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Abstract: This paper presents a methodology to obtain the Fourier coefficients (FCs) and the deriva-
tive Fourier coefficients (DFCs) from an input signal. Based on the Taylor series that approximates the
input signal into a trigonometric signal model through the Kalman filter, consequently, the signal’s
and successive derivatives’ coefficients are obtained with the state prediction and the state matrix in-
verse. Compared to discrete Fourier transform (DFT), the new class of filters provides noise reduction
and sidelobe suppression advantages. Additionally, the proposed Taylor–Kalman–Fourier algorithm
(TKFA) achieves a null-flat frequency response around the frequency operation. Moreover, with the
proposed TKFA method, the decrement in the inter-harmonic amplitude is more significant than that
obtained with the Kalman–Fourier algorithm (KFA), and the neighborhood of the null-flat frequency
is expanded. Finally, the approximation of the input signal and its derivative can be performed with
a sum of functions related to the estimated coefficients and their respective harmonics.

Keywords: Fourier series; Fourier coefficients; Kalman filter

MSC: 65T40; 42A16; 41A58

1. Introduction

Signal analysis is implemented in many areas because it allows for obtaining charac-
teristics or relevant information about systems. It has been employed in different areas,
such as power systems, vibration analysis, speech recognition, energy processing, radar
applications, time series modeling, biomedical engineering, and digital communications.
For instance, [1] gave the generalized sampling expansions (GSE) in the realm of a one-
dimensional quaternion Fourier transform. Ref. [2] employed the Fourier coefficients (FCs)
to fit the GPS precise ephemeris. In [3,4], the Fourier series coefficients were used in a
tracking control trajectory. In the both of the last cases, obtaining more information could
help better control GPS and tracking control, not only regarding the trajectory, but also
its speed.

The most commonly used tool to obtain information about systems is the Fourier
transform. In the literature, it is possible to find some strategies to obtain better precision
in the estimation of the FCs in different conditions. In [5], the discrete Fourier transform
(DFT) is used to estimate the periodic signal’s FCs. On the other hand, the impact of the
data windows in the estimation of FCs was analyzed by [6]. The recursive discrete Fourier
transform (RDFT) [7–9] is another strategy that considers a structure of the DFT with a
multi-rate sampling. One disadvantage of the last method is that it takes a sinusoidal signal
as a model. Therefore, the estimates can be downgraded when the input is different from
the sinusoidal signal, for example, a quasi-periodic signal. Another disadvantage is that
obtained estimates provided a delay due to the implemented windows in the algorithms.
To solve the first disadvantage, when the measurement signal does not satisfy the ideal
conditions (when the input signal is not sinusoidal), this occurs when the measurement
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signal is quasi-periodic. In [10,11], the authors implemented a quasi-periodic signal model
considering an optimal FIR filter, whereas in [12], the authors improved the approximation
of a sufficiently smooth nonperiodic function defined on a compact interval by proposing
alternative forms of Fourier series expansions. In [13], an algorithm was proposed that was
derived from the least mean squares (LMS) that can estimate the FCs of a sinusoidal and
quasi-periodic signal. Then, to solve the delay problem in the estimates, in [14,15], the FCs
were obtained with a Kalman filter.

Systems can be modified through time by different circumstances. For example,
the evolution in the systems can be due to wear or operation conditions. For this reason, is
not enough to estimate the FCs. The derivative of the Fourier coefficients (DFCs) provides
information on the evolution of systems over time. In this work, the FCs are estimated
without delay because the estimations are achieved with a quasi-periodic dynamic signal
model applied to the Kalman filter. Additionally, at the same time, the DFCs are estimated.
With the Taylor polynomial approximation to the signal model and its derivatives, it can
develop a state space model, where the first row in the state matrix is the approximation to
the signal model, the second is the approximation to the first derivative, and so on. Thereby,
with the state space model implemented in the Kalman filter, it is possible to obtain the FC
and DFC estimates in synchronous time. Additionally, the harmonics and their derivatives
can be estimated with an extension of the state matrix with its harmonics. Recently, some
techniques have been proposed to estimate the FCs. Ref. [16] determined the coefficient in
the representation of two polynomials as a linear combination of an arbitrary polynomial
sequence to achieve the above derivative of the Fourier series. Ref. [17] considered unbiased
Fourier coefficients for reducing systematics in applications of large cosmological data sets
in grid size. In [18], the authors proposed an algorithm for the identification of significant
frequencies and the estimation of the Fourier coefficients. However, they did not estimate
the DFCs. In [19], the authors employed the Fourier cosine series expansion (COS) to value
the guaranteed minimum death benefit products.

The aim of the proposed method is based on two stages. In the first stage, with the
Taylor polynomial implemented in the Kalman filter, the signal and its derivatives are
estimates. In the second stage, the coefficients and their derivatives are calculated by
considering the estimations obtained from the Kalman filter and the state-proposed matrix.
Here we observe that when a zero-order Taylor polynomial is employed as an analytic
function in the Kalman filter, the results are equivalent to the traditional Fourier series.
With the expansion of the Taylor polynomial with an order greater than zero, the estimation
results of the Fourier coefficients are improved. Moreover, it can be confirmed in the
magnitude response of the proposed method, where the magnitude in harmonic frequencies
is flat.

The remainder of this paper is organized as follows. First, the state space observer
approach is described in Section 2. The Kalman filter applied and the structure implemented
to obtain the coefficients are illustrated in Section 3. The performance of the proposed
method is shown in Section 4. A summary of our conclusions closes the paper in Section 5.

2. The Spectral Observer Approach

It is common to implement the Fourier series as a signal model [20,21] that is defined
as follows

zk = a0
k +

N

∑
`=1

(
a`kcos

(
`2πk

2N + 1

)
+ b`ksin

(
`2πk

2N + 1

))
, (1)
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where the number of samples per period T is 2N + 1, and ` represent the harmonic
components. However, here, we propose a quasi-periodic signal inspired by (1). In its first
stage, it is approximate around t0 by a M-th order Taylor polynomial as

ζk =
M

∑
m=0

f
(

2πk
N1

)(m)

m!
τ(m), (2)

with t0 = [n− 1]τ at time t = nτ, and τ = t− t0. The function f (·) in (2) is defined as

f
(

2πk
N1

)
= cos

(
2πk
N1

)
+ sin

(
2πk
N1

)
. (3)

Hence, the real part of the function in (2) is denoted as

∆r,k =
M

∑
m=0

(
amcos

(
2πk
N1

))(m)

m!
τ(m), (4)

and the imaginary part is

∆i,k =
M

∑
m=0

(
bmsin

(
2πk
N1

))(m)

m!
τ(m), (5)

where N1 is the number of samples per cycle in the input signal, and M is the order of the
polynomial approximation.

With (4) and its successive derivatives, the following matrix is obtained:

Λr =


α1,1 α1,2 . . . α1,m
α2,1 α2,2 . . . α2,m

...
...

...
...

αm,1 αm,2 . . . αm,m

cos(ωτ), (6)

where the coefficients αi,j with, i = 1, . . . , m and j = 1, . . . , m are given as follows:

α1,1 = 1, α1,2 = τ, α1,m = τm

m! ;
α2,1 = jω, α2,2 = (jωτ + 1), α2,m = jω τm

m! +
τm−1

(m−1)! ;
αm,1 = (jω)m;
αm,2 = (jω)mτ + m(jω)m−1;
αm,m = (jω)m τm

m! + m(jω)m−1 τm−1

(K−1)! + . . . + 1;

with ω = 2π
N1

and τ = 1
N1

. On the other hand, the imaginary part (5) and its derivatives can
be represented as

Λi = j


α1,1 α1,2 . . . α1,m
α2,1 α2,2 . . . α2,m

...
...

...
...

αm,1 αm,2 . . . αm,m

sin(ωτ). (7)

Then, the signal model defined by (2) and its derivative is given as[
ζk
ζk

]
=

[
Λr Λi
−Λi Λr

][
a
b

]
, (8)
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where ζk is the complex conjugate of ζk. Therefore,[
a
b

]
=

[
Λr Λi
−Λi Λr

]−1[
ζk
ζk

]
. (9)

Note that a = [a a1 a2 . . . am]T , b = [b b1 b2 . . . bm]T , and ζk,` = [ζk ζ̇k ζ̈k . . .

ζ
(m)
k ]. As the coefficients a and b correspond to ζ = [ζk, ζ̄k]

T , consequently, the coefficients
a1 and b1 correspond to ζ̇k; therefore, its coefficients are called DFCs.

In the next section, the state transition matrix is extended to all sets of harmonics and
is implemented to extract the coefficients.

3. The Kalman Filter Applied and Coefficient Estimates

This section illustrates the construction of the signal model and its implementation in
the Kalman filter, where two methodologies are considered. The first method is when the
signal model is approximate with a zero-order Taylor polynomial defined in (2). The second
method is obtained when the signal model is approximate with a higher-than-zero-order.

3.1. Kalman Filter Algorithm (KFA)

With the matrix (6) and (14), we developed a signal model, as can be seen in (8), that
is implemented in the Kalman filter. Ehen the order of the signal model is defined as m = 1
and l = 1, the algorithm is called a Kalman filter algorithm (KFA). Thus, the state prediction
and the measurement equation are defined as.

xk+1 = Ψxk + Gwk, (10a)

ζk = Hxk+1, (10b)

where

Ψ =

[
Λr,` Λi,`
−Λi,` Λr,`

]
(11)

h = [1 0, . . . , 0] ∈ <(2(K+1)), (12)

3.2. Taylor–Kalman–Fourier Algorithm (TKFA)

The matrix (15) can be expanded with the ` array of ∆r and ∆i, where the functions
cos and sin have the respective ` harmonics as

Λr,` =


α1,1 α1,2 . . . α1,m
α2,1 α2,2 . . . α2,m

...
...

...
...

αm,1 αm,2 . . . αm,m

cos(`ωτ). (13)

and

Λi,` = j


α1,1 α1,2 . . . α1,m
α2,1 α2,2 . . . α2,m

...
...

...
...

αm,1 αm,2 . . . αm,m

sin(`ωτ). (14)

with ` = 1, . . . , N.
On the other hand, when the transition matrix is expanded with ` > 1, and the

approximation to the model signal is greater than one (m > 1), the filter is named a Taylor–
Kalman–Fourier algorithm (TKFA), and the state transition matrix and the measurement
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equation are defined as

Ψ =

{
Block diag

[
Λr,` Λi,`
−Λi,` Λr,`

]
; ` = 1, . . . , N

}
, (15)

H = [h h, . . . , h] ∈ <N(2(K+1)), (16)

Remark 1. When the parameters m and ` of matrix Ψ in (15) are set as m = 1 and ` = 1, then
the algorithm is called a KFA.

With the discrete state space model (10a) and the truncated discrete signal model (10b),
the standard discrete Kalman filter [22,23] is applied to obtain the state estimation x̂k+1
according to Algorithm 1.

Algorithm 1 Pseudocode of the Kalman filter algorithm.

1: procedure
2: –Inputs
3: s[n]← Input current signal for n = 1 up to (2N + 1),
4: x̂[n− 1]← Guess initial internal variables,
5: ω̂[0]← Guess initial frequency,
6: P[n− 1]← Guess initial covariance,
7: σ2

v ← Variance of process noise,
8: σ2

w ← Variance of measurement noise,
9: Ψ, H ← Signal model parameters,

10: for n = 1 to (2N + 1) do
11: –State prediction
12: x̂−[n]← Ψx̂[n− 1],
13: P−[n]← ΨP[n− 1](Ψ)H + ΓΓHσ2

v ,
14: –Measurement update
15: K[n]← P−[n]HT(HP−[n]HT + σ2

w)
−1,

16: x̂[n]← x̂−[n] + K[n](s[n]− Hx̂−[n]),
17: P[n]← (I − K[n]H)P−[n],
18: end for
19: end procedure

However, with the last Kalman filter algorithm, it is not possible to obtain the coeffi-
cients a` and b`. Therefore, in the next subsection, the equation to obtain the coefficients
and the approximation to the signal and its derivatives are illustrated.

3.3. Coefficients and Signal Approximation

With the state update implemented in the next equation, it is possible to obtain the
coefficients and their derivatives[

a`
b`

]
= Ψ−1 x̂, x̂ ∈ C1×(2(K+1)). (17)
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With the estimated coefficients a and b within a` and b`, respectively, the input signal
and its derivatives are approximated as

ζ̂(0) =
N

∑
`=1

[
ζ̂(0)[`− 1] + (a`cos(ω`k) + b`sin(ω`k))

]
; (18a)

ζ̂(1) =
N

∑
`=1

[
ζ̂(1)[`− 1]+(
−ȧ`(ω`)sin(ω`k) + ḃ`(ω`)cos(ω`k)

)
τ
]
; (18b)

ζ̂(2) =
N

∑
`=1

[
ζ̂(2)[`− 1]+(
−ä`(ω`)2cos(ω`k)− b̈`(ω`)2sin(ω`k)

)
τ2
]
; (18c)

...

ζ̂(N) (18d)

where the initial conditions ζ̂(0)[0], ζ̂(1)[0], . . . , ζ̂(N)[0] are defined as equal to zero. Algorithm 2
illustrates the implementation of Equation (18a)–(18c) to obtain the coefficients and its
derivatives, as well as the approximation of the input signal and its respective derivative.

All set algorithm is illustrated in Figure 1, where Figure 1 (a) is the Kalman algorithm
implemented as can be seen in Algorithm 1, where the input into the algorithm is the mea-
surement signal, and it is possible to implement the model signals of Sections 3.1 and 3.2.
Note that the output is the states.

Algorithm 2 Pseudocode to coefficient estimates and signal approximation.

1: procedure
2: –Inputs
3: ζ̂(0) ← 0, Initial value,
4: ζ̂(1) ← 0, Initial value,
5: for n = 1 to ` do,
6: [c1, c2]

T ← Ψ−1 x̂,
7: [a`, b`]T ← |[c1, c2]

T |,
8: ζ̂(0) ←, Compute (18a),
9: ζ̂(1) ←, Compute (18b),

10: ζ̂(2) ←, Compute (18c),
11: end for
12: end procedure

The output of the Kalman algorithm is the input of a second stage, as seen in Figure 1
(b) , which is divided into two subsections, Figure 1 (c) and (d) . The coefficients are obtained
by the block in Figure 1 (c) with the state matrix Ψ−1 and x̂ (as is illustrated in (17). Finally,
with the coefficient estimates a` and b` implemented in Equation (18a)–(18c) by the block of
Figure 1 (d), the approximations to the signal ζ̂(0) and its derivatives ζ̂(1), ζ̂(2), . . . , ζ̂(M), are
obtained and are the output of the block diagram. Note that the last block in Figure 1 repre-
sents the procedure code that is shown in Algorithm 2, and thus the process is completed.
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Figure 1. Block diagram describing the proposed methodology to estimate the FCs, DFCs, signal
approximation and its derivatives. In (a), the Kalman filter is implemented, (b) contains two subsec-
tions, (c) and (d). In (c) the coefficients with the state estimates provided by Kalman filter and with
the state matrix Ψ−1 are obtained. Finally in block (d) Equation (18a)–(18d) is implemented to obtain
the approximation signal.

4. Performance of the Harmonic Filters

In this section, the performance of the proposed algorithm is shown. When the signal
model is approximated with M = 0 in the polynomial form, defined in (2), the signal
model is equivalent to the model proposed in [20] and here is named a Kalman filter
algorithm (KFA). When the order signal approximation in the model is M > 0 and ` > 1,
the proposed algorithm is named a Taylor–Kalman–Fourier algorithm (TKFA). On the other
hand, the filters are tested with a square wave signal as an input and are compared with
DFT, and KFA. The results are illustrated in Figure 2, where the behavior between DFT,
KFA and TKFA are very similar. Additionally, the zoom shows in detail the behavior of
the estimates, and it can be seen that the precision of the methods is equivalent. To obtain
more precise results in the comparison of the algorithms, the RMS Error defined by

RMSE =

√√√√(∑N
n=1 s[n]− ζ̂[n]

N

)2

, (19)

is obtained with respect to the measurement input signal s[n] and its estimate ζ[n]. The ob-
tained results are shown in Table 1 for a different number of harmonics in the signal model
by KFA and TKFA. The number of harmonics implemented in the model is represented
by ω. Hence, ω f represents the fundamental model, and therefore, the transition matrix
Ψ is developed only with ` = 1. Note that the results obtained by the three algorithms
are equivalent. However, with the DFT and KFA, the DFCs cannot be obtained. Thus,
the results of the RMS error in Table 1 are obtained only using the coefficients a and b.

Table 1. RMS Error (RMSE) obtained with DFT, KFA and TKFA with respect to the input signal and
the approximation to the measurement signal ζ̂(0).

RMSE

ω DFT KFA TKFA ω DFT KFA TKFA

Sq
ua

re
si

gn
al

ω f 0.430 0.430 0.430 ω8 0.187 0.187 0.187
ω1 0.430 0.430 0.430 ω9 0.187 0.187 0.187
ω2 0.308 0.308 0.308 ω10 0.167 0.167 0.167
ω3 0.308 0.308 0.308 ω11 0.167 0.167 0.167
ω4 0.249 0.249 0.249 ω12 0.151 0.151 0.151
ω5 0.249 0.249 0.249 ω13 0.151 0.151 0.151
ω6 0.213 0.213 0.213 ω14 0.137 0.137 0.137
ω7 0.213 0.213 0.213 ω15 0.137 0.137 0.137
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Table 1. Cont.

RMSE

ω DFT KFA TKFA ω DFT KFA TKFA

Sa
w

to
ot

h
Si

gn
al

ω f 0.069 0.069 0.069 ω8 85× 10−4 85× 10−4 85× 10−4

ω1 0.069 0.069 0.069 ω9 85× 10−4 85× 10−4 85× 10−4

ω2 0.028 0.028 0.028 ω10 68× 10−4 68× 10−4 68× 10−4

ω3 0.028 0.028 0.028 ω11 68× 10−4 68× 10−4 68× 10−4

ω4 0.016 0.016 0.016 ω12 57× 10−4 57× 10−4 57× 10−4

ω5 0.016 0.016 0.016 ω13 57× 10−4 57× 10−4 57× 10−4

ω6 0.011 0.011 0.011 ω14 49× 10−4 49× 10−4 49× 10−4

ω7 0.011 0.011 0.011 ω15 49× 10−4 49× 10−4 49× 10−4

0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

2
DFT

KFA

TKFA

Input1.2 1.3 1.4
0.95

1

1.05

zoom

Figure 2. Reconstruction signal with DFT, KFA, and TKFA algorithms. The model considers
15 harmonic components.

A second signal is tested and is illustrated in Figure 3. Additionally, its approximation
is obtained with DFT, KFA, and TKFA. The zoom shows in detail the behavior of the
estimates, and it can be seen that the precision of the methods is equivalent between DFT
and KFA, but TKFA has a litter discrepancy in the estimation provided by the signal model,
where the harmonics are included.

We propose to select this signal because its derivative is intuitive and easy to obtain.
On the other hand, with the coefficients a1 and b1 obtained with (17) and implemented
in (18b), we achieved approximation to the derivative of the signal, and the results are pre-
sented in Figure 4 where the path trajectory is the expected result because the derivative of
a sawtooth signal is a square signal. The zoom shows in detail the behavior of the estimates.
As the coefficients a1 and b1 are not possible to obtain with DFT and KFA, the approximation
to the derivative ζ̂(1) in Figure 4 only represents the estimates with TKFA.
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0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

2

DFT

KFA

TKFA

Input

0.98 1 1.02

0.94

0.96

0.98

1
zoom

Figure 3. Reconstruction signal with DFT, KFA and TKFA algorithms. In this case, the model of KFA
and TKFA was constructed with the full set of harmonics components (64 harmonics).

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.05

0

0.05

0.1

Ideal

TKFA

0.6 0.8 1

0.04

0.06

0.08
zoom

Figure 4. Derivative approximation to the input signal with TKFA algorithm.

With the proposal to make an analysis of the noise effect, Figure 5 shows the frequency
responses of DFT, KFA and TKFA. The zoom shows in detail the behavior of the estimates.
Using KFA and TKFA, the frequency response can be obtained using

G(z) =
[

I + (KH − I)Ψz−1
]−1

K. (20)
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The results illustrated in Figure 5 were developed using the next parameters in the
KFA and TKFA, Q = 10−3, R = 1 and Pr = 1010.

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5
DFT

KFA

TKFA

0.8 1 1.2

0

0.5
zoom

Figure 5. Magnitude response of DFT, KFA and TKFA algorithms, with Q = 10−3, Pr = 1010 and
R = 1.

In Figure 6 the frequency response is illustrated with Q = 10−1, Pr = 1010 and R = 1.
The zoom shows in detail the behavior of the estimates.

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4
DFT

KFA

TKFA

0.8 1 1.2

0

0.5
zoom

Figure 6. Magnitude response of DFT, KFA and TKFA algorithms with Q = 10−1, Pr = 1010 and
R = 1.

The comparison between Figures 5 and 6 show how the inter-harmonic amplitude
decreases in KFA and TKFA when the value in Q decreases. However, the decrement in
the inter-harmonic amplitude is more significant in TKFA. A similar study of the noise
was made in [20], where a complementary study was made of the spectral and short-time
analysis. As TKFA achieves a null-flat frequency response around the frequency operation
and its harmonics, the proposed method can achieve better results in applications where
frequency and harmonics have a few distortions. For example, when the rotor bar has litter
damage, the current has a frequency shift [24].
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5. Conclusions

The aim of this work is the development of a method to estimate the coefficients of an
input signal and the coefficients of the derivative input signal. To achieve the coefficient
estimates, we develop a method that consists of two stages. First, a proposed signal model
is implemented in the Kalman filter, and with this model, we are able to estimate the
derivatives of the input signal. Second, with the state prediction and the inverse of the state
matrix, the coefficients of the signal and the coefficients of the successive derivatives are
obtained. On the other hand, in comparison to the DFT, the new class of filters provides
advantages in the sense of noise reduction and the sidelobe suppression. Additionally,
the proposed TKFA achieves a null-flat frequency response around the frequency operation.
Moreover, with the proposed TKFA method, the decrement in the inter-harmonic amplitude
is greater than that obtained with KFA, and the neighborhood of the null-flat frequency
is expanded. The approximation to the input signal and its derivative can be achieved
with a sum of functions that are related by the estimate coefficients and their respective
harmonics. Thereby, the proposed method is related to the Fourier series. However,
with the new filters, it is possible to estimate the derivative Fourier series with the derivative
coefficient estimates.
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