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Tis report presents the physicochemical properties of hexagonal Bi2Te3 nanoplates chemically prepared in an open reactor at
a lower temperature (140°C) than those reported for controlled condition techniques. Te samples were drop-cast on glass and
FTO substrates for subsequent structural, chemical, and thermoelectric analyses. Te electron microscopy analysis demonstrated
that samples precipitated in highly crystalline hexagonal nanoplates, grown along the [0 1 5] plane of the rhombohedral phase of
Bi2Te3. Te nanoplates exhibited an extension of up to several hundred nanometers, with thicknesses in the range of 20–40 nm,
and with an interplanar spacing of 0.321 nm. A vibrational mode at 120 cm−1 due to the breaking of the symmetry of the Bi2Te3
crystal along the C axis was observed by Raman spectroscopy. XPS results showed that despite the strong reactivity of Te2− ions
with ambient oxygen, the crystallization of Bi2Te3 hexagonal nanoplates is feasible without controlled vapor pressure and at
a lower temperature than reported in other works. Finally, the measurement of the Seebeck coefcient exhibited a p-type
conductivity of Bi2Te3, with a maximum value of 169 μV/K within the temperature range of 300 to 320K.

1. Introduction

Te increasing demand for small-scale and portable energy
generation systems has become a priority. While it is well
established that various heat-generating processes, such as
those associated with transportation, industry, domestic
activities, and even the human body, produce substantial
waste energy, the pursuit of a sustainable approach to utilize
this residual heat is of utmost importance [1, 2].

Te use of heat recovery has been widely adopted since
the invention of thermal machines. However, emerging
technologies necessitate afordable and modular systems for
converting heat into electricity. Termoelectric (TE) devices

have garnered signifcant attention as an alternative power
source, as they can be readily manufactured. Te conversion
of heat to electricity in thermoelectric materials is attributed
to their solid-state energy conversion device design, which
features n-type and p-type semiconductor heterostructures,
enabling the transformation of heat into electrical power.
Tis property can therefore be exploited for the recovery of
waste heat. Te fundamental principle underlying thermo-
electric power generation is the Seebeck efect: when a ma-
terial is subjected to a temperature gradient, it experiences
the generation of an electric potential, resulting in the de-
tection of an electrical current. Consequently, a high Seebeck
coefcient is desirable [3–5].
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Te efciency of a TE device is related with a unique
material-dependent dimensionless property known as the
fgure of merit ZT � S2σT/k, where T is the absolute tem-
perature, σ the electrical conductivity, S the Seebeck co-
efcient, and κ the thermal conductivity. Te portion of the
numerator, S2σ, is referred to as the power factor [6, 7]. To
maintain a large temperature gradient across the material
and facilitate electrical carrier transport through it, low
thermal conductivity k and high electrical conductivity σ are
desirable intrinsic thermoelectric material properties. Dif-
ferent semiconductor materials have been studied over the
past decades, demonstrating the advantages of nano-
structured materials due to their superior mechanical
properties compared to single crystals which are more fragile
[6], maximizing the TE fgure of merit, with a high σ and S

and low κ [8–10].
Tere are several methods or techniques to synthesize

thermoelectric nanomaterials; i.e., pulsed laser processing
[11], fash evaporation [12], and physical vapor deposition
methods, such as sputtering [13, 14] are commonmethods to
fabricate TE flms. Based bottom-up techniques seem to be
a good alternative since they are low-cost and commercially
scalable, including wet chemistry methods such as sol-
vothermal [15, 16], and microwave-assisted [17–20]. Bis-
muth telluride (Bi2Te3) and related alloys have been
extensively utilized as thermoelectric materials, as they can
achieve superior performance near room temperature [16].
In addition, Bi2Te3 can be employed as a topological in-
sulator when fabricated as ultrathin nanoplates, owing to its
unique surface state electronic properties [21–23].

Bi2Te3 is a material of the tetradymite family. It has
a rhombohedral crystal structure belonging to space group
D5

3d (R3m) [24]. Te Bi2Te3 unit cell is a hexagonal structure,
where each charge-neutralized layer consists of fve covalently
bonded monatomic sheets aligned in the C direction,
according to the sequence Te(1)—Bi—Te(2)—Bi—Te(1), de-
fned as the quintuple layers [25]. Tis characteristic is due to
the high c-axis to a-axis length ratio in the crystal structure
[26, 27], which allows the growth of hexagonal Bi2Te3
nanostructures with high crystallinity along the basal plane.
Tis encourages a low thickness of the hexagonal structure,
which enhances the electrical conductivity through the re-
duction of thermal conductivity by the scattering of
phonons [16].

It has been proven for Bi2Te3 nanocrystals synthesis, that
using wet chemical techniques results in a higher power
factor, i.e. the microwave-assisted technique, and the sol-
vothermal method [17, 28, 29]. According to Wang et al.
[30], this improvement in the power factor does not apply to
thin flms, highlighting the need for the optimization of
deposition techniques for Bi2Te3 nanostructured thin flms.

In this research, we successfully synthesized Bi2Te3
nanoplates using a simple and cost-efective method,
without the need for expensive equipment such as vapor
pressure control systems or microwave irradiation, this
approach allowed us to produce the bismuth telluride
nanoplates at a signifcantly lower temperature compared to
previous studies [15–20]. Although other researchers such as
Sun et al. [31] and Srivastava and Singh [32] have reported

low-temperature synthesis of Bi2Te3, they did not obtain the
hexagonal nanoplate structure. In contrast, the present work
demonstrates the feasibility of producing Bi2Te3 hexagonal
nanoplates through a relatively simple method involving
low-temperature heat treatment in a convection oven under
atmospheric pressure. Synthesis conditions such as con-
centration of capping agent [3], heating time, temperature,
and the cleaning process were evaluated. Morphology and
crystallographic structure of nanoplates were also analyzed.

2. Experimental

2.1. Chemicals. Te reagents used were bismuth nitrate
pentahydrate (Bi(NO3)3·5H2O, >99.9%), sodium tellurite
(Na2TeO3, >99.5%), sodium hydroxide (NaOH, >99%), poly
(vinyl pyrrolidone) (PVP, MW ≈40 000), and ethylene glycol
(EG). All reagents were purchased from Sigma-Aldrich and
were used as received, without further purifcation.

2.2. Preparation of Crude Solution. Bismuth telluride was
synthesized following a modifed solvothermal process
[33, 34] by mixing solutions in 10mL EG of 0.2mmol Bi
(NO3)3·5H2O, 0.3mmol Na2TeO3, and 4mmol sodium
hydroxide (NaOH). PVP was used as a capping agent in
diferent concentrations, labeled as PVPn (PVP1 � 2.78 µmol,
PVP2 � 5.55 µmol, and PVP3 �11.1 µmol). Compared to the
reagents used in prior studies, we utilized more cost-efective
and readily available bismuth nitrate pentahydrate as the
bismuth precursor, rather than the bismuth chloride
employed by He and collaborators [33]. In addition, we used
ethylene glycol as the solvent, in contrast to the water and
alcohol mixtures utilized by Zhang et al. [34]. Tree main
solutions, referred to as D1, D2, and D3 were prepared by
dissolving Bi (NO3)3·5H2O (D1), Na2TeO3 (D2), and NaOH
(D3), in 10mL EG, ultrasonically stirred until transparent
solutions were obtained. Ten, PVPn was added to the D1
solution, with magnetic stirring required until it was
completely dissolved; this new solution is referred to as D4.
Te D2 solution was then added to D4, forming a milky
solution known as D5. Finally, the crude solution (D6) was
prepared by mixing D3 and D5 until a completely trans-
parent and homogenous solution was obtained (Figure 1).
Temixture was placed in a simple convection oven at 140°C
for 48 h with no vapor pressure control. Te resulting
products exhibited a dark gray tonality. Te mixture was
then centrifuged at 10 000 rpm for 10min after the addition
of DI water. Te supernatant was removed, and the solid
phase was dispersed in isopropanol assisted by sonication.
Te washing steps were repeated with ethanol to remove the
excess ethylene glycol, PVP, and other impurities. Te fnal
product was dispersed in isopropanol for further
characterization.

2.3. Drop Casting Deposition of Bi2Te3 Film. Aliquots of
Bi2Te3 dispersion in isopropanol were dropped on a 1 cm2

surface area of a BK7 glass substrate to achieve deposition.
Tese samples were analyzed by SEM, Raman spectroscopy,
XRD and XPS. In addition, another deposition of Bi2Te3 was
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carried out on fuorine-doped tin oxide (FTO)- coated glass
slide (∼7Ω/sq, Sigma-Aldrich) for the Seebeck coefcient
measurement.

2.4. SEM/TEM Analysis. Te microstructure of Bi2Te3
nanoplates was analyzed with a feld emission scanning
electron microscope (FESEM) FEI NOVA nanoSEM200,
with a HV of 10.00 kV and magnifcations of 20,000 and
30,000x. Te precise structure of the nanoplates was ana-
lyzed with a high-resolution transmission electron micro-
scope (HRTEM) JEOL JEM2100, with an accelerating
voltage of 200 kV.

2.5. Raman Analysis. Raman light scattering measurements
were performed using a Termo Scientifc DRX2 Smart
Raman spectrometer equipped with a 785 nm laser and
a maximum output power of 250mW.

2.6. X-Ray Difraction. An X-ray difraction (XRD) pattern
for Bi2Te3 depositions on BK7 substrates was obtained on
a Panalytical X’Pert3 Powder X-ray difractometer with Cu
Kα radiation (λ�1.5405 Å).

2.7. FTIR Analysis. Te Fourier transform infrared (FTIR)
spectra were obtained using Termo Scientifc Nicolet IS50
FTIR. Te sample was scanned in the wavenumber range of
400–4000 cm−1.

2.8. XPS Analysis. X-ray photoelectron spectroscopy (XPS)
analysis was performed using a Phoibos 150 (Specs) analyzer
with a monochromatic Al Kα source (1486.69 eV) at 250W
and 12.5 kV.Te instrument utilized a 1D DLD detector and
a food gun operating at 20mA and 2 eV.

2.9.TermoelectricCharacterization. TeSeebeck coefcient
of the Bi2Te3 deposition was directly measured across the
temperature range of 302K to 423K using a homemade
system described by Dı́az-Torres et al. [35], utilizing two
chromel/alumel thermocouples as both contact points and
to register the temperature and thermo-voltage.

3. Results and Discussion

3.1. SEM/TEM Analysis. Scanning electron microscopy
(SEM) and transmission electron microscopy (TEM) were
employed to investigate the size, morphology, and crystal
structure of Bi2Te3 nanoplates synthesized at 140°C.
Figures 2(a) and 2(b) present SEM images of the nanoplates,

revealing their hexagonal shape with an extension of up to
several hundred nanometers, and thickness minor than the
Bohr radius of the Bi2Te3 exciton (57 nm) [36]. Figure 2(d)
displays an HRTEM image taken from the top left section of
the nanoplate exhibited in Figure 2(c). Te analysis of this
micrograph (Figure 2(d)) shows structurally uniform lattice
fringes. Te crystallographic distance profle obtained for
this section of nanoplate (Figure 2(e)) indicated an inter-
planar spacing of 0.321 nm, corresponding to the [0 1 5]
plane of the rhombohedral structure of Bi2Te3 (JCPDS File
NO. 00-015–0863 from ASTM), indicating that this nano-
plate has a preferential orientation along with [0 1 5] di-
rection belonging to the trigonal R3m structure of Bi2Te3
[16, 34, 37].

3.2. Raman Analysis. It has been widely reported that the
unit cell of Bi2Te3, belonging to the trigonal R3m structure,
has a primitive cell with fve atoms [24, 38–40]. According to
Richter [40], Bi2Te3 bulk crystals reveal 3 acoustic and 12
optical phonon vibrational modes. Figure 3 exhibits the
Raman spectrum of synthesized Bi2Te3 nanoplates. Te la-
beling of the observed peaks indicates the frequencies A1

1g,
E2

g, A2
1g, and A2

1u (LO), which are consistent with other
reports on the synthesis and study of bidimensional
structures of Bi2Te3 [41–44], for instance, the location of the
vibrational mode A1

1g around 59 cm−1 is reported for two-
dimensional Bi2Te3 structures [45]. Te letters “E” and “A”
correspond to the in-plane and out-of-plane (c-axis) lattice
vibrations (i.e., perpendicular to the flm plane), respectively.
Te subscript “g” denotes Raman-active modes, while “u”
stands for IR-active modes [44, 46]. In this nomenclature,
LO refers to longitudinal optical phonons which are active in
the IR wavelength range and belong to the phonon zone-
boundary (Z point) [40, 47]. According to Yu and Cardona
[48], in crystals with inversion symmetry, the IR-active
modes, such as A2

1u, must be odd parity, while the
Raman-active modes E2

g, A1
1g must be even parity under

inversion.
On the other hand, it is reported that the ratio between

the intensities of the vibrational modes A1
1g and E2

g, that is,
I(A1

1g)/I(E2
g), increases when the Bi2Te3 structure is on the

order of a few quintuple layers. According to the Raman
spectrum of Figure 3, this ratio is equal to 0.811, which is
indicative of the thickness of the nanoplates shown in
Figure 2(b) [45].

It is known that the phonon displacement vector Q of an
odd-parity phonon (IR) changes the sign under inversion
[47]. As shown in Figure 4, modes E2

g and A1
1g are twofold

degenerate: in Eg, the atoms vibrate in the basal plane. Te
appearance of A2

1u mode in the sample is due to the breaking

D1 
Solution
Bi (NO3)3 NaOH

D3 
Solution

Na2TeO3

D2 
Solution

D4 
Solution

D5 
Solution

D6 
Crude

Solution 

Figure 1: Preparation of crude solution to obtain Bi2Te3 hexagonal nanoplates.
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of the crystal symmetry along the c-axis, allowing the for-
mation of the ultra-thin thickness hexagonal nanoplates
[49], as shown by the SEM micrograph of Figure 2(b).

3.3. X-Ray Difraction. Te X-ray difraction pattern ob-
tained for a Bi2Te3 deposition is shown in Figure 5. Contrary
to the results obtained by Raman spectroscopy, the X-ray
difraction pattern indicated the presence of a secondary
phase, specifcally tellurium. No additional phases were
detected. Te indexing of difraction peaks revealed the
presence of the rhombohedral phase of Bi2Te3 (R3m group),

according to the JCPDS card 00-015-0863. Tis structure
exhibited a preferential orientation in [0 1 5] direction as
reported for the synthesis of Bi2Te3 hexagonal nanoplates
[33, 50], with the peak located at 27.57°. Te secondary
crystalline phase corresponded to the hexagonal P 3121
structure of tellurium (Te), according to the JCPDS card 00-
036-1452. Te unlabeled peak located at 28.22° (∗) has been
reported as refection of the [0 1 5] plane of the rhombo-
hedral phase of Bi2Te3 [51].

Since our samples were prepared in a simple convection
oven, under ambient conditions, and at a low temperature,
the precipitation of elemental tellurium is possible. It has been
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Figure 2: (a) SEM images of the Bi2Te3 nanoplates synthesized without controlled vapor pressure at 140°C, (b) SEM images of Bi2Te3 show
the nanoplate thicknesses from ≈22 to ≈35 nm, (c) bright-feld TEM micrograph of an individual Bi2Te3 nanoplate exhibits its hexagonal
shape, and (d) the corresponding HRTEM image of a hexagonal nanoplate is shown in (c). (e)Te crystallographic distance profle obtained
for the section of Bi2Te3 nanoplate exhibited in (d).
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reported that the oxidation of the telluride chemical precursor
leads to the formation of tellurium nanorods [52]. Tese
structures have the hexagonal phase and exhibit a Raman
spectrum where the main vibrational modes are labeled as A1
an E. Te A1 mode is visible in the 119–122 cm−1 range as
a narrow and highly intense peak [53]. However, the peak
corresponding to A2

1u vibrational mode of Bi2Te3, located at
120.7 cm−1, was broadened and highly intense; therefore, the
A1 mode of tellurium was not observable. Likewise, it has
been reported that the E mode is located around 139.7 cm−1

[53]; nevertheless, this peak was not observed.
In addition, several reports indicate that hexagonal

Bi2Te3 nanoplates crystallize starting from tellurium nano-
rods, suggesting that in the initial stage of the Bi2Te3 syn-
thesis, tellurium precipitates in the form of nanorods,
serving as a precursor to the tellurium ion [54–56]. Tis
process is most frequently observed in syntheses where
bismuth chloride is used as a precursor of the bismuth ion.
Based on the size dispersion of the nanoplates shown in the
SEMmicrographs in Figures 2(a) and 2(b), we can infer that
synthesis at low pressure and temperature tends to slow
down the crystallization process of the Bi2Te3 nanoplates,
resulting in some tellurium remaining unused.

3.4. FTIR Analysis. Te FTIR spectrum of a Bi2Te3 de-
position is shown in Figure 6. In this spectrum, it is possible
to appreciate a widened and strong peak at 642 cm−1, which
has been assigned to the Bi-O bond for samples synthesized
by hydrothermal route [57, 58], consequently, the formation
of these bonds may be due to environmental oxidation. Te
remaining observed bands correspond to the vibrational
modes of the pure PVP [54], i.e., the C–H bending at 817,
880, and 950 cm−1. Te peaks found at 1050,–1150 cm−1

correspond to the C-N bond. Te vibrational modes located
at 1378, 1466, 2882, 2931, and 2969 cm−1 are assigned to the
bending and stretching vibrations of C-H bounds. Finally,
the strong and broad peak around 3330 cm−1 corresponds to
the O-H bond of the EG [57, 59]. Notably, the band at
1648 cm−1 assigned to C�O bond of PVP is reduced. Tis
decrease suggests a stabilization of Bi2Te3 hexagonal
nanoplates by the PVP molecule [54].

3.5. XPS Analysis. Te chemical characterization results by
XPS are shown in Figure 7, where the spectra of a thin flm
sample ftted with Gaussian curves can be observed.Te XPS
survey spectrum for the binding energy range from 0 to
1300 eV is shown in Figure 7(a). Te peaks shown in the
survey spectrum were identifed as corresponding to the
elements Te, Bi, C, and O.

Figure 7(b) shows the high-resolution XPS scan of Bi4f
doublet peaks centered near 158.5 and 164 eV corresponding
to Bi 4f7/2 and Bi 4f5/2, respectively. Te peaks can be
deconvoluted into two signals centered at 157.6 eV and
162.9 eV, which are associated with Bi-Te bonds, confrming
the formation of the Bi2Te3 phase [60–62]. In addition, two
peaks centered at 158.6 eV and 163.9 eV coincide with those
reported for bismuth oxide (BiOx) peaks, suggesting the
possible formation of a surface oxidation layer [60, 61].
Furthermore, the Te 3d peaks are exhibited in Figure 7(c)
whose curve contains two doublets that can be deconvoluted
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into three component peaks for each. Te peaks centered at
573.8 eV and 584.1 are representative peaks of the Bi2Te3
phase. Likewise, we have two peaks centered at 576.1 and
586.4 eV are attributed to the Te4+ state, possibly due to the
TeO2 phase formation, while the peaks centered at 577.2 and
587.6 eV correspond to the Te+6 (TeO3), also likely a result of
surface oxidation [60–65]. Te observed peak positions and
relative intensities are consistent with previously reported
Bi2Te3 samples in the literature [60–62].

Additionally, the C 1s and O 1s peaks also are observed
in the XPS spectrum of the sample, where the C-C and C-O
bonds (localized at 284.1 and 531.7 eV, respectively) exhibit
signifcant intensity compared to the remaining peaks
[66–68]. Te C peaks likely arise from the laboratory en-
vironment, while the oxygen peaks confrmed the natural
tendency of Te2− precursors to react with the environmental
air, inducing surface oxidation as evidenced by the doublet
peaks of Bi and Te in Figure 7 [69]. Specifcally, the O 1s
spectrum shown in Figure 7(d) reveals three bonding types
at 529.6, 531.7, and 535.8 eV. Te higher intensity peak
centered at 531.7 eV may be associated with lattice oxygen
from metal-oxide bonds in the Bi-Te samples [68, 70–73].
Finally, the minor intensity peaks located at 529.6 and
535.8 eV, correspond to the pair of dangling bonds O− and
O2−, and surface adsorbed oxygen O2−

2 , respectively
[66, 68–70]. However, it is important to highlight that de-
spite performing the synthesis at atmospheric pressure and
a signifcant low temperature, a high crystallinity has been
achieved compared to that reported in other studies
[1, 3, 15, 16, 32, 33, 49].

3.6. Termoelectric Characterization. Te measurement of
the Seebeck coefcient in thin flm depositions like those we
have prepared is relatively straightforward.We need to know
the temperature diference between two positions on the
deposition, and the voltage across these two points [74]. Te
Seebeck coefcient calculated as function of temperature for
a Bi2Te3 deposition on FTO substrate is shown in Figure 8.
Te homemade system used for thermoelectric measure-
ments [35] allows the substrate temperature to vary freely.
Every 5 seconds, ∆V and ∆Tare measured simultaneously at
the instantaneous mean temperature. At the lower limit
(300K), the substrate temperature is practically the same as
the reservoir, with a temperature gradient ∆T of ∼2K be-
tween the cold and hot ends. At the upper limit (423 K), the
substrate temperature is 5 to 7K higher than the upper limit,
and the temperature gradient ∆T between the cold and hot
ends is 37K. Approximately half of this of 37K diference is
within the temperature interval below 423K (cold side), and
the other half above 423K (hot side). Te positive Seebeck
coefcient values indicate that the Bi2Te3 exhibits a p-type
conductivity, possibly due to the presence of tellurium
secondary phase in the sample, as reported in Section 3.3
[39]. Additionally, an increase in the Seebeck coefcient
value is observed within the temperature interval from 300
to 320K for the deposition, reaching a maximum value of
169.25 µV/K, which is near the room temperature interval.
Tis value is greater in magnitude than those obtained in

some reports where Bi2Te3 nanoplates were synthesized by
a solvothermal process at higher temperatures than the one
used in this study [15, 54, 59, 75, 76].

4. Conclusion

We have prepared Bi2Te3 hexagonal nanoplates using
a simple convection oven as a reactor, at a lower temperature
(140°C) compared to more complex techniques reported by
other authors. Te crystallographic, structural, chemical,
and thermoelectric characteristics of the nanoplates were
analyzed. Scanning and transmission electron microscopy
verifed that bismuth telluride crystallizes in highly crys-
talline hexagonal nanoplates, with growth along the basal
plane of the rhombohedral Bi2Te3 structure and a thickness
less than the Bohr radius of the bismuth telluride exciton.
Raman spectroscopy analysis confrmed this data by
exhibiting a peak corresponding to the A2

1u vibrational mode
due to the breaking of the symmetry of the crystal in the
direction of the C axis of the R3m crystal structure of Bi2Te3.
X-ray photoelectron spectroscopy results verifed the for-
mation of highly crystalline Bi2Te3, despite the strong re-
activity of the Te2− ion precursor with ambient oxygen.
Finally, X-ray difraction analysis confrmed the crystalline
phase of Bi2Te3 nanoplates, as reported in the electron
microscopy and Raman spectroscopy sections. and indicated
the presence of a tellurium secondary phase in the Bi2Te3
deposition. Tis secondary phase infuenced the p-type
conductivity observed in the sample. Termoelectric char-
acterization of the Bi2Te3/FTO deposition yielded a maxi-
mum Seebeck coefcient of 169 μV/K, a value achieved near
room temperature and greater in magnitude than other
reports based on solvothermal synthesis of Bi2Te3 hexagonal
nanoplates.

Data Availability

All data generated or analyzed during this study are included
in this published manuscript.
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