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in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

with Orientation in Flight Dynamics

November 2024



Universidad Autónoma de Nuevo León

Facultad de Ingenieŕıa Mecánica y Eléctrica

Subdirección de Estudios de Posgrado

Application of an Intelligent Algorithm

in the System Identification of a

Quadrotor

by

Alejandro Jiménez Flores
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Objectives and study method: The general objective of this research work is

to identify the system of a quadrotor employing neural networks, a type of intelligent

algorithm. The system identification is addressed according to three approaches;

white box, grey box, and black box approaches, where the last two intelligent algo-

rithms are employed. The specific objectives are listed below:

• To develop a low-cost testing bench to measure forces and moments exerted

by a UAV.

• To construct a quadrotor to control the rotational speed of each motor inde-

pendently.
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• To carry out experimental tests with the low-cost testing bench to measure

forces and moments exerted by the quadrotor.

• To identify the quadrotor system according to the white, grey, and black box

approaches.

– White box: To develop and simulate the quadrotor mathematical model

according to physical principles.

– Grey box: To develop and train a neural network to estimate the quadro-

tor mathematical model parameters.

– Black box: To develop and train a neural network to predict the quadrotor

forces and moments, using experimental data only.

On the other hand, the study method of this work is divided into three major

parts. The first part consisted of designing and developing a testing bench that

can measure forces and moments exerted on a UAV. The second part emphasizes

designing and constructing a quadrotor from scratch so that its four motors can be

controlled independently. The third part takes an issue on machine learning, where

artificial neural networks are employed in order to carry out the quadrotor system

identification according to the white, grey, and black box approaches.

Contributions and conclusions: This research work addressed multiple sub-

jects in diverse areas of engineering, from which the conclusions are presented as

follows:

A low-cost UAV testing bench was designed and developed to measure forces

and moments exerted by a UAV. Additionally, a mini force-torque sensor was ac-

quired and an experimental base was created in order to measure all six quadrotor

degrees of freedom.

The design and construction of a quadrotor from scratch was carried out and

its four motors could successfully be characterized and controlled independently.
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Consequently, experimental tests with the quadrotor and experimental base were

performed effectively. Thus, forces and moments data were acquired and stored for

the system identification process.

The quadrotor system identification was carried out according to each proposed

method which are; white, grey, and black box approaches. The white box approach

consisted of deriving the quadrotor equations of motion and simulating its dynamics.

Conversely, in the grey box approach the parameters from the mathematical model

were obtained by training a neural network with experimental and simulation data.

Lastly, the black box approach focused only on the experimental data to train a

neural network and thus identify the quadrotor system. In all three methods, the

obtained results showed good precision and accuracy.

On the other hand, this research work contributed to two congress presenta-

tions, which are listed below:

• Design and fabrication of a low-cost drone testing bench. International Mate-

rials Research Congress 2022.

• A design modification of a quadrotor frame based on fused deposition modeling.

International Conference on Unmanned Aircraft Systems 2024.
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Chapter 1

Introduction

1.1 Background

During the last few years, Unmanned Aerial Vehicles (UAVs) have been the focus

of research and development of many scientists and engineers around the world due

to their extended applications in a great variety of fields. A quadrotor is a type

of UAV that possesses ideally four rotors with their propellers which are located in

the vertices of a square and when spinning generate a thrust force in perpendicular

direction to the plane of its rotors. There are different types and sizes of quadrotors

depending on their application (see Figure 1.1).

Figure 1.1: Different types and sizes of quadrotors [1], [2], [3]

Quadrotors are UAVs with high maneuverability and the ability of vertical

take-off landing, for this reason, they are adequate for aerial surveillance, photog-

raphy, and search and rescue missions, among other applications [4]. Authors in

1



Chapter 1. Introduction 2

reference [5] designed a multi-vehicle testbed of quadrotor to facilitate testing of

multi-vehicle control algorithms. In [6] it was conducted a simulation and experimen-

tal tests of quadrotors for the generation of formation trajectories. In reference [7] a

quadrotor is presented with a collision avoidance application thanks to a real-time

kinodynamic planning framework. In [8] multi quadrotor UAVs are contemplated to

carry out precision agriculture by implementing a distributed control strategy. On

the other hand, some authors take an issue with octorotors, for instance in [9] a PIV

fuzzy gain scheduling flight controller is developed for a Mini-UAV octorotor. In [10]

it is presented the modeling and simulation of an octorotor with a manipulator arm

using the Denavit-Hartenberg convention and Newton-Euler method. Lastly, in [11]

authors present the development of a feedback nonlinear controller for an octorotor

designed with a nonlinear proportional velocity term, plus a linear integral term.

1.2 State of the art

1.2.1 Forces and moments measurement

The possibility of measuring all the forces and moments that are exerted on a vehicle

was recognized five decades ago [12] and currently it is of practical importance in

many engineering fields such as aerospace, control, robotics, biomechanical, auto-

motive, among others [13], [14], [15], [16], [17], [18] and not limited to even clinical

environments [19]. Figure 1.2 shows a commercial thrust stand mainly used to mea-

sure forces and moments exerted by the propellers of medium and large UAVs.

Authors from reference [20] showed the application of forces and moments in

the development of a controller for a quadrotor, in [21] they focused on forces with

a Tri-Tilt rotor while in [22] they involved forces and moments with a generic car

model.
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Figure 1.2: Thrust stand for medium and large UAVs [23]

The device capable of measuring the magnitude and direction of forces and

moments exerted on a vehicle is usually referred to as a six-axis force-moment sensor,

meaning that it can measure the quantities Fx, Fy, Fz, Mx, My, Mz [15], [18].

Nevertheless, there is a great variety of these sensors according to their application.

For instance, [24] propose the development and calibration of a three-axis force

sensor because, according to their research, moments data may not be required.

On the other hand, [25] carried out the application of a force/moment sensor for

a humanoid robot foot where knowing the 6 Degrees of Freedom (DoF) quantities

is essential for the performance of such vehicle, that is to walk safely. In the same

way, [26] present research on a 6-foot underwater robotic vehicle where this kind

of sensors play an important role in measuring hydrodynamic forces and moments

acting on the robot under its specific and complex operating conditions, which in

their case it is underwater.

Although there exists new innovative research on sensors such as air-lubricated

force/moment [27] and Fiber Bragg grating sensors [28], one of the most common

force/moment sensors used nowadays are those based on piezoresistive strain gauges

[14], [15], [18], [29], [30], [31], [32].

Even though force/moment sensors have a wide range of applications in robotics,
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there are too few in the aeronautical field, and therefore, too expensive that cannot

be afforded by many research institutions. For instance, authors from reference [33]

have developed a six DoF force/moment bench for quadrotors, nevertheless, the pro-

cess and complexity of such work make it inappropriate when simplicity and low-cost

manufacturing is desired.

1.2.2 System identification

System identification enables researchers to develop mathematical models of dynamic

systems using measured data [34], where input-output data of a physical system is

fitted to a mathematical model of the system [35]. Figure 1.3 shows the general

difference between simulation and system identification in terms of aircraft.

Figure 1.3: Difference between simulation and system identification [36]

The understanding and prediction of the behavior of complex systems relies

on mathematical models [37]. There are several ways to identify the mathematical

model of a system, for instance, the white box approach is the case when a physical

system is perfectly known and can be modeled based on physical laws. On the other

hand, the grey box approach refers to when the model structure of a system is known

but several parameters are unknown and remain to be determined. Lastly, the black

box approach is the case where there is no physical insight when modeling, therefore

omitting the necessity of any previous model [38], [39], [40].

Dynamic mathematical models can describe the behavior of a quadrotor [41].

For example, authors in [42] proposed a standard generic model in order to stan-

dardize the quadrotor mathematical representation for control design, simulation,

and estimation. In [43] it was applied the Extended Kalman Filter (EKF) in the
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modeling and system identification for the auto-stabilization of a quadrotor. In [44]

it was carried out a methodology which provides high precision and predictable ma-

neuvering control of quadrotor micro aerial vehicles, focusing on the extension of the

flight envelope of the mathematical model and enhancement of agile maneuvering

capability. In [45] the authors considered the aerodynamic effects on a quadrotor in

a high-speed regime and gray-box models were identified from flight data employing

a stepwise system identification approach. On the other hand, in [46] an improved

propulsion model for multirotor small UAVs was developed considering effects such

as airflow speed, direction, rotor interaction, and other phenomena related to specific

configurations.

1.2.3 Artificial neural networks

The human brain is the most complex structure known and its comprehension has

been one of the most difficult challenges faced by science [47]. An Artificial Neural

Network (ANN) can be considered a highly simplified model of the biological neural

network (see Figure 1.4) and consists of interconnected processing units [48].

Figure 1.4: Comparison between a biological (left) and artificial (right) neuron [49]

ANNs have a wide range of applications including image recognition, classifi-

cation, control, and system identification [50]. Authors in [51] used adaptive fuzzy

spiking neurons for the identification of the propulsion subsystem of a multi-rotor
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UAV and the parameters of the electric subsystem of an induction motor. In [52]

it was developed a Deep Neural Network (DNN) based algorithm that enhances the

tracking performance of a classic feedback trajectory controller for quadcopters. In

[53] diverse deep learning architectures, including ANNs, were employed in order

to identify a quadcopter UAV system. On the other hand, in [54] it is presented

a real-time identification of a quadcopter carried out with Radial Basis Function

neural network (RBF) trained with Minimal Resource Allocating Network (MRAN)

algorithm, where the model is capable of identifying and modeling the quadcopter

flight dynamics.

1.2.4 Previous work

Considering the measurement of forces and moments on UAVs, there is previous work

that is related to one of the objectives of this research work. In [55] a test bench

was created to measure forces and moments produced by the propulsion system of

small and micro UAVs in a wind tunnel, where part of the test bench is composed

of translational and radial load cells. Although the test bench is designed and

constructed to measure forces and moments exerted by the propulsion system of

UAVs, it is designed to be implemented in a closed environment, in this case, a wind

tunnel. Therefore, it differs from the purpose of the testing bench considered in

this work, which is planned to be used in an open environment, where the airflow

generated by the propellers is planned not to interfere with the floor and surrounding

walls.
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1.3 Justification

There are many types of force-torque sensors on the market, however, the great

majority are high-cost due to their accuracy and number of degrees of freedom.

For this reason, there is a need to design and build a low-cost testing bench that

replicates the operation of a force-torque sensor for UAV applications.

Most of commercial quadrotors are not open source and therefore controlling

their motors independently is complicated. Constructing a quadrotor from scratch

is necessary to have direct access to all of its components and thus to be able to

control its motors independently.

The mathematical model of a quadrotor can be derived by several methods such

as the Newton-Euler approach, on which inertial and aerodynamic parameters are

considered and complex to calculate. Intelligent algorithms such as neural networks,

with the help of experimental databases, are proposed to estimate the unknown and

complex quadrotor parameters in a precise manner.

1.4 Hypothesis

• The development of a low-cost UAV testing bench can satisfactorily replace

force-torque sensors and be used for UAV applications.

• Constructing a quadrotor from scratch permits the independent control of its

four motors so that they can be characterized.

• Artificial neural networks can be applied in the quadrotor system identifica-

tion to calculate parameters and predict forces and moments with the help of

experimental databases.
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1.5 General objective

The general objective of this research work is to identify the system of a quadrotor

employing neural networks, a type of intelligent algorithm. The system identification

is addressed according to three different approaches; white box, grey box, and black

box approaches, where intelligent algorithms are employed in the last two.

1.5.1 Specific objectives

• To develop a low-cost testing bench to measure forces and moments exerted

by a UAV.

• To construct a quadrotor to control the rotational speed of each motor inde-

pendently.

• To carry out experimental tests with the low-cost testing bench to measure

forces and moments exerted by the quadrotor.

• To identify the quadrotor system according to the white, grey, and black box

approaches.

– White box: To develop and simulate the quadrotor mathematical model

according to physical principles.

– Grey box: To develop and train a neural network to estimate the quadro-

tor mathematical model parameters.

– Black box: To develop and train a neural network to predict the quadrotor

forces and moments, using experimental data only.

It is important to mention that adjustments were made during the research

work. The low-cost testing bench provided partial data, for this reason, a miniature
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force-torque sensor was considered and an experimental bench was constructed. The

sensor was assembled into the bench and thus the experimental tests were success-

fully carried out.

1.6 Results

This research work contributed to two congress presentations, which are listed below:

• Design and fabrication of a low-cost drone testing bench. International Mate-

rials Research Congress 2022.

• A design modification of a quadrotor frame based on fused deposition modeling.

International Conference on Unmanned Aircraft Systems 2024.
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Low-cost UAV testing bench

The main objective of the low-cost UAV testing bench is to measure the forces and

moments that are exerted by a UAV. The testing bench is designed and fabricated

considering the cost and reliability to provide accurate data. The design incorporates

load cells that are arranged to be deflected in specific directions to acquire all the

6 degrees of freedom (DoF) data that are applied by the vehicle. A mathematical

model based on forces and moments with respect to the UAV center of gravity was

developed. Computer-aided design was performed to draw the components needed

to support the load cells. Polylactic acid (PLA) and Aluminum 6061 alloy (Al-6061)

were the selected materials, based on their mechanical properties and ease of man-

ufacture. Finite Element Method (FEM) simulations were carried out to determine

the deformation and stress distribution of the bench considering each material. Fab-

ricated components and load cells were assembled along with the electronics needed

for operation. Tests were conducted using a UAV, where forces exerted on both PLA

and Al 6061 testing benches were compared with existing sensors, yielding positive

outcomes. The proper selection of materials plays an important role in the design

and fabrication, cost-stiffness ratio, and accuracy of recorded data. The low-cost

testing bench is aiming to aid the research on UAVs where high-cost force/torque

sensors cannot be accessible.

10



Chapter 2. Low-cost UAV testing bench 11

2.1 Electronic devices

Research was carried out to find the elemental electronic devices needed in the testing

bench in order to measure and process all the forces and moments exerted by a UAV.

These devices were properly selected according to their scope and considerations of

the proposed testing bench. Table 2.1 shows the selected electronic devices to be

implemented, as well as their functioning.

Table 2.1: Selected electronic devices for the low-cost UAV testing bench

Device Functioning

1 kg load cell Transducer that converts a force into a measurable electrical output

ADS 1256 analog-to-digital converter Sensor that converts analog to digital signal

Arduino® UNO Integrated circuit used to record instructions written in a programming language

2.2 Load cell working principle

A load cell is an electro-mechanical device that is used to measure force and torque.

When they are properly designed and used, they can provide very accurate and reli-

able data. Load cells can be used in many scenarios where weighting measurements

are needed, such as in robotic arms, robot walking, industrial machinery, level of a

tank, lift units, and others [56].

Figure 2.1: Different types of load cells [57]
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There are different types of load cells depending on the type and value of forces

and moments that are going to be measured. Figure 2.1 shows some examples of

load cells used in different applications and scenarios. In this work, the single-point

load cell is selected due to its direction of force application, cost, and compact size.

Figure 2.2: Strain gauges in a single point load cell [58]

A typical single-point load cell consists of a spring element, which is generally

a bar of aluminum (with a narrow section) that includes strain gauges attached to

it. This type of load cell contains a total of four strain gauges, two located at the

top and two at the bottom surface of the spring element, and they are connected

forming a Wheatstone bridge circuit (see Figure 2.2).

Figure 2.3: Tension and compression zones in a load cell under an applied force [59]

When the load cell is attached from one end and a force is applied on the

other one, there will be tension and compression zones in the spring element, as seen

in Figure 2.3. These mechanical changes in the spring element surface will directly

impact the strain gauges so that the electrical resistance of each strain gauge will also

vary. The intensity of the applied force will be proportional to the intensity of the

electrical resistance variation in the strain gauges [56]. In this way, the Wheatstone
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bridge configuration created with the strain gauges is useful to measure the voltage

differential in each load cell, which the latter will be necessary for the calibration to

estimate applied forces.

2.3 Design

The overall design of the testing bench is proposed as shown in Figure 2.4. A rigid

connector tube is fixed with a UAV at one end and to the testing bench at the other

one, in such a way that all the elements are totally fixed. When in operation, the

forces and moments exerted by the UAV will be directly transmitted to the testing

bench through the connector tube. In this way, the forces and moments experienced

by the testing bench frame {T} will be unalike to the ones experienced in the UAV

body frame {B}, therefore the transformation {T} → {B} has to be contemplated

in the mathematical model in order to obtain the desired data from the UAV.

Figure 2.4: Low-cost UAV testing bench overall design

Since the single point load cell has been previously chosen as the sensor that will

measure the forces and moments exerted by the UAV, a proper design for the testing

bench considering these types of sensors needs to be proposed. In this manner, the

main objective to be achieved in the design of the testing bench is to successfully
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(a) Conceptual design (b) Preliminary design (c) Detailed design

Figure 2.5: Design process of the low-cost UAV testing bench

acquire all the UAV 6 degrees of freedom data (that is Fx, Fy, Fz, Mx, My, and Mz)

by utilizing an arrangement of single point load cells, where at least one load cell

has to be able to deform when applying a force/moment in one axis from the testing

bench frame {T}. Thus, when applying a force/moment in any of the three axes

of the testing bench frame, at least one load cell has to be deformed. In this way,

the design of the testing bench considers a total of six load cells that are positioned

and oriented in specific ways to allow them all to correctly deform and therefore to

provide reliable data.

Once the idea of the testing bench was stated, the design process started it-

erating. Figure 2.5 shows the design process of the testing bench, starting with a

conceptual design, followed by the preliminary design, and finishing with the de-

tailed design. Iterations were necessary in order to comply with the specifications

of the testing bench, considering electronic devices, distances and angles between

elements, geometries of fixing elements, and materials.

The testing bench final design considers four different rigid pieces, which fix

the load cells in their correct position and connect to the tube that will be holding
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the UAV. Figure 2.6 illustrates more in detail the fixing pieces, as well as the load

cells in their correct arrangement. The model of the testing bench was created in

the Computer Aided Design (CAD) software Solidworks®.

Figure 2.6: Testing bench elements

Figure 2.7 shows the four different pieces designed to fix the load cells and the

connector tube to the testing bench. The design of such pieces was thought to be

simple for manufacturing purposes while complying with their objective.

2.4 Mathematical model

The equations that allow the calculation of all the UAV forces and moments were

developed based on the load cells arrangement from the testing bench design. Prior

(a) Piece A (x3) (b) Piece B (x3) (c) Piece C (x1) (d) Piece D (x2)

Figure 2.7: Designed pieces utilized in the testing bench
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to the above, the reference frames for both the UAV and testing bench were chosen to

be the North-East-Down (NED) reference frame. Moreover, the distances from the

force application section of each load cell with respect to the testing bench frame {T}

were also determined, as well as the connector tube distance from the testing bench

frame {T} to the UAV frame {B}. Figure 2.8 illustrates the previous information

from different views.

The first attempt in the mathematical model to acquire the six degrees of free-

dom experienced on {B} was to propose the equations for the sum of both forces

and moments exerted on {T} and then transforming them into {B} as a function

of distance L. Nevertheless, the aforementioned approach omitted physical consid-

erations which were detected in the experimental phase; consequently the results

on {B} possessed inconsistencies. For this reason, a new approach was proposed in

order to get the testing bench to provide correct values while taking into account its

structural environment.

The new approach considers the testing bench as a cantilever beam (see Figure

2.9) where in a simplified way the unknown force F applied on {B} is determined

thanks to a sum of moments with respect {T} taking into account the reaction forces

Rn generated and provided by each load cell. Since the testing bench is totally rigid,

when loads are applied the sum of moments is equal to zero at any point. In this way,

and considering the distances D and L; the forces applied on {B} can be correctly

obtained, as expressed in Equation 2.1 where there is one equation and one unknown

variable (F ) which leads to a unique solution.

F · L = (R1 −R2 +R3) ·D (2.1)

The above approach is able to compute all three forces (Fx, Fy, and Fz) that

are applied on {B}, nonetheless, when trying to acquire moments data, the system

of equations becomes indeterminate as shown in Equation 2.2 where for each axis

there is one equation but two variables (F and M) resulting in an infinite number
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(a) Top view (b) Front view

(c) Side view (d) Distance view

Figure 2.8: Testing bench reference frames and notation of forces and distances
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Figure 2.9: Testing bench as cantilever beam approach with simplified loads for

explanation

of solutions. For this reason, the scope of the testing bench is reduced to calculating

only the force variables in {B}.

F · L+M = (R1 −R2 +R3) ·D (2.2)

Since the load cell is used to sense a force applied perpendicularly to its longi-

tudinal distance, the data it provides is the perpendicular force the load cell experi-

ments, which does not always coincide with the force that is actually being exerted

since it depends on the direction of the force application. By not knowing the direc-

tion of this input force application, the load cell would not be able to provide the

actual applied force on each axis. For this reason, the directions of the input forces

were limited to the axes x, y, and z, and thus the testing bench scope is once again

reduced to only measuring forces directly applied on the aforementioned axes.

Figure 2.10 shows graphically how the projection forces change depending on

the input force direction and Table 2.2 shows the equations developed to find the

input forces fnx, fny, and fnz as a function of the load cell perpendicular force

Fn, where expressions C30, C45, and C60 correspond to the cosine operations cos 30,

cos 45, and cos 60, respectively.
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(a) fnx as input force (b) fny as input force (c) fnz as input force

Figure 2.10: Load cell force projection under different force inputs

Table 2.2: Components of load cells forces where fnx, fny, and fnz are considered as

input forces

Axis Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

x f1x =
F1

C60
f2x =

F2

C30C45
f3x = F3 f4x = N/A f5x =

F5

C60
f6x =

F6

C30C45

y f1y =
F1

C30
f2y =

F2

C60C45
f3y = N/A f4y =

F4

C45
f5y =

F5

C30
f6y =

F6

C60C45

z f1z = N/A f2z =
F2

C45
f3z = N/A f4z =

F4

C45
f5z = N/A f6z =

F6

C45

The distances required to carry out the sum of moments from any load exerted

on the testing bench with reference to {T} are presented in Table 2.3.

Equations 2.3, 2.4 and 2.5 are the sum of moments around x, y, and z axis

respectively. On the other hand, Equations 2.6, 2.7 and 2.8 allow the calculation of

the forces on {B}. These equations are derived according to the forces and distances

presented in Figure 2.8.

Note that Equation 2.8 does not incorporate the sum of moments since the

load cells deform equally when a vertical input force is applied. Therefore, it was

chosen the approach of contemplating the deflections of all load cells.
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Table 2.3: UAV testing bench distances

X axis Y axis Z axis

D1x = 9.0262850 mm D1y = 64.086980 mm D135z = 21.20 mm

D2x = 68.585472 mm D2y = 22.541324 mm D246z = 50.457916 mm

D4x = 53.814095 mm D3y = 24.226497 mm L = 225 mm

D5x = 50.987810 mm D4y = 48.126099 mm

D6x = 14.771377 mm D5y = 39.860483 mm

D6y = 70.667423 mm

∑
Mx = f1yD135z + f2yD246z − f4yD246z − f5yD135z + f6yD246z (2.3)

+f2zD2y + f4zD4y − f6zD6y∑
My = f1xD135z − f2xD246z − f3xD135z + f5xD135z + f6xD246z (2.4)

+f2zD2x − f4zD4x − f6zD6x∑
Mz = f1xD1y − f2xD2y + f3xD3y − f5xD5y − f6xD6y − f1yD1x (2.5)

−f2yD2x − f4yD4x + f5yD5x + f6yD6x

∑
Fx =

−
∑
My

L
(2.6)

∑
Fy =

∑
Mx

L
(2.7)∑

Fz = − (|F1|+ f2z + |F3|+ f4z + |F5|+ f6z) (2.8)

Using the previous equations and representing them as vectors and matrices,

the mathematical model of the testing bench is presented in Equation 2.9.

F = Mf −

02×3

11×3

 |f135| (2.9)

where F =
[
Fx Fy Fz

]T
is the vector of forces exerted on {B},

f =
[
F1 F2 F3 F4 F5 F6

]T
is the vector of perpendicular forces experienced by
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each load cell, f135 =
[
F1 F3 F5

]T
is the vector of perpendicular forces experienced

only by load cells 1, 3, and 5, and

M =


−D135z

C60L
1

C45L

(
D246z

C30
−D2x

)
D135z

L
D4x

C45L
−D135z

C60L
− 1
C45L

(
D246z

C30
−D6x

)
D135z

C30L
1

C45L

(
D246z

C60
+D2y

)
0 1

C45L
(D4y −D246z) −D135z

C30L
1

C45L

(
D246z

C60
−D6y

)
0 − 1

C45
0 − 1

C45
0 − 1

C45


is the matrix that converts the load cells input forces from {T} into the desired

forces on {B}.

2.5 FEM simulations

Since the testing bench is proposed to be fabricated in both Al-6061 and PLA ma-

terials (see Figure 2.11), Finite Element Method (FEM) simulations considering

these materials were carried out. The FEM analysis has the main purpose of ob-

taining the testing bench deformations and stresses under different loads, so that it

can be anticipated whether the testing bench is going to provide accurate data or

not, depending on the implemented material. These simulations were carried out in

ANSYS® Workbench. Figure 2.12 shows the static structural analysis followed in

the software, where the testing bench geometry was imported and all the simulation

parameters were established.

Figure 2.11: Testing bench fixing pieces with different materials
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Figure 2.12: ANSYS® Workbench static structural analysis

2.5.1 Parameters setting

Al-6061 and PLA mechanical properties were imported into the software in the

Engineering Data section of the static structural analysis. Table 2.4 shows the me-

chanical properties of the proposed materials for the testing bench. PLA mechanical

properties were obtained experimentally by means of tensile tests; Subsection 2.6.4

describes this procedure in more detail.

Table 2.4: Mechanical properties of Al-6061 and PLA

Property Al-6061 PLA

Density [kg/m3] 2770 1252

Elastic Modulus (E) [GPa] 68.9 1.9482

Ultimate Tensile Strength (UTS) [MPa] 310 41.388

Once the mechanical properties of the materials were imported, the corre-

sponding materials were assigned to each element of the testing bench in the Model

section, as seen in Figure 2.13. In the same way, the mesh of the whole testing bench

was created adding face sizing on various surfaces in order to obtain a more refined

result. The final mesh resulted in 724,698 nodes and 211,991 elements (see Figure

2.14).

Continuing with the setting parameters for the FEM simulations, the boundary

conditions are then allocated according to the functioning of the testing bench.

Figure 2.15a shows the fixed supports which are assigned to the inferior surfaces
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Figure 2.13: Testing bench materials assignment for FEM simulations

Figure 2.14: Testing bench mesh for FEM simulations

of each Piece A whereas Figure 2.15b shows the applied load (pressure) over the

smallest surface at the top of Piece D. The magnitude of such load was varied from

1.9 KPa to 52.9 KPa which corresponds to a force range from 35.7 gf to 957.5 gf.

Forces are originally considered as the loads for experimentation, nevertheless, they

were converted into pressures for the FEM simulations in order to get uniformity in

the results. These chosen loads are known forces (weights) that have been selected

for the calibration of the testing bench. Subsection 2.7.1 describes these calibration

weights in more detail.
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(a) Fixed supports (b) Applied pressure

Figure 2.15: Testing bench boundary conditions for FEM simulations

2.5.2 Simulations results

As mentioned at the beginning of this section, the objective of the numerical analysis

is to obtain the testing bench deformations and stresses under the application of

different loads. Figure 2.16 shows the testing bench total deformation result for

both Al-6061 and PLA materials. Red areas show greater deformation, whilst blue

ones least deformation. It is important to mention that these figures only represent

the zones where they present such deformations, but magnitudes are different. In the

case of the Al-6061 testing bench, one can see that the magnitude of the deformation

is carried out equally throughout the entire piece D, on the other hand, in terms of

the PLA testing bench, the deformation is highly concentrated in the center of piece

D.

The stress analysis was carried out according to the von Mises stress theory.

Figure 2.17 shows the stress distribution throughout all the testing bench taking

into account both Al-6061 and PLA materials. One can see that the total maximum

stresses are located in different sites, whereas the surface of local maximum stresses

(located in the narrow section of one load cell) are greater on the Al-6061 testing

bench.

Figure 2.18 shows the magnitudes of both deformation and stresses analysis
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(a) Al-6061 material (b) PLA material

Figure 2.16: Testing bench FEM total deformation

(a) Al-6061 material (b) PLA material

Figure 2.17: Testing bench FEM equivalent stress

carried out in the FEM simulations. Note in Figure 2.18a that as the applied force

increases, the total deformation also does for both Al-6061 and PLA materials.

Nonetheless, with the same applied force, the PLA deforms more highly than Al-

6061, which is an expected result because of the mechanical properties of these

materials. This behavior can also be observed in the stress analysis of Figure 2.18b

where there is a big difference between the Al-6061 and PLA maximum equivalent

stresses as the applied force increases. Nevertheless, these stress magnitudes do not

correspond to the same point in the testing bench, reason why a local analysis had to

be carried out in order to compare. Figure 2.18c shows the maximum stresses located
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in the narrow section of a specific load cell as previously indicated in Figure 2.17.

In this case, the magnitudes of such stresses are very close to each other, meaning

that changing material does not highly affect the stresses experienced by the load

cells and therefore, the results thrown by the strain gauges would not vary much.

However, an important point to mention is that there is more area of stress in the

Al-6061 testing bench than in the PLA as previously seen. This fact could also affect

the values thrown by the strain gauges, but this is uncertain until experimentation.
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Figure 2.18: Testing bench FEM simulations results
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2.6 Fabrication

The low-cost UAV testing bench is doubly fabricated. One testing bench is fabricated

with Al-6061 and another one with PLA, using machining and additive manufactur-

ing techniques respectively.

2.6.1 Electronics enclosure

Before the fabrication of the testing bench fixing pieces, the load cells, ADS 1256,

and Arduino® UNO were all connected together according to the diagrams for their

correct operation (see Figure 2.19).

Figure 2.19: Testing bench electronics connection diagram

The two ADS 1256 and Arduino® UNO were soldered on a PCB (Printed

Circuit Board) copper-clad board where the routing was previously performed. The

result of this procedure can be observed in Figure 2.20. Once these devices were

soldered into the PCB, an electronics enclosure was fabricated, which is a box-like

structure designed to protect, contain, and enclose electronic devices. This box was

created by means of additive manufacturing using a Creality® Ender-3 3D printer.
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Figure 2.20: Testing bench PCB soldered

Figure 2.21 shows the 3D printed electronics enclosure as well as the PCB with its

electronics together.

Figure 2.21: Testing bench electronics enclosure

Additionally to the electronics enclosure, three mini boxes were also 3D printed

in order to protect the routing that connects the six load cells to the two ADS 1256.

The connection between the routing and the ADS 1256 is carried out by means of a

simple Ethernet cable. Figure 2.22 shows all the connected electronics including all

the six load cells.
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Figure 2.22: All testing bench electronics connected

2.6.2 Al-6061 testing bench

The Al-6061 testing bench is manufactured by means of machining techniques, where

fixing pieces A, B, C, and D were created from Al-6061 alloy blocks. These pieces

are shown in Figure 2.23.

Figure 2.23: Testing bench Al-6061 fixing pieces

Once the Al-6061 fixing pieces were fabricated, the next step was to assemble

them together with the load cells according to the testing bench design. For this,

M4 and M5 screws and nuts were used. The final assembly of the Al-6061 testing

bench is presented in Figure 2.24.
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(a) Front view (b) Top view

Figure 2.24: Al-6061 low-cost UAV testing bench

2.6.3 PLA testing bench

The PLA testing bench is manufactured by means of additive manufacturing, where

fixing pieces A, B, C, and D were printed using a Creality® Ender-3 3D printer.

These pieces are shown in Figure 2.25.

Figure 2.25: Testing bench PLA fixing pieces

Once the PLA fixing pieces were printed, the next step was to assemble them

together with the load cells according to the testing bench design. Same as with the

Al-6061 testing bench, M4 and M5 screws and nuts were used. The final assembly

of the PLA testing bench is presented in Figure 2.26.
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(a) Front view (b) Top view

Figure 2.26: PLA low-cost UAV testing bench

2.6.4 PLA specimens

To obtain the mechanical properties of PLA there were created type IV tensile test

specimens. Four kinds of specimens were fabricated varying their infill density of

25, 50, 75, and 100 percent. These specimens were also created using a Creality®

Ender-3 3D printer. Figure 2.27 shows each type of specimen and its quantity. Note

that for each kind of specimen, there is a minimum of three specimens; this is to

ensure reliability in the results of the mechanical tests.

Figure 2.27: Type IV tensile test specimens

All the specimens were subjected to tensile tests using a SHIMADZU® AGS-X

tensile tester with a speed of 10mm/min, 10 samples per second, and a distance

between grips of 4cm. Figure 2.28 shows the procedure of the mechanical tests with

the printed specimens.
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Figure 2.28: Type IV tensile test specimens under tension

Thanks to the tensile tests, the stress-strain curves of all four kinds of specimens

could be obtained, and therefore, their mechanical properties. Figure 2.29 shows the

stress-strain curves of PLA and Table 2.5 presents the mechanical properties data

obtained from such curves.

Table 2.5: PLA mechanical properties obtained by tensile tests

Property
Infill density

25% 50% 75% 100%

Elastic Modulus (E) [GPa] 1.6099 1.6907 1.8487 1.9482

Ultimate Tensile Strength (UTS) [MPa] 36.811 38.591 41.233 41.388

Yield Strength [MPa] 12.75 13.2 15.16 16.02

2.7 Calibration and programming

The calibration of the testing bench is carried out in order for it to deliver reliable

results. The programming is carried out in the MATLAB® software. The com-

munication between the Arduino® UNO and the PC is via COM port, and the

testing bench software is used to process all the data obtained from the load cells
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Figure 2.29: Stress-strain curves of PLA

and transform it into the desired data thanks to the mathematical model.

2.7.1 Calibration weights

The calibration process of the testing bench consists of registering the voltage differ-

entials thrown by all the six load cells when applying certain known weights to each

one of them. Eight different aluminum and carbon fiber pieces were used as weights

for the calibration of the load cells (see Figure 2.30). These pieces are referred to

as calibration weights for convenience. The calibration weights data was obtained

using an OHAUS® Pioneer™precision scale and a METTLER TOLEDO® balance.

Figure 2.31 shows both balances used for the calibration weights registration and
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Table 2.6 presents the results of all the measurements.

Figure 2.30: Testing bench calibration weights

Table 2.6: Calibration weights measurements data

Element OHAUS PIONEER [gf] METTLER TOLEDO [gf] Average [gf]

Carbon Fiber 1 35.73 35.7 35.715

Carbon Fiber 2 36.63 36.6 36.615

Carbon Fiber 3 36.2 36.1 36.15

Carbon Fiber Tube 343.445 - 343.445

Aluminum 1 249.75 249.3 249.525

Aluminum 2 251.21 250.7 250.955

Aluminum 3 250.805 250.3 250.5525

Aluminum 4 255.34 254.8 255.07

2.7.2 Load cells calibration

Since the testing bench load cells have a permissible weight limit of 1 kgf, a com-

bination of the calibration weights was carried out in order to vary the weight in

the range from 0 gf to 1000 gf when calibrating each load cell separately. Figure

2.32a shows the load cells clamping so that they stay in a cantilever way. Figure

2.32b shows a 3D-printed weight-bearing surface attached to the load cell so that the
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(a) OHAUS® Pioneer™ (b) METTLER TOLEDO®

Figure 2.31: Balances used to measure the calibration weights

weighting process is easier to carry out. Figure 2.33 shows some of the calibration

weights being measured by the load cells in the calibration process.

(a) Load cells clamping (b) Load cell weight bearing surface

Figure 2.32: Load cells calibration scenario

Table 2.7 presents the results of each combination of the calibration weights

measurements, where all the six load cells were tested and all their respective DV

were registered. For each combination and load cell, there were carried out three

tests to ensure repeatability in measurements.
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(a) Measuring Carbon Fiber 1, 2, and 3 (b) Measuring Aluminum 1 and 2

Figure 2.33: Load cells calibration process using calibration weights

With all the information from the calibration weights combinations and their

respective load cells DV, there could be observed a linear relationship between the

calibration weights magnitudes and the load cells DV. For this reason, a least-squares

linear regression was proposed in order to create six models (one for each load cell)

so that each model uses the load cell DV as input data and outputs the actual force

experienced by the load cell. The equations of the mathematical model are obtained

from reference [60] and presented below (consider
∑

=
∑n

i=1).

y = a0 + a1x (2.10)

a1 =
n
∑
xiyi −

∑
xi

∑
yi

n
∑
x2i − (

∑
xi)

2 (2.11)

a0 = ȳ − a1x̄ (2.12)

r =
n
∑
xiyi − (

∑
xi) (

∑
yi)√

n
∑
x2i − (

∑
xi)

2
√
n
∑
y2i − (

∑
yi)

2
(2.13)

Equation 2.10 represents the mathematical expression for the straight line,

where a0 and a1 are coefficients representing the intercept and the slope, respectively
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Table 2.7: Calibration weights combinations and load cells DV

Element Weight [gf]
Load cells DV [×10−5 V]

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

Carbon Fiber 1 35.715 0.9019 0.9689 0.8713 0.8939 0.8389 0.9015

Carbon Fiber 1

Carbon Fiber 2
72.33 1.8199 1.9451 1.7646 1.8101 1.6966 1.8286

Carbon Fiber 1

Carbon Fiber 2

Carbon Fiber 3

108.48 2.7299 2.9194 2.6510 2.7182 2.5499 2.7450

Aluminum 4 255.07 6.4146 6.8518 6.2363 6.3881 6.0094 6.4659

Carbon Fiber Tube 343.445 8.6429 9.2315 8.3877 8.5980 8.0798 8.6953

Aluminum 1

Aluminum 2
500.48 12.5890 13.4433 12.2377 12.5358 11.7841 12.6807

Aluminum 1

Aluminum 2

Aluminum 3

751.0325 18.9003 20.1638 18.3632 18.8121 17.6844 19.0292

Aluminum 3

Aluminum 4

Carbon Fiber 1

Carbon Fiber 2

Carbon Fiber 3

Carbon Fiber Tube

957.5475 24.0822 25.7006 23.4074 23.9806 22.5394 24.2537

(Equations 2.12 and 2.11) and r is the correlation coefficient (Equation 2.13) which

evaluates how well the model fits the data. For a perfect fit, r = 1.

The least-squares linear regression model was applied with all the data pre-

sented in Table 2.7 (load cells DV and their respective weight force data) so that,

the coefficients a0 and a1 could be computed for each load cell. These coefficients

are presented in Table 2.8.

The load cell calibration process is complete with the linear model coefficients

obtained for each load cell. The coefficients are key to the functioning of the whole
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Table 2.8: Coefficients a0 and a1 for load cells linear regression models

Coefficient Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6

a0 -0.0829 -0.3379 0.1014 0.0289 0.1096 0.0771

a1 39.7571 37.2649 40.9 39.9259 42.4717 39.4705

testing bench and they might change according to the atmospheric pressure.

2.7.3 Testing bench software

There were created several scripts in the whole testing bench project, however, only

the most relevant ones are considered in this subsection. These are the load cells

calibration and main scripts.

The load cells calibration script involves the load cells calibration process as

presented in the previous subsection. The script is simple and it only consists of

measuring the DV from a load cell when a calibration weight is placed over it. Figure

2.34 shows the load cells calibration script when running. Note that a calibration

weight was placed over a load cell shortly after sample 50. The black curve indicates

the raw data from the load cell and the red one is the filtered data. The load

cells DV data is filtered using a low-pass filter from reference [61]. Once the total

required samples have been obtained, an average of the filtered measurements is made

from the sample where the filtered data is stabilized until the last sample. Overall,

a total of 200 samples are considered for measuring the load cell DV, generally

from sample 200 until sample 400. The script ends by showing the average of the

load cell DV, meaning that such load cell DV corresponds to the calibration weight

placed to measure. This process was carried out with all six load cells and all eight

combinations of calibration weights. In this way, Table 2.7 was filled.

On the other hand, the testing bench main script is the one used in the oper-

ation of the testing bench. The testing bench operation is graphically represented
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Figure 2.34: Testing bench software: load cells calibration

in the flowchart from Figure 2.35. It starts with the serial port communication with

the Arduino® UNO, then the software receives 10 data samples from the load cells

to check communication and let possible voltage spikes dissipate. Next, the software

reads data and filters it in real-time using the same low-pass filter as in the load cells

calibration process (see Figure 2.36). This action is repeated until the filtered data

is completely steady.

Once the data is steady, 25 data samples are received and used to tare the

load cells DV. At this point, the load cells are tared and ready to provide data, as

shown in Figure 2.37. The software now receives the load cells DV data and then

applies the linear regression models in order to convert the load cells DV into their

respective forces in [gf]. Once all the forces of the load cells are known, the testing

bench mathematical model is applied so that the values Fx, Fy, and Fz in the UAV

body frame {B} are delivered and stored, as shown in Figure 2.38.

This process is repeated until all the needed samples are already received; if not,

the process repeats from receiving data followed by applying the linear regression

models, and so on. If all the needed samples are already received, the testing bench
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Figure 2.35: Testing bench operation flowchart

software ends with delivering the stored data Fx, Fy, and Fz with time stamps which

are useful for knowing the exact time where the forces were exerted on the testing

bench.

Figures 2.39 and 2.40 show all the registered data with time stamps in the

MATLAB® interface and once the data is exported, respectively. In this way, the

low-cost UAV testing bench software ends its operation.

2.8 Static and dynamic tests

Static and dynamic tests are carried out so that the low-cost UAV testing bench

functioning can be validated according to the results provided by itself and using
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Figure 2.36: Testing bench software: reading load cells DV data and waiting for

stabilization

existing high-cost sensors as well. The results are presented taking into account both

Al-6061 and PLA testing benches. Finally, precision and accuracy results are shown

to give a final general approval to the testing bench.

2.8.1 Static tests results

In order to validate the output data from the testing bench under the application

of static loads in the z axis, a series of static tests were carried out. These static

tests consisted of measuring the already known calibration weights according to the

combinations from Table 2.7. The tests were performed with the Al-6061 and PLA

testing benches. In addition, a force-torque sensor from ©JR3 multi-axis load cell

systems was used for reference and comparison of results. Figure 2.41 shows all three

platforms carrying out the static force tests over the z axis.

The results from all the static force measurements over the z axis with the

three platforms are presented in Figure 2.42a, where the outputs are compared to
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Figure 2.37: Testing bench software: load cells DV data stabilized and taring process

completed

the target forces. Note that all three platforms show good performance since they

all tend to match the target force, nevertheless, as the force increases the PLA

measurements tend to deviate slightly from the target force. On the other hand,

Figure 2.42b shows the error force when varying the applied force on the platforms.

The error from the JR3 force-torque sensor varies stochastically at lower forces,

but tends to decrease at higher forces while Al-6061 and PLA testing benches errors

tend to increase as the force increases; this to a lesser extent with the Al-6061 testing

bench.

Overall, the error delivered by the PLA testing bench is greater than the Al-

6061 when applying static forces and both testing bench errors present an increasing

behavior as the applied force increases over the z axis.

On the other hand, there were also carried out static tests on the testing

bench x and y axes, as shown in Figures 2.43 and 2.44 respectively. These tests

were performed only considering the Al-6061 testing bench. The results of such

tests are presented in Figure 2.45, where all three graphs show good performance in
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Figure 2.38: Testing bench software: reading forces Fx, Fy, and Fz in UAV body

frame {B}

the measurements, according to the expected results. Note that 10 measurements

were made for each calibration weight combination. Moreover, linear regression

was applied on each axis results and their respective correlation coefficients r are

presented, showing an adequate correlation between the measurements.

2.8.2 Dynamic tests results

Dynamic forces are essential in the validation of the low-cost UAV testing bench since

the latter is actually made to measure forces exerted by UAVs, which are evidently

dynamic types. Therefore, dynamic force tests were carried out with the Al-6061

and PLA testing benches, as well as with the JR3 force-torque sensor. The dynamic

forces were generated by a DJI® Tello UAV which was fixed on the three platforms

in separate tests, just as Figure 2.46 illustrates. These dynamic tests only considered

the z axis for validation. The results from the dynamic tests are presented in Figure

2.47. Note that three different measurement sets were carried out for repeatability
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Figure 2.39: Testing bench software: all read forces Fx, Fy, and Fz in UAV body

frame {B}

purposes. In all the measurement sets the JR3 force-torque sensor shows a large

amount of noise so it is difficult to compare with the other results, even though all

data was filtered. Meanwhile, Al-6061 and PLA testing bench results show similar

maximum force exertion over the z axis. In this case, the PLA testing bench shows

slightly higher force exertion than the Al-6061. This latter result confirms the stress

results in the numerical analysis from the FEM simulations, where the PLA testing

bench showed a greater amount of stress in the narrow sections of the load cells,

meaning that they are in fact experiencing greater stress and therefore throwing

higher values of exertion forces.

In this way, the dynamic tests are concluded and the low-cost UAV testing

bench is validated under the established operating conditions.
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Figure 2.40: All exported forces Fx, Fy, and Fz read in UAV body frame {B}

(a) Al-6061 testing bench (b) PLA testing bench (c) JR3 force-torque sensor

Figure 2.41: Static force tests with different platforms using calibration weights over

z axis
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Figure 2.42: Static force tests results over z axis

Figure 2.43: Testing bench static force tests using calibration weights over x axis
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Figure 2.44: Testing bench static force tests using calibration weights over y axis
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(a) Output force vs target force over x axis
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(b) Output force vs target force over y axis
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(c) Output force vs target force over z axis

Figure 2.45: Static force tests results over all axis and correlation coefficients
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(a) Al-6061 testing bench (b) PLA testing bench (c) JR3 force-torque sensor

Figure 2.46: Dynamic force tests with different platforms using a DJI® Tello UAV
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(a) First set of tests
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(b) Second set of tests

0 200 400 600 800 1000 1200

Samples

-20

0

20

40

60

80

100

120

140

160

M
e

a
s
u

re
d

 f
o

rc
e

 [
g

f]

JR3 force-torque sensor

Al-6061 testing bench

PLA testing bench

(c) Third set of tests

Figure 2.47: Dynamic force tests results over z axis
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Quadrotor design and

construction

The design and construction of an actual quadrotor with its four independent and

completely controlled motors are addressed. All the needed components were ob-

tained and assembled together to finally have a quadrotor entirely created from

scratch and able to control its four motors independently. In the next sections, all

the design and construction process of the quadrotor is presented, as well as its gen-

eral operation and the experimental tests that were carried out to later employ the

data in the system identification process.

3.1 Avionics

As every UAV, a quadrotor possesses electronic components, some more essential

than others depending on the complexity of the vehicle. The electronic components

that were chosen to create the quadrotor presented in this work are listed in Table

3.1.

The components from Table 3.1 were acquired (except for the frame which is

designed from scratch) and these are presented in Figure 3.1.

51
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(a) Motors (b) Battery

(c) Electronics misc. (d) Propellers

Figure 3.1: Quadrotor components
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Table 3.1: Selected electronic components for the quadrotor

Component Functioning

4 Brushless motors 2300 KV Machine that converts electrical energy into mechanical energy without using brushes

4 Electronic speed controllers 30A Electronic circuit that controls the speed of an electric motor

LiPo battery 4 cells Rechargable battery of lithium-ion

Power distribution board 12V Distributes the energy from the battery to all other parts of the quadrotor

ESP32 Integrated circuit used to record instructions written in a programming language,

it also provides Wi-Fi and Bluetooth connectivity for embedded systems

ESP32 shield Expansion board for ESP32

3 LEDs Semiconductor device that emits light when an electric current is passed through it

4 Propellers 3-blade 5040 Device with three blades that spin around to produce a force

Frame Suit of armor for all the electronic components that constitute the quadrotor

3.2 Design

The quadrotor is designed to be a First Person View (FPV) type. In the next

subsections, the conceptual, preliminary, and detailed design of the quadrotor are

presented.

3.2.1 Conceptual design

As a starting point for the design, the quadrotor is proposed as an X configuration.

The conceptual design is illustrated in Figure 3.2. Note that it is shown from a top

view and heading to the north. All its four motors are numbered in the direction of

quadrants and their spin direction is proposed as shown. Moreover, notice that the

distance between the motors is 250mm, a value that was determined as a function

of the size of the motors and the type of quadrotor.
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Figure 3.2: Quadrotor conceptual design

3.2.2 Preliminary design

The preliminary design phase consisted of designing different possible frames. In

order to do this, the parts of all the quadrotor components were created by means

of Computer-Aided Design (CAD) software Solidworks® (see Figure 3.3). This is to

consider sizes and facilitate the arrangement of all components over the frame.

Figure 3.3: Quadrotor CAD components

Once all the CAD components were created, iterations of the preliminary de-

sign began. It started with the design of a frame and then the components were

arranged in different ways. The goal was to come up with a design that takes up as

little space as possible and with all the components correctly positioned. Figure 3.4
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3

Figure 3.4: Quadrotor preliminary design phase

shows some of the iterations carried out in the preliminary design phase.

3.2.3 Detailed design

After selecting the more suitable arrangement for the quadrotor components and

designing its frame, the detailed design was reached (see Figure 3.5). The quadrotor

design includes a reinforced frame to prevent buckling; propeller protectors; a base

in the center to hold all electronics and a head to hold the LED.
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Figure 3.5: Quadrotor detailed design

3.3 Construction

Once all the components were acquired and the design was stated, the construction

of the quadrotor was carried out. The frame was created by means of additive

manufacturing using a Creality® Ender-3 3D printer employing PLA as the material

with 100% infill density. Figure 3.6 shows this procedure.

Figure 3.6: Printing quadrotor frame
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The same strategy was carried out for the propeller protectors, the center base,

and the LED head. The quadrotor frame with its 3D-printed elements assembled is

shown in Figure 3.7.

Figure 3.7: Quadrotor frame

Later, all the electronics and remaining components were installed into the

frame, thus having the complete constructed quadrotor (see Figure 3.8).

3.4 Operation and connectivity

Recalling the main objective of this work, which is to identify the mathematical

model of a quadrotor, the operation of the constructed quadrotor is planned to

be simple since it will not have to take off and fly, reason why an IMU (Inertial

Measurement Unit) was not included in the components. Therefore, in this work,

the operation of the quadrotor is simply to activate the motors in certain sequences

to recreate its dynamics: roll, pitch, yaw, hover, and bounce. In the same way, to

recreate its displacements: forward, backward, left, and right at different angles of

inclination. Figures 3.9 and 3.10 illustrate the quadrotor dynamics and the motors

spin intensity, respectively.

In order to recreate the dynamics, the motors had to be properly calibrated

according to the ESC protocols and a wireless connection had to be established.
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(a) Top view (b) Isometric view

(c) Front view (d) Side view

Figure 3.8: The quadrotor
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Figure 3.9: Quadrotor dynamics

The quadrotor commands for the motors activation sequences were programmed

in Arduino® and then downloaded to the ESP32. The connection between the ESP32

and the computer is via Bluetooth and the MATLAB® software is used for this pro-

cess. For simplicity, the Arduino® and MATLAB® codes are represented as pseudo

codes, where Algorithm 1 is the Arduino® procedure for the activation of the quadro-

tor motors and Algorithm 2 is the MATLAB® procedure for the communication with

the quadrotors ESP32.

Figure 3.10: Quadrotor dynamics according to their motors spin intensity
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Algorithm 1: Arduino® procedure for the activation of motors

Result: Activate motors and send data to MATLAB® software

while Begin is true do

turn on all LEDs;

set Servo Motors to initial PWM value;

set Begin to false;

end

turn on the red LED;

if Bluetooth data is available then

read the incoming character;

process the character and set PWM and Run motors sequences

accordingly;

while Run is true do

turn on the yellow LED;

set Servo Motors and send data based on PWM values;

for i from 1 to PWM do
set Servo Motors and send data based on the current PWM

value;

end

turn on the yellow LED;

for i from PWM to 0 do
set Servo Motors and send data based on the current PWM

value;

end

terminate data transmission;

turn on the red LED;

set Run to false;

end

end
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Algorithm 2: MATLAB® procedure for receiving motors data

Result: Receive, plot, and export motors data from Arduino®

while Start is true do

establish Bluetooth connection with ESP32;

Start ← false;

end

prompt user for experiment number;

prompt user for command;

send command to ESP32;

read data from ESP32;

process and store data in arrays Y , D, and T ;

create subplots for each motor;

plot data for each motor;

customize plot appearance;

create a table (OUTPUT) using time, motor 1, motor 2, motor 3, motor 4;

generate a filename based on experiment number;

save the table (OUTPUT) to a CSV file with the generated filename;

A simplified way to represent the communication between the quadrotor and

the computer is shown in Figure 3.11.

Figure 3.11: Communication process between computer and quadrotor
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3.5 Experimental tests

In this section the experimentation with the quadrotor is carried out. A six degree of

freedom force-torque sensor was needed for data measurement and an experimental

bench had to be designed and built in order to attach the quadrotor to the force-

torque sensor in an area raised to the ground to avoid ground effect caused by

the propellers when spinning. All the proposed dynamics were performed by the

quadrotor, showing good results to be used in the system identification process.

3.5.1 Force-torque sensor

Although in Chapter 1 a testing bench was developed to measure force and torque

data from a UAV, as discussed, the testing bench cannot provide data from all the

degrees of freedom needed for the quadrotor system identification. Therefore, a six-

degree-of-freedom force-torque sensor had to be considered to successfully carry out

the experimental tests.

A commercial force-torque sensor is considered in this work for the quadrotor

experimental tests (see Figure 3.12). It is a miniature digital force and torque sensor

which measures in three orthogonal axes. The six-axis force-torque sensor comes with

a conversion board, an evaluation board, and an interconnecting cable as shown in

Figure 3.13, elements which are essential for its operation. The outline specifications

of this sensor are presented in Table 3.2.

The miniature force-torque sensor also comes with a friendly interface for its

operation (see Figure 3.14). One can set the communication port; power on/off the

sensor; initialize according to the established parameters such as sampling interval,

restart times, measuring times, and plotting limits; start and stop reading data;

offset data; and save log. Once initialized and the start button has been pressed, the

sensor will immediately start reading data according to the parameters previously
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Figure 3.12: Miniature force-torque sensor

Figure 3.13: Miniature force-torque sensor evaluation kit

established and the force and moment graphs will begin to show the data being read

by the sensor according to each axis.

3.5.2 Experimental bench

In order to use the miniature force-torque sensor for the application with the quadro-

tor, an experimental bench had to be designed and constructed. It was proposed

to be created by means of aluminum profiles, hinges, and connectors. There was

also the need to design and manufacture additional pieces to hold the sensor and

its components into the bench. Figure 3.15 shows the experimental bench design.

Note that the miniature force-torque sensor is assembled on the experimental bench

using two aluminum pieces. Additionally, two PLA pieces are considered to hold the
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Table 3.2: Miniature force-torque sensor outline specifications

Size (Diameter × Height) �9.6mm × 9.0mm

Weight 3.0g

Rated (Force, Moment) 40N, 0.4N·m

Load Capacity (Force, Moment) 200N, 1.8N·m

Resolution (Force, Moment) 0.1N, 0.001N·m

Interface I²C, SPI

Power-supply voltage 3.3V

remaining components which are the conversion and evaluation boards.

Once all the aluminum profiles, hinges, and connectors were obtained, the

assembly was carried out. In the same way, once the aluminum and PLA pieces were

manufactured by means of machining and 3D-printing techniques respectively, they

were assembled on the main aluminum profile as shown in Figure 3.16, having thus

finished the construction of the experimental bench. Note that the two aluminum

pieces were designed in order to put on and take off the miniature force-torque sensor

for ease of handling. In this way, when using the experimental bench, the assembly

of the sensor on the experimental bench is as shown in Figure 3.17.

3.5.3 Quadrotor tests

In total, three large sets of tests were carried out; dynamics simulation, thrust,

and torque tests. For the first set, the quadrotor had to be positioned as previously

shown in Figure 3.9 and had to carry out the simulation of the different dynamics also

illustrated in Figure 3.10. In order to measure the forces and moments exerted by the

quadrotor while simulating its dynamics, the quadrotor had to be assembled over the

miniature force-torque sensor in the experimental bench, as shown in Figure 3.18.

Note that pieces had to be designed and 3D printed in order to hold the quadrotor
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Figure 3.14: Miniature force-torque sensor software interface

with the miniature force-torque sensor at 0◦, 15◦, and 30◦ degrees of inclination with

respect to the ground plane.

Additionally, and for safety purposes, the quadrotor counts with three LEDs

of red, yellow, and green colors, which were programmed to be activated according

to the current state of the motors as shown in Figure 3.19.

The second set of tests consisted of measuring the thrust of the quadrotor

propellers. Since all the propellers are equal, only the thrust measurement of the

propeller of motor 1 was carried out. To do this, a motor thrust tester was obtained

and the quadrotor motor 1 was assembled on it, as shown in Figure 3.20a. While

carrying out the tests, the propeller thrust and RPM values were both registered.

Fifty measurements were made varying the motors spin intensity from 1% to 50% of

total thrust. On the other hand, the third and last set of tests consisted of measuring

the propeller-induced torque. For this purpose, the miniature force-torque sensor was
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Figure 3.15: Experimental bench design

needed since the torque magnitudes are too small and precision is essential. Because

the torque induced by the propeller of motor 1 is applied over all the quadrotor and

its sought magnitude is with respect to the z-axis (parallel to the motors axial axis),

it was fixed as shown in Figure 3.20b. Note that only motor 1 was activated so that

the measured torque values over the z-axis correspond only to the propeller of motor

1. For this case, twenty measurements were made varying the motor spin intensity

from 2% to 40% of total thrust.

3.5.4 Tests results

A total of 118 tests were carried out with the quadrotor, belonging 48 to the dynamics

simulation, 50 to the propeller thrust, and 20 to the propeller torque. The results

of the dynamics simulation tests were obtained as Figure 3.21 illustrates.

The input signals (thrust percentage of each motor) were registered as well as

the output signals (quadrotor forces and moments) as shown in Figures 3.21a and

3.21b respectively. This pair of information was taken for all the 48 tests carried out
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Figure 3.16: Experimental bench

Figure 3.17: Miniature force-torque sensor assembled in experimental bench

for the dynamics simulation tests. On the other hand, the results of the thrust and

torque tests carried out on the quadrotor propeller are presented in Figures 3.22a

and 3.22b respectively.

As seen, all of the results presented in this section were experimentally obtained

and are useful for the quadrotor system identification process which is presented in

the next chapter.
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(a) -15◦ roll → left (b) 15◦ pitch → bwd (c) -15◦ pitch → fwd (d) 15◦ roll → right

(e) -30◦ roll → left (f) 30◦ pitch → bwd (g) -30◦ pitch → fwd (h) 30◦ roll → right

(i) Hover, Bounce, Yaw

Figure 3.18: Quadrotor dynamics simulation tests
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(a) Red light: No spin-

ning motors

(b) Yellow light: Chang-

ing motors RPMs

(c) Green light: Constant

motors RPMs

Figure 3.19: Rotation of quadrotor motors according to LED light

(a) Measuring propeller thrust (b) Measuring propeller induced torque

Figure 3.20: Tests for the characterization of the quadrotor propellers
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(a) Input signals of quadrotor motors (b) Output quadrotor forces and moments

Figure 3.21: Obtaining quadrotor tests results from force-torque sensor
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(a) Thrust data
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(b) Torque data

Figure 3.22: Quadrotor propellers data obtained from tests
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Quadrotor system identification

The quadrotor system identification is addressed based on three different methods;

white box, grey box, and black box approaches. The white box model considers the

mathematical expressions of the quadrotor and all of its parameters are determined

by analytical and computational strategies. The grey box model contemplates the

mathematical expressions as well, however, most of the quadrotor parameters are

unknown and they are estimated using Artificial Neural Networks (ANNs). Lastly,

the black box model considers the quadrotor as a completely unknown system where

there is no understanding of the relationship between inputs and outputs, therefore

an ANN is trained to learn the non-linearities of the system and thus be able to

predict the outputs accurately. The quadrotor white, grey, and black models are

developed and presented in the following sections.

4.1 Mathematical model (white box approach)

The quadrotor mathematical model is derived according to first principles and phys-

ical laws. All the model parameters are determined and a simulation of the model

is executed incorporating an attitude control system.

71



Chapter 4. Quadrotor system identification 72

4.1.1 Equations of motion

The Newton-Euler formulation is employed to determine the mathematical model

of the quadrotor UAV [62], [63]. This formulation consists of a set of differential

equations that describe the quadrotor translational and rotational movements [62].

It contemplates two reference frames; one inertial frame fixed to the surface of the

Earth which is defined as I = {xI , yI , zI} and a body frame attached to the center

of gravity of the quadrotor represented as B = {xB, yB, zB}. Figure 4.1 shows

graphically both frames.

Figure 4.1: Inertial and body reference frames

The formulation assumes the quadrotor is a rigid body and its center of mass

is attached and matches the body reference frame. The model is defined as:

ξ̇ = V (4.1)

mV̇ = R (−TT ) +mge3 (4.2)

η̇ = WΩ (4.3)

JΩ̇ = −Ω× JΩ + τa (4.4)

where Equations 4.1 and 4.2 describe the translational dynamics while Equations 4.3

and 4.4 describe the rotational dynamics of the quadrotor. ξ = [x y z]T ∈ R3 repre-

sent the spatial coordinates with respect to the inertial frame and η = [ϕ θ ψ]T ∈ R3
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denotes the rotation coordinates of the quadrotor UAV. The orientation of the

quadrotor with respect to the inertial reference frame {I} is obtained by means

of the rotation matrix R, which is parameterized by the Euler angles ϕ roll, θ pitch,

and ψ yaw. These represent a rotation with respect to the x, y, and z axis, respec-

tively. In adherence to the zyx convention, the quadrotor orientation with respect

to the inertial reference frame {I} can be described using the rotation matrix, which

is deduced below.

First, a rotation by ψ about zI is carried out (see Figure 4.2).

Figure 4.2: Rotation by ψ about zI

The rotation can be expressed in the following matrix form:
xI

yI

zI

 =


Cψ −Sψ 0

Sψ Cψ 0

0 0 1



x2

y2

z2

 = R2→I


x2

y2

z2

 (4.5)

where R2→I is the matrix to transform from position 2 to the inertial frame {I}.

Then, a rotation by θ about y2 is performed (see Figure 4.3).

This rotation is expressed in the following matrix form:
x2

y2

z2

 =


Cθ 0 Sθ

0 1 0

−Sθ 0 Cθ



x3

y3

z3

 = R3→2


x3

y3

z3

 (4.6)
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Figure 4.3: Rotation by θ about y2

where R3→2 is the matrix to transform from position 3 to position 2.

Finally, a rotation by ϕ about x3 is performed (see Figure 4.4).

Figure 4.4: Rotation by ϕ about x3

The rotation is represented by the following matrix form:
x3

y3

z3

 =


1 0 0

0 Cϕ −Sϕ
0 Sϕ Cϕ



xB

yB

zB

 = RB→3


xB

yB

zB

 (4.7)

where RB→3 is the matrix to transform from the body frame {B} to position 3.

The expression below provides the orthogonal rotation matrix R ∈ SO(3) for
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transitioning from the body frame {B} to the inertial frame {I}.
xI

yI

zI

 = R2→IR3→2RB→3


xB

yB

zB

 = RB→I


xB

yB

zB

 = R


xB

yB

zB

 (4.8)

Replacing R2→I , R3→2, and RB→3 in the expression above:
xI

yI

zI

 =


Cψ −Sψ 0

Sψ Cψ 0

0 0 1



Cθ 0 Sθ

0 1 0

−Sθ 0 Cθ



1 0 0

0 Cϕ −Sϕ
0 Sϕ Cϕ



xB

yB

zB

 (4.9)

Solving matrix multiplication, the rotation matrix R ∈ SO(3) is obtained:

R =


CθCψ SϕSθCψ − CϕSψ CϕSθCψ + SϕSψ

CθSψ SϕSθSψ + CϕCψ CϕSθSψ − SϕCψ
−Sθ SϕCθ CϕCθ

 (4.10)

where Cϕ, Cθ, Cψ, Sϕ, Sθ, and Sψ are cosine and sine operations, correspondingly.

Continuing with the quadrotor mathematical model, Ω = [p q r]T ∈ R3 repre-

sents the angular velocities in the body frame {B}. V = [vx vy vz]
T ∈ R3 is the trans-

lational velocity vector with respect to the inertial frame {I}. TT = [0 0 FT ]
T ∈ R3×1

>0

is the quadrotor total thrust with FT acting as the entire vertical component of thrust

in the body frame {B}. τa = [τϕ τθ τψ]
T is the vector of torques produced by the

actuators. In addition, vectors e1, e2, and e3 represent the canonical basis vectors

of R3. The terms m ∈ R3 and g = 9.81m/s2 represent the quadrotor mass and

the Earth standard gravity, respectively. The matrix J = Diag [Jxx Jyy Jzz] ∈ R3×3

contains the quadrotor principal moments of inertia [64].

The quadrotor vertical component of thrust in the body frame is expressed as

FT =
∑4

i=1 Fi where Fi indicates the force exerted by each motor. Both forces Fi

and torques Qi are expressed as a function of the angular velocity of the motors.

Fi = CFω
2
i represent the force and Qi = CQω

2
i the reactive torque of the motor,
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where ωi is the angular velocity and CF and CQ are the thrust and torque coefficients

respectively.

Furthermore, the roll dynamics produced by the actuators is expressed as τϕ =

(−F1 + F2 + F3 − F4) d, for pitch dynamics is τθ = (F1 + F2 − F3 − F4) d, and for

yaw dynamics τψ = Q1 − Q2 + Q3 − Q4, where d = l cos 45. Figure 4.5 shows the

quadrotor forces and moments convention.

Figure 4.5: Quadrotor forces and moments convention

The quadrotor angular velocity in the body frame is written as:

Ω = R3→BR2→3


0

0

ψ̇

+R3→B


0

θ̇

0

+


ϕ̇

0

0

 (4.11)

where R3→B =
(
RB→3

)T
and R2→3 = (R3→2)

T
.

Replacing R3→B and R2→3 in the above expression:

Ω =


1 0 0

0 Cϕ Sϕ

0 −Sϕ Cϕ



Cθ 0 −Sθ
0 1 0

Sθ 0 Cθ



0

0

ψ̇

+


1 0 0

0 Cϕ Sϕ

0 −Sϕ Cϕ



0

θ̇

0

+


ϕ̇

0

0

 (4.12)
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Solving matrix multiplication:
p

q

r

 =


1 0 − sin θ

0 cosϕ sinϕ cos θ

0 − sinϕ cosϕ cos θ



ϕ̇

θ̇

ψ̇

 (4.13)

Applying the inverse matrix, it is obtained:
ϕ̇

θ̇

ψ̇

 =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ



p

q

r

 (4.14)

where

W =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ

 (4.15)

is the matrix to convert the quadrotor angular velocity from the body frame {B} to

the inertial frame {I}.

Considering all the mathematical statements previously developed and accord-

ing to Equations 4.1 to 4.4, the expanded form of the quadrotor mathematical model

is presented, where Equations 4.16 and 4.17 describe the quadrotor translational dy-

namics while Equations 4.18 and 4.19 describe its rotational dynamics, assuming all

parameters are known.

ẋ = vx

ẏ = vy (4.16)

ż = vz

v̇x = −FT
m

(cosϕ sin θ cosψ + sinϕ sinψ)

v̇y = −FT
m

(cosϕ sin θ sinψ − sinϕ cosψ) (4.17)

v̇z = −FT
m

(cosϕ cos θ) + g
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ϕ̇ = p+ q sinϕ tan θ + r cosϕ tan θ

θ̇ = q cosϕ− r sinϕ (4.18)

ψ̇ = q sinϕ sec θ + r cosϕ sec θ

ṗ =

(
Jyy − Jzz
Jxx

)
qr +

(
1

Jxx

)
τϕ

q̇ =

(
Jzz − Jxx

Jyy

)
pr +

(
1

Jyy

)
τθ (4.19)

ṙ =

(
Jxx − Jyy

Jzz

)
pq +

(
1

Jzz

)
τψ

4.1.2 Parameter determination

The quadrotor mathematical model previously presented is applicable to any type

of quadrotor whose geometry is symmetrical in its three main axes. However, what

makes one quadrotor different from another (in the context of its dynamics) are the

model parameters, which are the mass, lever arm distance, propeller aerodynamic

coefficients, and moments of inertia. The model parameters corresponding to the

quadrotor constructed in Chapter 3 are determined below.

The mass (m) is easily obtained by putting the quadrotor on a scale, thus

measuring the quantity.

The lever arm distance (d) is easily calculated as well, by measuring the quadro-

tor arm length (l) and then multiplying it by cos 45.

The aerodynamic coefficients (CF and CQ) are parameters that cannot be mea-

sured directly. In order to determine these values, the propellers data obtained from

the experimental tests is used and a least-squares polynomial regression model is

applied to each set of data. Since both data can perfectly fit on a second-order



Chapter 4. Quadrotor system identification 79

polynomial starting at the origin, the model is represented as:

y = a0x
2 + e (4.20)

solving for the error e:

e = y − a0x2 (4.21)

carrying out the sum of the square of the residuals Sr:

Sr =
∑(

yi − a0x2i
)2

(4.22)

results in the equation that has to be minimized, hence deriving Sr with respect to

the leading coefficient a0 and setting equal to zero:

−2
∑(

yi − a0x2i
)
x2i = 0 (4.23)

solving for a0:

a0 =

∑
x2i yi∑
x4i

(4.24)

where
∑

=
∑n

i=1 and a0 is the parameter that best fits the data with quadratic

behavior and which starts at the origin. The polynomial regression is based on

reference [60].

Thus, a0, xi and yi from Equation 4.24 can be rewritten as:

CF =

∑
ω2
i Fi∑
ω4
i

(4.25)

CQ =

∑
ω2
iQi∑
ω4
i

(4.26)

where Equations 4.25 and 4.26 correspond to the propeller thrust and torque coef-

ficients, respectively. Recall that all summations are from i = 1 through n = 50

for the thrust coefficient and from i = 1 through n = 20 for the torque coefficient,

according to the number of experimental tests addressed in Chapter 3. The com-

parison between the experimental data and the polynomial regression models of the

quadrotor propellers is shown in Figure 4.6.
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Figure 4.6: Polynomial regression models of quadrotor propellers

The principal moments of inertia (Jxx, Jyy, and Jzz) can be calculated according

to Equation 4.27 which is the integral of the squared distance from the axis of rotation

(r2) multiplied by the differential mass (dm) over the total mass distribution of a

rotating body.

J =

∫
m

r2dm (4.27)

Since the mass distribution of the quadrotor is complex to find by direct measuring,

the CAD software Solidworks® was utilized for greater ease and thus to estimate

the moments of inertia. This was done by directly measuring the mass of all the

quadrotor components on a scale and then assigning these mass values to the 3D

models in the software. Then, when assembling all the quadrotor components with

their corresponding masses, the moments of inertia of the whole quadrotor can be

found by accessing the mass properties, as shown in Figure 4.7.

In this way, all the quadrotor parameters are determined and this implies that

when replaced in the mathematical model, they completely and accurately describe

the quadrotor dynamics. The parameter values are presented in Table 4.1.
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Figure 4.7: Quadrotor moments of inertia matrix obtained in CAD software

Table 4.1: Quadrotor parameters (white box approach)

Parameter Value Unit Technique for determining

m 0.652 kg Direct measuring

d 0.0884 m Direct measuring

CF 1.3877× 10−6 N·s2 Least-Squares polynomial regression

CQ 1.8558× 10−8 N·m·s2 Least-Squares polynomial regression

Jxx 2.4890× 10−3 kg·m2 CAD software

Jyy 2.5743× 10−3 kg·m2 CAD software

Jzz 4.6838× 10−3 kg·m2 CAD software

4.1.3 Model simulation

The quadrotor mathematical model is tested using MATLAB® Simulink® software.

The simulation consists of an attitude control system (see Figure 4.8). The orien-

tation and total force are the system references and the angular velocities, angular

accelerations, and torques are the output variables. Note that disturbance and noise

are added to make the simulation as close to reality as possible. The reference signals

for the total force and orientation angles are presented in Equation 4.28, where the

force and angles are measured in Newtons and radians, respectively.

FTd = 5
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Figure 4.8: Quadrotor attitude control system

ϕd (t) =
π

36
sin (4t)

θd (t) =
π

36
sin

(
4t+

π

2

)
(4.28)

ψd (t) =
π

9
t

The attitude controller is chosen as PID where the inputs are the errors between

the desired and actual orientation angles, as shown below.

ϕ̃ (t) = ϕd (t)− ϕ (t)

θ̃ (t) = θd (t)− θ (t) (4.29)

ψ̃ (t) = ψd (t)− ψ (t)

The quadrotor torques are the controller output variables which are defined

in accordance with the proposed law control shown in Equation 4.30, where gain

factors kp, ki, and kd from each orientation angle are manually defined so that the

attitude response is as expected. The PID gain factors are presented in Table 4.2.

τϕd = kpϕϕ̃+ kiϕ

∫
ϕ̃dt+ kdϕ

˙̃ϕ

τθd = kpθ θ̃ + kiθ

∫
θ̃dt+ kdθ

˙̃θ (4.30)

τψd = kpψ ψ̃ + kiψ

∫
ψ̃dt+ kdψ

˙̃ψ

Consider the vector Γ = [FT τϕ τθ τψ]
T as the vector containing the total force

and torques, and the vector U = [u1 u2 u3 u4]
T = [ω2

1 ω
2
2 ω

2
3 ω

2
4]
T
as the vector that
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Table 4.2: PID attitude controller gain factors

Gain Factor Value Gain Factor Value Gain Factor Value

kpϕ 0.2 kiϕ 3 kdϕ 0.1

kpθ 0.2 kiθ 3 kdθ 0.1

kpψ 4 kiψ 0.1 kdψ 0.1

contains the inputs to the quadrotor mathematical model, which are the propeller

quadratic velocities. According to the mathematical model, the total force and

torques can be expressed in the form Γ = CAU , where CA contains the parameters

CF , CQ, and d. The expanded expression is shown below.
FT

τϕ

τθ

τψ

 =


CF CF CF CF

−CFd CFd CFd −CFd

CFd CFd −CFd −CFd

CQ −CQ CQ −CQ




u1

u2

u3

u4

 (4.31)

The input vector U is obtained by the expression U = C−1
A Γ where Γ becomes

Γd, that is Γd = [FTd τϕd τθd τψd ]
T , hence:

u1

u2

u3

u4

 =
1

4


1
CF
− 1
CF d

1
CF d

1
CQ

1
CF

1
CF d

1
CF d

− 1
CQ

1
CF

1
CF d

− 1
CF d

1
CQ

1
CF
− 1
CF d

− 1
CF d

1
CQ




FTd

τϕd

τθd

τψd

 (4.32)

is the expression utilized to find the quadratic velocities (desired velocities) which

are the inputs to the quadrotor mathematical model that consequently produces its

orientation dynamics following the reference signals.

The simulation is performed for 5 seconds and the variables of interest are

extracted from the system response. The results are presented in Figure 4.9. Note

that a 3D virtual environment is created so that the quadrotor attitude response is

also graphically seen.
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(a) 3D virtual environment
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Figure 4.9: Quadrotor attitude control simulation results
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4.2 Artificial neural networks

The operating principle of an Artificial Neural Network (ANN) is addressed in this

section as well as the learning algorithms used for the quadrotor system identifica-

tion. All ANNs developed in this work are based on references [65], [66].

4.2.1 Nodes and layers

An ANN is composed of neurons (nodes) that are connected to other neurons by

weighted connectors. The function of a neuron is to transmit signals from one to

another. Figure 4.10 shows a neuron which receives three input signals (x1, x2, and

x3) and outputs one signal (y). The circle refers to the neuron, the squares to the

inputs, and the arrows indicate the signal flow direction. Variables w1, w2, and

w3 are called the weights of the neural network and they store information. The

variable b is the bias and it also stores information. Thus, the neural network stores

information in the form of weights and biases [65].

b

y

w1

w2

w3

x1

x2

x3

Figure 4.10: A node that receives three inputs

In the example of Figure 4.10, the input signals are multiplied by their cor-

responding weights before reaching the node. Once the weighted signals reach the

node, they are added and become the weighted sum including the sum of the bias.
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The above is calculated as follows:

v = w1x1 + w2x2 + w3x3 + b (4.33)

where v is the weighted sum of the node. This equation implies that signals with

higher weight will have a more significant impact on the output than the others.

This equation can also be written with matrices as:

v = wx+ b (4.34)

where

w =
[
w1 w2 w3

]
x =

[
x1 x2 x3

]T
Lastly, the node inputs the weighted sum into the activation function, resulting

in the node output:

y = φ(v) = φ(wx+ b) (4.35)

where φ(·) is the activation function.

There exist different activation functions that can be implemented depending

on the application of the neural network, such as the ones shown in Figure 4.11. In

this work, linear and sigmoid activation functions are employed for the quadrotor

system identification.
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Figure 4.11: Commonly used activation functions

Different types of neural networks can be created based on how the nodes

are connected to each other. One of the most utilized types of neural networks is

characterized by having a layered structure of nodes as shown in Figure 4.12.
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Input Layer Hidden Layers Output Layer

Figure 4.12: Neural network structure composed of layers of nodes

The input layer consists of a group of square nodes that directly transmit the

input signals without calculating any weighted sum or activation function. On the

other hand, the output layer consists of the nodes that calculate the final result of

the neural network. The hidden layers are the ones located between the input and

output layers. Neural networks that only consist of input and output layers are called

single-layer neural networks. Neural networks that consist of input, output, and one

or more hidden layers are referred to as multi-layer neural networks, where a shallow

neural network has only one hidden layer and a deep neural network possesses two

or more hidden layers.

4.2.2 Learning methodology

Machine learning can be divided into three main learning methodologies; supervised

learning, unsupervised learning, and reinforcement learning. Supervised learning

refers to when instances are given with known labels while in unsupervised learning,

the instances are unlabeled. Reinforcement learning refers to when the learner is not

instructed on which action to take but instead must discover by itself which actions

produce the highest reward by trying them [67].

Neural networks can be trained using supervised, unsupervised, and reinforce-

ment learning techniques, however, this work considers supervised learning as the

learning methodology of the neural network (see Figure 4.13).
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Figure 4.13: Supervised learning scheme of a neural network

In supervised learning, each data point from the training data consists of an

{input - correct output} pair, where the input enters the neural network and produces

an output which is then compared to the correct output. The error between the

output and the correct output goes into the neural network and updates its weights

in order to minimize the error according to the cost function, which is the measure

of the neural network error. This process repeats for each pair of data.

4.2.3 Generalized delta rule

The delta rule is a type of numerical approach referred to as gradient descent, which

is the characteristic learning rule of the single-layer neural network [65]. For any

activation function, the delta rule is expressed as:

wij ← wij + αδixj (4.36)

where wij is the weight between the output node i and input node j, α is the learning

rate whose value can be between 0 and 1, xj is the output from the input node j

and δi is defined as:

δi = φ̇ (vi) ei (4.37)

where φ̇ is the derivative of the activation function φ of the output node i, vi is the

weighted sum of the output node i and ei is the error of the output node i. The
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error is expressed as follows:

ei = di − yi (4.38)

where di is the correct output and yi the neural network output.

For a linear activation function:

φ (vi) = vi (4.39)

its derivative is expressed as:

φ̇ (vi) = 1 (4.40)

replacing φ̇ (vi) on Equation 4.37,

δi = ei (4.41)

substituting for δi on Equation 4.36,

wij ← wij + αeixj (4.42)

is the rule used to update the weights for a linear activation function.

For a sigmoid activation function:

φ (vi) =
1

1 + e−vi
(4.43)

its derivative is expressed as:

φ̇ (vi) = φ (vi) (1− φ (vi)) (4.44)

replacing φ̇ (vi) on Equation 4.37,

δi = φ (vi) (1− φ (vi)) ei (4.45)

substituting for δi on Equation 4.36,

wij ← wij + αφ (vi) (1− φ (vi)) eixj (4.46)

is the rule used to update the weights for a sigmoid activation function.
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To simplify, the weights update for the delta rule can also be expressed as:

wij ← wij +∆wij (4.47)

where ∆wij = αδixj is the expression that contains the calculations for learning.

An example of the learning process of a single-layer neural network employing

the delta rule is presented. Consider the neural network shown in Figure 4.14.

w11

w22

w21

w12

x1

x2

y
1

y
2

Figure 4.14: Neural network that consists of two input and two output nodes

The weighted sums of the output nodes are expressed as:v1
v2

 =

w11 w12

w21 w22

x1
x2

 (4.48)

The outputs of the neural network are then:y1
y2

 =

φ (v1)

φ (v2)

 (4.49)

Considering the delta rule as the neural network learning algorithm, the update

of the weights is calculated as follows:w11 w12

w21 w22

←
w11 w12

w21 w22

+ α

δ1
δ2

⊙
x1
x2

 (4.50)

where symbol ⊙ refers to the Hadamard product and the deltas δi are:δ1
δ2

 =

φ̇ (v1)

φ̇ (v2)

⊙
e1
e2


In this way, the neural network updates its weights in order to minimize the

error between its output and the correct output.
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4.2.4 Training data processing

There are several approaches in which a neural network processes the training data.

Three typical methods for processing training data in supervised learning neural

networks are the stochastic gradient descent, batch gradient descent, and mini-batch

gradient descent.
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Figure 4.15: How the different methods select training data and update the weights

The stochastic gradient descent is a method where the neural network is trained

with each weight update (see Figure 4.15a). On the other hand, the batch gradient

descent uses the average of all weight updates for the training (see Figure 4.15b). The

mini-batch gradient descent is a combination of the stochastic and batch methods,

where a part of the training data is selected and uses the average of the weight

updates from the picked dataset to train the neural network (see Figure 4.15c).

When all the training data has been used for the weight updates, an epoch

has taken place. For the case of the stochastic gradient descent approach shown

in Figure 4.15a, ten pieces of training equal an epoch. On the other hand, the

batch gradient descent approach from Figure 4.15b means that one training equals

an epoch. Lastly, in the case of the mini-batch gradient descent approach shown in

Figure 4.15c, four pieces of training are carried out per epoch.
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4.2.5 Back-propagation algorithm

The back-propagation algorithm has become the standard algorithm for training

multi-layer neural networks. It learns by calculating the errors of the output layer

back-propagating them to determine the errors in the hidden layers [68].

An example of the learning process of a multi-layer neural network employing

the back-propagation algorithm is presented. Consider the multi-layer (shallow)

neural network from Figure 4.16.
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Figure 4.16: Neural network that consists of two input and two output nodes and a

hidden layer with three nodes

The weighted sums of the nodes from the hidden layer are expressed as:
v
(1)
1

v
(1)
2

v
(1)
3

 =


w

(1)
11 w

(1)
12

w
(1)
21 w

(1)
22

w
(1)
31 w

(1)
32


x1
x2

 (4.51)

The outputs of the hidden layer are then:
y
(1)
1

y
(1)
2

y
(1)
3

 =


φ
(
v
(1)
1

)
φ
(
v
(1)
2

)
φ
(
v
(1)
3

)
 (4.52)



Chapter 4. Quadrotor system identification 93

consequently, these nodes become the input nodes to the output layer. Thus, the

weighted sums of the output nodes are:

v1
v2

 =

w(2)
11 w

(2)
12 w

(2)
13

w
(2)
21 w

(2)
22 w

(2)
23



y
(1)
1

y
(1)
2

y
(1)
3

 (4.53)

The outputs of the neural network are then:y1
y2

 =

φ (v1)

φ (v2)

 (4.54)

Now the back-propagation algorithm is applied, which is based on the delta

rule previously presented. The update of the weights that are situated between the

hidden and output layers are calculated as follows:

w(2)
11 w

(2)
12 w

(2)
13

w
(2)
21 w

(2)
22 w

(2)
23

←
w(2)

11 w
(2)
12 w

(2)
13

w
(2)
21 w

(2)
22 w

(2)
23

+ α

δ1
δ2

⊙

y
(1)
1

y
(1)
2

y
(1)
3


T

(4.55)

where the deltas δi are: δ1
δ2

 =

φ̇ (v1)

φ̇ (v2)

⊙
e1
e2


The update of the weights that are situated between the input and hidden

layers are calculated as follows:

w(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

←
w(1)

11 w
(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

+ α


δ
(1)
1

δ
(1)
2

δ
(1)
3


T

⊙

x1
x2

 (4.56)

where the deltas δ
(1)
i are: 

δ
(1)
1

δ
(1)
2

δ
(1)
3

 =
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(
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(1)
1

)
φ̇
(
v
(1)
2
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(
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(1)
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(1)
1

e
(1)
2

e
(1)
3


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Note that the errors e
(1)
i cannot be calculated by comparing the output with the

correct output since these are situated in the hidden layer. Therefore, they are

calculated as follows: 
e
(1)
1

e
(1)
2

e
(1)
3

 =


w

(2)
11 w

(2)
21

w
(2)
12 w

(2)
22

w
(2)
13 w

(2)
23


δ1
δ2

 (4.57)

In this way, the neural network updates its weights in order to minimize the

error between its output and the correct output. Note that the process of updating

goes backward, back-propagating the errors from the outputs to the inputs, hence

the name of the algorithm.

4.3 Parameter estimation (grey box approach)

The quadrotor mathematical model, as discussed earlier in this chapter, possesses

parameters that characterize the behavior of the vehicle. In this section, the aerody-

namic and inertial parameters of the quadrotor mathematical model are estimated

through the application of artificial neural networks.

4.3.1 Neural network for estimation of aerodynamic

parameters

The aerodynamic parameters CF and CQ from the quadrotor mathematical model

are estimated using the experimental data from Chapter 3 through the training of

a neural network for each parameter. The proposed neural network architecture

for this application is shown in Figure 4.17. Note that the input node receives a

quadratic value x2 which represents the propeller quadratic velocities. One output

node y is proposed, which outputs the force/torque values. Furthermore, a hidden

layer of n number of nodes is considered.
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Figure 4.17: Neural network that consists of one input and one output nodes and a

hidden layer of n nodes

The weights are represented as follows:

w(1) =
[
w

(1)
1 w

(1)
2 w

(1)
3 · · · w

(1)
n

]T
(4.58)

w(2) =
[
w

(2)
1 w

(2)
2 w

(2)
3 · · · w

(2)
n

]
The weighted sum of the nodes from the hidden layer are:

v(1) = w(1)x2 (4.59)

Then, the output of the hidden layer is calculated as:

y(1) = φ
(
v(1)

)
(4.60)

The weighted sum of the output node is expressed as:

v = w(2)y(1) (4.61)

Lastly, the output from the neural network is:

y = φ (v) (4.62)
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For linear activation functions in the hidden and output layers:

y(1) = v(1) (4.63)

y = v (4.64)

Thus, the output of the neural network can be re-written as:

y = w(2)w(1)x2 (4.65)

Note that Equation 4.65 has the same structure of a second-order polynomial

starting at the origin, where the weights multiplication w(2)w(1) represent the leading

coefficient. In the same way, this equation is equivalent to the quadrotor force and

torque expressions from the mathematical model:

F = CFω
2 (4.66)

Q = CQω
2

therefore, the proper adjustment of weights w(1) and w(2) on Equation 4.65 leads

to finding the aerodynamic parameters CF and CQ by employing the force/torque

experimental data previously shown in Figure 3.22. Nevertheless, since the data

contains quantities greater than 1, data normalization has to be carried out before

training so the neural network works properly, that is handling values from 0 to 1.

Input x and correct output d from the experimental tests are scaled according

to the following expressions:

xscaled = kxx (4.67)

dscaled = kdd

where kx and kd are the scaling factors, which are calculated as follows:

kx =
1

max (|x|)
(4.68)

kd =
1

max (|d|)
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Since the correct output d is compared to the neural network output y in order

to minimize the cost function, and considering that the correct output is now scaled

by the factor kd, this implies that the neural network output is also scaled by the

same factor. Therefore, the neural network scaled output is expressed as:

yscaled = kdy (4.69)

Replacing the scaled values xscaled and yscaled into Equation 4.65, it is obtained:

kdy = w(2)w(1) (kxx)
2 (4.70)

developing the quadratic term and solving for y, it becomes:

y = w(2)w(1)

(
k2x
kd

)
x2 (4.71)

where x and y are the input and neural network output without scaling, respectively.

The weights multiplication w(2)w(1) multiplied by the scaling expression
(
k2x
kd

)
rep-

resents the leading coefficient.

Aerodynamic parameters CF and CQ are estimated by training two separate

neural networks, according to each parameter. The training data for both forces

and torques are scaled and then the back-propagation algorithm is applied as the

learning rule so the weights of both neural networks are adjusted to minimize the

cost functions. Once the cost functions are minimized and the errors converge to

zero, it is said that the weights of both neural networks have been properly updated.

Nonetheless, since the weights are updated using scaled data, these possess scaled

values and therefore the outputs of both neural networks are also scaled. Then, the

expression from Equation 4.71 is performed in order to descale the values of the

weights and therefore be able to handle all normal data, that is without scale.

Force and torque equations are equivalent to Equation 4.71 as follows:

F = CFω
2 ↔ y = w(2)w(1)

(
k2x
kd

)
x2 (4.72)

Q = CQω
2 ↔ y = w(2)w(1)

(
k2x
kd

)
x2
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therefore, the aerodynamic coefficients are calculated based each neural networks

descaled weights:

CF = w(2)w(1)

(
k2x
kd

)
(4.73)

CQ = w(2)w(1)

(
k2x
kd

)
Using the thrust and torque data from Chapter 3 shown in Figure 3.22, two

neural networks are trained as previously outlined, considering four neurons in the

hidden layer of each. The data is processed according to the Batch method, that

is, updating the weights once for all training data. Then, the quadrotor parameters

CF and CQ are estimated by means of Equations 4.73. The values of the parameters

are presented at the end of this section. For additional data such as weights, scaling

factors, and learning rates refer to Appendix A.1.

Figures 4.18 and 4.19 show the neural network thrust and torque models of

the rotor, respectively. Note in Figures 4.18a and 4.19a the evolution of the cost

function (Mean Squared Error) through the training epochs, where it can be seen

that in both cases the error converged to zero around epoch 500. On the other hand,

Figures 4.18b and 4.19b show the output of the neural network (thrust and torque

models) in comparison with the experimental data, according to each case.
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Figure 4.18: Neural network thrust rotor model
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Figure 4.19: Neural network torque rotor model

As additional information, Figure 4.20 shows how the number of neurons in

the hidden layer affects the learning process of the neural network. Note that as

the number of neurons increases, the Mean Squared Error (MSE) converges to zero

faster, that is, requiring fewer training epochs. This is a general behavior since

the initial conditions of the weights (which are randomly assigned) also affect the

learning process.
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Figure 4.20: Effect of neurons in the hidden layer over MSE
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4.3.2 Neural network for estimation of inertial

parameters

The proposed neural network architecture to estimate the quadrotor inertial param-

eters (Jxx, Jyy, and Jzz) is shown in Figure 4.21. Note that it is a single-layer neural

network that receives six inputs that represent the quadrotor angular velocities mul-

tiplications (qr, pr, and pq) and the actuators torques (τϕ, τθ, and τψ) and outputs

the angular accelerations (ṗ, q̇, and ṙ). Also note that for this scenario, not all the

neural network nodes are connected to each other.

w11

w14

w22

w25

w33

w36

qr

pr

pq

p

q

r

.

.

.

Figure 4.21: Neural network that consists of six input and three output nodes

The input vector x, the output vector y, as well as the weights matrix w are

defined as follows:

x =
[
qr pr pq τϕ τθ τψ

]T
y =

[
ṗ q̇ ṙ

]T
(4.74)

w =


w11 0 0 w14 0 0

0 w22 0 0 w25 0

0 0 w33 0 0 w36


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The weighted sums of the output nodes are calculated as:

v = wx (4.75)

The neural network output is:

y = φ (v) (4.76)

For linear activation function:

y = v (4.77)

Therefore, the neural network output is expressed as:

y = wx (4.78)

The training of the neural network is carried out using the data from the

quadrotor attitude control simulation previously shown in Figure 4.9. The data is

selected for training according to the Batch method. Then, the generalized delta rule

is applied as the learning algorithm in order to minimize the cost function. Figure

4.22 shows the MSE cost function through the epochs. Note that for ṗ and q̇ the

error converged to zero in a more prompt manner compared to q̇ which converged

at approximately epoch 20,000.

Recalling the expressions of the quadrotor angular accelerations from Equation

4.19 and according to the structure of the proposed neural network, the following

equivalences are stated:

ṗ = w11qr + w14τϕ ↔ ṗ =

(
Jyy − Jzz
Jxx

)
qr +

(
1

Jxx

)
τϕ

q̇ = w22pr + w25τθ ↔ q̇ =

(
Jzz − Jxx

Jyy

)
pr +

(
1

Jyy

)
τθ (4.79)

ṙ = w33pq + w36τψ ↔ ṙ =

(
Jxx − Jyy

Jzz

)
pq +

(
1

Jzz

)
τψ
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Figure 4.22: Mean Squared Error through epochs on inertial parameters estimation

The principal moments of inertia are then estimated as:

Jxx =
1

w14

Jyy =
1

w25

(4.80)

Jzz =
1

w36

The neural network weights and learning rate are presented in Appendix A.1.

4.3.3 Estimated parameters and evaluation

The aerodynamic and inertial parameters estimated with the application of neural

networks are presented in Table 4.3.

In order to evaluate the results, a simulation of the quadrotor mathematical

model with the estimated parameters is carried out using MATLAB® Simulink®

software. The simulation consists of the same attitude control system from Figure

4.8, nevertheless, the reference signals are changed to Equation 4.81. The results are

presented in Figure 4.23.
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Table 4.3: Quadrotor parameters (grey box approach)

Parameter Value Unit Technique for determining

m 0.652 kg Direct measuring

d 0.0884 m Direct measuring

CF 1.3859× 10−6 N·s2 Neural network parameter estimation

CQ 1.8534× 10−8 N·m·s2 Neural network parameter estimation

Jxx 2.4903× 10−3 kg·m2 Neural network parameter estimation

Jyy 2.5756× 10−3 kg·m2 Neural network parameter estimation

Jzz 4.5862× 10−3 kg·m2 Neural network parameter estimation

FTd = 5

ϕd (t) =
π

45
sin (10t)

θd (t) =
π

45
sin

(
10t+

π

2

)
(4.81)

ψd (t) =
2π

45
sin (2t)

4.4 Data-driven identification (black box

approach)

In the black box approach, the quadrotor is treated as an entirely unknown system

where it is assumed that there is no direct relation between its inputs and outputs,

reason why it is called black box since it cannot be seen what the box contains that

causes the outputs with certain inputs.

This section attempts to predict the forces and moments exerted by the quadro-

tor according to the thrust force of each motor and the attitude of the aircraft,

without any knowledge of the internal system architecture. This is done by means

of a data-driven method, that employs the quadrotor experimental data for training

a neural network and thus to predict the desired values.
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Figure 4.23: Comparison of quadrotor angular accelerations between white box and

grey box approaches
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4.4.1 Neural network for data prediction

The neural network proposed for the black box approach intends to predict the

constant values of forces and moments exerted by the quadrotor. The architecture

of such neural network is shown in Figure 4.24, which has six input nodes that

represent the motor forces (F1, F2, F3, and F4) and the aircraft roll (ϕ) and pitch

(θ) angles; it also possesses six output nodes that represent the forces (Fx, Fy, and

Fz) and moments (Mx, My, and Mz) exerted by the quadrotor; lastly, two hidden

layers are proposed with n and m nodes, according to each.

. . .

. . .

F1

F2

F3

F4

Fx

Fy

Fz

Mx

My

Mz

φ

θ

Figure 4.24: Neural network that consists of six input and output nodes and two

hidden layers of n and m nodes

The training of the neural network is carried out employing the back-propagation

algorithm and its functional process is just like the one already detailed in subsec-

tion 4.2.5, but with slight differences in the number of input and output nodes, as

well as in the number of hidden layers. For this case, the activation functions in the

hidden layers are specified as sigmoid and in the output layer as linear. Moreover,

the training data is processed as the Batch method, which updates all the neural

network weights once for all training data. The training of the neural network em-

ploys the data obtained from the experiments presented in Chapter 3. The signals

of the motors used for the experimentation are presented in Appendix A.2.
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4.4.2 Data prediction evaluation

During the training process of the neural network the number of neurons in both

hidden layers is changed and satisfactory results are obtained with a number of 20

neurons in each hidden layer. The learning rate is set to 0.1 and a number of 50,000

epochs are performed. Figure 4.25 shows the MSE of all six output variables through

training epochs.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Epoch 104

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

(M
S

E
)

Fx

Fy

Fz

Mx

My

Mz

Figure 4.25: Mean Squared Error through epochs on data-driven identification

Once the neural network is properly trained, the evaluation of its performance is

carried out. A number of 15 experiment samples are collected from the experimental

tests (not including the training data) and the evaluation is conducted. The results

are presented in Figure 4.26, where it can be observed the comparison between the

real data and the neural network outputs, the latter showing satisfactory results in

most of the data samples.

It is important to highlight that this neural network only predicts the static

forces and moments exerted by the quadrotor. Therefore, the quadrotor dynamics

remain uncertain since the current neural network architecture is not designed to

capture it. Nonetheless, the results presented in this subsection provide a promising

overview of the quadrotor behavior, even without any prior knowledge of the system.
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Figure 4.26: Comparison between real and estimated forces and moments from data-

driven identification
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Conclusions

This research work addressed multiple subjects in diverse areas of engineering, from

which the conclusions are presented below.

A low-cost UAV testing bench was designed and developed to measure forces

and moments exerted by a UAV, nevertheless, the results showed reliable accuracy

in one degree of freedom only, which is the force in the z axis. For this reason,

the first hypothesis of this research work was not achieved, therefore, a mini force-

torque sensor was acquired and an experimental base was created in order to meet

the objectives.

The design and construction of a quadrotor from scratch was carried out and

its four motors could successfully be characterized and controlled independently.

Consequently, experimental tests with the quadrotor and experimental base were

performed effectively. Thus, forces and moments data were acquired and stored for

the system identification process.

The quadrotor system identification was carried out according to each proposed

method which are; white, grey, and black box approaches. The white box approach

consisted of deriving the quadrotor equations of motion and simulating its dynamics.

Conversely, in the grey box approach the parameters from the mathematical model

were obtained by training a neural network with experimental and simulation data.

108
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Lastly, the black box approach focused only on the experimental data in order to

train a neural network and thus identify the quadrotor system. In all three methods,

the obtained results showed good precision and accuracy. Thus, this research work

was successfully concluded.
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Appendix

A.1 Neural networks data

In this appendix, the quadrotor neural network parameters from the thrust, torque,

and inertial models obtained in Chapter 4 are presented.

A.1.1 Thrust model

α = 0.01

kd = 0.2133

kx = 5.4669× 10−4

w(1) =
[
−0.5311 0.1014 −1.0462 −0.1708

]T
w(2) =

[
−0.4342 −0.6602 −0.7606 −0.1731

]

110
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A.1.2 Torque model

α = 0.01

kd = 20.8333

kx = 6.3486× 10−4

w(1) =
[
−0.4279 1.0063 −0.8083 −0.4139

]T
w(2) =

[
−0.3693 0.5336 −0.0600 −0.5183

]

A.1.3 Inertial model

α = 0.8

w =


−1.7592 0 0 401.5602 0 0

0 0.0076 0 0 388.2557 0

0 0 4.0810 0 0 218.0455



A.2 Quadrotor experiments data

In this appendix, all the experiments that were performed with the quadrotor and

presented in Chapter 3 are listed.
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Table A.1: Quadrotor motors signals for dynamics simulation tests

Experiment
Motor 1 Motor 2 Motor 3 Motor 4 Quadrotor

DynamicsSignal Max Value Frequency Signal Max Value Frequency Signal Max Value Frequency Signal Max Value Frequency

1 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Hover

2 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Hover

3 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Hover

4 Trapezoidal 0.05 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.05 N/A Roll +

5 Trapezoidal 0.1 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.1 N/A Roll +

6 Trapezoidal 0.15 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.15 N/A Roll +

7 Trapezoidal 0.2 N/A Trapezoidal 0.05 N/A Trapezoidal 0.05 N/A Trapezoidal 0.2 N/A Roll -

8 Trapezoidal 0.2 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.2 N/A Roll -

9 Trapezoidal 0.2 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.2 N/A Roll -

10 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.05 N/A Trapezoidal 0.05 N/A Pitch +

11 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Pitch +

12 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Pitch +

13 Trapezoidal 0.05 N/A Trapezoidal 0.05 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Pitch -

14 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Pitch -

15 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Pitch -

16 Trapezoidal 0.2 N/A Trapezoidal 0.05 N/A Trapezoidal 0.2 N/A Trapezoidal 0.05 N/A Yaw+

17 Trapezoidal 0.2 N/A Trapezoidal 0.1 N/A Trapezoidal 0.2 N/A Trapezoidal 0.1 N/A Yaw+

18 Trapezoidal 0.2 N/A Trapezoidal 0.15 N/A Trapezoidal 0.2 N/A Trapezoidal 0.15 N/A Yaw+

19 Trapezoidal 0.05 N/A Trapezoidal 0.2 N/A Trapezoidal 0.05 N/A Trapezoidal 0.2 N/A Yaw-

20 Trapezoidal 0.1 N/A Trapezoidal 0.2 N/A Trapezoidal 0.1 N/A Trapezoidal 0.2 N/A Yaw-

21 Trapezoidal 0.15 N/A Trapezoidal 0.2 N/A Trapezoidal 0.15 N/A Trapezoidal 0.2 N/A Yaw-

22 Sine wave 0.2 0.25 Hz Sine wave 0.2 0.25 Hz Sine wave 0.2 0.25 Hz Sine wave 0.2 0.25 Hz Bounce

23 Sine wave 0.2 0.4 Hz Sine wave 0.2 0.4 Hz Sine wave 0.2 0.4 Hz Sine wave 0.2 0.4 Hz Bounce

24 Sine wave 0.2 0.5 Hz Sine wave 0.2 0.5 Hz Sine wave 0.2 0.5 Hz Sine wave 0.2 0.5 Hz Bounce

25 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A 15° Right

26 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A 15° Right

27 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A 15° Right

28 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A -15° Left

29 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A -15° Left

30 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A -15° Left

31 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A 15° Backward

32 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A 15° Backward

33 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A 15° Backward

34 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A -15° Forward

35 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A -15° Forward

36 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A -15° Forward

37 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A 30° Right

38 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A 30° Right

39 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A 30° Right

40 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A -30° Left

41 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A -30° Left

42 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A -30° Left

43 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A 30° Backward

44 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A 30° Backward

45 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A 30° Backward

46 Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A Trapezoidal 0.1 N/A -30° Forward

47 Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A Trapezoidal 0.15 N/A -30° Forward

48 Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A Trapezoidal 0.2 N/A -30° Forward
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tor control based on an estimator of external forces and moments”. International

Conference on Unmanned Aircraft Systems (ICUAS), pp. 957-963. IEEE. 2016.

[21] Papachristos C., Alexis K., and Tzes A. “Efficient force exertion for aerial

robotic manipulation: Exploiting the thrust-vectoring authority of a tri-tiltrotor

UAV”. IEEE international conference on robotics and automation (ICRA), pp.

4500-4505. IEEE. 2014.

[22] Strachan R., Knowles K., Lawson N. J., and Finnis M. V. “Force and moment

measurements for a generic car model in proximity to a side wall”. Proceed-

ings of the Institution of Mechanical Engineers, Part D: Journal of automobile

engineering, 226(10), pp. 1352-1364. 2012.

[23] Tyto Robotics. Flight Stand 50. Available on www.tytorobotics.com. 2024.

[24] Deshpande M. S., Jawale H. P., and Thorat H. T. “Development, calibration

and testing of three axis force sensor”. International Conference on Mechanical

and Aerospace Engineering (ICMAE), pp. 285-289. IEEE. 2016.



Appendix A. References 116

[25] Yuan C., Luo L. P., Yuan Q., Wu J., Yan R. J., Kim H., Shin K. S., and Han C.

S. “Development and evaluation of a compact 6-axis force/moment sensor with

a serial structure for the humanoid robot foot”. Measurement, 70, pp. 110-122.

2015.

[26] Park J. Y., Shim H., Jun B. H., Lee P. M., Yoo S. Y., and Baek H. “Measurement

of hydrodynamic forces and moment acting on Crabster, CR200 using model

tests”. IEEE Underwater Technology (UT), pp. 1-5. IEEE. 2017.

[27] Huang B., Tao J., Yi J., Wang X., Li C., and Chen S. “Improvement for the

stability of an air-lubricated six-axis force/moment sensor”. The International

Journal of Advanced Manufacturing Technology, 92(1), pp. 715-721. 2017.

[28] Kim C. and Lee C. H. “Development of a 6-DoF FBG force–moment sensor for a

haptic interface with minimally invasive robotic surgery”. Journal of Mechanical

Science and Technology, 30(8), pp. 3705-3712. 2016.

[29] Zhang W., Lua K. B., Senthil K. A., Lim T. T., Yeo K. S., and Zhou G. “Design

and characterization of a novel T-shaped multi-axis piezoresistive force/moment

sensor”. IEEE Sensors Journal, 16(11), pp. 4198-4210. 2016.

[30] Ghani J. A., Jye P. S., Haron C. H. C., Rizal M., and Nuawi M. Z. “Determi-

nation of sensor location for cutting tool deflection using finite element method

simulation”. Proceedings of the Institution of Mechanical Engineers, Part C:

Journal of Mechanical Engineering Science, 226(9), pp. 2373-2377. 2012.

[31] Kim J. H. “Multi-axis force-torque sensors for measuring zero-moment point

in humanoid robots: A review”. IEEE Sensors Journal, 20(3), pp. 1126-1141.

2019.

[32] Lin G., Pang H., Zhang W., Wang D., and Feng L. “A self-decoupled three-axis

force sensor for measuring the wheel force”. Proceedings of the Institution of

Mechanical Engineers, Part D: Journal of Automobile Engineering, 228(3), pp.

319-334. 2014.



Appendix A. References 117

[33] Yu Y. and Ding X. “A quadrotor test bench for six degree of freedom flight”.

Journal of Intelligent & Robotic Systems, 68(3), pp. 323-338. 2012.

[34] Legowo A., Sulaeman E., and Rosli D. “Review on system identification for

quadrotor unmanned aerial vehicle (UAV)”. Advances in Science and Engineer-

ing Technology International Conferences (ASET), pp. 1-8. IEEE. 2019.

[35] Tan K. C. and Li Y. “Evolutionary system identification in the time domain”.

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Sys-

tems and Control Engineering, 211(5), pp. 319-323. 1997.

[36] Tischler M. B. and Remple R. K. Aircraft and rotorcraft system identification.

American Institute of Aeronautics and Astronautics. 2006.

[37] MathWorks. Mathematical Modeling. Available on www.mathworks.com/solu

tions/mathematical-modeling.html. 2024.
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