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Abstract. The global incidence of melanoma is increasing. 
Mortality from melanoma is influenced primarily by metas-
tasis in advanced stages of the disease. Current treatments 
are largely ineffective; thus, novel gene delivery approaches 
that target tumor‑specific markers may be useful for the 
treatment of melanoma. Systemic administration of encap-
sulated RNA‑interference plasmids targeted against tumor 
cells is a potential alternative therapy for cancer. Formula-
tions of transferrin (Tf)‑conjugated polyethylene glycol 
(PEG) liposomes loaded with short hairpin RNA (shRNA) 
against WT1 (Lip + RNAi + Tf), PEG liposomes loaded with 
shRNA against WT1 (Lip + RNAi), Tf‑conjugated PEG lipo-
somes loaded with pEGFP‑N3 (Lip + GFP + Tf) and saline 
solution as negative control (untreated) were administered 
systemically to C57BL/6 mice implanted subcutaneously 
with a melanoma cell line. Tumor volume, body weight, 
tumor weight, survival and relative expression of WT1 were 
evaluated. No significant differences in net body weight were 
identified between groups. The tumor volume decreased from 
7,871 mm3 (SD±2,087) in the untreated group to 5,981 mm3 
(SD±2,099) in the Lip + RNAi + Tf group. The tumor weight 
was reduced, from 8.8 g (SD±0.30) in the untreated group to 
5.5 g (SD±0.87) in the Lip + RNAi + Tf group. An increase 
of 37% in survival was also observed in the group treated 
with Lip + RNAi + Tf in comparison to the untreated group. 
Tumors treated with Lip + RNAi + Tf also showed a decrease 
in the mean relative expression of WT1 of 0.21 (SD±0.28) 

folds compared with 1.8 (SD±2.49) folds in untreated group, 
1.34 (SD±0.43) folds in Lip + RNAi group and of 1.89 
(SD±0.69) folds in Lip + GFP + Tf group. Systemic adminis-
tration of transferrin‑conjugated PEG liposomes loaded with 
shRNA against WT1 reduced WT1 expression and tumor size 
and increased survival.

Introduction

Melanoma originates in pigmented melanocytes derived from 
neural crest cells that are normally present in the epidermis 
and dermis (1). Melanoma represents <5% of skin tumors but 
carries the greatest mortality rate of all skin neoplasms (2). 
The global incidence of melanoma has increased mark-
edly (3). Melanoma is able to metastasize through the 
hematogenous or lymphatic system (4,5). Advanced‑stage, 
metastatic disease confers a poor prognosis, with a median 
survival of less than one year (3,6).

The Wilms tumor 1 (WT1) protein is a transcription factor 
that regulates the expression of genes involved in cell prolif-
eration and apoptosis (7‑11). WT1 expression is essential for 
genitourinary development, and ~10% of nephroblastomas 
exhibit WT1 mutations (12). By contrast, wild‑type WT1 
is overexpressed in a variety of neoplasms, including lung, 
breast, thyroid and melanoma (13-17).

WT1 is expressed in >80% of malignant melanoma cells, 
but is not present in vivo in normal skin or benign melanocytic 
nevi (17). Expression of WT1 is associated with melanoma 
cell proliferation and is a possible marker of melanocytic 
invasion into the dermis (18,19). In vitro knockdown of WT1 
induces apoptosis and increases sensitivity to chemotherapy 
in B16F10 melanoma cells. Furthermore, in vivo WT1 short 
hairpin RNA (shRNA) applied by aerosol reduces the number 
and size of tumors (20,21).

Gene therapy using tumor‑targeted liposomes as delivery 
systems has opened a new era in cancer treatment (22). 
Liposomes are essentially phospholipid bilayer envelopes 
capable of systemically delivering drugs or genetic material. 
The advantage of using phospholipids for systemic delivery 
is that they are biodegradable, minimally toxic and easily 
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removed (23,24). Recent studies show that the addition of 
polyethylene glycol (PEG) to phospholipids increases the 
half‑life of liposomes in circulation; this modification also 
improves the ability to incorporate ligand molecules that 
specifically recognize superficial tumor targets (25‑27).

Transferrin (Tf), a glycoprotein required for cellular 
absorption of iron, is often used in gene or drug delivery 
systems (28‑37). As the Tf receptor (CD71) is overexpressed 
on the surface of cancer cells, it is a useful target for the 
delivery of therapeutic agents such as small‑molecule drugs 
and nucleic acids (26,31,37‑40).

The aim of the present study was to analyze the antitumor 
effects of Tf‑conjugated PEG liposomes loaded with WT1 
shRNA applied systemically to a subcutaneous model of 
melanoma in C57BL/6 mice.

Materials and methods

Materials. One‑palmitoyl‑2‑oleoyl‑sn‑glycerol‑3‑phospho-
choline (POPC), dimethyldioctadecyl ammonium bromide 
(DDAB), pegylated distearoylphosphatidylethanolamine 
(DSPE‑PEG 2000) and DSPE‑PEG 2000 conjugated to 
maleimide were purchased from Avanti Polar Lipids, 
Inc. (Alabaster, AL, USA). DNase I was purchased from 
Sigma-Aldrich (St. Louis, MO, USA). Polycarbonate 
membranes of 100 nm were purchased from Whatman 
International, Ltd. (Maidstone, UK). Amicon Centriprep 
(molecular weight cut‑off, 30 kDa) concentrator was 
purchased from EMD Millipore (Billerica, MA, USA). 
Holo‑transferrin and 2‑iminothiolane hydrochloride (Traut's 
reagent) were purchased from Sigma‑Aldrich. WT1.1 
DNA plasmid construction was performed as described by 
Zamora-Avila et al (20). B16F10 murine melanoma cells were 
obtained from American Type Culture Collection (ATCC; 
Manassas, VA, USA). Rat anti‑mouse CD71‑(FITC) antibody 
clone C2 was purchased from BD Biosciences (San Jose, CA, 
USA). The pEGFP‑N3 vector that expressed GFP protein was 
obtained from Clontech Laboratories, Inc. (Mountain View, 
CA, USA). Anti‑WT1 F6 antibody (sc‑7385) was purchased 
from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). 
Anti-glyceraldehyde‑3‑phosphate dehydrogenase (GAPDH; 
SAB2500451‑100UG) antibody was purchased from 
Sigma-Aldrich. Anti-goat secondary antibody (#170-6515) 
was purchased from Bio‑Rad Laboratories, Inc. (Hercules, 
CA, USA), and anti‑mouse secondary antibody (sc-516086) 
was purchased from Santa Cruz Biotechnology, Inc.

Construction of WT1 shRNA plasmid. WT1 RNAi was 
designed using siRNA design software available online 
(Ambion; Thermo Fisher Scientific, Inc., Austin, TX, USA), 
and synthesized at 0.05 mg (Ambion; Thermo Fisher Scien-
tific, Inc.) to create one recombinant plasmid (named WT1‑1). 
Oligonucleotides for the WT1‑1 plasmid were 5'‑GAT CCG 
GCT GTC CCA CTT ACA GAT GGA AGC TTG CAT CTG TAA 
GTG GGA CAG CTT TTT TGG AAG‑3' and 3'‑GCC GAC AGG 
GTG AAT GTC TAC CTT CGA ACG TAG ACA TTC ACC CTG 
TCG AAA AAA CCT TCG CCGG‑5'. The oligonucleotides 
were resuspended to a final concentration of 1 mg/ml and 
annealed and ligated into pGSH1‑GFP (Gene Therapy 
Systems, Inc., San Diego, CA, USA).

Western blot analysis. Tumoral tissue samples (25 mg) 
were lysed with TRIzol reagent according to manufacturer's 
instructions (Thermo Fisher Scientific, Inc., Gaithersburg, 
MD, USA). Protein concentration was determined using 
a DC protein assay kit. Proteins (50 µg whole‑cell lysates) 
was electrophoresed on 12% SDS‑polyacrylamide gels and 
transferred to nitrocellulose membranes (Bio‑Rad Labora-
tories, Inc., Hercules, CA, USA). Blocking was realized with 
5% lactose‑free milk and Tween 20 in incubation for 1 h. 
Three washes were performed after each hybridizing with 
the above antibodies. Monoclonal anti‑WT1 F6 was used at a 
dilution of 1:2,500 in Tris‑buffered saline (TBS) buffer, and 
secondary antibody was used at 1:5,000 in TBS buffer. To 
control for protein loading, anti‑GAPDH was used at 1:10,000 
in phosphate‑buffered saline (PBS), and anti‑goat secondary 
antibody was used at 1:5,000. All antibody incubations were 
90 min at room temperature. Protein bands were visualized 
by enhanced chemiluminescence using Lumi‑Light Western 
blotting substrate Roche Diagnostics (Indianapolis, IN, USA) 
.

Flow cytometric analysis. B16F10 melanoma cells (1x106) 
were resuspended in 200 µl PBS buffer and stained with 
anti‑mouse CD71 (FITC) antibody. Cells were then incu-
bated at 4˚C for 30 min and spun at 400 x g for 10 min at 4˚C. 
Cells were then washed twice with PBS buffer and spun at 
1,600 rpm for 10 min at 4˚C. Cells were suspended in 200 µl 
PBS and analyzed using a Accuri C6 flow cytometer (BD 
Biosciences) to assess cellular expression of CD71.

Liposomal preparation. Liposomal formulation was 
performed according to Shi and Pardridge (41). POPC 
(19.2 µmol), DDAB (0.2 µmol), DSPE‑PEG 2000 (0.6 µmol), 
and DSPE‑PEG 2000‑maleimide (30 nmol) were dissolved 
in a mixture of chloroform/methanol (2:1 in a total volume 
of 3 ml) and subsequently evaporated using nitrogen gas. 
Lipids were then suspended in 0.2 ml PBS buffer containing 
200 µg plasmid DNA and vortexed vigorously for 2 min. 
The liposome/DNA suspension was frozen in ethanol/dry ice 
for 4 min and thawed at 40˚C for 2 min in a cycle 10 times. 
Adjustments to the size of the liposomes were performed 
using polycarbonate membranes containing a 100‑nm pore 
size; this step was repeated five times. After extrusion, the 
liposomes were graduated to 2 ml and stored in the dark at 
4˚C. To remove unincorporated DNA inside the liposome, 
5 U endonuclease I and 5 mM MgCl2 were added to the 
mixture and incubated for 1 h at 37˚C. DNA concentra-
tion was calculated at ~50 and 60% using NanoDrop 2000 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA).

Anchoring of the protein to liposome was performed 
using 10 nmol Tf protein (Sigma‑Aldrich) and thiolated 
using 400 µmol 2‑iminothiolane (Traut's reagent) in 100 µl 
borate‑EDTA buffer, pH 8.5 (0.15 M sodium borate and 
0.1 mM EDTA). The mixture was incubated for 2 h in the 
dark at room temperature with shaking. Loaded Tf was 
washed with PBS in a concentration column (Centricon 30; 
Amicon) and concentrated to a final volume of 0.2 ml. The 
loaded Tf was immediately added to the liposomes and 
incubated for 24 h at 4˚C to allow reaction of the maleimide 
group to generate PEG‑immunoliposome complexes. The 
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complexes were dialyzed using an 50‑nm membrane to 
exclude non‑incorporated materials. The mean vesicle diam-
eters were determined using a Zetasizer Nano ZS90 particle 
size analyzer (Malvern Instruments, Ltd., Malvern, UK).

Subcutaneous in vivo model of melanoma. Female C57BL/6 
mice (age, 7‑8 weeks; weight, 20‑25 g) were obtained from 
Harlan Laboratories S.A. De C.V. (Distrito Federal, Mexico). 
Seven mice in each group were used in the assay. Animals 
were housed under a 12‑h light/dark cycle and received an 
autoclaved rodent diet and water ad libitum. All experiments 
were performed with prior approval from the local animal 
ethics committee. Four groups of seven mice were used for 
the in vivo assay. A subcutaneous model of melanoma was 
developed using the B16F10 cell line (CRL‑6475; ATCC), 
which is derived from the same mouse species. A suspension 
of 200 µl containing 5x105 cells was subcutaneously injected 
into the posterior right flank of the mouse. Complete complex 
of Tf‑conjugated PEG liposomes (50 µl) were loaded with 
shRNA against WT1 (Lip + RNAi + Tf), PEG liposomes 
(50 µl) and loaded with shRNA against WT1 (Lip + RNAi), 
Tf‑conjugated PEG liposomes (50 µl) and loaded with 
pEGFP‑N3 vector (Lip + GFP + Tf) and saline solution 
(50 µl; untreated group) were delivered intravenously through 
the tail vein on day 4 and every 5 days subsequently until 
day 29. Surviving mice were sacrificed on day 30 by cervical 
dislocation according the good management practices guide-
lines of laboratory animals, and tumors were collected for 
further analyses. Mouse weight, tumor weight and date of 
death were recorded.

RNA isolation and reverse transcription‑quantitative poly‑
merase chain reaction (RT‑qPCR). Total RNA was isolated  
from 25 mg tumoral tissue using 1 ml TRIzol according 
to manufacturer's instructions. The cDNA samples were 
obtained using 5 µg total RNA, 200 U Superscript III and 
0.5 µg oligo dT (12‑17) at 42˚C for 90 min, followed by heating 
at 70˚C for 10 min. TaqMan® One‑Step RT‑PCR Master Mix 
Reagents Kit manufactured by Applied Biosystems (Thermo 
Fisher Scientific, Inc., Foster City, CA, USA).

Each qPCR reaction was performed with 2 µl cDNA 
and WT1 forward primer, TCT GCG GAG CCC AAT ACAG, 
reverse primer, CAC ATC CTG AAT GCC TCT GAAGA, 
and probe FAM‑CAC CGT GCG TGT GTA TT‑NFQ. As an 
endogenous control, a mouse β‑actin primer set was used, 
manufactured by Applied Biosystems. For each reaction, 
we used Universal PCR Master Mix manufactured by 
Roche Molecular Systems, Inc. (Branchburg, NJ, USA). The 
protocol was performed for 40 cycles at 94˚C for 30 sec and 
64˚C for 30 sec using a Real‑Time Thermal cycler CROMO4 
(Bio‑Rad Laboratories, Inc.). Relative quantification was 
performed using the Livak method (42). All samples were 
run in duplicate, destilled water was including as negative 
control of reacction.

Statistical analysis. Significance of different treatments was 
determined by analysis of variance by Dunnett's test. To 
survival rate were performed Kaplan‑Meier curves, using 
SPSS software, version 13 (SPSS, Inc., Chicago, IL, USA) 
All data are expressed as the mean ± the standard errors of 

the mean. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Size distribution according to intensity of liposomes. Sizes of 
the Tf‑conjugated PEG liposomes loaded with WT1 shRNA 
are shown in Fig. 1. The mean diameter of the PEGylated 
Tf‑conjugated PEG liposomes loaded with shRNA against 
WT1 was 86 nm. The poly‑dispersity index (PDI) was 0.154, 
indicating that the vesicles have a high level of homogeneity. 
Liposome formulation by vortexing and repeated cycles 
of freezing‑thawing allowed the formation of unilamellar 
liposomes. Liposomes contained a high concentration of the 
neutral phospholipid POPC and a minor quantity of cationic 
lipid DDAB (0.2 mol), which improved the incorporation 
of nucleic acid into the aqueous liposome center. A smaller 

Figure 1. Size distribution according to intensity of liposomes. Approximately 
50 µl complex was suspended in 1 ml phosphate‑buffered saline and ana-
lyzed using a Zetasizer Nano ZS90. Mean diameters of Tf‑conjugated PEG 
liposomes loaded with shRNA against WT1 were of 86 nm and 0.154 of 
poly‑dispersity index.

Figure 2. Presence of transferrin receptor and WT1 protein in B16F10 
melanoma cells. (A) 1x106 B16F10 cells were incubated with anti‑mouse 
CD71 antibody, then analyzed using flow cytometry. The figure shows the 
percentage of positivity to FITC dye. (B) 50 µg total protein extraction of 
B16F10 were analyzed using western blot analysis. The figure shows proteins 
of 52‑54 kDa WT1, and the endogenous control GAPDH.
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quantity of DSPE‑PEG 2000 (0.6 mol) and DSPE‑PEG 
2000‑maleimide (30 nmol) provided steric properties, and the 
maleimide group allowed the addition of thiolated transferrin.

Transferrin receptor and WT1 expression in the Bl6F10 cell 
line. B16F10 cells showed 87% positivity for the Tf receptor 
according to flow cytometry results (Fig. 2A). In addition, 
western blotting confirmed expression of WT1 in B16F10 
cells (Fig. 2B). Thus, B16F10 cells were selected as a suitable 
model to test Tf‑conjugated PEG liposomes loaded with WT1 
shRNA.

In vivo assay. Administration of different treatments 
Lip + RNAi + Tf, Lip + RNAi, Lip + GFP + Tf and untreated 
was initiated four days after cells were injected subcutaneously 
into mice. Treatments were administered six times through 
intravenous tail vein injection during a period of five days.

The mean percentage of weights of mice previously inocu-
lated with B16F10 cells and treated with Lip + RNAi + Tf, 
Lip + RNAi, Lip + GFP + Tf and untreated is shown in Fig. 3A. 
Untreated and Lip + RNAi + Tf groups showed increases of 
34% (SD±24.92) and 41% (SD±12.78) respectively, without 
significant differences between groups. In Lip + RNAi 
and Lip + GFP + Tf groups showed a low increase of 1.5% 
(SD±12.97) and 10% (SD±6.87) respectively, against final 
reading on day 19.

Fig. 3B we found that Lip + RNAi and Lip + GFP + Tf 
groups grew, and there was a decrease in survival. For this 
reason, we were only able to record measurements to day 
19 post‑implant. The Lip + RNAi + Tf treatment showed a 
significant decrease (P<0.05) in tumor volume compared to 
the untreated group. The final readings presented a mean of 
7,871 mm3 (SD±2,087) for the untreated group and 5,981 mm3 
(SD±2,099) for Lip + RNAi + Tf group. This change repre-
sents a reduction in tumor volume of 24%.

Fig. 3C shows the mean final tumors weight of the groups 
of mice sacrificed at the end of the trial. Only the untreated 
and Lip + RNAi + Tf groups were analyzed because the mice 
of the other groups died after day 30. The results showed a 
reduction in tumor mass in the Lip + RNAi + Tf group and 
a mean tumor weight of 5.5 g (SD±0.87) compared with the 
untreated group that showed to mean tumor weight of 8.8 g 
(SD±0.30). The decrease of 34% in weight of the tumors 
collected shows that tumor size was significantly reduced 
(P<0.05) in Lip + RNAi + Tf group.

Fig. 3D the survival rate of C57BL/6 mice with implanted 
B16F10 melanoma cells subcutaneously into the right thigh 
of the hind limb was 25.22 days (SD±1.31). The untreated 
group presented a survival rate of 22.2% and Lip + RNAi + Tf 
group showed a survival rate of 62.5%, equivalent to an 
increase of 37%. This difference suggests that treatment 
with Lip + RNAi + Tf significantly increases survival in 
melanoma model employed (P<0.060). The Lip + RNAi and 
Lip + GFP + Tf groups showed a reduced survival compared 
to the untreated group, with a mean survival estimated at 
20.25 and 17.75 days, respectively. The surviving mice were 
sacrificed on day 30 for humane reasons (+ Censored groups).

Analysis of WT1 expression in mouse tumor tissues. The WT1 
expression levels in all groups of mice were analyzed using 

Figure 3. Antitumor activity of treatments in model in vivo. (A) Analysis 
of body weight of ‘in vivo’ assay. Mean percentages of the total weight of 
mice groups (untreated, Lip + RNAi + Tf, Lip + RNAi and Lip + GFP + Tf) 
during the time (days) of assay. Not significant difference was observed 
between groups. (B) Analysis of tumor volume in vivo assay. B16f10 cells 
were implanted subcutaneously into C57BL/6 mice. Intravenous injection of 
Lip + RNAi + Tf, Lip + RNAi, Lip + GFP + Tf and untreated treatments were 
performed. Data are expressed as the mean ± standard deviation (SD). Tumor 
volume was calculated using the following formula: Length x width2 x 0.5 
and presented as mm3. (C) Analysis of tumor weight in vivo assay. The 
figure shows the weight mean of collected tumors in grams from groups 
untreated and Lip + RNAi + Tf. The standard deviation and statistical sig-
nificance (P<0.05) were included. Data are expressed as mean including SD. 
(D) Analysis of rate survival in vivo assay. Kaplan‑Meier curves of survival 
rate of mice groups. The assay was censored at 30 days after initial seeded 
of B16F10 cells (+).

  A
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RT‑qPCR analysis. The samples analyzed of Lip + RNAi and 
Lip + GFP + Tf groups were extracted soon after death of the 
mouse. In Fig. 4 show the relative expression of WT1 stan-
dardized according to the Livak method. To accomplish this, 
the average obtained from samples of untreated group was 
established as a calibrator and β‑actin was used as endogenous 
control. Fig. 4 shows that the Lip + RNAi + Tf group showed a 
mean relative expression level of 0.21 (SD±0.28)‑fold, repre-
senting a decrease in expression of WT1, compared with the 
other groups of mice which presented mean relative expres-
sion levels of 1.8 (SD±2.49)‑fold for the untreated group of 
mice, 1.34 (SD±0.43)‑fold for the Lip + RNAi group, and 1.89 
(SD±0.69)‑fold for the Lip + GFP + Tf group. The reduction 
in the expression levels of WT1 in the Lip + RNAi + Tf group 
suggests that tumor samples decrease in the expression of 
WT, which in turn suggests internalization directed by Tf.

Discussion

During the last three decades, global incidence of melanoma 
has rapidly increased, particularly among Caucasian popu-
lations (3). The increased mortality rate from melanoma is 
associated with a relatively late‑stage diagnosis and resis-
tance to chemotherapeutic agents (3).

The search for new therapeutic strategies has helped 
identify new tumor‑specific molecules suitable for gene 
therapy (9). Restoration of tumor suppressor genes, such 
as p53, is a major strategy used for tumor reduction (43). 
Antisense and RNA interference are additional strategies 
for targeting genes involved in cancer. Well‑defined tumor 
markers in melanoma include mutations in the oncogenes 
NRAS, BRAF, c‑KIT, GNAQ and GNA11 or reduced func-
tion of the tumor suppressor genes PTEN and p53 (44-48). 
Between 40 and 60% of melanomas exhibit mutations in 
BRAF, and 90% have mutations in p53, although only 10% 
of these mutations actually disable the tumor suppressor 
activity of p53 (49). Recent studies show high expres-
sion of wild‑type WT1 in a large proportion of solid and 
non‑solid tumors, including melanoma (13‑16,50). WT1 is a 

multifaceted protein involved in cell proliferation, cell death 
and angiogenesis. WT1 expression is found in 39% of mela-
nomas, and >80% of WT1‑positive melanomas is diagnosed 
in advanced stages of the disease. Thus, WT1 is a potential 
therapeutic target in melanoma. Antisense oligonucleotide 
and RNA interference strategies that decrease the expression 
of WT1 decreased the proliferation of cancer cells (51‑54).

One of the limitations of gene therapy is tumor‑specific 
delivery. The use of viral vectors is a good method for deliv-
ering genetic material in vitro (46-48); this strategy is limited 
by the host immune response in vivo (55-57).

The main advantages of liposomes include considerable 
concentration of large quantities of antitumor agent and 
intracellular delivery, increased half‑life of tumor agents due 
to reduced degradation, gradual delivery of antineoplastic 
molecules, easy removal and reduced toxicity (24).

Phospholipid derivatives are currently used to improve 
circulating of liposomes and reduce their elimination by the 
liver and macrophages (58). The incorporation of thiol groups 
allows crosslinking with lysines in proteins, which can yield 
liposomes targeted to the ligand‑receptor. The Tf receptor is 
widely used as delivery vehicle targeting tumor cells (41). The 
Tf receptor, CD71, is involved in the intracellular uptake of 
iron. The high expression of CD71 in many tumors, including 
melanoma, and the association with high iron requirements 
by dividing cells, makes this a good target (59). Tf is a serum 
protein found in high concentrations in the blood and is the 
natural ligand for the Tf receptor. Due to the versatility of 
the Tf receptor, it is useful for the delivery of transferrin 
antitumor agents, such as toxins, proteins and genetic mate-
rials (28,29,32,33,40).

In a previous study, we demonstrated the ability of shRNA 
to silence the WT1 gene and induce apoptosis in B16F10 
murine melanoma cells (41). In a model of lung metastasis, 
application of this shRNA via aerosol was successful in 
reducing the size and number of tumors (60). The delivery 
system was effectively applied using PEI‑DNA complexes, 
which reached high concentrations in the lung; however, this 
form application works exclusively in the lung (60). Systemic 
application of targeted liposomes opens the possibility of 
targeting WT1 in tumors in other parts of body (60). Lipo-
some therapy would not be exclusive for melanoma, as other 
types of tumors express WT1 and the Tf receptor. The 
present results showed a 24% decrease in tumor size without 
changes in body weight. The final weight of the tumor for the 
experimental group differed by 34% from that of the control 
mice (20). In addition, an improvement in survival of 37% 
was observed in mice treated with Tf‑conjugated PEG lipo-
somes loaded with WT1 shRNA. These are important results, 
considering that B16F10 cells form very aggressive tumors in 
C57BL/6 mice (14).

A reduction in WT1 expression was noted in the 
Lip + RNAi + Tf experimental treatment group. Although 
transfection efficiency was not analyzed, RT‑qPCR suggests 
that decreased expression of WT1 was associated with a 
reduction in tumor mass. Tumors were collected within 24 h 
of the last treatment. In order to identify transfected cells 
with decreased expression of WT1, we would have to assess 
expression of beta‑galactosidase about 2‑6 h after in vivo 
inoculation (41).

Figure 4. Analysis of WT1 expression in mouse tumor tissues. Figure pres-
ents the mean relative expression folds of WT1 in samples analyzed of the 
different groups of mice used in the in vivo model. Quantitative polymerase 
chain reactions were run in duplicate and β‑actin was used as an endogenous 
gene. Data are expressed as the mean including standard deviation, and the 
statistical value were included in the graph (P<0.168).
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Complete tumor eradication was not possible; thus, further 
studies should examine increased concentrations of lipo-
some complexes or additional anticancer molecules. Previous 
studies have shown that WT1 silencing sensitizes cells to 
chemotherapeutic agents, such as cisplatin, doxorubicin and 
radiation. Increased sensitivity to apoptotic stimuli in response 
to silencing of WT1 is likely due to the fact that WT1 regulates 
Bcl‑2, multi‑drug resistance 1 (MDR1) and P‑glycoprotein 
expression, which are involved in chemoresistance (21,61,62).
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