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Abstract: Al–Cu alloys are widely used as a structural material in the manufacture of commercial
aircraft due to their high mechanical properties such as hardness, strength, low density, and tolerance
to fatigue damage and corrosion. One of the main problems of these Al–Cu alloy systems is their low
corrosion resistance. The purpose of this study is to analyze the influence of anodizing parameters
on aluminum–copper alloy (AA 2024) using a bath of citric-sulfuric acid with different anodizing
current densities on the thickness, microhardness, and corrosion resistance of the anodized layer.
Hard anodizing is performed on AA 2024 Al–Cu alloy in mixtures of solutions composed of citric
and sulfuric acid at different concentrations for 60 min and using current densities (i) of 0.03, 0.045,
and 0.06 A/cm2. Scanning electron microscopy (SEM) was used to analyze the surface morphology
and thickness of the anodized layer. The mechanical properties of the hard anodized material are
evaluated using the Vickers hardness test. The electrochemical techniques use cyclic potentiodynamic
polarization curves (CPPC) according to ASTM-G6 and electrochemical impedance spectroscopy
(EIS) according to ASTM-G61 and ASTM-G106, respectively, in the electrolyte of NaCl at 3.5 wt. %
as a simulation of the marine atmosphere. The results indicate that corrosion resistance anodizing
in citric-sulfuric acid solutions with a current density of 0.06 A/cm2 is the best with a corrosion
current density (jcorr) of 1.29 × 10−8 A/cm2. It is possible to produce hard anodizing with citric and
sulfuric acid solutions that exhibit mechanical properties and corrosion resistance similar or superior
to conventional sulfuric acid anodizing.

Keywords: aerospace alloy; corrosion; anodizing; electrochemistry

1. Introduction

The aeronautical industry has an important role in developing and applying new
materials and technologies because damage tolerance is especially low in this industry. For
this reason, materials should present excellent properties for service conditions. Constant
optimization processes should be carried out to increase mechanical, fatigue, corrosion,
and oxidation resistance, which should be certified and satisfy security standards.

Aluminum (Al) is the most important of the non-ferrous metals, offering favorable
mechanical characteristics, notably good machinability, high ductility, and low density
(2.71 g/cm3) [1]. Therefore, it is combined with other elements to form alloys, obtaining
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improvements in its mechanical properties, thus offering the industry better mechanical
strength and corrosion resistance [2,3]. The 2XXX (Al–Cu) series alloys offer excellent
mechanical properties/weight ratios and low cost. Because of this, they are frequently
used for various structural components in the aerospace sector, such as for manufacturing
fatigue-resistant, damage-tolerant structures requiring high specific strength [4–8]. How-
ever, this alloy has a high copper percentage, which causes poor anodic coating quality and
corrosion problems [9,10]. These corrosion problems are mainly due to the formation of
galvanic couples between the alloy’s matrix and intermetallic phases, which are mainly
responsible for improving the mechanical properties. When aluminum encounters oxygen
in the air, it naturally forms a coating of aluminum oxide (Al2O3), whose thickness varies
between 3 × 10−3 and 0.01 µm, which makes it a corrosion-tolerant metal [1]. Aluminum
alloys are best protected from corrosive environments, such as atmospheric and/or marine
environments, by coating their surface with thick oxide layers. Anodizing is a commercial
procedure used to give aluminum alloys greater characteristics and increased resistance
to corrosion. It is the most popular and economical option [3,11]. Many industries use an-
odized aluminum, including aerospace, electronics, maritime, architecture, and aeronautics.
The application of this method extends to cooling procedures for aluminum mold thermal
protection [12,13].

Anodizing is an electrochemical process in which an anodic film of alumina (Al2O3)
is grown in a controlled manner with constant current or potential on aluminum in an
electrochemical cell containing a neutral or acid electrolyte [1]. During the process, the
aluminum part acts as an anode, and the cathodes used are also made of aluminum or
materials such as graphite, stainless steel, and lead [14]. The formed anodic film’s quality
and thickness can be controlled by different factors such as anodizing current density, acid
concentration, composition, electrolyte temperature, and anodizing time [15]. In general,
one of the most crucial factors influencing the microstructure and properties of the coating
is the current density [16]. During this process, an anodic oxide layer is formed on the
aluminum alloy surface, which affects the mechanical characteristics, chemical makeup,
and morphology [17,18]. One of the most significant anodizing techniques for aluminum–
copper alloy (AA 2024) in aircraft applications is hard anodizing, also known as type III
anodizing. Hard anodizing is widely used in industrial applications because of increased
mechanical properties, where a denser coating is created with a film thickness between 20
and 120 µm [17,19–21], and improved corrosion resistance [22]. Some benefits of the type III
hard anodizing process include increased abrasion, corrosion and wear resistance, hardness,
improved adhesive bonding and lubrication, and improved decorative appearance [14,17].
Unfortunately, chromic and sulfuric acid are applied for most type III hard coatings, which
are of high risk to human health [23,24]. Numerous studies showed that the anodic layer
thickness increases with increasing acid content [25].

Acidic electrolytes are known to create porous oxide films because they have low
acid dissociation constants (pKa). These electrolytes fall into three categories: inorganic,
organic carboxylic, and organic cyclic oxocarbonic acids. One of the greatest substitutes for
inorganic acids (chromic, phosphoric, and sulfuric acid) are organic carboxylic acids such
as oxalic, malonic, and citric and other less common ones such as tartaric, glycolic, tartaric,
and formic. However, the latter involves the application of high voltages (150 to 450 V) to
carry out the anodizing process [26]. Table 1 shows the pKa values of the inorganic acids
and organic carboxylic acids most used as additives in anodizing processes and found
in some published works. One of the most typical mechanisms of additive reactions is
the creation of aluminum complexes with organic carboxylic molecules. In this particular
case, the anodic coatings incorporate insoluble metal soaps, which are produced through
the easy formation of complexes between hard-ion carboxylates and trivalent aluminum
cations. Since the pKa of carboxylic acids is greater than the pH of the sulfuric acid baths,
the molecules will likely protonate and turn neutral in solution, losing their propensity to
migrate toward the anode. On the oxide surface, the complexion additives create a thin
layer that shields the metal, and, in this way, citric acid improves the properties of the
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anodic coating formed [27]. The citric acid (C6H8O7), an alternative for the substitution of
sulfuric acid, is abundant and does not generate environmental hazards. This enhances the
anodic film characteristics. In addition, this acid does not need higher concentrations to
provide better protection and generally performs great on aluminum alloys [28–30].

Table 1. pKa and works published of inorganic acids and with additions of organic carboxylic acids.

Acid Formula pKa Work Published and Year Ref

Chromic H2CrO4 −0.98 Stępniowski, et al., 2012
Stępniowski, et al., 2014

[31]
[32]

Phosphoric H3PO4 2.2 Le Coz, et al., 2010
Masuda, et al., 1998

[33]
[34]

Sulfuric H2SO4 −3.0
Guthrie P.J. 1976
Poznyak, et al., 2021
De Graeve, et al., 2003

[35]
[36]
[37]

Citric C6H8O7 3.09

Martell, A.E, et al., 1976
Cabral, et al., 2020
Poznyak, et al., 2020
Cabral, et al., 2022

[30]
[38]
[39]
[40]

Oxalic C2H2O4 1.23 Sulka, et al., 2010
Stępniowski, et al., 2013

[41]
[42]

Malonic C3H4O4 2.83 Ren, et al., 2012
Vrublevsky, et al., 2009

[43]
[44]

Tartaric C4H6O6 2.99 Chu, et al., 2006
Vrublevsky, et al., 2014

[45]
[46]

This work aims to study an electrochemical treatment (anodizing) using citric and
sulfuric acid to obtain type III hard anodizing on Al–Cu alloy and determine the behavior
of the protective layer with increasing current density (i = 0.03, 0.045, and 0.06 A/cm2).
Scanning electron microscopy (SEM) was used to analyze the surface morphology and
thickness of the anodized layer. The mechanical properties of the hard anodized material
were evaluated using the Vickers hardness test. The electrochemical techniques used cyclic
potentiodynamic polarization curves (CPPC) according to ASTM-G61-86 [47] and electro-
chemical impedance spectroscopy (EIS) according to ASTM-G106 [48], exposed to a 3.5 wt.
% NaCl aqueous solution. Aircraft aluminum alloys are exposed to different atmospheres,
such as marine and industrial (acid rain). The characterization using electrochemical tech-
niques of aluminum alloys could find potential applications in the aeronautical industry,
such as in fuselages and spars.

2. Materials and Methods
2.1. Material

A commercial alloy of Al–Cu 2024 alloy was used, which is widely used in constructing
fuselages. While it only has a moderate yield strength, it has excellent resistance to fatigue
crack growth and good fracture toughness. The form of a 50 ± 2.5 mm diameter bar
was used, and disks of 5 ± 0.25 mm in thickness were cut as examples before being
anodized. With the following nominal chemical composition by weight (wt.%) of 4.2 wt.%
Cu, 0.48 wt.% Mn, 1.4 wt.% Mg, 0.5% wt.% Si, 0.5 wt.% Fe, 0.1% wt.% Cr, 0.25% wt.% Zn,
0.15% wt.% Ti and balance of Al. AA 2024 samples were polished following ASTM E3 and
E407 standards [49,50] before the SiC papers of grades 180, 220, 320, 400, and 600 were
anodized; this was followed by 10 min in ultrasonic cleaning in ethanol and air drying.
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2.2. Electrochemical Treatment: Hard Anodizing

The anodizing treatment required five seconds of pickling in a 1:1 solution of HCl,
followed by 3 rinses in deionized water to remove the remaining HCl solution from the
samples. The following bath solutions were applied to anodize AA 2024: 1M citric acid
concentration, a 1M sulfuric acid solution as a control, a solution consisting of a 1M
citric acid concentration with 5 mL/Liter additions of sulfuric acid, and finally a solution
composed of a 1M citric acid concentration with 10 mL/Liter additions of sulfuric acid.
Four solutions produced type III hard anodizing of AA 2024 aluminum–copper alloys. A
lead bar was used as the cathode. A DC power supply was used as a high-power current
generator, model XLN30052-GL (Yorba Linda, CA, USA), four distinct electrolyte solutions
and anodized current densities (i) of 0.03, 0.045, and 0.06 A/cm2 were the parameters
utilized in the anodizing process [51]. The anodization process was conducted for one
hour at 0 ± 2 ◦C in a cold-water bath while the solution was continuously stirred. In type
III hard anodizing, temperature fluctuation is very important, so it must be controlled
and kept as low as possible since excess electricity produces heat, which causes partial
or total dissolution of the film [52]. After anodizing, the parts were rinsed in deionized
water, and then a sealing process was applied, which consisted of immersion for one
hour in deionized water at a temperature of 95 ± 4 ◦C. The hot water sealing process
increases corrosion resistance, reduces or eliminates porosity in the anodizing, reduces
the deterioration phenomenon known as efflorescence (exposure of aluminum outdoors),
and improves abrasion resistance [53,54]. The anodizing process parameters and sample
nomenclature utilized in this work are presented in Table 2. Figure 1 shows the anodizing
process used in this work.

Table 2. Anodizing treatment parameters and sample nomenclature.

Material

Anodizing
Sealing NomenclatureCurrent Density

(i), A/cm2
Time and

Temperature
Solutions Concentration

Citric Acid Sulfuric Acid

AA 2024

0.03

Time
1 h

Temperature
0 ± 2 ◦C

1 M -

Deionized water
Temperature

95 ± 4 ◦C
Time
1 h

0.03 A 1MC

- 1M 0.03 A 1MS

1 M 5 mL/L 0.03 A 1MC 5S

1 M 10 mL/L 0.03A 1MC 10S

0.045

1 M - 0.045A 1MC

- 1M 0.045A 1MS

1 M 5 mL/L 0.045A 1MC 5S

1 M 10 mL/L 0.045A 1MC 10S

0.06

1 M - 0.06A 1MC

- 1 M 0.06A 1MS

1 M 5 mL/L 0.06 A 1MC 5S

1 M 10 mL/L 0.06 A 1MC 10S
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2.3. Microstructural Characterization

Scanning electron microscopy was utilized to examine the microstructure with Zeiss
model Sigma 300 VP [Oberkochen, Baden-Wurtemberg, Germany] equipment to analyze
the anodizing layer thickness (cross-section), obtaining an average of 5 measurements per
image in the SEM software V 1.0, and surface morphology of the anodized specimens at a
magnification of 2000×. Backscattered electrons (BSE) with beam energy of 20 kV, were
used to observe the morphology, and energy dispersive X-ray spectroscopy (EDS) was used
to determine the chemical composition of the cross sections and perform element mapping.

2.4. Vickers Hardness Test

The cross-section of the anodized specimen was measured with Vickers hardness
using a microhardness tester [Wilson Tester 402 MVD, Lake Bluff, IL, USA]; fifteen readings
per sample were obtained with a 0.05 gf load and a 15-s dwell period in accordance with
ASTM E92 [55].

2.5. Electrochemical Measurements

Electrochemical measurements were performed using a three-electrode cell. A sat-
urated calomel reference electrode (SCE), a platinum counter electrode, and anodized
samples were used as working electrodes. A potentiostat/galvanostat/ZRA Solartron
1287 A (Bognor Regis, UK) was used. All tests were performed by immersion in a 3.5 wt.%
NaCl solution at room temperature and the tests were performed in duplicate. Cyclic
potentiodynamic polarization curve testing (CPPC) was used to determine the corrosion
resistance of the anodized parts in different solutions and at different current densities. The
CPPC was performed with a potential sweep from −0.3 to 1.0 V of OCP, with a scan rate of
0.06 V/min applied, and a complete polarization cycle according to ASTM G61-11 [47]. EIS
has measured a frequency range of 0.01 to 100,000 Hz, obtaining 35 points per decade, and
using a 10 mV RMS amplitude by the ASTM G106-15 standard [48]. The spectra of EIS were
analyzed in terms of an equivalent circuit using “Zview-4” software (https://www.scribner.
com/software/68-general-electrochemistr376-zview-for-windows/) (Scribner Associates,
Inc. por Berek Johnson, Southern Pines, NC, USA).

https://www.scribner.com/software/68-general-electrochemistr376-zview-for-windows/
https://www.scribner.com/software/68-general-electrochemistr376-zview-for-windows/
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3. Results and Discussion
3.1. Microstructural Characterization by SEM
3.1.1. Surface Morphology

Figures 2–4 show the surface morphology obtained by SEM of the anodized samples
with different current densities of 0.03, 0.045, and 0.06 A/cm2 in the bath solutions. All
the anodized samples with a current density of 0.03 A/cm2 presented surface cracking
and porosity in the coating. This same behavior was present in the samples with current
densities of 0.045 and 0.06 A/cm2, irrespective of the bath solution used in the anodizing
process. The presence of areas without anodizing coating can be observed in the samples
anodized in 1M citric acid solution. These areas are in Figures 2a, 3a, and 4a,c. These
images also show the intermetallic compounds of this alloy formed by Al, Cu, Mg, and
Fe. This behavior may be because the fully manufactured citric acid solution is not able to
form the necessary compounds to grow the oxide layer in the anodizing process, since it
has been reported that in anodizing in baths formed by organic acids, long-term voltages
higher than 350 V and temperatures below 0 ◦C are necessary to grow non-homogeneous
anodic layers [56,57]. This same behavior was present in sample 0.06 A1MC 5 S. The
samples anodized in 1M H2SO4 solution with (i) of 0.03, 0.045, and 0.06 A/cm2 (Figures 2b,
3b, and 4b) presented the same surface morphology called “dry mud or soil”, which has
been described by other authors as Soffritti et al. and Guezmil et al. [58,59]. The samples
anodized in citric and sulfuric acid mixtures with different current densities showed surface
cracking and porosity; however, in most cases, the coating is continuous over the entire
surface. This type of surface morphology has been observed in anodizing produced with
tertiary and boric acid on AA1050 (pure aluminum) and 2024 T3 (aluminum–copper alloy
with thermal treatment, cold worked, and aged naturally) alloys [60,61].
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3.1.2. Morphology of Cross Section by SEM

The cross-sectional micrographs obtained using SEM and the chemical composition
mapping obtained by EDS of the anodized AA 2024 alloy under various conditions are
shown in Figures 5–7. Figure 5a,e,i,m clearly show the anodized coating layer obtained in
the different solutions. Porosity and cracks in these coatings can occasionally extend from
the surface of the coating into the base material. This same cracking behavior can also be
observed in the samples anodized with 0.045 and 0.06 A/cm2, extending to the base metal
from the coatings surface (Figures 6 and 7). The second column represents the aluminum
content in the samples, and the third column indicates high oxygen concentrations in all
cases, which correspond to the aluminum oxide layer (alumina Al2O3) formation during
the anodizing process. The fourth column of Figures 5–7 corresponds to mapping the
copper element present in the Al–Cu alloys of the anodized samples. This fourth column
shows the copper content of the intermetallic phases, which can be the S (Al2CuMg) and θ

(Al2CuMg) phases.
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(o), Copper (d,h,l,p).
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On the surface of anodized specimens 0.045A 1MC 5S, 0.045A 1MC 10S, 0.06A 1MC
5S, and 0.06A 1MC 10S, no porosity or cracking was observed (Figures 6i,m and 7i,m).
These same figures show that these coatings are more homogeneous compared to the other
samples and show less cracking. Anodized samples with a current density of 0.03 A/cm2

presented higher cracking in all anodizing solutions. Porosity and cracking were noted in
samples 0.03A 1MS, 0.03A 1MC 5S, 0.045A 1MC, 0.045 1MS, 0.06A 1MC, and 0.06A 1MS
(Figures 5e,i, 6a,e and 7a,e). In certain instances, these defects can penetrate the substrate
from one side.

Microcracks typical of hard-anodized surfaces are discovered in different solutions,
and current densities of the hard anodic coatings are generated [62]. Because the anodic
coating and the metallic substrate have differing coefficients of thermal expansion, the
sealing process creates thermal stresses that may result in pores and cracks on the materials’
surface. Cracks and holes can also result from mechanical forces created during cross-
sectional metallography preparation [63]. The samples that were anodized using solutions
of sulfuric and citric acids showed no signs of porosity or cracks.
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The lower thickness obtained in the 0.045A 1MC 5S and 0.045A 1MC 5S samples
(Figure 6i,m) may be due to two reasons. The first is a dissolution of the aluminum oxide
layer due to the low concentration of sulfuric acid in the anodizing solution, which has
been reported by other researchers [39,64]. The second is a temperature increase in the
anodizing process caused by the current supplied and the operating conditions of the
process [65]. Additionally, cracking and detachment of the oxide layer could be caused by
the metallographic preparation, which involves a heating process and increased pressure
for the curing of the polymer resin (bakelite).

Al–Cu alloys contain the θ phase (Al2Cu), and the behavior of the different second
phases and the effect of the anodizing parameters on the properties of the anodic coatings
are critical to realize an effective anodizing process [66]. Intermetallic precipitates strongly
influence the morphology of anodic coatings and oxide growth. According to their compo-
sition, the copper-rich phases of the AA2024 Al alloy act as anodic zones for the case of
the S-phase (Al2CuMg), while the θ-phases (Al2Cu) act as cathodic zones, causing pitting
corrosion in the material. The anodic oxides formed in aluminum alloys are not entirely
composed of alumina due to the incorporation of alloying elements present in the substrate
composition in the anodic layer and the incorporation of anions from the electrolyte. The
effect of alloying elements on the anodized material’s behavior and morphology depends
on their nature. On this basis, alloying elements can be classified into three categories. The
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first category is alloying elements with a lower Gibbs free energy of oxide formation than
aluminum oxide (e.g., Mg, Li). The second group consists of alloying elements slightly
more noble than aluminum and that oxidize during the anodizing process (e.g., Zn, Cu).
Finally, the third group consists of more noble elements than aluminum that do not undergo
an oxidation process (e.g., Ag and Au) [67,68]. Since the alloys most used in the aerospace
industry contain Mg, Cu, and Zn, attention should be paid to the effect of these elements
on the oxide layer formed during anodizing.

Mg, being less noble than aluminum, oxidizes rapidly during the anodizing process,
preferentially forming MgO since the volume occupied by MgO is smaller than the original
volume occupied by elemental magnesium; the resulting oxide layer is not continuous
and tends to detach [69,70]. When intermetallic Cu and CuO are present on the aluminum
substrate, copper species are incorporated into the barrier-type anodic film as CuO units.
In the first step, aluminum is preferentially oxidized at the oxide/alloy interface. The
copper in solid solution and intermetallic phases such as the S-phase (Al2CuMg) and the
θ-phase (Al2Cu) is not oxidized. It accumulates under the anodic coating, giving rise to
a copper-enriched zone. Copper particles are enriched below the anodic film and then
incorporated into the anodic film because of the dealloying of the copper intermetallic
phases during the anodizing process. When a certain threshold of copper content is reached,
copper is oxidized, and Al2O3, MgO, and CuO are formed simultaneously.

On the other hand, aluminum oxide occupies a larger volume than elemental alu-
minum. It can fill the voids in the magnesium oxide, creating a continuous and well-bonded
oxide film [71]. Al2CuMg, Al2Cu, and Al7Cu2Fe are copper intermetallic phases that show
high activity with respect to the matrix and start oxidation at low potentials of 0, 1.8,
and 2V vs. SCE [72]. Al–Cu alloys lose their anodizing effectiveness, and the oxygen
produced destroys the layer when copper is incorporated into the film [73,74]. Cu, Mg, and
Fe-rich intermetallic compounds and Si particles are the main factors impeding the anodic
layer formation in Al alloys. These elements cause the anodized surface to show visually
pleasing flaws in addition to reducing the oxide layers’ surface mechanical qualities [75].
Mg2Si, β-Al5FeSi, α–Al(Fe, Mn, Cr)Si, and Al2Cu phases are examples of intermetallic
complexes that are harmful to the anodization process [76,77]. The thickness of the oxide
layer is influenced by these secondary phases, which also result in localized changes in
the shape and composition of the interface between the bulk material and the oxide [70].
Furthermore, some phases may cause the anodic film porosity to increase while its hardness
and thickness decrease [78].

3.2. Thickness of Anodized Materials

The cross-sectional thickness determined by SEM of the anodized samples of AA2024
at i = 0.03, 0.045, and 0.06 A/cm2 in various solutions of sulfuric and citric acid baths is
shown in Figure 8. For the 1MC and 1MS solutions, it can be observed that the coating thick-
ness increases as the anodizing current density increases. This behavior has been reported
by some other authors, such as Benea et al. and Stepniowski et al., who obtained higher
thicknesses of the oxide layer as the current density of the process increased [79,80]. The
anodized samples 0.045A 1MC 5S and 0.045A 1MC 10S showed lower coating thicknesses,
with 10.63 and 16.95 µm values, respectively. The thicknesses of the other coatings were
above 20 µm. Samples 0.06A C1M 5S and 0.06A C1M 10S presented the highest thicknesses
with 166.16 and 196.68 µm, respectively. The coating is formed on the metal surface during
the anodizing process, and depending on the coating thickness, current flows through the
increasing layer to reach the clean metal surface. The oxidation film growth rate is directly
impacted by the applied current density, which causes thickness variation. If the ideal
value is surpassed, the film thickness may be decreased. An overly high current density
will hasten the oxidation film’s disintegration and increase the porosity heat effect [81–84].
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It has been observed that a noticeable breakdown of the anodic layer is generated
when using sulfuric acid anodizing solution at low concentrations [85]. Electrolyte selection
is given to perform an anodizing procedure that significantly impacts the produced anodic
alumina film. Film characteristics will depend on the electrolyte’s type, concentration,
and temperature [86–88]. Military standards (Mil-A-8625) for hard anodizing specified
a minimum thickness of 12.7 µm [89]. The thickness obtained in the different anodizing
processes permitted greater thicknesses, but only samples 0.045 1MC 5S and 0.045 1MC 10S
did not reach this thickness value.

3.3. Vickers Hardness

Figure 9 shows the results obtained from Vickers microhardness measurements. Maxi-
mum levels of microhardness were found in the 1MC 5S solution anodized samples at the
different current densities of 0.03, 0.045 and 0.06 A/cm2, with values of 236.95, 192.14, and
236.53 HV, respectively. Samples 0.03A 1MC 10S, 0.045A 1MC, and 0.06A 1MC presented
hardnesses like those shown by the base material AA 2024, which presented a value of
137.06 HV. Samples with lower hardness were 0.03A 1MC, 0.06A 1MS, and 0.06A 1MC
10S, with values of 57.48, 90.82, and 71.62 HV, respectively. This study did not obtain
Vickers microhardness values greater than 300 HV, typical values for hard anodizing [3].
Some factors are the high temperatures; generally, the electrolytes used as baths for hard
anodizing are solutions with higher concentrations; and the prolonged process times since
they facilitate the disintegration of the film in the electrolyte, producing weaker and softer
films that are powdery or easily detached [90].
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3.4. Cyclic Potentiodynamic Polarization Curves (CPPC)

The corrosion kinetics behaviors of the anodized AA2024 were obtained through the
potentiodynamic polarization curves. The CPPC curves were used to study the corrosion
process, which provides information on the cathodic, anodic, and hysteresis branches
of the anodized samples about the corrosion phenomena in the samples exposed to the
3.5 wt. % NaCl solution. The corrosion behavior of AA 2024 samples, both anodized
and unanodized, in various solutions and with current densities of i = 0.03, 0.045, and
0.06 A/cm2 immersed in 3.5 wt. % NaCl solution is shown in Figure 10. The lowest
corrosion potential is exhibited by AA2024 without anodizing, as shown in Figure 10a,
Ecorr = −0.656 V vs. SCE, and presented corrosion current density of 3.43 × 10−7 A/cm2, all
the other samples anodized in the different solutions presented more electropositive Ecorr,
sample 0.03A 1MC 5S is the one that presents better properties because its corrosion current
density was the lowest of all the samples (jcorr of 5.34 × 10−9 A/cm2), the samples anodized
with citric-sulfuric acid with 5 and 10 mL/Liter presented similar characteristics and have
better corrosion resistance than samples AA2024 and all samples present positive hysteresis
indicating pitting corrosion. In Figure 10b, sample 0.03A 1MS has better properties because
its achieved jcorr = 4.63 × 10−9 A/cm2) is one of the lowest samples analyzed in this work.
Sample 0.06A 1MS achieved an Ecorr = −0.501 V vs. SCE, the highest of the anodized
samples with a corrosion current density of 1.29 × 10−8 A/cm2. Lower susceptibility to
corrosion is shown by the anodized samples’ nobler values of Ecorr [91,92].
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solutions and different current densities: (a) 1MC; (b) 1MS; (c) 1MC 5S; and (d) 1MC 10S.

In Figure 10c, all samples anodized with 5ml/liter sulfuric acid presented lower jcorr
than those without anodizing. Sample 0.03A 1MC 5S and 0.06A 1MC 5S have lower corro-
sion current densities of 5.31 × 10−9 and 5.01×10−8 A/cm2, sample 0.045 1MC 5S has the
lowest Ecorr = −0.756 V vs. SCE, and higher corrosion current density 2.51 × 10−6 A/cm2,
or even than the non-anodized sample (AA2024) which obtained a value of −0.656 V vs.
SCE, all samples presented positive hysteresis loop. Finally, in Figure 10d again, all samples
have lower jcorr than the unanodized sample AA2024, the lowest corrosion current density
and the noblest Ecorr was obtained in sample 0.06A 1MC 10S since jcorr = 5.76 × 10−9 A/cm2

and Ecorr= −0.214 V vs. SCE, were obtained. On the other hand, the lowest Ecorr was of
sample 0.045 1MC 10S with a value of −0.839 V vs. SCE. The pitting potential (Epit) occurs
at the vertex of the cyclic potentiodynamic polarization curve, this may be because the
oxide surface is not homogeneous, as there are defects in the coatings (see Figures 2–4). At
a potential lower than the oxygen evolution potential, the surface defects will be activated
and start to propagate, which can increase the current density. Another reason is the
presence of aggressive ions that increase the current density below the oxygen evolution,
causing the anodic layer formed during the hard anodizing process to break down [93].
The samples that presented the anodic-cathodic potential (EA–C) as more negative than the
corrosion potential (Ecorr), represent that its passive layer is not stable and can cause crevice
corrosion [94]. This was present in all the samples with EA–C. The corrosion parameters
obtained from the CPPC shown in Table 3 are EA–C, Ecorr, passivation current density (jpass),



Coatings 2024, 14, 816 15 of 23

pitting corrosion potential (Epit), corrosion current density (jcorr), and hysteresis. Hard
anodizing offers superior corrosion protection according to the values found for jpass in the
samples. This phenomenon is caused by the protective layer that forms in the anodizing
and has a barrier effect; it has also been seen in AA7075 alloys anodized with different
baths [95]. The corrosion resistance of various materials is directly correlated with jcorr. In
this study, the lowest jcorr was obtained in samples 0.03A 1MC 5S, 0.045A 1MC 10S, 0.06A
1MC 5S, and 0.06A 1MC 10S, which were anodized in citric acid with sulfuric acid additions
showing that hard anodizing can be fabricated with these types of baths. Samples anodized
in sulfuric acid also exhibited low corrosion current densities, however, these samples
are anodized in conventional sulfuric acid solutions. The highest jcorr were presented in
samples 0.03A 1MC, 0.045A 1MC, and 0.06A 1MC, where the anodizing solution consisted
completely of C6H8O7 (192 g in 1L of H2O). This behavior may be because as mentioned
above the oxide layer in these samples was not homogeneous and galvanic couples may
occur between the non-anodized (anodic sites) and anodized (cathodic sites) sections. The
anodizing current density that presented the lowest jcorr regardless of the anodizing solu-
tion was 0.06 A/cm2, followed by 0.03 A/cm2. In the case of the anodizing current density
of 0.06 A/cm2 this behavior may be because the oxide layers obtained were among the
thickest obtained, in the case of the anodizing current density of 0.03 A/cm2 it may be
attributed to the fact that these layers are more compact and with less cracking [96,97].

Table 3. Electrochemical parameters obtained from CPPC of AA 2024 and different samples anodized
and immersed in 3.5 wt. % NaCl solution.

Samples Ecorr
(V vs. SCE)

EA–C
(V vs. SCE)

Epit
(V vs. SCE)

jpass

(A/cm2)
jcorr

(A/cm2) Hysteresis

AA2024 −0.656 −0.895 0.256 3.35 × 10−6 ± 1.67 × 10−7 3.43 × 10−7 ± 1.71 × 10−8 Positive
0.03A 1MC −0.571 * −0.411 1.37 × 10−8 ± 6.85 × 10−10 1.50 × 10−6 ± 7.50 × 10−8 Positive
0.03A 1MS −0.664 −0.685 0.404 5.34 × 10−8 ± 2.67 × 10−9 4.63 × 10−9 ± 2.31 × 10−10 Positive

0.03A 1MC 5S −0.453 −0.730 0.511 3.97 × 10−5 ± 1.98 × 10−6 5.31 × 10−9 ± 2.65 × 10−10 Positive
0.03A 1MC 10S −0.526 −0.840 0.407 * 1.04 × 10−7 ± 5.20 × 10−9 Positive

0.045A 1MC −0.577 −0.907 0.378 * 4.83 × 10−5 ± 2.41 × 10−6 Positive
0.045A 1MS −0.431 * 0.611 * 1.67 × 10−8 ± 8.35 × 10−10 Positive

0.045A 1MC 5S −0.756 −0.911 0.093 1.28 × 10−7 ± 6.40 × 10−9 2.51 × 10−6 ± 1.25 × 10−7 Positive
0.045A 1MC 10S −0.839 −0.804 −0.411 * 2.97 × 10−7 ± 1.48 × 10−8 Positive

0.06A 1MC −0.475 −0.865 0.368 2.85 × 10−7 ± 1.42 × 10−8 2.58 × 10−7 ± 1.29 × 10−8 Positive
0.06A 1MS −0.501 −0.455 0.623 * 1.29 × 10−8 ± 6.45 × 10−10 Negative

0.06A 1MC 5S −0.414 −0.692 0.421 3.90 × 10−8 ± 1.95 × 10−9 5.01 × 10−8 ± 2.50 × 10−9 Positive
0.06A 1MC 10S −0.214 0.606 0.604 3.35 × 10−6 ± 1.67 × 10−7 5.76 × 10−9 ± 2.88 × 10−10 Positive

* This value was not present in the corresponding curve.

3.5. Electrochemical Impedance Spectroscopy (EIS)

Figure 11 displays the features of the EIS spectra of the materials examined in this
investigation. In addition to cyclic potentiodynamic polarization curves, EIS analysis was
performed to provide a more thorough study of the corrosion susceptibility and protective
properties of anodized materials. Figure 11a depicts the typical behavior of an oxide layer
that naturally forms on the surface of aluminum alloys, such as AA2024, the sample that
does not have an anodizing treatment [98,99]. There is a high-frequency semicircle and
a capacitive behavior at lower frequencies for anodizing with the different citric-sulfuric
acid mixtures and anodized current densities of 0.03 to 0.06 A/cm2 (Figure 11a–d). These
behaviors correspond to the properties of the barrier layer and the porous layer, respectively.
Because of their depressed semicircles at high frequency (1 × 102–1 × 104 Hz), the anodized
samples in citric acid solutions exhibit a reduced corrosion rate than the non-anodized
AA2024 aluminum alloy, according to the Nyquist plot (Figure 11a).
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The equivalent electrical circuits (EEC) proposed to model the combination of kinetic
processes from the EIS tests are shown in Figure 12. In this EEC, Rs is the solution resistance,
RPor is the porous layer resistance, and RB is the barrier layer resistance. Furthermore,
CPEPor is the constant phase element relative to the porous layer, CPEB is the barrier
layer constant phase element, and WE is the working electrode. nPor and nB are the
impedance exponents to the porous and barrier layers, respectively. The roughness and
variety of the porous and passive layers can be represented by the CPE. The parameter
ZCPE characterizes the impedance of a phase element, with ZCPE = [C(i ω))n]−1, where C
is the capacitance; i is the current (imaginary number: −10.5); ω is the angular frequency
and −1 ≤ n ≤ 1 [100,101]. A CPE with n = 1 represents an ideal capacitor; and when
0.5 < n < 1, a distribution of relaxation times in the frequency space is represented. It is also
remarked that in order to compare simulated results with the experimented impedance
data, CNLS (complex non-linear least squares) simulations were carried out. A ZView®

(version 2.1b) software associated with two equivalent circuits is used to fit experimental
data and chi-squared confirms its quality fitting [100,101]. The results of the simulations
made with the corresponding equivalent electrical circuits in Figure 12 are shown in Table 4.
Surface charge and the electrochemical double layer are related to coating morphology,
which is what causes the variance in RSol [102]. Figure 11 shows the EEC model fit data,
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which closely matches the experimental data. For this reason, most of the samples in
Table 3 had error values in the range between 1.14 and 2.84, as indicated by the EEC
simulations. Furthermore, the low values provided by χ2 support the proposed EEC
model’s correctness. Considering the porous layer resistance (RPor) of all anodized samples
with current densities of 0.03, 0.045, and 0.06 A/cm2. It can be established that such
resistance (RPor) also contributes to the corrosion resistance of the anodized materials since
the samples anodized in 1MS, 1MC 5S, and 1MC 10S solutions with the different anodizing
current densities presented a higher RPor than the barrier layer resistance (RB) presented
by the non-anodized material. The anodized samples in 1MC solution did not show this
behavior, however, the barrier layer resistance is higher for the 0.045A 1MC and 0.06A
1MC samples than the non-anodized material. The higher CPEB values for the unanodized
AA2024 and the samples anodized in 1MC solution are attributed to a thinner barrier layer.
The results indicate that the thicknesses of these layers are more significant than the barrier
layer formed naturally by the unanodized material, AA2024 (see Table 4). According to
some authors, the capacitance of the formed layer decreases as the thickness of the formed
layer increases [103–105]. This occurs for the samples anodized in 1MS, 1MC 5S, and 1MC
10S solutions with different anodizing current densities.
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In anodized materials, the corrosion resistance is inversely proportional to the charge
transfer resistance (Rct), which relates to RB. Analyzing the values of RB of the samples
un-anodizing AA2024, and anodized in 1MC solution with different current densities
de 0.03, 0.045 y 0.06 A/cm2 presented the lowest corrosion resistance in the evaluation
medium with values that oscillate 6.38 × 103 a 19.47 × 103 Ω·cm2. In the anodized samples
in solutions 1MS, 1MC 5S, and 1MC 10S, RB values were increased, presenting values
between 140 × 103 and 10,200 × 103 Ω-cm2, with different densities of anodizing current.
The results of EIS indicate that the anodized citric–sulfuric acid mixtures have better
corrosion resistance in the 3.5 wt. % NaCl solution than the material without anodized
AA2024. The samples that presented higher RB values were 0.045A 1MS, 0.06A 1MC 10S
and 0.06A 1MC 5S, presenting values of 10200 × 103, 9680 × 103 and 6260 × 103 Ω·cm2,
respectively, providing excellent corrosion protection. These findings suggest that citric
acid-based solutions can be used for the hard anodizing of aluminum alloys AA2024,
reaching strength values equal to or higher than those documented in the literature for 6061
and 7075 aluminum alloys [106,107], and higher for those reported by Torato and Krusid,
who reported strength values in anodized 2024 aluminum alloy in citric acid-sulfuric
acid combinations between 1380 × 103 Ω-cm2 and 2440 × 103 Ω-cm2 [108]. Aluminum
alloys are more resistant to corrosion when their metallic substrate has less porous and
uniform surfaces, as this reduces the entry of chlorides towards the substrate [109,110]. The
anodizing solutions utilized in this work, which consist of citric acid and modest amounts
of sulfuric acid, efficiently shield aluminum alloys from corrosion and Cl− ion attack.
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Table 4. Electrochemical parameters obtained from Nyquist plot of AA 2024 and different samples anodized and immersed in 3.5 wt. % NaCl solution.

Samples RS
(Ω·cm)

CPEPor
(F/cm2) nPor

RPor
(Ω·cm2)

CPEB
(F/cm2) nB

RB
(Ω·cm2) Error χ2

AA2024 28.5 ± 1.42 * * * 127.00 × 10−6 ± 6.35 × 10−6 0.80 13.92 × 103 ± 0.69 × 103 <1.42 1 × 10−2

0.03A 1MC 22.77 ± 1.13 1.41 × 10−6 ± 7.05 × 10−8 0.81 0.56 × 103 ± 0.028 × 103 40.20 × 10−6 ± 2.01 × 10−6 0.64 6.38 × 103 ± 0.31 × 103 <1.95 3 × 10−3

0.03A 1MS 24.40 ± 1.22 0.66 × 10−6 ± 3.34 × 10−8 0.77 152.00 × 103 ± 7.60 × 103 0.84 × 10−6 ± 4.20 × 10−8 0.94 6200 × 103 ± 310 × 103 <1.79 1 × 10−2

0.03A 1MC 5S 28.78 ± 1.43 0.22 × 10−6 ± 1.14 × 10−8 0.78 46.00 × 103 ± 2.30 × 103 0.93 × 10−6 ± 4.65 × 10−8 0.81 5810 × 103 ± 290 × 103 <1.96 1 × 10−2

0.03A 1MC 10S 14.26 ± 0.71 0.88 × 10−6 ± 4.40 × 10−8 0.74 47.00 × 103 ± 2.35 × 103 3.12 × 10−6 ± 1.56 × 10−7 0.69 360 × 103 ± 18 × 103 <1.14 1 × 10−2

0.045A 1MC 25.58 ± 1.27 54.30 × 10−6 ± 2.71 × 10−6 0.74 6.55 × 103 ± 0.32 × 103 481 × 10−6 ± 2.40 × 10−5 0.71 19.47 × 103 ± 0.97 × 103 <2.25 1 × 10−3

0.045A 1MS 25.35 ± 1.26 0.66 × 10−6 ± 3.32 × 10−8 0.61 89.00 × 103 ± 4.45 × 103 1.26 × 10−6 ± 6.30 × 10−8 0.91 10200 × 103 ± 510 × 103 <2.17 7 × 10−3

0.045A 1MC 5S 63.58 ± 3.17 0.11 × 10−6 ± 5.65 × 10−9 0.85 2.00 × 103 ± 0.10 × 103 6.11 × 10−6 ± 3.05 × 10−7 0.54 140 × 103 ± 7 × 103 <2.84 1 × 10−2

0.045A 1MC 10S 16.88 ± 0.84 2.27 × 10−6 ± 1.13 × 10−7 0.75 15.00 × 103 ± 0.75 × 103 1.26 × 10−6 ± 6.30 × 10−8 0.90 4110 × 103 ± 205 × 103 <2.04 3 × 10−2

0.06A 1MC 20.48 ± 1.02 2.19 × 10−6 ± 1.09 × 10−7 0.82 7.70 × 103 ± 0.38 × 103 2.36 × 10−6 ± 1.18 × 10−7 0.89 18.31 × 103 ± 0.91 × 103 <1.48 1 × 10−3

0.06A 1MS 76.47 ± 3.82 0.34 × 10−6 ± 1.74 × 10−8 0.69 34.00 × 103 ± 1.70 × 103 1.73 × 10−6 ± 8.65 × 10−8 0.88 3470 × 103 ± 173 × 103 <1.31 3 × 10−3

0.06A 1MC 5S 10.61 ± 0.53 8.39 × 10−6 ± 4.19 × 10−7 0.61 52.00 × 103 ± 2.60 × 103 3.48 × 10−6 ± 1.74 × 10−7 0.70 6250 × 103 ± 312 × 103 <1.25 2 × 10−2

0.06A 1MC 10S 87.69 ± 4.38 0.35 × 10−6 ± 1.78 × 10−8 0.69 40.00 × 103 ± 2.00 × 103 1.43 × 10−6 ± 7.15 × 10−8 0.87 9680 × 103 ± 484 × 103 <2.21 2 × 10−3

* This value was not present in the corresponding sample.
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4. Conclusions

• The results indicate that anodic alumina films exhibiting good mechanical qualities and
corrosion resistance, like traditional anodizing in H2SO4, were effectively generated
under hard anodizing conditions in AA 2024 aluminum–copper alloy utilizing citric-
sulfuric acid solutions.

• Most anodized samples showed cracking and surface porosity regardless of the an-
odizing solution and current density used, this behavior may be due to the different
temperatures used between anodizing (0 ◦C) and sealing (95 ◦C). However, samples
0.06 A/cm2 1MC 5S and 0.06 A/cm2 1MC 10S present their defects with a different
nature than the other anodized samples.

• The SEM results indicated that in the cross-section of the coatings, there was cracking
and porosity related to the sealing process due to differences in the coefficient of
thermal expansion of the substrate/coating.

• The anodizing carried out in mixtures composed of citric-sulfuric acid and current
densities of 0.03 and 0.06 A/cm2 can be achieved with thicknesses from 25 to 196 µm.

• Most of the anodized AA2024 aluminum–copper samples with a current density of
0.045 A/cm2 obtained a Vickers microhardness above 137 HV, higher than that of the
non-anodized AA2024 sample.

• Cyclic potentiodynamic polarization curves indicated that samples anodized in citric-
sulfuric acid produced values comparable to conventional sulfuric acid anodizing in
terms of lowest corrosion current densities (jcorr).

• EIS results showed that hard anodized coatings made with citric-sulfuric acid mixtures
showed greater corrosion resistance when exposed to a corrosive of 3.5 wt. %NaCl
solution, with resistance values of 5810 × 103 ± 290 × 103 and 9680 × 103 ± 484 ×
103 Ω·cm2 for samples 0.03A 1MC 5S and 0.06A 1MC 10S, respectively.

• With anodizing in citric-sulfuric acid solutions, savings of 190 mL of H2SO4 can be
obtained by substituting it for citric acid and achieving similar anodizing properties.

• Samples anodized at current densities of 0.03 and 0.06 A/cm2 presented the lowest
corrosion current densities due to the characteristics presented by the coatings.

• In the anodized process, the current density used has an important effect on the
morphology, thickness, and structure of the anodized layer. Although, it is also
important to consider the time spent in the anodizing bath, the temperature, and the
stirring system, which can be variables that influence the defects of the anodized layer.
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