
Universidad Autónoma de Nuevo León
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Chapter 1

Introduction

This work is about the behavior of interacting elements in complex systems, and

how distinct mathematical objects help us in bettering our understanding of said

behavior. By a complex system, one should understand a system with many compo-

nents. Examples of these abound: crowds, corporations, cities, power grids, financial

markets, among others, can all be considered complex systems with many interact-

ing components. For example, if one wishes to study tra�c congestion in cities, one

has to consider components such as roads with private and public vehicles, tra�c

lights, public transport outside of roads (e.g. trains), to name a few. Early studies

considered elements of the system as particles freely interacting with each other in

an environment. For example, when studying the spread of an infectious disease in a

population, it was assumed any member of the population could interact (and hence

infect) any other member. To loosen this assumption, researchers started modeling

systems as graphs or networks. Informally, a graph or a network consists of points

(called nodes or vertices), some of which are linked by a line (called an edge). This

has a natural interpretation in the case of complex systems: elements of a system

can be considered vertices, and if two elements interact with each other, one can

join the corresponding vertices with an edge. For example, Zachary [33] studied a

university karate club, where each member is represented as a vertex and there is

an edge between members if they interacted outside the club. This graph can be

1
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Figure 1.1: Zachary’s karate club graph

seen in Figure 1.1. In the context of disease spreading, it is reasonable to assume

members of a population (e.g. a city, a school, a workplace) do not interact all with

each other, but instead they interact with a subset of the whole population (e.g.

neighbors, classmates). With this in mind, a graph can be constructed in a way that

each vertex is a member of a population and its joined by an edge with the vertices

corresponding to people they interact with. The interaction that gives rise to the

existence of a link can be defined di↵erently according to the nature of the infectious

disease. For example, for sexually transmitted diseases, two individuals would be

joined by an edge if there was a sexual encounter between them. For viruses such as

noroviruses, people in the same household would make more sense to link together,

while for airborne diseases, any two individuals being face to face should be consid-

ered to have interacted. In this context, a disease can only spread from one person

(vertex) to another by an edge. While graphs have been studied by mathematicians

since the 18th century, it was not until the late 20th century when scientists started

to use them in the modelling of complex phenomena.

1.1 Higher order networks

The definition of graphs imposes a limitation on the modeling of interactions: since

edges only join two vertices, the interactions captured are only those that occur
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pairwise. Consider for example a graph that models academic collaboration, where

each vertex corresponds to a researcher and two vertices are joined by an edge if the

researchers have published a paper together. If three authors have never co-authored

a paper together, but any two of them have co-authored a paper, the corresponding

collaboration graph will show a triangle joining these vertices, but one will not be

able to discern that there exists no publication where the three of them appear.

Another example comes from epidemics. The interaction that occurs between three

coworkers does not have the same frequency or intensity as the interaction that

occurs between three roommates or members of a family who live together. Thus one

would like to have a mathematical object akin to graphs which allow to distinguish

between two-types of interactions of more than two elements in a system. A way to

remedy this is with hypergraphs ; if one considers edges in graphs as sets of containing

two vertices (the vertices the edge joins), one can then generalize the definition of

graph to an hypergraph, which consists of a vertex set and “hyperedges” that can

join two or more vertices (instead of only two). An example of an hypergraph can

be seen in Figure 1.2. Hypergraphs have been studied in mathematics since the

1980s [4], and have been incorporated to the study of complex systems in more

recent times. A particular case of hypergraphs are simplicial complexes. Simplicial

complexes are just hypergraphs where if e is an hyperedge and a set of vertices e
0

is contained in e, then e
0 is also an hyperedge. The example in Figure 1.2 is not a

simplicial complex since {v1, v2} is a subset of the hyperedge e1 but it is not itself an

hyperedge. Despite simplicial complexes being a special case of hypergraphs, they

are mathematical objects studied in their own right with techniques very di↵erent

from those used for hypergraphs. Simplicial complexes have been studied since the

1930s [20] by mathematicians, and the results and tools to study these is more robust

than for general hypergraphs.
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v1

v2
v3

v4

v5

e1

e2

e3

Figure 1.2: Hypergraph with five vertices and three hyperedges.

1.2 Mathematical epidemiology

Of particular interest to us is the study of contagion phenomena in populations.

Here, one considers a population where an infectious disease spreads. A typical set

up is a compartmental model, where members of the population are categorized in

mutually exclusive categories (compartments) pertaining their status relative to the

disease. For instance, if one only considers the possibility of being susceptible, in-

fectious or recovered (as in diseases with permanent immunity) then one would put

every member of the population in one of these compartments. This is called an SIR

model, and has di↵erent variants which will be discussed in this work. Other popu-

lar compartmental models are SI (only susceptible and infectious), SIS (susceptible

and infectious, where there is no immunity; infectious individuals turn susceptible

immediately after recovering from the disease), SIRS (susceptible, infectious, recov-

ered, susceptible; temporal immunity). Accounting for more compartments tends

to make a model more realistic but more complex, and it is not always necessary.

For example, consider a disease which gives recovered individuals temporal immu-

nity of about a year. A natural compartmental model to consider in this situation

would be the SIRS. However, if one is modelling the transmission of this disease in

a smaller time scale (say, one or two months), then the infection will behave as if

the immunity was permanent and the simpler SIR model would su�ce. The spread

of the disease is done via contact of infectious member with susceptible members,

so mathematically this processes are akin to the study of population dynamics or
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interacting particle systems. Notice that this allows for the study of di↵erent phe-

nomena through the same type of models, namely, the spread of information (news,

rumors, memes), the spread of computer virus, etc. Commonly, the population is

considered to be a finite, fixed number N , and the object of study is to see how the

proportions of individuals in each compartment evolves over time; these proportions

are usually referred to as densities. It is worth mentioning that while not studied

in this present work, models exist where the population is dynamic and not fixed;

here, one considers births, deaths and/or migration.

Early studies of the spreading of infectious diseases considered the population

to be homogeneously mixed; that is, any infectious member could contact (hence

infect) any susceptible members. As mentioned in the preceding section, sometimes

it is desirable to model the population in such a way that an infectious individual is

limited in who they can infect. This was first achieved by considering epidemics on

graphs. To exemplify, a SIR model on a given graph would start with an infectious

vertex and the rest susceptible. As time moves forward, an infectious vertex will

infect its susceptible neighbors, meaning susceptible vertices joined to the infectious

vertex by an edge. Infectious vertices will eventually transition to a recovered state,

where they will remain for the rest of the process. Eventually there will be no infec-

tious vertices remaining and the epidemic will end by virtue of infectious recovering

on their own and there being no re-infections. At the end of the epidemic process,

one has a number of recovered individuals, all of whom where infectious at some

point. Thus it is common to use this number, called the final size of the epidemic,

to study the severity of the disease. In the early models with homogeneously mixed

population, the only parameters that a↵ected the spread of the disease where the

transmission rate (how infectious an infected individual is) and the recovery rate

(how quickly an infectious individual recovers). Studies usually focus on knowing

how the available information (parameters) influence the severity (final size) of the

disease. With the introduction of graphs to the modelling of disease transmission,

there is more information to be taken into account and which play a role in the
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dynamics of the disease transmission, for example the average number of neighbors

a vertex has. As a consequence, the mathematics of the same compartmental model

(e.g. SIR) is quite di↵erent if one considers the population homogeneous vs. popula-

tion as a graph. However, as previously discussed, graphs have limitations. Namely,

graphs only capture pairwise interactions and may fail to e.g. distinguish between

the interaction of three individuals pairwise or their simultaneous interaction. This

fact leads us to study a contagion process on higher-order networks, particularly

on simplicial complexes. This generalization will allow for the distinction of “close

contacts”, modeled by simplices of dimension two or higher. Ball et al. [2] study a

similar problem but limited to networks where they incorporate a household struc-

ture, but each household had a fixed number of members. The incorporation of these

sub-structures within a network (or higher order interactions) is of importance in

contagion processes because close contacts can have an e↵ect on the probability of

transmitting a disease.

1.3 Hypothesis and objectives

Our hypothesis is that many interaction processes which are currently described

and studied by means of networks and pairwise interactions admit a richer, more

realistic study via a simplicial complex representation. Current network epidemics

may not capture social interactions in the way higher order networks can. The goal

of the present work is to present a contact process for which a simplicial complex

representation is better suited than the traditional network approach and to prove

there is a significant improvement in the results by using higher order models. Some

reasons behind using simplicial complexes and not hypergraphs is the possibility of

using the tools applied algebraic topology and topological data analysis may o↵er to

better understand the subjacent structure.
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1.4 Problem description

The study of epidemics in simplicial complexes has so far been limited to the com-

partmental model SIS, where individuals are considered either susceptible or infec-

tious, and the dynamics are limited to individuals going from susceptible to infec-

tious and viceversa. Indeed, Iacopini et al. [15] opened the way by introducing a

SIS contagion process on a simplicial complex, further studied by Cisneros-Velarde

and Bullo [10] and Matamalas et al. [23]. The existent SIR variant in the litera-

ture at the time our project started was the work of Ma and Guo [21], who study

information transmission on hypergraphs, but used an infection rate independent

of the dimension. In this work we develop an SIR model on simplicial complexes,

where individuals are either susceptible, infectious or removed (either recovered and

immune, or dead) and the dynamics consist of going from susceptible to infectious

and from infectious to recovered. Specifically, we generalize the known Markovian

stochastic SIR epidemic on a network [8]. These models are useful not only because

of the existence of diseases with permanent immunity, but for the modeling early

stages of diseases with waning immunity (e.g. influenza, covid-19). Here, we show

dynamics of the SIR epidemic on the simplicial complex that are not observed in

the network equivalent nor in the SIS epidemic on the simplicial complex.



Chapter 2

Background

To make the present work self contained, this chapter presents the mathematical pre-

requisites suggested for the reading of the main contributions. While the exposition

is original, the material is well known, and can be found in the literature.

2.1 Graph theory

A graph, in the most simple terms, consists of a collection of objects, some of which

are paired together. The study of graph theory dates back to Euler, who studied ways

of walking through the city of Königsberg, a city separated by a river and connected

by bridges, crossing each bridge once. In recent times, graph theory has served

as a theoretical foundation for the emerging scientific branch of network science.

[25]. Network science concerns itself with the study of real-world complex systems

which can be modeled by graphs, arising from fields such as biology, engineering,

neuroscience, and more. The advent of big data and computers has made this an

active area of research, where characterizing the structure, dynamics and statistical

properties of large, real-world systems is the main goal. In contrast, graph theory

is an area of pure mathematics which aims to prove rigorous results of graphs in

greater generality. While results in graph theory can find their way to applications

in network science and other areas (e.g. network optimization), this is not the

8
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objective of their practitioners.

A modern treatment of theory of graphs can be found in the book of Bollobás

[7]. A book which emphasizes the network scientific approach is the one by Newman

[25]. In this section, a brief mathematical account of the concepts needed for our

work is given.

A graph is a tuple G = (V,E) consisting of a set of vertices V (also called

nodes) and a set of edges E joining distinct pairs of vertices. Edges are usually

represented as unordered pairs (i.e., two-element sets) {u, v} or as a commutative

juxtaposition uv, for vertices u, v 2 V , called the endpoints of the edge. An edge is

said to be incident on its endpoints. Graphically, vertices are represented as points,

and edges as lines joining these points, e.g. see Figures 2.1 2.2 2.3.

Let G = (V,E) be a graph. Two vertices u, v 2 V are said to be adjacent or

neighbors if uv 2 E. The neighborhood of a vertex v, denoted by N(v), is the set of

vertices adjacent to v, that is

N(v) = {u 2 V : uv 2 E}. (2.1)

The degree of a vertex v 2 G, denoted by deg v, is the number of neighbors v

has, i.e. deg v := |N(v)|, where |S| denotes the cardinality (number of elements)

of a set S. The degree distribution of G is the discrete probability distribution on

{0, 1, . . . ,maxv2V deg v} such that

P (X = k) =
|{v 2 V : deg v = k}|

|V |
. (2.2)

The average degree of a graph E [X] is commonly denoted by hki. A graph H =

(V 0
, E

0) is a subgraph of G if both V
0
✓ V and E

0
✓ E. If S ✓ V , the induced

subgraph G[S] of G is the graph with vertex set S where the edges are those edges

in E which have both endpoints in S. A path in G is a sequence of adjacent, distinct

vertices (v0, v1, . . . , vn), where the path is said to connect v0 and vn and to be of

length n. If any two vertices in a graph are connected by a path, the graph is said to

be connected. If the graph is not connected, the connected subgraphs that are not
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contained in a larger connected subgraph are called connected componentes. The

distance between two vertices u, v in a connected graph, denoted by d(u, v), is the

length of the shortest path connecting them. The diameter of a connected graph is

the largest of said distances, meaning

diamG := max
u,v2E

d(u, v). (2.3)

Example 1 (Complete graph). The complete graph Kn is a graph with n vertices

where all of them are adjacent. See Figure 2.1 for a complete graph of six vertices.

Example 2 (Clique). A clique of n vertices in a graph G is a complete subgraph Kn

of G.

Example 3 (Erdős-Rényi graph). An important example of graph is the Erdős-

Rényi graph G(n, p), a model of random graphs. The graph G(n, p) has a vertex set

V = {1, . . . , n}, with each possible edge appearing with a probability p.

Example 4. Let G = (V,E) with V = {2, . . . , 10} and {a, b} 2 E if and only

if a, b, a 6= b, have common divisors; i.e., if they are distinct and their greatest

common divisor is not one. The graph has two connected components. One can see

that N(3) = {6, 9} so deg(3) = 2; on the other hand, deg(7) = 0. The subgraphs

G[2, 4, 6, 8, 10] and G[3, 6, 9] are cliques of 5 and 3 vertices respectively. The distance

between 5 and 9 is d(5, 9) = 3, obtained from the path (5, 10, 6, 9). One also has

diamH = 3, where H is G’s largest connected component. See this graph in Figure

2.2a.

2.1.1 Systems as graphs

Graphs are useful in capturing the pairwise relations in a given set of objects, by

considering them vertices joined by an edge whenever an interaction of some sort

occurs. For example, in a city, roads can be seen as the edges of a graph, with

intersections corresponding to vertices. Similarly, a power grid can be considered as
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Figure 2.1: Complete graph K6 of six vertices.

(a) Graph with vertex set {2, 3, . . . , 10}

where distinct vertices are joined by an

edge if they have common divisors, as de-

scribed in Example 4.

(b) Subgraph of the graph in Figure 2.2a

induced by the vertx subset {5, 10, 3, 6, 9}.

Figure 2.2: Graph from Example 4 and an induced subgraph.
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Figure 2.3: Zachary’s karate club graph

a graph, with the power generating stations corresponding to vertices and voltage

lines being the edges joining these. Distribution systems of natural gas or water can

also be represented by graphs. A particular example in the context of spreading

processes is that of social networks. Social networks are graphs where each vertex

represents a person, and edges correspond to whether there exists an interaction

between two given persons. Social networks can be virtual, e.g. Facebook users as

vertices and an edge joining Facebook friends, or physical, e.g. a vertex for each

person in a school and an edge joining them if they share a class. Similar examples

under di↵erent rules can be thought for workplaces, sport clubs, etc. For example,

Zachary [33] studied a university karate club, where each member is represented as

a vertex and there is an edge between members if they interacted outside the club.

This graph can be seen in Figure 2.3.

2.2 Higher order models

It is clear from the definition of a graph that they capture only pairwise interactions.

Because of this, other combinatorial structures have been used as generalizations

of graphs that capture relations of two or more objects. These are known in the

literature as higher order networks. The two most common generalizations in use

are hypergraphs and simplicial complexes.
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v1

v2
v3

v4

v5

e1

e2

e3

Figure 2.4: Hypergraph with five vertices and three hyperedges.

2.2.1 Hypergraphs

A hypergraph H is a tuple H = (V,E) where V is a set of vertices and E is a set of

hyperedges. Each hyperedge is a subset of V with cardinality greater or equal than

two. Notice that if we restrict hyperedges to have cardinality two, we would recover

the definition of a graph.

Example 5. Suppose a university is tracking the collaboration among five members

of a department by having a vertex for each researcher and having them be in the

same hyperedge if they have coauthored a publication. Write v1, . . . , v5 for each of

the five researchers, and suppose they have collaborated in three publications: one

coauthored by researchers v1, v2, v3; another one coauthored by researchers v2, v3;

and lastly one coauthored by researchers v3, v4. Researcher v5 has not collaborated in

any of these. The resulting collaboration hypergraph would be V = {v1, . . . , v5} and

E =
�
e1 = {v1, v2, v3}, e2 = {v2, v3}, e3 = {v3, v4}

 
. See Figure 2.4. Notice that,

had this been carried out in a graph, vertices v1, v2, v3 would have formed a clique,

but there would be no way to tell that v1, v3 have not coauthored a publication on

their own without v2.
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2.2.2 Simplicial complexes

There are di↵erent ways of defining a simplicial complex. Some of them are based in

geometry, as subsets of Euclidean space, see for example the book by Rotman [26].

For our purposes, it su�ces to consider abstract simplicial complexes.

Definition 1. An abstract simplicial complex K with vertex set V is a collection of

subsets of V such that:

1. For all v 2 V , {v} 2 K;

2. if � 2 K and ⌧ ✓ � then ⌧ 2 K.

Each set in the simplicial complex K is called a simplex. A simplex with k+1

elements is called a k-simplex, or it is said to have dimension k. The dimension of

the simplicial complex is the maximum dimension of its elements, that is,

dimK = max
�2K

(dim �) = max
�2K

(|�|� 1) . (2.4)

Observe that there is a correspondence between graphs and one-dimensional

simplicial complexes. Similarly between simplicial complexes and hypergraphs with

hyperedges closed under taking subsets (i.e., if e0 ✓ e for some hyperedge e, then e
0

is a hyperedge). Thus we have

Graphs ✓ Simplicial Complexes ✓ Hypergraphs.

Observe however that any simplicial complex of dimension higher than one is not a

graph, and that not all hypergraphs are simplicial complexes (for example, the hy-

pergraph of Example 5 is not a simplicial complex because {v1, v3} is not a hyperedge

but {v1, v3} ✓ e1.

Example 6. In a given neighborhood, people can be represented by vertices, and

households as simplices. Interactions between people of di↵erent households can be
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seen as edges (one dimensional simplices). Clearly if a set of people belongs to a

household, any subset belong to the same household.

Example 7. Let us revisit Example 4. Given a vertex set V = {2, 3, . . . , 10}, con-

sider K to consist of singletons {v} for all v 2 V , and also, sets of numbers with

divisors in common. Clearly if a set of numbers � share divisors, any subset �⇤
✓ �

will consist of numbers that also share divisors. Thus having a simplicial complex of

dimension 4. This is a particular example of what is called a clique complex, defined

in Example 8.

Example 8 (Clique complex). Let G = (V,E) be a graph. The clique complex of G

is the simplicial complex

K = {� ✓ V : � is a clique in G}.

Notice that single vertices and pairs of vertices joined by an edge are cliques of one

and two elements, respectively. This is one of the simplest ways of associating a

simplicial complex to a graph. Observe that the simplicial complex in Example 7 is

the clique complex of the graph of Example 4.

Example 9 (d-dimensional clique complex). Sometimes it is useful to associate a

simplicial complex to a graph but limiting its dimension. One way to do so is the

following. Let G = (V,E) be a graph. The d-dimensional clique complex of G is the

simplicial complex

K =
d+1[

k=1

{� ✓ V : � is a clique in G with k vertices} .

To any simplicial complex K one can associate a graph G = (V,E), called its

1-skeleton, where V is the same vertex set from K and

E = {� 2 K : |�| = 2} ,

i.e., the edges are the simplices in K of dimension one. A simplicial complex is

connected if its 1-skeleton is connected. Let v be a vertex in a simplicial complex
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K. The n-dimensional degree of v is

degn v =
��{� 2 K : v 2 � and dim � = n}

��, (2.5)

and the average n-dimensional degree is denoted by hkni. Notice that the one-

dimensional degree of v coincides with the graph-theoretic definition of vertex degree,

since the number of neighbors a vertex has is the same as the number of edges the

vertex belongs to, i.e., the number of 1-simplices it belongs to.

2.3 Random models

In the absence of a true graph or simplicial complex representation of a system, it

is convenient to consider random models of these structures. We repeat here the

definition of the Erdős-Rényi random graph model, defined in Example 3, along

with other common random graph and random simplicial complex models. Further

material can be found in the works of Newman [25] and Kahle [19].

Definition 2 (Erdős-Rényi model). The Erdős-Rényi graph G(n, p) is a random

graph with vertex set V = {1, . . . , n}, where each possible edge is included indepen-

dently with a probability p. A similar, equivalent model denoted by G(n,m) is a

random graph with vertex set V = {1, . . . , n} and exactly m edges, placed between

randomly chosen pairs of vertices.

Definition 3 (Configuration model). The configuration model generates a random

graph with a given degree sequence (k1, k2, . . . , kN), i.e., an ordered list of degrees each

vertex will have in the resulting graph. Note that the sum of this list,
P

i ki, must be

an even number. In a first step, one has N vertices with no edges. Then, each vertex

i is considered to have ki “half-edges”, also called stubs. Two half-edges are chosen

uniformly at random, and are connected to form an edge. Do this repeatedly until

no more half-edges remain, resulting in a graph with the pre-defined degree sequence.

Definition 4 (Barabási-Albert model). This model generates a random graph with

a power-law degree distribution P (X = k) ⇡ k
�3. The model is initialized with a
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graph of m0 vertices, each of which has at least one edge. At each timestep, a vertex

is added and connected to m  m0 existing vertices. The probability that a newly

added vertex connects to a vertex i is

pi =
deg(i)P
j deg(j)

.

After t timesteps, the model generates a graph with t + m0 vertices and m0 + mt

edges.

In the random topology literature, the most common models are described by

the general multi-parameter model.

Definition 5 (Multiparameter model). Let p : N �! [0, 1]. The multiparameter

random simplicial complex X(n; p1, p2, . . . ) is defined as follows. Starting with n

vertices, every edge is added with probability p(1). Conditioned on the presence of

all three boundary edges, a 2-simplex is added with probability p(2). Conditioned on

the presence of all four boundary triangles, a 3-simplex is added with probability p(3),

and so on.

Example 10. The model resulting from considering p(1) = p(2) = · · · = p(d� 1) =

1, p = p(d), p(k) = 0 for k � 0 in the multiparameter model, is known as the

random d-complex Yd(n, p). The random clique complex X(n, p) is recovered from

the multiparameter model by making p = p1, p(k) = 0 for k � 0. The random clique

complex is equivalently obtained by constructing an Erdős-Rény graph and then taking

its clique complex, as defined in Example 8.

In his work on social contagion, Iacopini et al. [15] considers a random simplicial

complex model distinct from the ones just defined, and it is as follows: starting with

an Erdős-Rényi graph G(n, p1), every three vertex set is added as a 2-simplex with

probability p2. Note that they do not condition on the existence of the edges between

the three vertices; if they were not included as edges when the base Erdős-Rényi

graph was constructed, they are added when the two simplex is added. In this work,

a variation of this model is used: the construction is the same, but we condition on

the connectedness of the subjacent G(n, p1).
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2.4 Poisson processes

The basic theory of probability can be consulted in the book of Casella and Berger [9].

The probability of an event A will be written as P (A). Similarly, the probability

of a random variable X belonging to a set A will be written as P (X 2 A). The

expectation of a random variable X and its variance are denoted by E [X] and

Var (X), respectively. A sequence of random variables X1, X2, . . . is said to converge

in probability to a random variable X if, for every " > 0,

lim
n!1

P (|Xn �X| � ") = 0 or, equivalently, lim
n!1

P (|Xn �X| < ") = 1.

A stochastic process is a collection {X(t) : t 2 J} of random variables, where

the index t 2 J is a time variable, making X(t) the state of the stochastic process

X at time t. If J is countable (i.e., it has as many elements as there are natural

numbers, or less) then the stochastic process is said to be discrete; if J is an interval

of the real line, then the stochastic process is said to be continuous. We say a random

variable X has exponential distribution with parameter � > 0 if

P (X 2 (a, b)) =

Z b

a

f(x;�) dx, (2.6)

where

f(x;�) =

8
><

>:

�e
��x

x � 0;

0 x < 0.
(2.7)

If a random variable X has exponential distribution with parameter � > 0, one will

write X ⇠ Exp (�). Let T1, T2, . . . be a sequence of independent random variables,

with Ti ⇠ Exp(�). The Poisson process with parameter � is the continuous time

stochastic process {Xt : t � 0} defined as

Xt =

8
><

>:

0 T1 > T ;

max{n � 1 : T1 + · · ·+ Tn  t} else.
(2.8)

that is, Xt is the largest n 2 N such that the sum T1+ · · ·+Tn is less or equal to t. It

is this interpretation that allows the use of Poisson processes to model the number
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of events occurred up to a certain time t under certain assumptions (time between

events occurrences is exponentially distributed and independent). Examples of where

Poisson processes are used are to model the arrival of customers to a store, of buses to

a bus stop, of claims to an insurance company, among others. Of particular interest

for this work is the assumption of some epidemic models that contacts between a

person in a social network and its neighbors occur according to a Poisson process.

2.5 Contagion processes

Mathematical models of contagion are relevant in diverse contexts, e.g. for under-

standing the spreading of viruses (both biological and computer), information (news,

rumors), among other phenomena. Assumptions must be made about the contacts

between the population where the spreading occurs (e.g., computers, people) and

how these occur. A population where contacts can occur between any two of its

members its called homogeneously mixed. When there is some structure limiting the

contacts, it is called heterogeneously mixed for example, when the population is con-

sidered as a graph and contact occurs only between neighboring vertices. Similarly,

the population is homogeneous if members are a↵ected equally by the spreading pro-

cess or heterogeneous otherwise; for example, a population where a disease spreads

more among the elderly, is heterogeneous. The population can be fixed or dynamic,

depending whether introducing and removing members is allowed.

2.5.1 Compartmental epidemics

In the case of infectious diseases, a common set up consists of partitioning the pop-

ulation in compartments relating to their status with respect to the disease. Among

the most used ones, are the following. The SI model considers all individuals are

either susceptible or infectious, where the only transition occurring is from suscep-
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tible individuals becoming infectious. The SIS model also partitions individuals in

susceptible and infectious, but allows an additional transition of infectious individ-

uals going back to a susceptible state. The SIR model partitions the population

in susceptible, infectious or recovered, with individuals transitioning from suscep-

tible to infectious and from infectious to recovered. The SIRS model is similar to

the SIR, but recovered individuals may go back to a susceptible state. Despite of

the biological language employed in these descriptions, models of compartmental

epidemics can be used to understand phenomena beyond infectious diseases. For

example, computer viruses can spread through interconnected computers following

similar dynamics. Information dissemination can also be explored through the lens

of compartmental epidemics, where a piece of knowledge or a rumor is considered

akin to a virus, and people who ignore it are thought of as susceptible, while people

who transmit it are thought of as infectious.

Of special interest in our investigation is the Markovian SIR epidemic on

graphs; its definition is as follows.

Definition 6 (Markovian SIR on graphs [8]). Consider a graph G = (V,E) where

its vertices can be either susceptible, infectious or recovered. At time t = 0, all

vertices are susceptible, and a randomly chosen one is turned infectious. While

a vertex is infectious, it has infectious contacts with each susceptible neighbor in

the graph, randomly in time according to independent Poisson processes with rate

�. Each infectious individual remains so for a period I ⇠ Exp (�) after which

it recovers and becomes immune. All infectious periods and contact processes are

defined independently. The epidemic goes on until the first time T that there are no

infectious individuals and the epidemic stops.

Notice that the recovered state is absorbent; recovered vertices cannot turn

neither susceptible nor infectious. Also, since all infectious individuals remain so for

a finite duration of time, eventually the number of infectious vertices will be zero. At

the time the infectious number of individuals is zero, the compartments of susceptible

and recovered individuals will remain static, and thus the epidemic will have come
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to an end. The number of recovered individuals when the epidemic stops is known

as the final size of the epidemic. An important question to ask when dealing with

an epidemic model is: does there exist a threshold value which determines whether

a major outbreak is possible? For the model defined in Definition 6, the answer is

yes, as the following results show:

Theorem 1 ([8]). Let R0 be the expected number of new infections caused by an

infected individual at early stages of an epidemic process. Consider an Erdős-Rényi

graph, or a Configuration model graph, having degree distribution D with mean µD

and variance �
2
D. The basic reproduction number for the Markovian SIR on graphs

(Definition 6) is

R0 =
�

� + �

✓
µD +

�
2
D � µD

µD

◆
.

Additionally, the final fraction getting infected during the entire outbreak, ⌧n = Z/n,

where Z is the final size of the epidemic and n is the population size, converges to

zero in probability if and only if R0  1.
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Literature review

Higher order network models are popular ways to overcome limitations posed by

traditional graphs. There are general works covering the basics of these structures.

Two excellent surveys on the study of higher-order network models have been done

by Battiston et al. [3], Bick et al. [6], both works covering the basic definitions

and typical applications, e.g. applications to neuroscience, social systems, brain

networks, contagion models, ecology, among many others. The book by Bianconi [5]

provides a superb introduction to the area but focusing on simplicial complexes.

The focus of this work is on contagion occurring on simplicial complexes. In

the context of infectious disease modelling on higher order networks, most of the

work has been done on SIS models. The work of Iacopini et al. [15] is one of the

pioneers in studying contagion in higher-order structures. Their work studies a SIS

stochastic model on simplicial complexes. Via numerical simulations and a mean-

field approximations, phase transitions of the system are discovered which are not

present in traditional, network SIS. Furthermore, the simplicial complexes used in

the study are both based from real-world networks, and random models.

Similarly, Cisneros-Velarde and Bullo [10] study SIS epidemic model on hyper-

graphs but focusing on the simplicial complexes case. Authors identify conditions

on the parameters under which they can conclude the existence of three regimes:

22
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disease-free, endemic or bistable, this last one being a co-existence of disease-free

and endemic equilibrium. Although the results are showed for simplicial complexes

of dimension two, the definitions are generalized for higher dimensions and the same

techniques can be used to study these.

Jhun et al. [18] study a SIS epidemic on regular hypergraphs, where all hyper-

edges are the same size. Additionally, their work only considers contagion possible

when all but one node in the vertex is infected. For example, a hyperedge consisting

of four nodes where two of them are infected will cause no new infections. This does

not preclude the possibility of smaller hyperedges being present (as would be the

case in a simplicial complex, for example) and resulting in infections.

Ma and Guo [21] study an SIR type of information spreading model on hy-

pergraphs. Their work aims to model the information transmission in informal

organizations within an enterprise. The study focuses on a tech enterprise with 62

employees and twenty informal organizations, each considered an hyperedge. Unlike

other higher order models, authors use only one infection parameter independent of

edges dimension. However, they identify di↵erent types of information transmission

(one-to-one, one-to-many, etc.).

Outside of the epidemic context, well known stochastic processes have been

extended from networks to simplicial complexes. For instance, Schaub et al. [27]

study random walks on simplicial complexes. The authors introduced a normalized

Hodge Laplacian, which serves as a generalization of the graph Laplacian, and relate

these results to the pertinent random walks. Zhao et al. [34] defines a percolation

process on simplicial complexes, where removing a node in a 2-simplex causes the rest

of the nodes in the simplex to be removed. Their model finds a threshold value for the

number of triangles after which simplicial complexes become vulnerable and a phase

transition is observed. More generally, Sun and Bianconi [29] study hypergraph

robustness via percolation processes. Horstmeyer and Kuehn [13] define a voter

model on a simplicial complex, where although the higher-order interaction leaves
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the transition to two opinion states intact, it creates significant e↵ects below and

above the transition. In the context of dynamical systems, Kuramoto dynamics [24]

and consensus models [11] have also been considered on simplicial complexes. Signal

processing has been studied in both simplicial complexes and hypergraphs [28]. A

summary of the related work can be seen in Table 3.1.

3.1 Opportunity area and expected

contributions

From the aforementioned, one readily sees the SIR epidemic model on simplicial

complexes is an open problem worth of studying. Our contribution is a suitable

model of a stochastic, SIR spreading process on a simplicial complex which is better-

suited than networks to represent heterogeneous populations. This model is studied

both analytically and through microscopic simulations, the later not commonly seen

in the existing literature. Furthermore, we expect our model to be better adjustable

to data, and to provide significant analytical and computational characterization of

the studied system to provide insights not readily seen in pairwise network models.
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Table 3.1: Comparison of related work.

Work Model

Simplicial

complex

Hypergraph

Cisneros-Velarde and

Bullo [10]
SIS epidemic X X

Iacopini et al. [15] SIS epidemic X ⇥

Jhun et al. [18] SIS epidemic ⇥ X

Wang et al. [31]
Social communication

(SIS type)
X ⇥

Schaub et al. [27] Random walk X ⇥

Zhao et al. [34] Percolation X ⇥

Sun and Bianconi [29] Percolation ⇥ X
Horstmeyer and

Kuehn [13]
Voter model X ⇥

DeVille [11] Consensus model X ⇥

Millán et al. [24] Kuramoto dynamics X ⇥

Schaub et al. [28] Signal processing X X

Ma and Guo [21]
Social communication

(SIR type)
⇥ X
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Results

The main result of this work is the definition and study of a novel stochastic epidemic

model on a simplicial complex, which generalizes the known Markovian SIR on net-

works. In our work, the simulation of contagion processes on simplicial complexes

was done with SageMath [30], a Python-based, open-source mathematics software.

The choice to use SageMath was due to the versatility of Python and the rich, topo-

logical libraries SageMath includes, for example, it has native support for simplicial

complexes and graphs and it automates the construction of clique complexes. The

visualization of data obtained from simulations is done with Python’s Matplotlib

[14].

4.1 Simplicial stochastic SIR

A stochastic SIR epidemic process in a simplicial complexX of dimension d is defined

in the following way. Nodes (i.e., 0-simplices) will be either susceptible, infectious

or recovered. Susceptible nodes can turn infectious, and infectious nodes eventually

recover. Recovered nodes remain that way. At time 0, a randomly selected node is

turned infectious, while the rest are susceptible. A k-simplex K 2 X having all its

nodes infected will infect a susceptible node x according to a Poisson process with

rate �k+1 if K [ {x} is a k + 1 simplex in the complex. Each infected node remains

26
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infectious for an exponentially distributed period with mean 1/�. The process stops

at the first time T when zero infected nodes remain. The number of recovered nodes

at time T is considered the final number of infected throughout the process. Note

that the regular node to node transmission observed in networks is preserved in the

process definition when k = 0. Furthermore, the process defined as above coincides

with the Markovian SIR process on networks [8] when the simplicial complex is of

dimension one (i.e., it only has nodes and edges). As far as the authors are aware,

this process has not been defined in the literature. On simplicial complexes, the SIS

and SIRS models have been considered [10, 16, 23, 32]. Ma and Guo [21] study an

SIR model of information transmission on a hypernetwork, but with only one trans-

mission parameter and in discrete time. Ball et al. [2] consider an SIR process on a

network with household structure, where there is a di↵erent infection rate for nodes

in the same household. However, their model considers only two rates of transmis-

sion, depending on whether nodes are or not in a household. The simplicial model

here defined allows for a parameter for each simplicial dimension. Similarly, Fransson

and Trapman [12] consider an SIR epidemic on a network with di↵erent transmission

rates between nodes belonging to a same triangle. However, all triangles show this

separate infection rate, in contrast to our model where triangles may not be included

as simplices in the complex: i.e., three nodes v1, v2, v3 may be pairwise connected

in a network and thus form a triangle, but the simplex {v1, v2, v3} can be ommitted

from a simplicial complex. Also, since our model has a transmission rate for each

dimension, we allow groups of more than three nodes (i.e., simplicial complexes of

dimension greater than 2) to have their own transmission rate, although for com-

putational reasons, the experiments in Section 4.2 are limited to two-dimensional

simplicial complexes.
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Figure 4.1: Representation of contagion dynamics on a simplicial complex of dimen-

sion 2.

4.2 Experiments

As a first step to determine whether the simplicial higher order interactions have an

e↵ect on the spread of an SIR epidemic, simulations of the process are performed for

an Erdős-Rényi graph G(n = 120, p = 0.1) and its two-dimensional clique complex,

i.e., all triangles of the graph are included as two-simplices. The resulting network

has 120 nodes, 734 edges, 288 cliques of size 3, average degree of hk1i = 12.23, each

node belonging to an average of hk2i = 7.2 two-simplices. The distribution of the

final fraction of infected nodes in both scenarios will be studied. The parameters

used are transmission rates �1 = 1, �2 = 0 in the case of the graph (one-dimensional

complex) and �1 = 1, �2 = 15 in the case of its two-dimensional clique complex. In

both cases, the recovery rate is � = 9. A thousand runs are done for each process.

The top histograms in Figure 4.2 show the distributions of the final fraction of

infected nodes, which can be compared for the process with �2 = 0 (left, epidemic

on a network) and the process with �2 = 15 (right, epidemic on the two-dimensional

clique complex). The di↵erence in frequency with which the epidemic takes o↵ is

noticeable.

The same process is considered in a network of contacts between students in a

high school in Marseilles, France [22] and its two-dimensional clique complex. The

network has 120 nodes, 348 edges, 272 cliques of size 3, hk1i = 5.8 and hk2i = 6.8.
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Simulations with parameters �1 = 1, �2 = 0, � = 9 and �1 = 1, �2 = 15, � = 9

are done with a thousand runs each. Similarly, the distribution of the final fraction

of infected is shown in the bottom histograms of Figure 4.2. It is observed how

introducing the simplicial contagion leads to a larger frequency of outbreaks.

Figure 4.2: Histograms for the final fraction of infected for the simplicial stochastic

SIR on graphs (left) and their two-dimensional clique complexes (right). Graphs

used were an Erdős-Rényi graph (top) and a high school social network (bottom).

Transmission rates were �1 = 1 in all cases, �2 = 0 for graphs and �2 = 15 for the

corresponding clique complexes. Recovery rate was � = 9 for all cases

The use of �2 = 15 in both cases was rather arbitrary. To further support

our findings, the average final fraction of infected after 1000 runs of the epidemic

process on the contact network were done for fixed �1 = 1, � = 5 and varying �2 =

0, 1, . . . , 25, and for fixed � = 5 and varying �1 = 1, 2, . . . , 10, �2 = 0, 0.5, 1, . . . , 20.
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Figure 4.3: Simplicial complex used consisted of 120 nodes, hk1i = 5.8, hk2i = 6.8.

Left: Average final fraction of infected over a thousand runs for fixed �1 = 1, � = 5

and di↵erent values of �2. Right: Average final fraction of infected over a thousand

runs for fixed � = 5 and di↵erent values of �1, �2.

The results are displayed in Figure 4.3. In the case of the heat map in Figure 4.3, if

the parameter �2 had no e↵ect, one would expect to see an increment on the average

fraction of infected only when �1 increases, which is the left to right direction in

the heatmap. However, a bottom-to-top increment is seen when fixing any of the

�1 values, corresponding to an increment of the parameter �2. This e↵ect is less

noticeable for larger �1 values.

4.3 Mean field approach

A mean-field approximation, under an homogeneous degree hypothesis is considered.

For a simplicial complex of dimension D, transmission rates �1, . . . , �D, recovery rate

� and average degree hkdi for the d-dimensional simplices, the mean field equations

are Equations 4.1 – 4.3:

s
0(t) = �

DX

d=1

�dhkdii(t)
d
s(t), (4.1)
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i
0(t) = ��i(t) +

DX

d=1

�dhkdii(t)
d
s(t), (4.2)

r
0(t) = �i(t). (4.3)

At any given time s + i + r = 1. The initial conditions satisfy, so + io + ro = 1,

ro = 0. Due to the dissipative dynamics imposed by the recovered rate equation,

the epidemic has an absorbing state, sf + if + rf = 1, if = 0. Of particular interest

is the total fraction of the total population of N nodes which gets infected during

the entire epidemic, I ⌘
R1
0 i(t)dt. Clearly, the total number of infected nodes is

NI and rf = I.

Assuming that i, s and r are analytic functions, the mean field equations can

be used to study the system close to any given point in the state space (sa, ia, ra) by

taking i(t) = ia + �(t), s(t) = sa + �(t) and r(t) = ra + ⇢(t), where �, � and ⇢ are

small quantities. Substitution in the susceptible rate equation gives,

�
0(t) = �[sa + �(t)]

DX

d=1

�dhkdi[ia + �(t)]d (4.4)

= �[sa + �(t)]
DX

d=1

�dhkdi

"
dX

r=0

i
d�r
a �

r(t)

✓
d

r

◆#
.

By the corresponding substitution in the infected rate equation, the system is ex-

pressed by the following two coupled di↵erential equations,

�
0(t) + [sa + �(t)]

"
DX

d=1

�dhkdi


i
d
a + i

d�1
a �(t)

d!

(d� 1)!

�#
(4.5)

= �[sa + �(t)]
DX

d=1

�dhkdi

"
dX

r=2

i
d�r
a �

r(t)

✓
d

k

◆#
,

�
0(t) + ��(t)� [sa + �(t)]

"
DX

d=1

�dhkdi


i
d
a + i

d�1
a �(t)

d!

(d� 1)!

�#

= [sa + �(t)]
DX

d=1

�dhkdi

"
dX

r=2

i
d�r
a �

r(t)

✓
d

k

◆#
.

Up to first order in �, Equation 4.5 reads,

�
0(t) + [sa + �(t)]

"
DX

d=1

�dhkdi
⇥
i
d
a + di

d�1
a �(t)

⇤
#
= 0 (4.6)
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�
0(t) + ��(t)� [sa + �(t)]

"
DX

d=1

�dhkdi
⇥
i
d
a + di

d�1
a �(t)

⇤
#
= 0.

The fact that the only possible value for if is zero implies that the absorbing state

tends to a dynamic system that is independent of the simplices of order greater than

D = 1. To see this, note that close to if = 0, only the simplex D = 1 survives in

Equation 4.6,

s
0
! ��1hk1is(t)�(t) (4.7)

r
0
! ��(t),

so

ds

dr
=

��1hk1is(t)

�
. (4.8)

Therefore,

sf = s⌧e
�1hk1i

� (1�sf )
, (4.9)

where ⌧ is a characteristic time scale.

Under the additional assumption that |�| < |�|, namely that the recovery

dynamics is slower than the infection dynamics under small perturbations, which

appears to be a plausible assumption for SIR-type epidemics [1, 17], the equation

for �,

�
0(t) + �(t)

"
� � [sa + �(t)]

DX

d=1

�dhkdii
d�1
a d

#
� [sa + �(t)]

DX

d=1

�dhkdii
d
a = 0 (4.10)

has the solution

�(t) =
sa

PD
d=1 �dhkdii

d
ah

� � sa

PD
d=1 �dhkdii

d�1
a d

i
h
1� e

�[��sa
PD

d=1 �dhkdiid�1
a d]t

i
. (4.11)

From Eq. (4.11) it follows the outbreak threshold for the epidemics, which is a↵ected

by the higher order interactions of simplices D > 1, is

so

DX

d=1

�dhkdii
d�1
o d > �. (4.12)
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Clearly, the well known outbreak condition for a SIR epidemics in a graph D = 1 is

recovered, so >
�

�1hk1i . Furthermore, the threshold condition can be verified with the

numerical solution of the mean field equations. A process with � = 10, hk1i ⇡ 50,

hk2i ⇡ 10, and one initially infected node out of 300, would have a threshold for

values above the line �2 = 45000/299 � 750�1 in a (�1, �2) plane, which is the

straight line which intersects at �1 = 60/299 ⇡ 0.2 and �2 = 45000/299 ⇡ 150,

which can be observed in Figure 4.5 as the final fraction of infected in the mean field

case (bottom right) is close to zero for this region. The small magnitude of initially

infected nodes makes the e↵ect of �2 small for this threshold condition. If, however,

an initial fraction of 15% infected nodes (45/300) is considered, the threshold region

is that above the line �2 = 200/51 � (50/3)�1 in a (�1, �2) plane, which is the

straight line which intersects at �1 = 4/14 ⇡ 0.235 and �2 = 200/51 ⇡ 3.92. This

can be observed in Figure 4.6. Although an initial fraction of infected of 15% of

the population may be unrealistic in some scenarios, it is used here to showcase the

correctness of our outbreak threshold.

From Eq. (4.11) the characteristic time scale for the epidemic ⌧ , can be defined

as

⌧ =
1h

� � sa

PD
d=1 �dhkdii

d�1
a d

i . (4.13)

At time ⌧ , an epidemic outbreak in a susceptible population essentially starts to die

out, � ! 0. It follows that exactly in t = ⌧ ,

0 = ��i(⌧) +
DX

d=1

�dhkdii(⌧)
d
s(⌧). (4.14)

By the equation for s0 and introducing the definitions i⌧ ⌘ i(⌧) and s⌧ ⌘ s(⌧),

s⌧ = soe
�⌧ i⌧ [�1hk1i+2�2hk2ii⌧+...+D�DhkDiiD�1

⌧ ]
, (4.15)

�1hk1i+ 2�2hk2ii⌧ + 3�3hk3ii
2
⌧ + ...+D�DhkDii

D�1
⌧ =

�

s⌧
.

By the definition of ⌧ , the epidemic peak is bounded from below by i⌧ . For D = 2,

i⌧ =
1

2�2hk2i


�

s⌧
� �1hk1i

�
 i⇤. (4.16)
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Therefore for D = 2 there is a bound for the value s at the infection peak, denoted

by s⇤,

s⇤ 
�

�1hk1i
. (4.17)

The mean field approximation is tested numerically by comparing its results

with those of simulations in random simplicial complexes. In the Figure 4.3 the

final fraction of infected nodes I, given by averaging over 1000 simulations of the

microscopic stochastic process is reported. The graph at the right of the Figure 4.3

shows a parametric sweep over the range �1 2 [1, 10], �2 2 [0, 20] with � = 5 fixed.

The graph in the left is the slice at �1 = 1. From Equation 4.16 and taking into

account that sf  s⌧ , I � i⇤ and sf = 1� I, mean field predicts the bound given by

the relation,

I � 1�
�

�1hk1i
. (4.18)

This bound is experimentally verified for the parametric sweep considered in the

microscopic simulations reported in Figure 4.3 and by the simulations and numer-

ical solutions of the mean field equations reported in the Figures 4.5 and 4.6. For

instance, in the conditions at the left graph of Figure 4.3, the resulting bound is

I � 0.1379. The conditions considered in the Figures 4.5 and 4.6 on the other hand,

obey the bound I � 0.6799. Both analytical bounds are in complete accordance

with observations. The interplay between fluctuations and high order interactions

is however not completely captured by the homogeneous mean field theory, which is

exemplified by Figure 4.2, where the histograms of the values for I sampled from the

simulations are reported. The uncertainty in I is clearly influenced by the simplicial

interactions.

Figure 4.4 shows the evolution of infectious and recovered individuals in time

on a simplicial complex with 500 nodes, hk1i ⇡ 25, hk2i ⇡ 10 and an epidemic with

parameters �1 = 1, �2 = 5, � = 5. Notice that the bound (4.16) is consistent with

the observed peak.
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Figure 4.4: Comparing the evolution of infectious (left) and recovered (right) nodes

in the realizations of a hundred simulations (gray) and the numerical solution of

the mean field equations (color). Simplicial complex used had 500 nodes, hk1i ⇡

25, hk2i ⇡ 10, and the parameters were �1 = 1, �2 = 5, � = 5.

In Figure 4.5 (top), the maximum of infected nodes during the epidemic is

compared between mean-field approximations and simulations (in this latter case,

via an average of two hundred repetitions). Similarly, the final fraction of infected

is compared in Figure 4.5 (bottom). All the comparisons were done on a simplicial

complex with 300 nodes, hk1i ⇡ 50, hk2i ⇡ 10, and epidemics with parameters

�1 = 0.025, 0.05, . . . , 0.625, �2 = 0, 1, . . . , 10, � = 10. It is seen that our mean field

approximation is consistent with our simulation results, which allows the possibility

of future work to be done without expensive simulations.
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Figure 4.5: Heatmaps comparing average final of infected and maximum of infected

obtained by simulation vs. mean field approximation on a random simplicial complex

with 300 nodes, hk1i ⇡ 50, hk2i ⇡ 10, � = 10.
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Figure 4.6: Heatmaps comparing average final of infected obtained by simulation vs.

mean field approximation on a random simplicial complex with 300 nodes, hk1i ⇡ 50,

hk2i ⇡ 10, � = 10 but considering 15% of initially infected nodes.
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Conclusions

The dissipative dynamics of the SIR contagion process permits a very complete mean

field characterization by which it is even possible to obtain an explicit solution for

the changes in the fraction of infected nodes close to any given state space point

for any simplex dimension. Other similar contagion processes like SIS [10, 16, 23]

or SIRS [32] have been recently studied on simplicial complexes, but our model

o↵ers a framework in which the mean field theory, besides its good agreement with

the underlying microscopic process (as shown in Figures 4.4, 4.5 and 4.6), it is

also capable of describing the e↵ects of arbitrarily higher order interactions. This

makes our model an ideal framework for the study of variations beyond contagion

processes on simplicial networks. From the results in Sections 4.2 and 4.3 it is clear

that the presence of higher order simplicials has an impact in all of the prominent

features of the epidemic. Take for instance the epidemic’s peak, which is bounded

according to Eq. (4.16) at interactions up to D = 2. It turns out that an increase in

the strength of the interactions within the simplex has the not very intuitive e↵ect

of diminishing the lower bound for the infection’s peak. The following intriguing

remarks are however worth noting at this matters. It is plausible to consider the

simplicial interactions to model other types of relationships among nodes besides

infection, for example risk perception or social pressure-induced prophylaxis. In

these situations the interaction strength parameters very well can be of positive

38
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or negative sign. In such a case, the mathematical structure of the mean field

linearized solutions does not forbid the existence of stationary states di↵erent from

the absorbing i = 0 state. A second remark is that the microscopic simulations

shown in Figure 4.2 indicate that although the average final number of infected nodes

is almost independent of the simplicial interactions, the fluctuations around that

average are not and this can be indicative of some interplay between the simplicial

interactions and the underlying stochasticity. This aspect cannot be analyzed by the

developed homogeneous mean field description, so further study via more extensive

simulations or more advanced mean field approximations is worth to pursue for

future works on the model.

5.1 Future work

Future work may consist using theory of branching processes, to analytically study

the contagion model here defined. The choice of focusing on simplicial complexes

and not other generalizations, such as hypergraphs, was in part because of the rich

mathematical theory in algebraic topology about this combinatorial structure. As

such, a line of research is to study the structural properties of simplicial complexes

and see how these a↵ect a contagion process spreading on it. Additional work

may consist of incorporating the multi-layered paradigm to higher order network

structures, by studying a suitable definition of multi-layered simplicial complexes,

their properties and processes therein. More realistic versions of the models here

described can be defined, losing perhaps the ability to analytically study them, but

still well suited for computational studies. For example, in the context of contagion

processes, be it rumour spreading or disease spreading, nodes can be considered

agents in a multiagent system, with properties such as memory or behavioral traits.



Bibliography
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