good alternative in monitoring. Particularly,

SRT performs better under CUSUM and EWMA schemes, while SNS and its variant

conditions outperform SRT by far when a Shewhart chart is used.

Figures 4.7-4.14 extend the analysis by detailing what happens to the detection under

different magnitudes of change. This allows us to observe that the symmetry of the

distribution has a strong influence, as under an asymmetric Gamma distribution, the

detection is practically instantaneous when the change is negative. Conversely, in a

Normal distribution, given its symmetry, there is no noticeable difference between

positive and negative changes. Also, in these figures, simulations of different positive

magnitude changes for CL and SNS were presented.
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4.4 PRACTICAL EXERCISE

As a practical application of the tool developed in this study, records on health in Mexico

were considered, obtained from Secretaría de Salud (2022) . Data of people from the 32

states of the republic were taken.

The database includes 4363 records, each with 36 variables, including hypertension risk,

blood pressure, body mass index, among other bio-metric measures. This database was

analyzed by the control chart developed, after applying a logistic regression classification

model to it. ¹

First, data cleaning was performed, eliminating duplicate or missing records, leaving us

with 1540 data from 8 different variables. Subsequently, a logistic regression model was

adjusted, where the objective was to classify each patient as at-risk or not at-risk for hyper-

tension, considering the risk variable as dependent on the rest.

Age Waist (cm) Blood pressure Sleep time (hours) BMI Exercise (h) Hypertension risk

57 115.4 130 2 33.38 260 1

32 79.1 83 4 22.61 290 0

... ... ... ... ... ... ...

TABLA 4.4: Data set from Kaggle. Encuesta Nacional de Salud y Nutrición México 2022

The model obtained was as follows:

¹A brief explanation of the use of this can be seen in Appendix II at the end of the document
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𝑦̂ = −15.7003 − 0.9653𝑥1 − 0.0005𝑥2 + 0.0697𝑥3 + 0.3206𝑥4 (4.1)

y: Hypertension risk measure

𝑥1: Hours of sleep

𝑥2: Minutes of exercise per week

𝑥3: Blood preassure

𝑥4: Body Mass Index

80% of the total base was considered to build it, leaving the remaining 20% (308 observa-

tions) to measure its performance and for subsequent risk monitoring.

The performance obtained in the regression model was as follows:

Prediction / Observed No risk Risk

No risk 95 18

Risk 24 171

TABLA 4.5: 88% of people at risk of hypertension were correctly classified as at-risk group.
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FIGURA 4.7: Variation in model-adjusted risk probability

Once the classificationwas obtained, the risk status of each individual wasmonitored, using

a reference sample of 50 personswith an average risk-probability of 0.29 and standard devia-

tion of 0.22. This would seek to detect a change in hypertension risk within the population,

with this change being at least the error shown by the model. Below are the results obtained

by the monitoring, using the EWMA (0.2), and CUSUM (0.5) schemes and considering a

positive change ² of 1.5 standard deviations for Shewhart and 1 standard deviation for EW-

MA and CUSUM. The change point was considered at 𝜏=1 for shewhart, at 𝜏=1,150 for

EWMA and at 𝜏=1,150,300 for CUSUM.

²Considering the deviations of the model, which behave mostly in the range of 0 to 20% (Figura 4.7),

detecting a change of 𝛿=1.5,2, which is equivalent to 22% and 33%, is reliable.
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FIGURA 4.8: Prevention of hypertension in patients
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In general, the chart performs quite well under all 3 schemes, both in a small and in a large

change. The detection is fast under the Shewhart scheme, with only 3 observations, while

for EWMA and CUSUM, the 1 standard deviation change was detected more quickly as

the control chart learned, this is observed once in EWMA and up to 3 times in CUSUM.

The response time to a health emergency is represented by the speed of detection of this

tool, which is very quick.



CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

The proposed non-parametric control tool works in the monitoring of processes coming

from normal and non-normal distributions, such as t-student and Gamma. It also gives an

added value the use of cautious learning, where it extends the results obtained by Capizzi

and Masarotto (2020), for the first time in the literature.

The application of this tool is simple by virtue of the convergence of the statistics used,

since it was demonstrated that it works using the same control limits as in the parametric

case, thus saving a considerable amount of computational time.

Within the in-control monitoring, each statistic guarantees a minimum performance, high-

lighting that the SRT presents too conservative results. As for change detection, all statistics

perform well, with SNS and its variants under the Shewhart scheme being the best choice,

while in the EWMA and CUSUM charts any statistic could well be chosen with consis-

tently good results.

The developed tool can be extended to the monitoring of other population parameters such

as variance or coefficient of variation, so its application would be extended if developed for

64
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multivariate processes.
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As an appendix to this thesis there are 3 main documents, the first one, which is shown

below, is a research work derived from the present project. The following two complement

the explanation given in this paper, either by way of examples or theoretical material.
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5.1 THE SEQUENTIAL NORMAL SCORES APPROXIMATION AS

A BRIDGE BETWEEN PARAMETRIC AND NONPARAMETRIC

STATISTICAL PROCESS MONITORING

Alvaro E. Cordero-Franco, Gerardo Pérez-Arriaga, Víctor G. Tercero-Gómez, Luis A. Benavides-

Vázquez, William J. Conover Cordero-Franco et al.

Emphasis on power has led to the creation of increasingly complex, and even doubtful, ap-

proaches in nonparametric process monitoring research. A proper method is as useful as it

is likely to be used. Computational complexity, design limitations, and reduced interpreta-

bility are common barriers that practitioners face when choosing a chart. Sequential normal

scores (SNS) transformation, a nonparametric sequential linear rank transformation where

only the most recent observations are ranked and transformed into independent normal sco-

res, offers a solution that alleviates some of these problems by extending the use of methods

designed for independent and normal observations. Alternatives using normal scores show

power levels comparable to the best tradition of rank transformation methods when in-

control behavior is matched. The normal approximation reduces the need to rely on special

lookup tables and case-by-case numerical calibrations. By avoiding re-ranking, compu-

tational complexity is reduced. Finally, as a bonus, interpretation is facilitated by using a

Gaussian reference. With the natural updating capabilities of SNS, novel approaches such

as cautious learning with guaranteed performance are readily available for practitioners

with no special set-up required but a pre-processing transformation. Location monitoring

results show robustness to distribution with power equivalent to parametric counterparts

when assumptions hold.
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5.1.1 INTRODUCTION

The increasing emphasis on data-driven approaches in the era of Industry 4.0 has driven

the need for robust statistical process monitoring (SPM) techniques in manufacturing and

service processes. Control charts have been widely adopted as a primary tool for online

process monitoring since their introduction by Shewhart (1931a), with traditional methods

predominantly relying on parametric assumptions. However, these assumptions may not

hold in practice due to various reasons, such as noncompliance with desired distributional

assumptions or limited availability of reliable data. As a result, nonparametric approaches

have emerged as an alternative solution to address these challenges.

Nonparametric SPM methods offer flexibility by not assuming specific probability distri-

butions for the underlying process. Instead, they rely on appropriate transformations that

allow for distributional assessment, even when the original data distribution remains unk-

nown. Two commonly used transformations in nonparametric SPM are dichotomization

and rank transformation, the latter being favored for its higher power (Conover and Iman,

1981).

Rank transformations, based on the application of traditional parametric procedures to

the ranks of the data, have demonstrated strong statistical properties (Conover and Iman,

1981; Zimmerman, 1992). These transformations provide an opportunity to leverage well-

established parametric methods that assume normality, enabling practitioners already fa-

miliar with classical parametric approaches to adopt nonparametric SPM techniques (Co-

nover, 2012).

Although the nonparametric SPM literature has proposed various rank-based methods to

monitor process behavior (Li et al., 2010; McDonald, 1990), these approaches often rely on
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numerical routines, lookup tables, and distributional approximations to ensure desired per-

formance in specific application scenarios.Moreover, some existing nonparametricmethods

suffer from limitations such as low detection capability, excessive variation in run length,

and dependence on numerical analysis, tables or poor approximations for their implemen-

tation (McDonald, 1990).

A method is as good as it is likely to be used. Power to detect a change in a process is impor-

tant, however, it is only a factor to consider when choosing a method to use. Easy-of-use

and interpretation are key elements for practitioners. Sadly, most research mostly focus on

power, leaving aside the latter elements. Approaches with these elements, including high

power, can be constructed with the sequential normal scores (SNS) transformation, a tech-

nique introduced by Conover et al. (2017). Such a transformation extends the application

of existing methods that assume normality to the monitoring of non-normal measurements.

The SNS transformation is a nonparametric sequential linear rank transformation that ad-

dresses several limitations of existing nonparametric approaches. It offers the advantages

of reduced computational complexity, improved interpretability, and extended applicability

of methods designed for independent and normally distributed observations. By avoiding

the need for reranking and utilizing a Gaussian reference, the SNS approach reduces re-

liance on special lookup tables and case-by-case numerical calibrations, thus simplifying

implementation. When scores are not obtained sequentially they are called normal scores

(NS) for simplicity.

Rank-based methods and sequential approaches have been extensively analyzed in the lite-

rature when dealing with process monitoring (Parent, 1965a; Reynolds and Marion, 1975;

McDonald, 1990; Hackl and Ledolter, 1992; Gordon and Pollak, 1994; Yakir, 1998; An-

dreou and Ghysels, 2003; Zou and Tsung, 2010; Li, 2011; Tapang and Pongpullponsak,

2012; Liu et al., 2013; Mao et al., 2013; Liu et al., 2014; Nazir et al., 2013; Zhang, 2014;
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Zhang and Chen, 2014; Qiu and Zhang, 2015; Zheng and Chakraborti, 2016). See Chakra-

borti and Graham (2019a) and Chakraborti and Graham (2019b) for a recent review and

overview of different nonparametric monitoring approaches. However, these approaches

often rely on numerical analysis or large sample approximations for their implementation.

NS and SNS offer an alternative where the normal approximation provides a good fit even

with small samples.

Following the SPM literature, Capizzi andMasarotto (2020) disrupted the waywe approach

monitoring by considering how the estimation of parameters can be addressed and impro-

ved with a cautious learning scheme that provides guaranteed in-control performance. They

provided a parametric solution to deal with normal observations. Following the approach of

Conover (2012), we can extend these results to deal with non-normal observations by using

this procedure, with the corresponding decision criteria, on SNS and SRT scores. With the

use of these nonparametric transformations, we are proposing, probably for the first time, a

nonparametric cautious learning scheme with guaranteed performance. The distribution of

the average run length (ARL) conditioned on the phase I sample, conditional performance

for short, is used for the analysis.

In this paper, we focus our attention on cautious learning approaches with guaranteed per-

formance. However, together with the supplementary material, we evaluate the use of NS

and SNS as transformations to use with existing parametric approaches that assume nor-

mality. This is, NS and SNS are evaluated with a Shewhart 𝑋̄ chart, an EWMA scheme,

and a CUSUM procedure. We compare the run length distribution of these transformations

with the parametric counterparts, under in-control and out-of-control scenarios. We also

add to the comparison the use of the rank transformation (RT) following the sense of Co-

nover (2012), where a RT and a sequential rank transformation (SRT) are used with the

same monitoring schemes. Control limits used with NS, SNS, RT and SRT are the same
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as the ones used in a Shewhart, EWMA and CUSUM chart that assume that observations

are normal. Hence, we are evaluating the normal approximation of these nonparametric

transformations.

To facilitate the presentation of findings, this paper presents results on cautious learning, the

modern approach at the time this research was done. However, additional results following

similar conclusions about the goodness of NS and SNS can be found as supplementary

material where we explore approaches with “no learning”, and “incautious learning” pro-

cedures and their run-length distribution is evaluated. “No learning” with Shewhart, CU-

SUM and EWMA schemes were compared with the parametric scheme where parameters

are estimated. The unconditional distribution of the run length is used as a way to compa-

re schemes. Incautious learning happens when every new observation is used to improve

parameter estimation, or increase the reference sample for nonparametric calculations. In-

cautious learning methods using Shewhart, CUSUM and EWMA schemes follow the sense

of self-starting procedures byHawkins (1987a) andQuesenberry (1991).Conditional delay

(CD) distribution after a change-point 𝜏 is used to evaluate each procedure. Supplementary

material is and optional read, it adds confidence on the use of NS and SNS, nevertheless,

conclusions on the effect of these nonparametric transformation remains unchanged.

The purpose of this paper is to assess the normal approximation of NS and SNS, how it

compares with RT and SRT, and which approach is a better match when compared with

parametric alternatives under normality. The closer the gap between what is expected under

normal circumstances, the more reliable and practical the approach is for practitioners.

The rest of the paper is organized as follows. In Section 5.1.2 we described the nonparame-

tric transformations that lead to the SNS transformation. This includes the development of

the RT and the SRT. Subsections in Section 5.1.5 also include how these approaches are
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adapted to different monitoring schemes. These schemes are Shewhart 𝑋̄ , CUSUM, and

EWMA to monitor univariate changes in location. Implementation of these monitoring

schemes include guaranteed performance approaches and learning procedures to improve

performance as trusted data is included to improve estimation of the in-control distribution.

Section 5.1.5 shows the performance of the proposed control charts.

5.1.2 NONPARAMETRIC TRANSFORMATIONS AND MONITORING SCHEMES

The SNS transformation is a nonparametric procedure that converts sequential ranks into

asymptotically normally distributed statistics. This transformation can be used in control

charts that assume normality for their statistical properties to hold, as presented in Conover

et al. (2017). When this sequential statistic is employed, the computational complexity is

reduced, since only the ranks of the monitored sample need to be evaluated. Additionally,

the normal asymptotic behavior of the transformed scores allows for the use of control limits

based on the normal distribution, accommodating different control schemes as discussed

in Section 5.1.5.

Subsection 5.1.2.1 provides a description of the rank-based transformations employed in

SPM, namely the traditional rank, sequential rank, and SNS transformations. These transfor-

mations serve the purpose of converting data into scores, enabling the creation of distribution-

free tests for process monitoring. In Subsection 5.1.3, we delve into the concept of learning

from the in-control (IC) sample during the monitoring process. Emphasizing the significan-

ce of practitioner-to-practitioner variation, we highlight its effects on IC performance and

explore strategies to mitigate it through the updating of IC sample parameter estimations.

Furthermore, Subsection 5.1.4 introduces location charts based on SNS transformations un-
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der three distinct learning schemes that can be effectively employed with SNS-transformed-

data, ensuring reliable and effective process control.

5.1.2.1 TRANSFORMATIONS

Let 𝑌 = {𝑌 𝑗 }, 𝑗 = 1, . . . , 𝑚 an IC sample. The rank transformation of 𝑌 𝑗 over the sample 𝑌

is defined as

𝑅 𝑗 = 𝑅(𝑌 𝑗 ) =
∑
𝑌𝑖∈𝑌

𝐼 (𝑌𝑖 ≤ 𝑌 𝑗 ), (5.1)

where the 𝐼 (·) indicator function is 1 if it is evaluated as true and 0 otherwise. TRanks are

correlated, but their in-control distribution does not depend on the distribution of 𝑌 , only

depends on the counting permutations. Li et al. (2010) introduced nonparametric control

charts for location based on this ranking process, combining the monitored sample 𝑋𝑖 =

{𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑛}, with the IC sample 𝑌 in the set 𝑌 = 𝑌 ∪ 𝑋𝑖, to use the Wilcoxon test as

monitoring statistic:

𝑊𝑖 =
∑

𝑋𝑖 𝑗∈𝑋𝑖

𝑅(𝑋𝑖 𝑗 ), (5.2)

This statistic (5.2) uses the rank of 𝑋𝑖 𝑗 over the combined sample 𝑌 = 𝑌 ∪ 𝑋𝑖 in equation

(5.1). Li et al. (2010) proposed a CUSUM and an EWMA control chart using (5.2), ob-

taining their control limits by numerical methods based on the run-length distribution of

these charts. Control charts based on this statistic need to compute the ranks of the combi-

ned sample 𝑌 ∪ 𝑋𝑖,∀𝑖 = 1, 2, . . . to obtain (5.2), which can be computationally intensive

for large streams, or to evaluate the performance of control charts for different monitoring

schemes.
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Another ranking alternative is found on the sequential rank transformation, SRT, where the

calculation of the a rank is restricted to the observation being ranked and previous sub-

groups. A major advantage for using this approach is that sequential ranks are statistically

mutually independent, which simplifies its analysis and application. As an example of the

difference in traditional and sequential ranking transformation, see the next table of 7 in-

dependent observations 𝑋 . Ranks are correlated, but their in-control distribution depends

only on the counting of permutations, not the actual distribution of 𝑋 . The in-control distri-

bution of the sequential ranks also depends only on the counting of permutations, however

they are statistically independent of each other.

TABLA 5.1: Example of rank and sequential rank transformations.

i 1 2 3 4 5 6 7

X 3 4.5 8.6 2.3 2.8 1.7 6.6

RT 4 5 7 2 3 1 6

SRT 1 2 3 1 2 1 6

McDonald (1990) proposed a CUSUM chart to monitor the location of a process with se-

quential rank transformations using a Markov chain model to approximate limiting control

limits. The SRT for 𝑋𝑖 𝑗 of the monitored sample 𝑋𝑖, SRT𝑖 𝑗 , over the reference sample 𝑌 is:

SRT𝑖 𝑗 = SRT(𝑋𝑖 𝑗 ) =
∑
𝑌𝑘∈𝑌

𝐼 (𝑌𝑘 ≤ 𝑋𝑖 𝑗 ) +
𝑖−1∑
𝑢=1

𝑛∑
𝑣=1

𝐼 (𝑋𝑢𝑣 ≤ 𝑋𝑖 𝑗 ) + 1, (5.3)

whose standardized version is:



APPENDIX 76

SRT∗
𝑖 𝑗 =

SRT𝑖 𝑗 − (𝑚 + 𝑛(𝑖1) + 2)/2√
((𝑚 + 𝑛(𝑖1) + 1)2 − 1)/12

, (5.4)

Here, the ranking transformation is derived only for the monitored sample, there is no need

to obtain the ranks of the reference sample, which reduces the computational complexity

with respect to traditional ranks. When dealing with subgroups size 𝑛 > 1, ranking between

observations from the same group adds unneeded dependence. Observations in a subgroups

are treated as individuals ranked only with previous subgroup elements.

The sequential normal scores transformation are obtained by transforming sequential ranks

with 𝑧 = Φ−1 [(𝑆𝑅𝑇 − 0.5)/𝑖], rankits, where Φ−1 is the inverse of the standard normal

distribution and 𝑖 is the sample size at that point in time. Using the example of Table ??,
Table ?? shows the calculations of this transformation.

TABLA 5.2: Example of sequential normal score transformations.

i 1 2 3 4 5 6 7

X 3 4.5 8.6 2.3 2.8 1.7 6.6

RT 4 5 7 2 3 1 6

SRT 1 2 3 1 2 1 6

SNS 0 0.674 0.967 -1.150 -0.524 -1.383 0.792

The use of SNS in contro chart is explained in Conover et al. (2017). For the IC sample

𝑌 = {𝑌 𝑗 }, 𝑗 = 1, . . . , 𝑚 and the monitoring observations 𝑋𝑖 𝑗 ∈ 𝑋𝑖, the transformation 𝑍𝑖 𝑗
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is calculated by

𝑍𝑖 𝑗 = Φ−1(𝑃𝑖 𝑗 ), (5.5)

where Φ−1 is the inverse of the standard normal cumulative distribution function and 𝑃𝑖 𝑗

is defined by:

𝑃𝑖 𝑗 =
𝑆𝑅𝑇𝑖 𝑗 − 0.5

𝑚 + 1 + 𝑛(𝑖 − 1) , (5.6)

whereas, the SNS for 𝑌 𝑗 in the IC-sample is defined by 𝑍 𝑗 = Φ−1(𝑃 𝑗 ) where 𝑃 𝑗 =
𝑅 𝑗−0.5

𝑚 .

According to Conover et al. (2017), the sequence of 𝑍𝑖 𝑗 are independent asymptotically

standard normal random variables, then, we can use tests based on SNS to create control

charts using control limits obtained by assuming a normally distributed process. The asym-

ptotic behaviour of SNS and SRT is evaluated using control charts based on the assumption

of normality, under different learning schemes about the IC sample in Section 5.1.5.

5.1.3 LEARNING PROCEDURES

Numerous authors such as Jensen et al. (2006), Saleh et al. (2015), Jardim et al. (2020), have

emphasized that the performance of a control chart is closely tied to the IC sample. When

using the ARL as a performance metric, it has been observed that a significant number

of practitioners experience values of ARL0 lower than expected, leading to an increase in

the false alarm rate. Given the dependence of the performance of the control chart on the

IC sample, it becomes crucial to consider the conditional average run length (CARL) as

a performance metric. The CARL represents the ARL calculated for a specific IC sample

𝑌 = 𝑦, denoted as CARL(𝑌 = 𝑦). To mitigate the impact of the IC sample, Albers and

Kallenberg (2004) proposed the exceedance probability criterion as a measure to evaluate
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the performance of estimated control charts. In terms of CARL, this criterion is formulated

as follows:

𝑃(CARL0 ≤ (1 − 𝛼)(ARL0)) = 𝛽, (5.7)

A control chart created under this criterion ensures a small proportion of CARLs under the

desired performance.

Furthermore, Keefe et al. (2015b) conducted a study to examine the effect of self-starting

control charts, see Hawkins (1987a), on practitioner-to-practitioner variation. They conclu-

ded that this incautious learning approach may have an impact on the out-of-control (OC)

performance since OC observations can be used to estimate the IC parameters.

To address the impact of the exceedance probability criterion on OC performance and redu-

ce the effect of including OC observations in the integrative approach, Capizzi and Masa-

rotto (2020) proposed a cautious learning scheme. Capizzi and Masarotto (2020) updated

the estimators of the IC sample at time 𝑖, with the estimators 𝑋̄𝑖−𝑑𝑖 and 𝑆2
𝑖−𝑑𝑖 , where 𝑋0

and 𝑆2
0 are the mean and variance of the reference sample, respectively, and 𝑑𝑖 is a delay

parameter defined as:

𝑑𝑖+1 =


1 if

𝑖∑
𝑟=𝑖−𝑑𝑖+1

(
𝑥𝑟 − 𝑥𝑖−𝑑𝑖

𝑠𝑖−𝑑𝑖

)2
< 𝐴𝑑𝑖 − 𝐵,

𝑑𝑖 + 1 otherwise ,

(5.8)

where 𝑑1 = 1. This rule enables the updating of the parameters only when likelihood of

𝑋𝑖−𝑑𝑖+1, . . . , 𝑋𝑖 is sufficiently high. 𝐴 and 𝐵 are learning constants used to achieve the

guaranteed IC performance condition, updating the control limits on average for each 100

samples. Also, with each update, the critical values 𝐿𝑖 are adjusted with the same rate of

convergence than the estimation errors, according to the next formula:
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𝐿𝑖−𝑑𝑖 = 𝐿∞ + Δ𝐿

√
𝑚

𝑚 + 𝑖 − 𝑑𝑖
, (5.9)

where 𝐿∞ is the control limit for an IC ARL equal to a nominal ARL0 with known para-

meters and Δ𝐿 is obtained to achieve the guaranteed exceedance criterion. This cautious

learning approach is applied in Shewhart, CUSUM and EWMA control schemes showing

better results in the power of detecting real changes in the process, compared with a no-

learning control chart with IC guaranteed performance; whereas its IC performance pre-

sents lower variation in the conditional ARL.

In nonparametric schemes, control charts based on SNS and standardized SRT can be seen

as incautious learning approaches, because the rank procedure is defined over a reference

sample which is updated with each new IC sample. Also, given that they have a limiting

standard normal distribution, we can use them with the control limits based on this distri-

bution.

We can also use SNS and SRT to create location distribution-free control charts in a cau-

tious learning approach. For monitoring the sample 𝑋𝑖, lets define 𝑍𝑖 and 𝑆𝑅𝑇𝑖:

𝑍𝑖 =

𝑛∑
𝑗=1

𝑍𝑖 𝑗

√
𝑛

, (5.10)

SRT𝑖 =

𝑛∑
𝑗=1

SRT∗
𝑖 𝑗

√
𝑛

, (5.11)

Both statistics have a limiting standard normal distribution as 𝑛 → ∞, therefore, they can

be used in the cautious learning control chart of Capizzi and Masarotto (2020). As initial
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estimators of the normal control chart, we can use the mean and standard deviation of

the transformation. The delay mechanism in equation (5.8) used for the estimation of the

control chart parameters also updates the reference sample used in the rank procedure.

5.1.4 MONITORING LOCATION SCHEMES

In this research, we present the Shewhart, EWMA and CUSUM control chart for location

using the SNS transformation to monitor batches of size 𝑛, using as a test statistic 𝑍𝑖, see

equation (5.10).

For the Shewhart control chart an alarm is given when 𝑍𝑖 ≥ 𝜇̂𝑆𝑁𝑆
𝑖−𝑑𝑖 + 𝐿𝑖𝜎̂

𝑆𝑁𝑆
𝑖−𝑑𝑖 , or 𝑍𝑖 ≤

𝜇̂𝑆𝑁𝑆
𝑖−𝑑𝑖 − 𝐿𝑖𝜎̂

𝑆𝑁𝑆
𝑖−𝑑𝑖 , where 𝜇̂𝑆𝑁𝑆

𝑖−𝑑𝑖 and 𝜎̂𝑆𝑁𝑆
𝑖−𝑑𝑖 are the sample mean and standard deviation of the

SNS transformation at time 𝑖 − 𝑑𝑖.

In the CUSUM-type control chart, with 𝐶+
0 = 𝐶−

𝑖 = 0, we use statistics

𝐶+
𝑖 = máx

(
0, 𝐶+

𝑖−1 +
𝑍𝑖 − 𝜇̂𝑆𝑁𝑆

𝑖−𝑑𝑖
𝜎̂𝑆𝑁𝑆
𝑖−𝑑𝑖

− 𝑘

)
, 𝑖 > 0, (5.12)

𝐶−
𝑖 = mı́n

(
0, 𝐶−

𝑖−1 +
𝑍𝑖 − 𝜇̂𝑆𝑁𝑆

𝑖−𝑑𝑖
𝜎̂𝑆𝑁𝑆
𝑖−𝑑𝑖

+ 𝑘

)
, 𝑖 > 0, (5.13)

where 𝑘 is a reference value, also known as the allowance. Parameters ℎ, 𝑘 are given for a

target ARL0. Alarms are triggered when 𝐶+
𝑖 ≥ 𝐿𝑖 or 𝐶−

𝑖 ≤ −𝐿𝑖.

In an EWMA-type control chart, the statistic used is

𝐸𝑖 = 𝜆𝑍𝑖 + (1 − 𝜆)𝐸𝑖−1, 𝑖 > 0, (5.14)

where 𝐸0 = 0. Parameters 𝜆, 𝐿 are obtained to achieve ARL0. An alarm is given when

𝐸𝑖 ≥ 𝜇̂𝑆𝑁𝑆
𝑖−𝑑𝑖 + 𝐿𝑖𝜎̂

𝑆𝑁𝑆
𝑖−𝑑𝑖

√
𝜆

2−𝜆 , or, 𝐸𝑖 ≤ 𝜇̂𝑆𝑁𝑆
𝑖−𝑑𝑖 − 𝐿𝑖𝜎̂

𝑆𝑁𝑆
𝑖−𝑑𝑖

√
𝜆

2−𝜆 .
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For comparison purposes, we also evaluate these control charts by using the sequential

ranks transformation statistic SRT𝑖, (see equation (5.11)), using the mean and standard

deviations of the SRT values at time 𝑖 − 𝑑𝑖, 𝜇̂𝑆𝑅𝑇𝑖−𝑑𝑖 and 𝜎̂𝑆𝑅𝑇
𝑖−𝑑𝑖 , in previous equations, with the

same control limits based on normal distribution to evaluate the normal approximation of

these two nonparametric statistics. Alternatively, statistic 𝜇̂𝑆𝑁𝑆
𝑖−𝑑𝑖 and 𝜎̂

𝑆𝑁𝑆
𝑖−𝑑𝑖 can be defined as

0 and 1, respectively, for all cases, as normal scores approximate a 𝑁 (0, 1). Learning still

happens when the reference sample is updated to get the 𝑍𝑖 scores.

5.1.5 NORMAL APPROXIMATION STUDY WITH GUARANTEED PERFORMANCE

AND CAUTIOUS LEARNING

In this section, we present a comprehensive performance analysis of three types of analysis

divided by learning strategies. Learning occurs when the reference sample is updated, either

to enhance parameter estimation in parametric approaches or to expand the base used for

ranking in nonparametric procedures.

Guaranteed performance approaches are becoming the new norm in SPM research. Howe-

ver, to guarantee a minimum performance level with a prespecified degree of confidence,

control limits are widened further to account for the extra variation created by estimated

parameters. It follows the sense of tolerance intervals, but the correction creates a reduc-

tion in power to detect a shift in a process. Incautious updates of parameter estimates, or

reference sample updates, improves a chart as information arrives, but small changes not

detected quickly contaminate the reference sample, which also reduce power. Capizzi and

Masarotto (2020) identified an improved state, with better power, by creating a compromi-

se between “incautious learning” and “no learning”. They called this approach “cautious
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learning”, as learning ocurrs only when there is evidence of an in-control state of data to

incorporate. They showed the approach with Shewhart, EWMA and CUSUM schemes to

monitor location changes. The approach requires numerical analysis, and the determination

of control limits is a computer intense process. Traditional nonparametric approaches add

computational difficulty if we wish to get exact, or close to exact, calibration to get guaran-

teed control limits with cautious learning. Here, the normal approximation using SRT and

SNS becomes more useful. We can, probably for the first time, get access to nonparametric

schemeswith guaranteed performance and cautious learning by using these transformations

with the already existing procedures and evaluation limits provided by Capizzi and Masa-

rotto (2020). To evaluate this approach, we used the following guidelines:

Initial reference sample size: 𝑚 = {50, 100, 500}.

Distributions evaluated: 𝑁 (0, 1), 𝑡 (4), and Gamma(0.5, 1) distributions.

Each scenario was simulated with 1 000 conditional ARLs, where each ARL was

obtained from 10 000 RLs.

RLs were capped at 10 000 for CUSUM and EWMA, and up to 5 000 for Shewhart.

Guaranteed levels of performance, the most important aspect, were obtained with no

compromise. However, extreme ARL quantiles close to these bounds were underes-

timated.

We used a desired in-control performance ARL0 = 500, calibrated so that:

𝑝0.10 = 𝑃(CARL ≤ (1 − 0.1)ARL0) = 0.05,

Performance was compared between methods:

• CL: Cautious learning, parametric approach fromCapizzi andMasarotto (2020).
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• SNS: Sequential Normal Scores with cautious learning.

• SRT: Standardized sequential ranks transformation with cautious learning.

CUSUM and EWMA charts were evaluated with subgroups 𝑛 = 1, and Shewhart approa-

ches used 𝑛 = 5. Tables 5.3 to 5.5 show the in-control metrics to compare these approaches

as previously described. The most important metric to guarantee a performance level is

𝑝0.10. As defined previously, it was defined in such a way that the probability of getting

ARL values smaller than (1 − 0.1)𝐴𝑅𝐿0 is 0.05. We can see that the parametric CL chart

gets close to this value when dealing with a normal distribution. However, this probability

goes beyond 0.05 when the distribution is not normal. In Table 5.3 𝑝0.10 is 0.996 and 1.000

for Shewhart CL when distributions are 𝑡 (4) and gamma(0.5, 1), respectively. Similar lar-

ge values were obtained when 𝑚 = 100 and 𝑚 = 500 in tables 5.4 and 5.5. SNS and SRT

are never above 0.05, and SNS is closer. For instance, in Table 5.3, SNS has a 𝑝0.10 of

0.018, 0.012 and 0.024 when using the Shewhart scheme dealing with normal, 𝑡 (4) and

gamma distributions. SRT got 0.000 for all values in the same scenarios. Both SNS and

SRT are conservative, but SRT is much more conservative, which affects power as seen in

the out-of-control analysis in subsequent section of the paper. In terms of the average ARL,

or AARL0, SNS is closer to the CL, and SRT shows the largest values. ARL variation, in

terms of the SDARL0, is smaller than CL when using SNS, and the lowest with the SRT.

Another way to look at the IC performance is in the boxplots shown in Figures 5.1 to 5.3.

The horizontal dotted line represents the target, which is (1− 0.1)𝐴𝑅𝐿 = 450, in this case.

For a guaranteed performance, a boxplot, where lower and upper whiskers were created

using quantiles 0.05 and 0.95, respectively, need to be above the dotted line. This is the

case for the first row of subplots in these three figures where the 𝑁 (0, 1) distribution was

used. It is evident that SNS provide a performance that is closer to what is expected by the
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parametric CL approach. SRT is over-conservative. When distribution is not normal, CL

generates low ARL values, and performance is no longer guaranteed. Conversely, SNS and

SRT approaches remain robust as expected with there distribution-free property. Finally, as

the initial sample size increases, variation is reduced. This IC conclusions repeats with all

three approaches, Shewhart, CUSUM and EWMA.

OC performance is presented in figures 5.4 to 5.7. Figure 5.4 deals with the normal dis-

tribution and includes all three charts in the analysis. Figure 5.5 uses a t(4) distribution.

Both 5.6 and 5.7 deal with gamma distributions, where the former evaluates increments

in location, and the latter goes with the decrements. All these charts analyze a situation

where a change or 1 standard deviation from the mean occurs. First row is for the Shewhart

schemes, EWMA goes second, and CUSUM last. First column of subfigures assesses a

situation where the change-point occurs at the first monitored observation. Subsequently,

the second column addresses a change-point after 150 in-control observations with no false

alarms.

When the underlying distribution is normal, (Figure 5.4), CL chart performs the best, as

expected from the parametric approach that assumes normality. Smaller amount of ARL

values and smaller variation. CL is closely followed by SNS. SRT exhibits larger ARL

values and bigger variation in most cases. By comparing the second column of subfigures

it is evident that after 150 in-control observations the learning scheme improved charts

performance significantly when compare with the first column, where a change happened

at the start of the monitoring, leaving no room for in-control learning.

Also in Figure 5.4, all control charts using CL perform the best, as expected for the normal

case, with smaller ARL and variation, being closely followed by SNS.

Figure 5.5 shows a comparison between the nonparametric methods where the IC distribu-
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tion is 𝑡 (4). Shewhart approaches, first row of subfigures, show SNS as the method with

smaller ARL values. In EWMA schemes, second and third rows, respectively, the median

SNS is smaller, however, variation when the change-point occurs at the start of the monito-

ring is bigger, but as the change-point moves to 𝜏 = 150, SNS transformation out-performs

SRT in terms of lower ARL values with a significant drop in variation. With CUSUM

methods, third row, median ARL of SNS is slightly bigger, but it drops as the learning

happens in the second column.

Figures 5.6 and 5.7 show OC performance when dealing with a gamma distribution. Figure

5.7 shows SNS outperforming SRT in every scenario. Alternatively, Figure 5.6 presents

mixed results. Shewhart schemes put SNS as the best candidate, however, EWMA and

CUSUM procedures perform with lower ARL values when using SRT scores. SRT scores

are spreaded wider between scores than SNS close around the mean, while SNS values a

more spread near the tails. This subtle difference makes both approaches behave differently

over tails, light or heavy, in a distribution. In both figures, with 𝜏 = 150, SNS variation of

ARL values get significantly reduced, even more than SRT.
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Shewhart

Normal 𝑡-Student Gamma

Metric CL SNS SRT CL SNS SRT CL SNS SRT

AARL0 857.08 851.53 2 951.14 193.51 841.10 2 946.18 123.43 832.51 2937.22

SDARL0 189.90 370.42 452.19 167.44 167.44 423.09 73.00 175.74 429.65

𝑝0.10 0.058 0.018 0.000 0.996 0.012 0.000 1.000 0.024 0.000

EWMA

Normal 𝑡-Student Gamma

Metric CL SNS SRT CL SNS SRT CL SNS SRT

AARL0 873.57 801.13 2 154.01 249.29 805.75 2 138.07 172.71 798.75 2163.09

SDARL0 187.50 139.79 310.23 85.77 134.18 326.18 92.96 128.40 339.43

𝑝0.10 0.049 0.007 0.000 0.981 0.005 0.000 0.996 0.006 0.000

CUSUM

Normal 𝑡-Student Gamma

Metric CL SNS SRT CL SNS SRT CL SNS SRT

AARL0 966.40 846.02 1 257.82 272.10 839.81 1257.73 242.14 849.42 1257.31

SDARL0 228.88 151.37 196.83 89.70 143.78 205.75 114.59 158.25 199.94

𝑝0.10 0.055 0.011 0.000 0.971 0.013 0.000 0.965 0.017 0.000

TABLA 5.3: Cautious Learning IC performance for 𝑚 = 50



APPENDIX 87

Shewhart

Normal 𝑡-Student Gamma

Metric CL SNS SRT CL SNS SRT CL SNS SRT

AARL0 755.90 755.12 2 679.08 172.18 750.73 2 678.54 113.97 748.97 2 670.41

SDARL0 163.34 79.76 206.18 72.01 74.10 186.68 62.58 76.69 180.54

𝑝0.10 0.045 0.011 0.000 0.996 0.008 0.000 0.999 0.009 0.000

EWMA

Normal 𝑡-Student Gamma

Metric CL SNS SRT CL SNS SRT CL SNS SRT

AARL0 743.00 715.32 2 024.62 249.29 713.36 2 020.53 161.71 710.52 2027.25

SDARL0 159.05 67.05 198.36 85.77 63.71 201.33 79.66 65.25 206.39

𝑝0.10 0.051 0.006 0.000 0.981 0.005 0.000 0.994 0.007 0.000

CUSUM

Normal 𝑡-Student Gamma

Metric CL SNS SRT CL SNS SRT CL SNS SRT

AARL0 770.90 709.46 1 053.10 335.70 713.09 1 053.70 196.14 709.8 1 048.34

SDARL0 169.70 64.91 86.79 120.70 66.39 84.37 95.21 56.07 88.64

𝑝0.10 0.045 0.012 0.000 0.864 0.012 0.000 0.986 0.004 0.000

TABLA 5.4: Cautious Learning IC performance for 𝑚 = 100
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Shewhart

Normal 𝑡-Student Gamma

Metric CL SNS SRT CL SNS SRT CL SNS SRT

AARL0 668.51 657.7 2 370.00 160.54 655.98 2 370.83 101.95 659.93 2 366.12

SDARL0 128.88 41.55 47.27 51.37 43.28 64.97 37.53 42.36 69.51

𝑝0.10 0.042 0.000 0.000 0.997 0.001 0.00 1.000 0.000 0.000

EWMA

Normal 𝑡-Student Gamma

Metric CL SNS SRT CL SNS SRT CL SNS SRT

AARL0 643.66 624.64 1 771.74 240.91 626.39 1 772.72 156.97 624.44 1 769.41

SDARL0 110.10 68.64 40.99 68.18 65.18 40.86 51.02 66.81 41.42

𝑝0.10 0.039 0.009 0.000 0.981 0.007 0.000 1.000 0.006 0.000

CUSUM

Normal 𝑡-Student Gamma

Metric CL SNS SRT CL SNS SRT CL SNS SRT

AARL0 642.45 628.67 922.69 303.13 625.49 923.26 175.45 623.9 923.74

SDARL0 117.17 63.87 42.37 265.63 65.96 42.59 56.84 66.78 43.92

𝑝0.10 0.029 0.005 0.000 0.950 0.004 0.000 0.997 0.010 0.000

TABLA 5.5: Cautious Learning IC performance for 𝑚 = 500
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FIGURA 5.1: In-control performances from Shewhart (𝑛 = 5). Boxplots represent the distri-

bution of ARL conditional values. Lower and upper whiskers were created with quantiles

0.05 and 0.95, respectively.
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FIGURA 5.2: In-control performances from EWMA (0.2). Boxplots represent the distribu-

tion of ARL conditional values. Lower and upper whiskers were created with quantiles

0.05 and 0.95, respectively.
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FIGURA 5.3: In-control performances from CUSUM (0.5). Boxplots represent the distribu-

tion of ARL conditional values. Lower and upper whiskers were created with quantiles

0.05 and 0.95, respectively.
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FIGURA 5.4: Normal: Out-of-control performance for Shewhart, EWMA (0.2) and CUSUM

(0.5) with 𝛿 = 1. Lower and upper whiskers were created with quantiles 0.05 and 0.95,

respectively.
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FIGURA 5.5: 𝑡-Student: Out-of-control performance for Shewhart, EWMA (0.2) and CU-

SUM (0.5) with 𝛿 = 1. Lower and upper whiskers were created with quantiles 0.05 and

0.95, respectively.
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FIGURA 5.6: Gamma: Out-of-control performance for Shewhart, EWMA (0.2) and CUSUM

(0.5) with 𝛿 = 1. Lower and upper whiskers were created with quantiles 0.05 and 0.95,

respectively.
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FIGURA 5.7: Gamma: Out-of-control performance for Shewhart, EWMA (0.2) and CUSUM

(0.5) with 𝛿 = −1. Lower and upper whiskers were created with quantiles 0.05 and 0.95,

respectively.
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5.2 DETAILED ANALYSIS OF DETECTION IN CHANGES OF

DIFFERENT MAGNITUDE

The following is an analysis of the detection of very small changes, i.e. 𝛿 ∈ {0.1, 0.2, ..., 0.9, 1.0}.

Only the SNS statistic with its conditional variants, the CSNSK and the CSNSU, is evalua-

ted.
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FIGURA 5.8: EWMA: Out-of-control performances for 𝑁 (0, 1) distribution
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FIGURA 5.9: EWMA: Out-of-control performances for 𝑇4 distribution
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FIGURA 5.10: EWMA: Out-of-control performances for 𝐺 (0.5, 1)

In normal observations, the SNS and its conditional variants match the parametric CL, even

exceeding it for changes 0.1≤ 𝛿 ≤0.3.

In non-normal process monitoring, change detection is very similar between the SNS and

its variants, with the exception of the Gamma distribution, where knowledge or estimation

of a quantile of the reference sample allows even faster detection of small changes.
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FIGURA 5.11: CUSUM: Out-of-control performances for 𝑁 (0, 1) distribution
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FIGURA 5.12: CUSUM: Out-of-control performances for 𝑇4 distribution
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FIGURA 5.13: CUSUM: Out-of-control performances for 𝐺 (0.5, 1) distribution
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Similarly to under the EWMA scheme, under normal conditions, non-parametric statistics

match the parametric CL, with conditional SNS outperforming the rest, mainly in changes

0.1 ≤ 𝛿 ≤ 0.6.

In non-normal processes, estimating a sample quantile from the reference population is

sufficient to outperform the rest of the statistics when the process originates from a T-

distribution population. Conversely, for processes from a Gamma population, SNS with

known quantile have an advantage over the rest, especially in changes of 0.3 or 0.4.

Finally, an analysis of the detection of both positive and negative changes will be made. Ta-

king Normal and Gamma processes, with 𝛿 ∈ {−1.0,−0.9, ...,−0.1, 0.0, 0.1, ..., 0.9, 1.0}

it will be seen how a key feature of the distribution such as skewness can represent a diffe-

rence in the power of the chart.
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FIGURA 5.14: Shewhart: Out-of-control performances for 𝑁 (0, 1) distribution for positive

and negative changes
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FIGURA 5.15: CUSUM: Out-of-control performances for𝐺 (0.5, 1) distribution for positive

changes
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5.3 LOGISTIC REGRESSION MODEL

A logistic regression model describes the relationship between a variable that takes only

two possible values 0 and 1¹ and one or more continuous variables.(Sperandei, 2014)

𝑙𝑜𝑔

(
𝑃(𝑌 = 1)
𝑃(𝑌 = 0)

)
= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3... + 𝛽𝑛𝑥𝑛; 𝑛 > 1 (5.15)

Its name comes from the fact that a simple logistic function can be used to obtain the

probabilities of each category of the dependent variable, as follows:

𝑃̂(𝑌 = 1) = 1
1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥3...+𝛽𝑛𝑥𝑛)

(5.16)

Logistic regression is widely used in machine learning as a classification model. Its perfor-

mance is measured based on its sensitivity and sensitivity.

𝑃(𝑃̂(𝑌 = 0) |𝑌 = 0) (5.17)

Depending on the context of the variable Y the equation is interpreted, if Y is a negative

event such as a disease then (5.17) represents the probability that themodel correctly detects

healthy people, being the sensitivity:

𝑃(𝑃̂(𝑌 = 1) |𝑌 = 1) (5.18)

The probability that the model correctly detects sick people.

¹These values can represent any event with two possible outcomes, life-death, health-disease, success-

failure, etc.
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In Rstudio, the function glm can be used to obtain a logistic regression model from a data

set as specified.
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