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Abstract. A method for the construction of approximate analytical expressions for

the stationary marginal densities of general stochastic search processes is proposed. By

the marginal densities, regions of the search space that with high probability contain

the global optima can be readily defined. The density estimation procedure involves

a controlled number of linear operations, with a computational cost per iteration that

grows linearly with problem size.
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1. Diffusion and Global Optimization

Stochastic strategies for optimization are essential to many of the heuristic techniques

used to deal with complex, unstructured global optimization problems. Methods like

simulated annealing [1, 2, 3, 4] and evolutionary algorithms [5, 6, 7], have proven to be

valuable tools, capable of give good quality solutions at a relatively small computational

effort. In spite of their success, these approaches present a major drawback, namely the

absence of valid bounds on the obtained solutions. A common feature of deterministic

global optimization algorithms is the progressive reduction of the domain space until the

global optimum has been found with arbitrary accuracy [8, 9]. An analogous property

for stochastic algorithms has been largely lacking. In this contribution is introduced a

method for the estimation of the asymptotic probability density of a general stochastic

search process in global optimization problems. The convergence of the estimated

density can be clearly assessed, and with the help of this density, reliable bounds for the

location of the global optimum are derived. The procedure involves linear operations

only, and a well defined number of evaluations of the given cost function. The presented

results indicate that by the proposed approach, regions of the search space can be

discarded on a probabilistic basis. This property may be implemented in a variety of

ways in order to improve existing or develop new optimization algorithms, and open the

door for the construction of probabilistic optimality certificates in large scale nonlinear

optimization problems.

The roots of stochastic search methods can be traced back to the Metropolis

algorithm [10], introduced in the early days of scientific computing to simulate the

evolution of a physical system to thermal equilibrium. This process is the base of

the simulated annealing technique [1], which makes use of the convergence to a global

minimum in configurational energy observed in physical systems at thermal equilibrium

as the temperature goes to zero. The method presented in this contribution is rooted in

similar physical principles as those on which simulated annealing and related algorithms

[1, 11, 2, 3] are based. However, in contrast with other approaches, the proposed

method considers a density of points instead of Markov transitions of individual points.

Moreover, the main goal of the proposed approach is not the convergence to global

minima as a randomness parameter is reduced, but the approximation of the probability

density after an infinitely long exploration time of the search space, keeping a fixed

randomness.

Consider the minimization of a cost function of the form V (x1, x2, ..., xn, ..., xN)

with a search space defined over L1,n ≤ xn ≤ L2,n. A stochastic search process for this

problem is modeled by

ẋn = −
∂V

∂xn

+ ε(t), (1)

where ε(t) is an additive noise with zero mean. Equation (1), known as Langevin

equation in the Statistical Physics literature [12, 13], captures the basic properties
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of a general stochastic search strategy. Under an uncorrelated Gaussian noise with

constant strength, Eq. (1) represents a search by diffusion, while a noise strength that

is slowly varying in time gives a simulated annealing. Notice that when choosing an

external noise of infinite amplitude, the dynamical influence of the cost function over

the exploration process is lost, leading to a blind search. The model given by Eq.(1)

can be also interpreted as an overdamped nonlinear dynamical system composed by N

interacting particles. The temporal evolution of the probability density of such a system

in the presence of an additive Gaussian white noise, is described by a linear differential

equation, the Fokker – Planck equation [12, 13],

ṗ =
∂

∂x

[

∂V

∂x
p

]

+D
∂2p

∂x2
(2)

where D is a constant, called diffusion constant, that is proportional to the noise

strength. The direct use of Eq. (2) for optimization or deviate generation purposes

would imply the calculation of high dimensional integrals. It results numerically much

less demanding to perform the following one dimensional projection of Eq. (2). Under

very general conditions (e. g., the absence of infinite cost values), the equation (2)

has a stationary solution over a search space with reflecting boundaries [12, 14]. The

stationary conditional probability density satisfy the one dimensional Fokker – Planck

equation

D
∂p(xn|{xj 6=n = x∗

j})

∂xn

+ p(xn|{xj 6=n = x∗
j})

∂V

∂xn

= 0. (3)

An important consequence of Eq. (3) is that the marginal p(xn) can be sampled by

drawing points from the conditional p(xn|{xj 6=n = x∗
j}) via a Gibbs sampling [15]. It

is now shown how, due to the linearity of the Fokker – Planck equation, a particular

form of Gibbs sampling can be constructed, such that its not only possible to sample

the marginal density, but to give an approximate analytical expression for it. From Eq.

(3) follows a linear second order differential equation for the cumulative distribution

y(xn|{xj 6=n = x∗
j}) =

∫ xn

−∞ p(x
′

n|{xj 6=n = x∗
j})dx

′

n,

d2y

dx2
n

+
1

D

∂V

∂xn

dy

dxn

= 0, (4)

y(L1,n) = 0, y(L2,n) = 1.

Random deviates can be drawn from the density p(xn|{xj 6=n = x∗
j}) by the fact that

y is an uniformly distributed random variable in the interval y ∈ [0, 1]. Viewed as a

function of the random variable xn, y(xn|{xj 6=n}) can be approximated through a linear

combination of functions from a complete set that satisfy the boundary conditions in

the interval of interest,
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ŷ(xn|{xj 6=n}) =
L
∑

l=1

alϕl(xn). (5)

Choosing for instance, a basis in which ϕl(0) = 0, the L coefficients are uniquely defined

by the evaluation of Eq. (4) in L−1 interior points. In this way, the approximation of y

is performed by solving a set of L linear algebraic equations, involving L−1 evaluations

of the derivative of V .

The proposed procedure is based on the iteration of the following steps:

1) Fix the variables xj 6=n = x∗
j and approximate y(xn|{xj 6=n}) by the use of formulas

(4) and (5).

2) By the use of ŷ(xn|{xj 6=n}) construct a lookup table in order to generate a deviate

x∗
n drawn from the stationary distribution p(xn|{xj 6=n = x∗

j}).

3) Update xn = x∗
n and repeat the procedure for a new variable xj 6=n.

The iteration of the three steps above give an algorithm for the estimation of the

equilibrium distribution of the stochastic search process described by Eq. (1). A

convergent representation for p(xn) is obtained after taking the average of the coefficients

a’s in the expansion (5) over the iterations. In order to see this, consider the expressions

for the marginal density and the conditional distribution,

p(xn) =
∫

p(xn|{xj 6=n})p({xj 6=n})d{xj 6=n}, (6)

y(xn|{xj 6=n}) =
∫ xn

−∞
p(x

′

n|{xj 6=n})dx
′

n. (7)

From the last two equations follow that the marginal y(xn) is given by the expected

value of the conditional y(xn|{xj 6=n}) over the set {xj 6=n},

y(xn) = E{xj 6=n}[y(xn|{xj 6=n})]. (8)

All the information on the set {xj 6=n} is stored in the coefficients of the expansion (5).

Therefore

〈ŷ〉 =
L
∑

l=1

〈al〉ϕl(xn) → y(xn), (9)

where the brackets represent the average over the iterations of the density estimation

procedure.

Previous preliminary applications of the density estimation method on the

generation of suitable populations of initial points for optimization algorithms can

be found in [16]. In the next section the capabilities of the proposed algorithm

for the construction of reliable probabilistic bounds is tested on several benchmark

unconstrained examples and in a family of well known constrained NP-hard problems.
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2. Examples

The fundamental parameters of the density estimation procedure, L and D, have a clear

meaning, which is very helpful for their selection. The diffusion constant “smooth” the

density. This is evident by taking the limit D → ∞ in Eq. (4), which imply an uniform

density in the domain. The number of base functions L, on the other hand, defines the

algorithms capability to “learn” more or less complicated density structures. Therefore,

for a given D, the number L should be at least large enough to assure that the estimation

algorithm will generate valid distributions y(xn|{xj 6=n}). A valid distribution should be

a monotone increasing continuos function that satisfy the boundary conditions. The

parameter L ultimately determines the computational cost of the procedure, because at

each iteration a system of size ∝ L of linear algebraic equations must be solved N times.

Therefore, the user is able to control the computational cost through the interplay of

the two basic parameters: for a larger D a smoother density should be estimated, so a

lesser L can be used.

The density estimation algorithm is tested on the following benchmark

unconstrained problems:

Schwefel:

N = 6, f = 418.9829N −
N
∑

n=1

xnsin(
√

|xn|),

−500 ≤ xn ≤ 500, solution : x∗ = (420.9687, ..., 420.9687), f(x∗) = 0.

Levy No. 5:

N = 2 f =
5
∑

i=1

icos((i− 1)x1 + i)
5
∑

j=1

jcos((j + 1)x2 + j)

+(x1 + 1.42513)2 + (x2 + 0.80032)2,

−10 ≤ xn ≤ 10, solution : x∗ = (−1.3068,−1.4248), f(x∗) = −176.1375.

Booth:

N = 2, f = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2,

−10 ≤ xn ≤ 10, solution : x∗ = (1, 3), f(x∗) = 0.

Colville:

N = 4, f = 100(x2 − x1)
2 + (1− x1)

2 + 90(x4 − x3)
2 + (1− x3)

2

+10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1),

−10 ≤ xn10, solution : x∗ = (1, ..., 1), f(x∗) = 0.

Rosenbrock:

N = 20, f =
N
∑

n=1

100(xn+1 − x2
n)

2 + (xn − 1)2,

−10 ≤ xn ≤ 10, solution : x∗ = (1, ..., 1), f(x∗) = 0.

For the experiments, the following specific form of the expansion (5) has been used,
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ŷ =
L
∑

l=1

alsin

(

(2l − 1)
π(xn − L1,n)

2(L2,n − L1,n)

)

, (10)

so the size of the algebraic system of equations is L−1. The linear system has been solved

by a LU decomposition routine [17]. The gradients have been calculated numerically,

with two cost function evaluations per derivative. In this way, the total number of cost

function evaluations per iteration goes like 2(L− 1)N .

In Fig. 1 two different pairs L,D have been considered in the study of the Schwefel

problem. This problem has a second best minimum at a relatively large distance of the

global optimum. This is reflected on the estimated densities, but at small D a clear

distiction between the two regions is made. The Schwefel problem is an example of a

separable function, that is, a function given by a linear combination of terms, where each

term involves a single variable. Separable problems generate an uncoupled dynamics

of the stochastic search described by Eq. (1). Because of this fact, the estimation

algorithm converges in only one iteration for separable problems. The Schwefel example

also illustrates that the density estimation algorithm works well on functions that are

not derivable in some points. This is a consequence of the finite number of gradient

evaluations required by the procedure.

-400 -200 0 200 400
x

0

0.005

0.01

0.015

0.02

0.025

p 
( 

x 
)

D = 300
 D = 50

Figure 1. Density estimation for the variable x1 of the Schwefel function. Two

different diffusion constants have been considered, taking L = 100 in both cases. In

the two cases the density clearly represents the structure of the cost function. The

density is sharply peaked around the optimal value for the lesser D.

In contrast to the Schwefel function, the stochastic search process associated to the

Levy No. 5 problem represents a coupled nonlinear dynamics. Despite that this problem

has about 760 local minima [18], the estimation algorithm shows good convergence

properties, as is illustrated in Fig. 2.

The two previous examples show how, once that the estimation algorithm as

attained convergence, is possible to define a region of the search space in which with high

probability the global optimum is located. This concept is more sistematically studied
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Figure 2. Probability densities associated to the Levy No. 5 problem, using the

parameter values L = 200, D = 70 and M = 300. The densities maxima are at

coordinates (−1.3,−1.42).

through the introduction of normalized distances. The distance normalized with respect

to the search space L1,n ≤ xn ≤ L2,n between two points x and x∗ is defined by

distance =

√

√

√

√

(x1 − x∗
1)

2 + ...+ (xN − x∗
N)

2

(L1,1 − L2,1)2 + ...+ (L1,N − L2,N)2
. (11)

Two measures written in terms of normalized distances are presented in the examples

of Figures 3, 4 and 5: i) The distance between the global optimum and the point in

which the density is maximum. ii) The length of the 95% probability interval around

the point of maximum probability.

0 200 400 600 800 1000
M

0.0001

0.001

0.01

0.1

1

95 per cent interval
Distance to optimum, Booth problem

D = 10, L = 100

0 500 1000 1500 2000 2500 3000
M

0.0001

0.001

0.01

0.1

1

95 per cent interval
Distance to optimum, Booth problem

D = 1, L = 200

Figure 3. Density estimation for the Booth problem. Semi – log scale has been used.

Under general conditions a Gibbs sampling displays geometric convergence [19].

In the presented experiments the running time has been chosed such that the 95%

probability interval differ in less than 0.01 between succesive iterations. Additionally,

several control runs from different and independent starting conditions have been

performed, indicating convergence to the same corresponding region within the
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0 500 1000
M

0

0.2

0.4

0.6

0.8

1

95 per cent interval
Distance to optimum, Colville problem

D = 300, L = 300

Figure 4. Density estimation for the Colville problem.

0 200 400 600 800 1000
M

0

0.2

0.4

0.6

0.8

1

95 per cent interval
Distance to optimum, Rosenbrock problem

D = 1000, L = 100

Figure 5. Density estimation for the Rosenbrock problem.

predefined accuracy. As expected for a Gibbs sampling, the density appears to contract

to a region of space that is independent of the staring point [20]. The numerical

realizations suggest that convergence is attained at a few hundreds of iterations for

all of the examples, even for the 20 – dimensional Rosenbrock problem, which as been

reported to be difficult to solve by stochastic heuristics like genetic algorithms [21].

The numerical experiments show that the global optimum is contained in a region

close to the point of maximum probability, and that this region gets more sharp as

D decreases. A straighforward application of this behavior would be, for instance, on

simulated annealing – type algorithms. Starting with a large diffusion constant, search

regions can be iteratively discarded. By the use of the density estimation method, a

probability measure is associated with each region. In this way the user can define

a certain level of precision in the search. Several statistical quantities can be readily

calculated like measures of confidence, for instance probability intervals or characteristic

fluctuation sizes.

Because the estimation algorithm depends on linear operations only, additional

nonlinearities in the cost function can be treated with essentialy the same efficiency,

giving more freedom and flexibility in modeling. For instance, the application of the

density estimation algorithm to constrained problems can be done in a very direct

manner through the addition of suitable “energy barriers” (or more precisely, “force
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barriers”). These barriers don’t need to be very large. Their main purpose is not to

define prohibited regions, but only regions with low probability. The original constrained

problem is transformed to an unconstrained cost function with additional nonlinearities.

Of course, the design of adequate barriers may be a difficult problem – dependent task.

However, at least for some problems the approach seems to be straightforward. This is

illustrated on the classical NP-hard knapsack problem [22]. It is well known that many

standard instances of the knapsack model can be efficiently solved by exact methods

[22], which makes it an ideal example for experimentation with the density estimation

algorithm. The knapsack problem is formulated as

min −
N
∑

n=1

qnxn (12)

s.t.
N
∑

n=1

wnxn ≤ c,

−x2
n + xn ≤ 0, 0 ≤ xn ≤ 1,

where qn, wn and c are positive numbers. The quadratic constraint is equivalent to the

usual restriction to binary variables. The following transformation is proposed,

min −
N
∑

n=1

qnxn (13)

+k0

N
∑

n=1

1

1 + exp(−b0[−x2
n + xn])

+k1
exp

(

b1[
∑N

n=1wnxn − c]
)

− 1

exp
(

−b2[
∑N

n=1wnxn − c]
)

+ 1

s.t. 0 ≤ xn ≤ 1,

For illustrative purposes, consider the instance q = (2, 3, 5), w = (3, 5, 7), c = 10 of

the knapsack problem. By inspection, the solution is given by x = (1, 0, 1). In Fig.

6 typical densities produced by the estimation algorithm for this instance are shown.

The selection of the parameters has been done after the performance of short runs,

measuring the effects of each of the nonlinear terms. The parameters have been tuned

such that: a) The first nonlinear term alone produce symmetric densities peaked in the

neighborhood of {0, 1}. b) The addition of the second nonlinear term and the original

cost function generate densities in which the configurations with maximum probabilty

satisfy the
∑N

n=1wnxn ≤ c constraint. Notice that the configuration that corresponds

to the global optimum has the maximum probability.

A larger example is presented in Fig. 7. The exact solution has been calculated

with the branch and bound algorithm supplied in the GNU Linear Programming Kit

[23]. The instance has been generated by taking wn uniformily distributed in an interval

[1, R], and
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Figure 6. Probability densities associated to a three dimensional instance of a

knapsack problem.

qn = wn + (εn − 1)
R

100
+

R

10
, (14)

εn uniform deviate in [−1, 1],

which imply strong linear correlations between qn and wn. Instances of this kind

are relevant to real management problems in which the return of an investment is

proportional to the sum invested within small variations [22]. It has been argued that

these type of instances fall in a category which is close to the “worst case” scenario for

exact algorithms [22]. Despite of that, the estimation method converge to densities in

which the optimum is contained in a region with high probability. Moreover, from the

definition of the normalized distance, follows that the closest integers to the elements of

the vector that represent the point of maximum probability differ in ∼ 1 positions from

the exact solution.

0 50 100 150 200 250 300
M

0

0.2

0.4

0.6

0.8

1

95 per cent interval
Distance to optimum

Figure 7. The density estimation of an instance of a knapsack problem with 30

variables.

Three independent realizations of the numerical experiment over instances

generated by Eq. (14) have been performed, varying the orders of magnitude of R

and c. The results are summarized in Table 1, indicating the number of 0 ↔ 1 flips that

the normalized distances imply.
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Table 1. Density estimation on instances of the knapsack problem with 30 variables.

The final two columns indicate the resulting 95% intervals and gaps to optimum like

normalized distances/flips.

R c k0 k1 b0 b1 b2 M L D Interval Gap

10 100 10 7.1 10 0.01 2b1 300 100 1 0.425/5 0.185/1

100 500 100 37.0 10 0.001 3b1 300 100 15 0.432/6 0.363/4

1000 3000 1000 315.0 10 0.0001 3b1 300 100 100 0.433/6 0.257/2

It should be remarked that, although the instances of the knapsack model discussed

in this section are quickly solvable by exact algorithms, no reference to the particular

structure of the original problem has been used for the density estimation. In fact, the

problem has been treated like a highly nonlinear cost function of 30 variables.

3. Heuristics Based on Stationary Density Estimation

The potential benefits of the stationary density estimation algorithm as a tool for the

construction of new heuristics for high dimensional global optimization problems is

illustrated through the following greedy random search procedure:

1) Run an iteration of the stationary density estimation algorithm.

2) An initial best point is given by the global maximum of the estimated density

3) Define a population of N +1 points. One point is the current best solution and other

is the current point with maximum probability density. The remaining N − 1 points

are randomly drawn from an uniform distribution centered around the best point. For

each dimension, the corresponding uniform distribution has a length equal to the typical

fluctuation size given by the estimated density.

4) Run a downhill simplex routine. The starting conditions are given by the simplex

defined by the points generated at step 3 as vertices.

5) If from step 4 results a point which improves the best known objective value, then

update the best point.

6) Run an iteration of the density estimation algorithm.

7) Go to step 3.

From an evolutionary perspective, the above procedure acts at two different levels.

At a short time scale finite populations evolve locally in a very greedy fashion. On

the other hand, large changes on the population composition are dictated by a long

time scale dynamics, which is consistent with the learned information about the global

cost landscape. This information is gained through the approximation of the long term

statistical density of a diffusive search process.

The short time scale exploration of the solution space is dominated by the downhill

simplex method, which is a deterministic search based on function evaluations of

a simplex vertices [24]. In a N dimensional search space, a population of N + 1

points defined by the corresponding N + 1 vertices evolve under simple geometric
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transformations, namely reflection, expansion and contraction. At each iteration, a

new trial point is generated by the image of the worst point in the simplex (reflection).

If the new point is better than all other vertices, the simplex expands in its direction.

If the trial point improves the worst point, a reflection from the new worst point is

performed. A contraction step is made when the worst point is at least as good as the

reected point. In this way the simplex eventually surrounds a local minimum. In the

experiments presented here, the implementation of the downhill simplex given by [17]

has been used, with a fractional decrease of cost value of at least 10e− 4 as termination

criteria. A maximum of 50000 function evaluations in the downhill simplex routine is

allowed.

From a given reference point x(best), an initial simplex for each call to the

downhill simplex routine is defined through the characteristic length scales λn, as

x(i) = x(best) + λnen where the en are N unit vectors. The estimated long term density

provides a vertex (the point with maximum likelihhood at the current stage) and most

importantly, typical fluctuation sizes, denoted by σn. These are given by the first two

moments of the estimated density,

σn =
√

〈x2
n〉 − 〈xn〉

2 (15)

Due to the simple form of the expansion of the estimated density, all the integrals

over the variables domain that are needed for moment calculation are performed

analitically. The resulting expressions are finite sums with L terms.

The typical fluctuation sizes (15) provide a natural definition for the characteristic length

scales λn, in the sense expressed in step (3) of the greedy diffusive search described above.

For illustration purposes, consider the Rosenbrock test function. In Fig.8 are

presented some plots of the beahavior of our greedy stochastic search for the Rosenbrock

problem of N = 20 variables. The graphs represent the cost function values over

successive iterations. Four samples from a total of 100 runs are plotted. The result

of a version of the algorithm in which an uniform density over the search space is used

instead of the estimated long term density is also plotted. The success in finding the

optimum is defined by a gap size with the known global optimum lesser than 0.001.

Each run consist of 100 iterations. Over the total number of runs of the greedy

stochastic search, 90% have been successful, and the 100% of the runs outperform

the search based on uniform distributions. An 80% of the runs have been successful

in less than 48 iterations and 30% in less than 13 iterations. For the 13 iterations

cases, an average number of 28080 cost function evaluations was needed. It should be

remarked that the 20-dimensional Rosenbrock test function has been reported to be

extremely difficult to solve by randomized optimization algorithms. For instance, in an

experiment similar to the one presented here, it has been reported in [25] a success rate

of zero after 400000 function evaluations for Simulated Annealing, Cross–Entropy and

Model Reference Adaptive Search. On the other hand, in [21] is reported that Genetic

Algorithms and Scatter Search methods are unable to succeed in the 20-dimensional
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Rosenbrock problem after 50000 cost function evaluations.

0 20 40 60 80 100
Iterations

1e-15

1e-10

1e-05

1

1e+05

C
os

t

Cost = 0.001
Initial vertices from uniform distribution
Suboptimal case ( 10 % of the runs )

Figure 8. Greedy stochastic search for the Rosenbrock problem. The parameter

values of the density estimation are L = 30 and D = 10000.

A more exhaustive experimentation with possible heuristics based on the stationary

density estimation algorithm is in progress.

4. Conclusion

The presented results strongly suggest that the proposed density estimation algorithm

can be used to construct probabilistic bounds on the location of global optima for

large classes of problems. The density estimation is performed in a well defined

number of elementary operations. The developed theory and the numerical experiments

indicate that any given desired precision on the bounds can be attained with some

finite values of the basic parameters, performing a finite number of iterations. The

total computational cost per iteration grows linearly with problem size. The algorithm

estimates the marginal density of each separate variable, which makes it suitable for

parallel implementation. These features make the proposed method a promising tool,

opening the possibility of constructing probabilistic optimal certificates for large scale

unstructured problems. Experimentation in this direction is in progress. On the other

hand, the density estimation algorithm may be used to develop new heuristics or improve

existing stochastic or deterministic algorithms.
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