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con Orientación en Tecnoloǵıas de la Información
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con Orientación en Tecnoloǵıas de la Información
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Hedlefs Aguilar; por dedicar de su tiempo y rigor para la revisión de la tesis.

Agradezco al cuerpo docente de DITI por su disponibilidad para resolver todo

tipo de dudas tanto dentro como fuera del aula. Particularmente, agradezco a la
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con nuestros compañeros que en su momento la apoyaron para la recoleccion de

datos, y también por su aporte de su modelo lineal que es utilizado por el sistema

multiagente para el uso de la estrategia de retención de autobuses.

Agradezco a mi pareja Monserrath Isabel Mart́ınez Miranda por darme el es-
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Chapter 1

Introduction

This chapter will initially define the bus bunching problem, its detrimental impact

on bus route performance, and the underlying factors contributing to its occurrence.

Subsequently, we will justify the contemporary significance of this issue, followed

by a historical overview and existing approaches to address it. Finally, the research

questions, general objective, specific objectives, hypothesis, and limitations of this

study will be outlined.

1.1 Thesis Structure

Figure 1.1 illustrates the thesis structure. It starts with an introduction that defines

the bus bunching problem, justifies its significance, provides a historical overview,

and outlines the research objectives. The second chapter, which represents the theo-

retical framework, will establish the fundamental concepts underpinning this study.

Subsequently, the methodology will detail the approach to achieving the stated ob-

jectives in Chapter 1. The results from applying this methodology will then be

presented, culminating in conclusions that validate whether the initial goals were

accomplished.

1
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Figure 1.1: Thesis Structure.
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1.2 Problem Statement

The bus bunching problem occurs when two or more buses on the same route become

too close to each other, disrupting the regular intervals between them. This leads

to decreased service e�ciency and increased travel times for passengers and buses

(Newell and Potts, 1964). Newell and Potts (1964), addressed this problem through

a mathematical control model that employed a bus holding strategy. This innovative

approach, designed to regulate inter-bus distances, has subsequently been applied

to address bus bunching in various contexts (Hickman, 2001; Zhao et al., 2006;

Hernández-Landa et al., 2015; Olvera Toscano, 2018; Chen et al., 2021).

Numerous studies have investigated the benefits of mitigating bus bunching on

public transport routes. For instance, Cats and Gkioulou (2017) analyzed how the

reliability of high-frequency public transport services is influenced by variations in

vehicle headway. They found that improving service regularity reduces passenger

waiting times while decreasing crowding at stops, enhancing capacity utilization

and public transport modes’ operational reliability. These findings underscore the

positive e↵ects of lowering bus bunching on overall service quality.

Furthermore, understanding the dynamics of exogenous factors that contribute

to bus bunching is crucial for addressing the root causes of the problem and improv-

ing the e�ciency of public bus services. Exogenous factors are external influences not

directly controlled by the bus system, such as tra�c conditions, weather, network

disruptions, or passenger demand variations. For example, a study using a cellular

automata simulation of a bus route demonstrated that even a 1-second reduction in

passenger boarding and alighting time can significantly a↵ect the system’s e�ciency

(Enayatollahi et al., 2019). This highlights how small external variations in the

bus route environment can substantially impact the operational e�ciency of buses

during service at stops.

Feng et al. (2016) investigates how collaborative and competitive interactions
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among bus routes sharing a common corridor can influence bus service quality. This

collateral e↵ect is crucial to consider when implementing strategies to mitigate bus

bunching on routes that share a corridor, as improvements on one route can positively

impact the performance of others.

Liang and Ma (2019) demonstrated that crowded buses, especially when there

is a significant disparity between the number of passengers aboard and the number

boarding or alighting, can exacerbate crowding not only on the same route but

also on other vehicles using the same corridor. This underscores the complexity

of the bus bunching problem, highlighting its interdependence with other modes of

transport sharing the route. One of the reasons Bus Rapid Transit (BRT) systems

o↵er improved service is their use of dedicated lanes, allowing only buses from the

same or selected routes to operate, reducing such external dependencies.

One factor beyond the control of both bus drivers and route managers is pas-

senger behavior. However, some approaches can encourage users to act in ways that

improve public transport services. For instance, Kaddoura et al. (2015) demon-

strated how public transport performance improves when passengers are informed

of arrival times and can prepare for boarding. Similarly, Cats and Gkioulou (2017),

through a case study in Stockholm, highlighted the importance of user adaptation

as passengers respond to bus behavior and service patterns. These ”passive” solu-

tions, such as providing real-time information to passengers, can reduce bus bunching

without requiring complex strategies for bus drivers. Additionally, o↵ering accurate

real-time bus location data significantly enhances user satisfaction, allowing passen-

gers to time their arrival at stops without waiting indefinitely.

Another way to improve public transport service is by collecting data on pas-

senger behavior. A case study in Greater Sydney used data from smart cards to

identify times when bus bunching occurs (Du and Dublanche, 2018). The data

collected includes passenger frequency of bus use, boarding and alighting times,

and stop locations. This information enables a comprehensive analysis of user be-

havior to inform strategies to balance bus service and minimize bus bunching on
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routes. Additional studies identified last stop locations, irregular bus dispatch in-

tervals, non-homogeneous fleets, number of intersections, number of routes serving

each stop, high demand, and demand variability as some of the most critical factors

determining bus bunching (Arriagada et al., 2019; Iliopoulou et al., 2018, 2020b).

Real-time information enables the immediate implementation of optimal strate-

gies to reduce bus bunching, including predictive models that alert bus managers and

drivers to potential bunching events or other disruptions. For instance, Sun (2020)

used automatic vehicle location (AVL) data from a bus route in Kyoto, Japan,

to predict bus bunching with a logistic regression model, achieving better results

compared to linear regression and support vector machine methods. Furthermore,

Liu et al. (2022b) conducted another study using AVL data, where they developed a

deep learning model based on LSTM Kalman filters for travel time prediction. Their

model outperformed conventional learning methods in accuracy.

Tsoi and Loo (2022) conducted a study that complements the use of predictive

models and artificial intelligence in analyzing bus bunching. They collected data

from 25,405 real-time tra�c images across 11 bus stops in Hong Kong using AI

techniques in analytical visualization. Their analysis revealed that factors like traf-

fic speed, tra�c composition, and passenger load are strongly associated with bus

bunching. This study highlights the importance of AI in gathering real-time data on

bus routes and their environments, enabling more informed decisions on strategies

to prevent bus bunching.

Recent studies have leveraged GPS technology to analyze bus behavior, gen-

erate predictive models, and plan strategies to mitigate bus bunching. Shan et al.

(2023) reached similar conclusions about the factors contributing to bus bunching.

By analyzing spatial-temporal data collected from buses’ GPS systems, they iden-

tified key factors such as tra�c congestion, bus capacity, and passenger demand

distribution at stops. Their analysis also revealed specific bus bunching patterns,

which can be used to develop e↵ective prevention strategies. Similarly, Pan et al.

(2023) analyzed the impact of tra�c factors on bus bunching and proposed a pre-
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dictive model to identify and mitigate critical points where bunching occurs. Using

GPS data, their model estimates bus speed and passenger waiting times at di↵erent

sections of the route to determine the causes of bus bunching. Their results highlight

that tra�c congestion, bus capacity, and variability in passenger demand at stops

are the primary factors contributing to bus bunching. An additional work, from Liu

et al. (2022a), developed a tiered classification of bus bunching on routes to pre-

dict its likelihood, enabling proactive action plans to prevent it. They proposed an

XGBoost-based machine learning approach, which e↵ectively classified bus bunching

at di↵erent levels to support decision-making to improve bus system e�ciency.

An important insight into the bus bunching problem is that it does not always

negatively impact bus performance. In certain scenarios, bus bunching may be

optimal to meet passenger demand. Koppisetti et al. (2018) found that when there

is significant variability in bus travel times, reducing bus frequency, despite higher

passenger arrival rates at stops, can be optimal for minimizing crowding and wait

times. Therefore, bus bunching should not always be viewed as detrimental to route

performance. A detailed analysis of its causes is essential to determine whether bus

bunching benefits or hinders service e�ciency.

Other works have considered the application of simulation models to analyze

the behavior of transport networks and propose solutions to the bus bunching prob-

lem. Wang (2022) proposed a simulation model based on Boltzmann lattice methods

to analyze the impact of tra�c flow on avenues. The simulation results showed sig-

nificant di↵erences in bus travel times under varying tra�c density conditions. Bian

et al. (2023) introduced a real-time travel speed design approach for multi-line bus

routes aimed at minimizing passenger wait times and reducing travel time variance.

Their simulation model incorporated interactions between bus lines, tra�c conges-

tion, and passenger demand. Results demonstrated that this approach significantly

improved bus system performance. Finally, Wang et al. (2024) developed a simula-

tion model to determine passenger arrival times and transfer choices based on the

interaction between passenger arrivals at stops and bus positions. Using real-world
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data, they found that high transfer demand can exacerbate bus bunching in corridors

with common-line routes.

1.3 Justification

In Mexico City, one of the most populated cities in the world, the use of bus routes

has increased in recent years. Figure 1.2, based on data from the National Institute

of Statistics and Geography (INEGI), show the rising percentage of passengers served

by buses over the past six years compared to other forms of public transportation.

While these figures indicate that the metro serves more passengers than buses,

it doesn’t necessarily mean that the metro is always the optimal choice. A recent

study found that the metro is more socioeconomically advantageous only when daily

demand is double the supply and when there is minimal variation in demand between

peak and o↵-peak hours (Avenali et al., 2020). In most other cases, buses provide a

lower social cost while delivering a service quality comparable to that of the metro.



C
h
a
p
t
e
r
1
.
In

t
r
o
d
u
c
t
io
n

8Figure 1.2: Attended passenger percentage by public transport in Mexico City



Chapter 1. Introduction 9

Figure 1.3 illustrates the growing relevance of the bus bunching problem over

the years. In recent years, the use of multi-agent systems to solve the bus bunching

problem has steadily increased due to their adaptability, making them suitable for

problems involving exogenous events and multiple interacting agents (Torreno et al.,

2017; Wang and Sun, 2020; Wang et al., 2021; Wang, 2022). The robustness of

multi-agent systems can help maintain consistent distances between buses, thereby

reducing bunching and improving route e�ciency.

Various strategies, such as bus holding, stop skipping, and speed regulation,

have been used in combination to mitigate bus bunching (Patlán Castillo, 2020;

Wang and Sun, 2020; Wu et al., 2017; Chen et al., 2016). Implementing these

strategies within a multi-agent system, either on individual buses or in coordina-

tion across multiple buses on a route, provides greater flexibility. The system can

dynamically adjust strategies based on real-time conditions, thereby reducing bus

bunching and minimizing passenger wait times.
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1.4 Background

The public transportation has a great impact on several aspects of the commu-

nity. The American Public Transportation Association (APTA) performed a re-

search study in 2023 in which it emphasized the following aspects (APTA, 2023):

• Useful: Students and workers take 78% of public transportation journeys to

school and work.

• Profitable: Every dollar spent on public transportation is calculated to gener-

ate a $5 return, and more than 50,000 new jobs are created for each $1 billion

invested.

• Safety: Public transportation is 10 times safer per mile than private trans-

portation.

• Economic: Up to $13,000 per year per vehicle can be saved per family by

taking public transportation.

Newell and Potts (1964) first identified the bus bunching problem by analyzing

the inherent instability in bus systems. In 1972, they proposed addressing this

issue through control models, specifically by incorporating slack time through bus

holding to help buses maintain their schedules. Bus holding strategies were used to

decrease bus bunching during the 1970’s (Barnett, 1974; Ignall and Kolesar, 1974).

More recently, control models remain a common approach to mitigate bus bunching,

building on the foundation of these early insights (Hickman, 2001; Hernández-Landa

et al., 2015; Olvera Toscano, 2018; Chen et al., 2021).

Over time, numerous studies have tackled the bus bunching issue by employ-

ing strategies that drivers execute based on mathematical models or computer al-

gorithms. These strategies aim to optimize bus scheduling and spacing, ensuring

smoother operation and reduced bunching (Rezazada et al., 2024; Yang et al., 2024).

Such strategies are:
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• Bus holding, the pioneering strategy to address bus bunching, proposed by

Newell and Potts (1964). This strategy requires buses to pause at stops to

allow other buses on the route to adjust their spacing. Numerous studies

have incorporated mathematical models alongside this strategy to optimize its

e↵ectiveness (Adebisi, 1986; Zhao et al., 2016; Wang and Sun, 2020; Moreira-

Matias et al., 2016; Hernández-Landa et al., 2015; Liang et al., 2021; He et al.,

2020; de Souza and Teixeira Sebastiani, 2021).

• Bus stop-skipping is a commonly used strategy where buses skip stops to main-

tain proper distances between each other on the route (Suh et al., 2002; Fu

et al., 2003; Sun and Hickman, 2005). However, it is not always feasible on

certain routes where passenger satisfaction may be compromised if stops are

skipped for alighting.

• Deadheading is a variation of the stop-skipping strategy. This approach, driven

by mathematical models or algorithms, determines how many upcoming stops

each bus should skip to manage spacing (Eberlein et al., 1998). Like regular

stop-skipping, it may not be suitable for all routes due to passenger service

concerns.

• Bus substitution during working hours addresses bunching by replacing delayed

buses with new ones positioned more optimally on the route (Petit et al., 2018,

2019).

• Speed regulation involves adjusting bus speeds to maintain appropriate dis-

tances between buses (Bian et al., 2020). Ampountolas and Kring (2020) used

a control model based on linear-quadratic Gaussian theory to regulate speeds,

applying it to real data from a route in San Francisco, showing marked im-

provements in bus arrival times.

• Short trip strategy is another method recently applied, where a mid-route

stop is set as a turnaround point for buses, allowing for rearrangement and

rebalancing of the schedule. Tian (2021) demonstrated its success, achieving up
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to a 40% improvement in schedule adherence and a 9% reduction in passenger

wait times.

Several works have combined the mentioned strategies, under di↵erent problem-

solving techniques, to address the bus-bunching problem. Comi et al. (2022) intro-

duced a reinforcement learning algorithm that uses real-time data collected through

Automated Vehicle Monitoring (AVM) systems installed on buses to mitigate bus

bunching. Their algorithm employs bus holding and speed regulation strategies,

significantly reducing instances of bus bunching and improving overall route perfor-

mance.

Wu et al. (2017) employed bus holding and bus substitution strategies to im-

prove bus route e�ciency, successfully reducing crowding and enhancing overall ser-

vice quality. Dual strategies, which combine bus holding and speed regulation, have

been considered to reduce bus bunching (Chen et al., 2021) and decrease the wait

times of passengers.

Li and Li (2022) applied a predictive model to analyze bus route behavior

and tra�c light patterns, classifying headways as stacked, stable, or with large gaps.

Based on the model’s classification, they implemented bus holding, speed regulation,

and skip-stop strategies, significantly reducing headway deviation, passenger waiting

time, and bus bunching by 77%, 41%, and 87%, respectively.

Vismara et al. (2021) explored bus bunching on cycled routes, finding that

increasing the number of stops, while keeping total demand constant, can delay

bus bunching. They also demonstrated that intentionally inducing bus bunching

at specific peak stops can minimize passenger wait times at those stops, even if it

slightly increases waiting times at others. This strategy can improve overall route

performance compared to minimizing bus bunching throughout the route (Vismara

et al., 2022).

Notice that the strategies just described are actions bus drivers can take dur-

ing plan execution to reduce bus bunching. However, there are external events that
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influence the bus bunching phenomena. Such events are called ”exogenous” over

which bus routes have no direct control. Exogenous events impacting bus perfor-

mance have been widely studied. Factors such as the time required for passengers to

board and alight (Enayatollahi et al., 2019), the performance of buses on other routes

in the same network (Feng et al., 2016), vehicular tra�c and congestion (Liang and

Ma, 2019), and real-time information available to passengers regarding bus arrivals

(Kaddoura et al., 2015) all influence the e�ciency of bus services.

The most frequent exogenous factor leading to bus bunching is the inherent

randomness of passenger arrival rates at each stop (Welding, 1957). A slight de-

viation in the spacing of buses, which would otherwise be equidistant, causes one

bus to lag behind its front counterpart and move closer to the bus behind it. This

misalignment leads to unsynchronized stop arrivals, further exacerbating route im-

balance (Gershenson and Pineda, 2009).

Vehicular tra�c on the roads where bus routes operate presents random factors

that can slow buses during their journey. Tra�c congestion and potential automobile

accidents can cause buses to become delayed or even go out of service, impacting the

entire route’s performance. Recent research also examines how public transportation

systems can contribute to overall tra�c congestion (Nguyen-Phuoc et al., 2020).

Decisions made by passengers before boarding also contribute to bus bunching.

Studies show that choices regarding which bus to board, especially when multiple

buses arrive at a stop simultaneously, a↵ect crowding dynamics (Wang et al., 2018;

Wang and Sun, 2021). Research by Sun and Schmöcker (2018) indicates that when

passengers board the last arriving bus at a stop, the likelihood of bus bunching is

reduced, highlighting the influence of passenger decisions on the system’s behavior.

Furthermore, several additional factors contribute to the decline in bus route

service quality and exacerbate bus bunching. These include irregular departure

schedules, inconsistent frequency, route length, passenger demand, boarding and

alighting times, the number of stops on the route (Tirachini et al., 2022), and even
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buses from di↵erent routes traveling on the same roads (Iliopoulou et al., 2020a).

Recent advances have popularized prediction models to combat bus bunching

and mitigate the e↵ects of exogenous events on bus routes, yielding favorable results

(Yang et al., 2019; Sun, 2020; Gong et al., 2020; Deng et al., 2020; Zhang et al., 2020;

Baimbetova et al., 2021; Berrebi et al., 2018). Xin et al. (2021) applied predictive

models to regulate bus speed based on tra�c light positions, reducing wait times

and minimizing bunching. Similarly, Huang et al. (2021) used functional data anal-

ysis and Bayesian support vector regression, achieving positive results in bunching

reduction.

Andres and Nair (2017) introduced a predictive model coupled with bus-

holding strategies to reduce crowding. The holding time was dynamically deter-

mined using the predicted and real-time data from the buses. A model developed by

Moreira-Matias et al. (2014) utilized a perceptron delta rule to predict bus holding

times across multiple routes. The model accurately predicted bus bunching events

up to 13 stops ahead, allowing proactive interventions to prevent bunching.

Quek et al. (2021) employed a Monte Carlo-based empirical network model to

simulate passenger arrivals using GPS data. They tested bus holding, non-boarding,

and centralized pulse strategies on university buses, with the centralized pulse strat-

egy yielding the best results, especially when buses traveled at di↵erent speeds.

Gene expression programming and decision trees have also been used to model

bus crowding. These models outperformed logistic regression, with schedule devi-

ation identified as the primary factor leading to crowding (Rashidi et al., 2017).

Similarly, Chioni et al. (2020) employed geographic weights regression on a route

in Athens, finding that bus bunching increases with the number of lanes and bus

routes serving a stop. Ma et al. (2021) developed an ensemble decision tree model

to predict bus bunching up to 10 stops in advance based on bus position, tra�c,

and weather data, showing strong predictive accuracy. These prediction models

have been equally e↵ective on express bus routes, stabilizing headway progress and
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improving route e�ciency.

Our previous work developed a multi-agent system simulator, BUSIMA, to

minimize bus bunching (Patlán Castillo, 2020), utilizing various strategies within a

distributed architecture that enables agent coordination. This system is freely avail-

able to use to anyone on a GitHub repository. These agents, representing buses,

collaboratively adjust their distances from one another on the route. The simulator

was tested using data from several instances, including a fast bus route called Ecov́ıa

in Monterrey, Mexico (Olvera Toscano, 2018). The results demonstrated a significant

reduction in bus bunching across all phases analyzed. BUSIMA was implemented in

Java using the JASON library, which supports intelligent agent behavior, environ-

mental interaction, and multi-agent system dynamics (Weiss, 1999).

This thesis plans to incorporate exogenous events into the BUSIMA simulator

to assess the robustness of the multi-agent system under real-world, unpredictable

conditions. After this integration, the planning and communication algorithms will

be fine-tuned to enhance the system’s robustness and stability. This will ensure

the multi-agent system remains e↵ective in minimizing bus bunching, even in the

presence of external disturbances or unforeseen events.

1.5 Research questions

• How much is the di↵erence in performance (bus bunching, passenger wait-

ing time) in a simulation with exogenous events versus a simulation without

exogenous events in a multi-agent system framework?

• Does the mixed-initiative system improve the performance of the multi-agent

system in the presence of exogenous events?

• Is the multi-agent system robust and adaptive in the presence of exogenous

events once heuristics are integrated?

• Are there any combinations of exogenous events that significantly a↵ect the



Chapter 1. Introduction 17

performance of the multi-agent system?

1.6 General Objective

Design a multi-agent system with heuristics and mixed-initiative support to decrease

bus bunching in instances with exogenous events closer to real scenarios.

1.7 Specific Objectives

• Develop three multi-agent system heuristics to minimize bus bunching in the

presence of exogenous events.

• Develop a mixed-initiative multi-agent system to consider the human factor

for the decision-making process in bus bunching problems.

• Perform a statistical analysis on the simulation performance of a multi-agent

system with and without exogenous events to determine how adaptive the

system is.

• Perform a design of experiments to determine the best strategy or sets of

strategies that minimize bus bunching in the presence of exogenous events.

1.8 Hypothesis

The multi-agent system, enriched with heuristics and a mixed-initiative strategy,

will reduce the bus bunching on a bus route in the presence of exogenous events.

Multi-agent systems have been specifically designed to address problems by

adapting to dynamic environments through communication, collaboration, and co-

ordination strategies (Torreno et al., 2017). In the context of public transportation



Chapter 1. Introduction 18

domains, multi-agent systems frequently encounter exogenous events that impact

the system’s performance, which require the application of heuristics to make them

adaptable. The heuristics proposed in Chapter 3 are developed with the objective

that agents, representing buses in the network, can plan swiftly and e↵ectively in

response to the environmental factors that may trigger or exacerbate bus bunching

due to various exogenous influences.

1.9 Limitations

The simulation will be conducted on a personal computer, which may impose limi-

tations on computational resources, particularly when simulating complex scenarios

that surpass the system’s memory and processing capabilities. However, since the

experimentation is measured in simulation time units (ticks), the hardware specifi-

cations should not a↵ect the accuracy or validity of the results presented in the later

chapters. The specifications of the computational system used for these simulations

are as follows:

• Operating System: Windows 11

• Processor: Intel i5 11400

• RAM: 16GB

• Storage: 512GB Solid State Disk



Chapter 2

Theoretical Framework

This chapter will present the theoretical foundations and key concepts underlying

the research. The discussion will begin with the mathematical modeling of the bus

bunching problem, providing a formal framework for analysis. This will be followed

by a detailed definition of multi-agent systems, including their characteristics, prop-

erties, and how they are used to address complex, dynamic problems. The chapter

will also explore how these systems operate in cooperative environments, laying the

groundwork for understanding their role in mitigating bus bunching through the

strategic interaction of intelligent agents.

2.1 Mathematical Modeling

A bus route is a public transportation service consisting of a fleet of buses and a se-

ries of designated stops, with each bus transporting passengers between these stops

along a predefined route. The primary goal of a bus route is to meet passenger

demand e�ciently, ensuring that passengers reach their destination in the shortest

possible time. As discussed in the previous chapter, minimizing passenger wait-

ing time is often the central objective in mathematical models addressing the bus

bunching problem. However, alternative objective functions can also be considered,

such as minimizing headway variability between buses or maximizing the number of

passengers picked up.

Given the constraints and complexities outlined earlier, a simulation will be

19
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employed to analyze the performance of the multi-agent system in addressing the bus

bunching issue. This simulation will allow us to explore and evaluate various strate-

gies and their e↵ectiveness under di↵erent conditions. Ross (2022) defines simulation

as the imitation of a real-world process over time. Simulations enable the testing

of algorithms and models in a controlled environment before their implementation

in real-world scenarios, allowing for performance and e↵ectiveness analysis of the

proposed approaches. The simulation environment must incorporate as many char-

acteristics of the real system as possible to produce results that apply to real-world

conditions.

In addition to capturing realistic dynamics, it’s essential to classify correctly the

features integrated into the simulation environment. These should be distinguish-

able as independent variables that directly influence the outcome of the system. A

thorough analysis of the factors in the real environment is needed to ensure that

only relevant variables are integrated and controlled. This ensures that the e↵ects

of the independent variables on the dependent variables can be accurately measured

and that no unforeseen extraneous variables obscure the results.

Mathematical models are commonly employed in simulations, as they provide a

formal language to represent and analyze the behavior of real-world scenarios (Mar-

ion, 2008). By expressing complex phenomena through mathematical equations and

relations, these models enable the development of theories to explain and predict

the behavior of systems. When combined with simulation, mathematical models

o↵er a way to test and validate theories computationally before applying them in

real-world scenarios. Mathematical models enable the use of optimization tech-

niques to solve optimally complex problems. Linear programming provides optimal

solutions for models with continuous linear variables, while integer programming is

used for models with discrete domain variables. Combining these techniques results

in Integer-mixed programming(Andréasson et al., 2020). This mixed-integer pro-

gramming approach has been applied in several studies to model the bus bunching

problem (Hernández-Landa et al., 2015; Olvera Toscano, 2018).
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Probabilistic models are also used to simulate specific scenarios on bus routes,

such as passenger arrival rates at bus stops. Descriptive statistics helps identify key

characteristics of data sets, while inferential statistics enables us to make conclu-

sions about a broader population from a sample of data. Both areas of statistics

rely heavily on probability, which allows us to estimate the likelihood of certain out-

comes, providing valuable insights into the composition of a population (Menden-

hall III et al., 2007). Unlike mathematical models that aim for exact solutions,

probabilistic models produce probabilistic distributions, o↵ering a range of possible

outcomes rather than a single deterministic result (Alon and Spencer, 2015). For ex-

ample, the passenger arrival rate at bus stops, in the bus bunching problem, can be

simulated with the Poisson probability distribution (Hernández-Landa et al., 2015;

Olvera Toscano, 2018):

p(r;µ) = µre�µ

r!

The variable r is a non-negative integer and the variable µ is a positive integer.

The Poisson distribution describes the probability of exactly r events occurring in a

given time interval, if the events occur independently at a rate of µ.

A simulation must closely mimic real-world scenarios to ensure the reliability of

the results in analyzing the performance of implemented algorithms. However, real-

world processes often involve exogenous events that are di�cult to manage and can

disrupt the e�ciency of the algorithm. To address such challenges in the context of

bus routes, this research proposes using a multi-agent system combined with a mixed-

initiative system, which will be defined later in this chapter, to incorporate human

input into the decision-making process of bus drivers. This hybrid approach aims to

improve adaptability and decision-making in response to unpredictable events.
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2.2 Object Oriented Programming

The multi-agent system and the mixed-initiative system proposed in this research

utilize the object-oriented programming paradigm for both data representation and

function implementation. The key characteristics of object-oriented programming

include the following (Balagurusamy, 2008):

• Encapsulation: A grouping of data and methods that act on that data into

a single unit, or class, while limiting access to some of the object’s components

for safety and modularity.

• Abstraction: Simplifying complex systems by modeling classes suited to the

problem, while hiding implementation details and exposing only the required

parts of the code.

• Inheritance: Capacity to create new classes from already existing ones, en-

abling code reuse and creating hierarchical relationships among classes.

• Polymorphism: Capacity to treat objects di↵erently depending on their data

type or class, enabling the same method to act di↵erently depending on the

object on which it is used.

Objects are indeed the fundamental runtime entities in an object-oriented sys-

tem, representing user-defined data through structured data types (Balagurusamy,

2008). In the multi-agent system of this research, each entity in the bus route en-

vironment—such as buses, stops, and passengers—is modeled as an object. These

objects have their own attributes (e.g., bus speed, stop location, passenger count)

and methods (e.g., boarding, alighting, adjusting speed) that allow them to interact

with each other and store relevant information throughout the simulation run. This

structure enables e�cient data management and interaction in the simulation.

Due to the previously described benefits, such as encapsulation, inheritance,

and modularity, object-oriented programming was chosen for the development and
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implementation of the heuristics and mixed-initiative system integrated into the

multi-agent system. This approach enables better organization and flexibility in

managing the di↵erent entities involved in the simulation, allowing the system to

handle complex interactions between buses, passengers, and stops. Additionally, it

facilitates the integration of new features and strategies to improve decision-making

processes within the system.

2.3 Intelligent Agents

A multi-agent system is composed of several agents working together to solve prob-

lems or perform tasks cooperatively. To understand this, we first need to define

what an agent is. According to Russell and Norvig (2016), an agent is an entity that

perceives its environment via sensors and acts upon it through actuators. Among

these, rational agents are those that act in a way that maximizes their expected

performance, based on their perceptions of the environment.

Weiss (1999) classifies agents into several categories that lead to the architec-

ture of intelligent agents:

• Logic-based agents: These agents make decisions through logical deduction,

using a set of predefined rules and logic to determine the appropriate actions.

• Reactive agents: These agents operate by mapping situations directly to

actions. They respond to stimuli from the environment without involving

complex deliberation.

• Belief-desire-intention (BDI): These agents make decisions based on their

beliefs about the world, their desires (objectives), and their intentions (plans

for achieving those desires).

• Agents with layered architecture: These agents divide decision-making

across multiple software layers, where each layer operates at a di↵erent level

of abstraction and reasoning.
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An intelligent agent not only acts correctly but performs the best possible

actions based on its current environment and situation. Weiss (1999) elaborates on

the behavior types that define an intelligent agent:

• Proactivity: Intelligent agents exhibit goal-oriented behavior by taking ini-

tiative to achieve their objectives. This proactive nature is crucial for problem-

solving and fulfilling tasks required by the environment in which they operate.

• Reactivity: These agents can perceive changes in their environment and re-

spond promptly to those changes. Reactivity ensures that the system adapts

dynamically to unforeseen events or fluctuations in the problem space.

• Social bonding: Intelligent agents interact with other agents to achieve their

goals, which allows them to share environmental information, improve decision-

making, and coordinate actions for mutual objectives.

• Autonomy: Agents operate independently, making decisions and taking ac-

tions based on their understanding of the environment and the problem they

aim to solve. This independence enables them to display unique behaviors

suited to their specific needs and circumstances.

These behaviors are key to designing multi-agent systems capable of e�ciently

handling complex and dynamic problems, such as bus bunching in public transporta-

tion.

2.4 Multi-agent systems

A multi-agent system (MAS), on which our solution BusiMA is based, is a col-

lection of multiple intelligent agents that interact and coordinate to solve complex

problems that are di�cult or impossible for a single agent to tackle (Sycara, 1998;

Bordini et al., 2007; Weiss, 1999). These systems are a key area within distributed
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artificial intelligence (DAI), which focuses on the interactions and coordination be-

tween autonomous agents to achieve goals collectively or individually (Bond and

Gasser, 2014).

MAS operates in decentralized environments where agents have limited infor-

mation and control over the system but work together to achieve shared or individual

goals (Ferber et al., 2003). The agents in a MAS may have di↵erent roles, capabilities,

and knowledge about the environment, and their coordination is crucial to ensure

success. These systems can be applied in various domains such as transportation,

robotics, and network optimization.

Multi-agent systems are characterized as asynchronous systems where data is

typically decentralized, meaning that no single agent has complete knowledge of the

entire system. Each agent operates based on its own limited perspective and local

information (Durfee and Rosenschein, 1994). While this might seem like a compu-

tational disadvantage, it allows for more realistic simulations by replicating the way

real-world agents work, such as bus drivers, which only have access to real-time data

and their immediate surroundings. This decentralized nature encourages flexibility

and adaptability, enabling agents to make local decisions while coordinating with

others when necessary. The multi-agent system, proposed in this work, follows these

properties.

2.5 Multi-agent organization

From a sociological point of view, organizations are defined by their external be-

havior and structure, which persists regardless of agent participation. However,

in distributed artificial intelligence (DAI), MAS focuses on the individual agents’

mental states and their contributions to system-wide behavior (Weiss, 1999). An

organizational structure in MAS must meet the following requirements (Weigand

and Dignum, 2004):
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• Internal autonomy: The interaction should remain independent of the agent’s

internal design.

• Collaborative autonomy: The organization should allow flexible interac-

tions without predefined constraints.

Agents in a MAS interact through cooperative or non-cooperative behaviors,

depending on whether they share a common goal or pursue self-interest (Weiss, 1999;

Padgham and Winiko↵, 2005). This leads to two organizational approaches:

• Structural approach: Focuses on coordination mechanisms for achieving

global goals.

• Institutional approach: Relies on norms and regulations to govern agent

interactions, which dictate acceptable behavior.

An organizational structure is defined as ”that which persists when compo-

nents or individuals enter or leave the organization, that is, the relationships that

make the aggregate of elements a whole” (Ferber et al., 2003). This emphasizes

the continuity of the organization despite changes in its components. Based on this

concept, Horling and Lesser (2004) define a multi-agent organization as a collection

of roles, relationships, and authoritative structures governing its behavior. These

structures enable the agents to collaborate, coordinate, and achieve collective goals

e↵ectively within the multi-agent system. This perspective highlights the impor-

tance of roles and interactions in sustaining an organization’s functionality, even in

dynamic, agent-based environments.

The main aspects that must be represented in any model involving organiza-

tional e↵ectiveness or behavior are Weiss (1999); Yokoo et al. (1998):

• Environment: Refers to the organization’s space. If it is not fully controllable

by the organization, then outcomes are not always guaranteed. The environ-

ment can include the description of tasks, exogenous events, and resources,
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characterized by properties such as volatility, scarcity, unpredictability, and

complexity.

• Agents: These are the acting and reasoning entities in the organization. They

possess the partial ability to control elements of the environment and are de-

fined by their capabilities, such as learning, communication, reasoning, and

decision-making.

• Structure: This encompasses the organization’s characteristics, including ob-

jectives, roles, relationships, and strategies. It defines the control, coordina-

tion, and power relationships, including factors like the structure’s size, cen-

tralization, and formalization.

Agents, in a multi-agent system, are intelligent and artificial entities that pos-

sess the following characteristics:

• Autonomy: This characteristic enables an agent to make independent deci-

sions and perform actions. The decision-making process varies by model, with

this work using the Belief-Desire-Intention (BDI) model (explored in the next

section).

• Reactivity: It refers to an agent’s capacity to respond to environmental changes

or events, ensuring responsiveness to dynamic conditions.

• Social Capability: Agents can interact and communicate with other agents,

facilitating information sharing to improve decision-making and enable collab-

orative actions.

• Proactivity: This attribute allows agents to initiate actions and decisions to

achieve specific objectives, supporting goal-driven behavior.
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2.6 Social Ability in Multi-Agent Systems

As discussed in previous sections, agents in a multi-agent system (MAS) generally

lack complete knowledge of the environment in which they operate. The social

ability of agents allows them to interact with each other, exchanging information

and making decisions based on their individual perspectives and the knowledge they

share. Through this interaction, agents can make more informed decisions.

Given their social capabilities, agents in a MAS can negotiate to obtain re-

sources or information necessary for achieving their goals. Negotiation within MAS

requires four key elements (Weiss, 1999):

• A defined set of possible outcomes following negotiation or information ex-

change.

• The agents involved in the negotiation process.

• A protocol that governs how agents seek a common agreement.

• Individual strategies that determine each agent’s behavior based on their pref-

erences and available information.

Negotiation outcomes in MAS can be classified into three domains (Rosenschein

and Zlotkin, 1994):

• Task-Oriented Domains: Focuses on the division of tasks to be executed, where

the agents’ preferences are influenced by the costs associated with tasks, and

each agent aims to minimize its task-related costs.

• State-Oriented Domains: Involves collaborative decision-making about desir-

able states. Agents prefer states that align with their own goals. Each agent

seeks to reach its preferred states.
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• Value-Oriented Domains: Involves deciding jointly on the objectives to pursue.

Preferences are based on the number of individual goals each outcome fulfills.

Each agent seeks to achieve as many goals as possible.

Agents’ social abilities also enable them to engage in argumentation, where

arguments serve as “reasons to support or criticize an assertion that is questionable,

or open to doubt” (Walton, 2005). The argumentation process involves four steps

(Weiss, 1999):

1. Constructing arguments (supporting or opposing statements) from available

information.

2. Identifying conflicts among arguments.

3. Assessing the acceptability of various arguments.

4. Formulating justified conclusions.

A MAS can contain diverse types of agents, enabling systems with di↵erent

agent groups to pursue various objectives. This diversity facilitates the simulation

of scenarios where agent groups may have competing or opposing goals. Further-

more, MAS can dynamically adapt and apply heuristics to respond to unexpected

environmental changes, and this flexibility has been utilized in addressing issues like

bus bunching (Neumann and Nagel, 2010; Kieu et al., 2016; Zhou et al., 2017).

The reactive and social capabilities of agents in a MAS are often modeled

using game theory. Abramson (2006) defines game theory as the study of outcomes

resulting from strategic interactions among rational agents. Game-theoretic models

evaluate agents’ decision-making preferences to optimize outcomes.

Problems encountered in MAS are often classified as Distributed Constraint

Satisfaction Problems (DCSP). A Constraint Satisfaction Problem (CSP) involves

finding a consistent assignment of values across a set of variables. A DCSP extends
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this concept, distributing the variables and constraints across the intelligent agents

in the system (Yokoo et al., 1998).

2.7 Multi-agent system environment

In multi-agent system (MAS) simulations, accurately modeling the environment is

fundamental to ensuring that the simulated MAS behaves as expected and that

the problem is accurately represented. The environment in a MAS is considered a

primary abstraction that sets the conditions for agents to exist, facilitates interaction

among agents, and provides access to shared resources (Weyns et al., 2007). Agent

environments have several defining characteristics (Russell and Norvig, 2016):

• Observable: An environment is fully observable if an agent, via its sensors, can

perceive the complete state of the environment. It is partially observable if an

agent perceives only a portion of the environment’s state, and it is completely

unobservable if the agent cannot access any environmental data, either due to

a lack of sensors or environmental constraints. In the context of a bus route,

the environment is partially observable because bus agents can perceive their

surroundings and communicate with each other and with a checkpoint agent.

However, this provides only partial knowledge of the entire bus network.

• Deterministic or stochastic: If the next state of the environment can be pre-

dicted based on the current state and the agent’s actions, the environment is

considered deterministic; otherwise, it is stochastic. In a bus route, due to the

existence of random and external events, the environment is stochastic.

• Episodic or sequential: In episodic environments, agents’ actions do not influ-

ence future outcomes, while in sequential environments, current actions can

impact future events. A bus route environment is sequential since the actions

of bus agents, such as adjusting speed, can increase or decrease bus bunching,

a↵ecting the route’s stability and performance.
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• Dynamic or Static: A dynamic environment changes state independently of

agent actions, while a static environment changes only in response to agents.

The bus route environment is dynamic because it is always changing, regardless

of the bus agents’ decisions.

• Discrete or Continuous: Discrete environments feature time states where ac-

tions or perceptions occur at set intervals (ticks). Continuous environments,

by contrast, involve continuous perceptions and actions. In a bus route simula-

tion, the environment is continuous because agents are continuously perceiving

speed and location to adjust their actions accordingly.

For this research, the BusiMA software will be used to simulate the MAS.

BusiMA is a specialized simulator for analyzing MAS performance across di↵erent

strategies on bus routes (Patlán Castillo, 2020). Custom programming adjustments

will be applied to incorporate exogenous events, allowing for a detailed analysis of

MAS performance. Further technical details will be outlined in the next chapter.

2.8 Belief-Desire-Intention (BDI) Model

The BusiMA simulation software is based on the Belief-Desire-Intention (BDI) model,

a widely used framework for developing autonomous agents in multi-agent systems

(MAS) (Bordini et al., 2007). The BDI model is designed to mirror rational decision-

making processes, enabling agents to make context-aware choices.

In the BDI model, beliefs represent the agent’s knowledge about its environ-

ment and other agents, which may vary in accuracy depending on the agent’s data-

gathering capabilities and its “trust” in the information shared by others. Desires

Represent the goals or states the agent seeks to fulfill. While achieving all desires

may not be feasible, the agent’s actions aim to maximize desire fulfillment. Finally,

the intentions are the specific actions the agent commits to based on its beliefs and

desires.



Chapter 2. Theoretical Framework 32

Due to potential exogenous events, agents may not always fulfill their inten-

tions, necessitating heuristics to adapt accordingly. Intentions pose challenges that

agents must overcome; therefore, agents monitor and may retry actions if an inten-

tion fails.

A fundamental part of multi-agent systems is the adaptation of the agents to

the environment and the problems they are facing to maintain the robustness and

e�ciency of the system. For individual agent adaptation, machine learning methods

allow agents to adapt to new circumstances present in the environment and to detect

and extrapolate patterns (Russell and Norvig, 2016).

In particular, multi-agent learning studies definitions, algorithms, interactions,

and reward structures to create adaptive agents that function in an environment

where their actions shape them and are shaped by the actions of other agents

(Weiss, 1999). Most multi-agent learning algorithms are based on machine learning

algorithms, such as supervised learning, unsupervised learning, and reinforcement

learning, among others, considering the possibility of using multiple agents in the

environment (Weiss, 1999).

The heuristics generated by multi-agent systems stem from the basic concepts

of automated planning. Automated planning is the representation of future behavior

composed of actions to be executed by one or more agents (Ghallab et al., 2004).

Particularly, in multi-agent systems, multi-agent plans are generated, which consider

the interaction between agents to execute the generated plan (Russell and Norvig,

2016).

Multi-agent control refers to how agents in a multi-agent system can be pro-

vided with information and how they use it to make better decisions for what to do

at that moment, while multi-agent planning does not focus only on current choices,

but on a succession of decisions, which allow the agent to see further, in such a

way that allows it to establish conditions for another agent to achieve some shared

accomplishment (Weiss, 1999).
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Agent programming is based on the Agent-Oriented Programming (AOP)

paradigm that first appeared in an article written by Shoham (1993). The pro-

gramming language introduced in the article was called AGENT0. Other agent-

oriented programming languages popularized in the 1990s were METATEM, Golog,

AgentSpeak, and 3APL (Weiss, 1999).

Multi-agent-oriented programming (MAOP) requires several essential features

to enable agents to work within a dynamic and interactive environment (Weiss,

1999). For example, agents must be able to react to events and long-term goals,

execute action flows based on their circumstances, perform just-in-time planning,

handle failed plans, work under rational behavior, communicate and act on messages,

and adjust their operational code in real-time to meet the system’s evolving demands.

One of the most well-known languages for multi-agent-oriented programming

is JASON (Weiss, 1999). JASON is based on the BDI model, which enables the

representation of agent behavior, social interactions, and environment simulation.

JASON integrates with Java, providing access to many libraries that facilitate robust

multi-agent system implementation.

The design phase in MAOP addresses key structural aspects for developing

multi-agent systems. The design has to define the agent types, roles, and goals,

the communication protocols among agents, the coupling degrees of agents, and the

agent functionality.

2.9 Mixed-Initiative Systems

Mixed-initiative systems facilitate collaborative interactions in which each partic-

ipant (human or automated agent) contributes in ways that are most relevant to

the task or context at any given time. Walker and Whittaker (1995) describe an

initiative as “taking the lead in the conversation,” whereas Smith (1994) defines it

as “handling a task”.
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This shared control fosters flexible problem-solving, with agents (both human

and artificial) contributing strategically to optimize task completion and decision-

making processes (Allen et al., 1999).

Chanel et al. (2020) examined the e↵ects of mixed-initiative interaction in

human-agent collaboration, finding that joint problem-solving enhances adaptability

and improves performance in achieving objectives. Their research demonstrated how

such interactions allow for timely countermeasures, significantly enhancing system

robustness.

In contexts such as bus route management, implementing a mixed-initiative

system is essential for a realistic simulation, as bus drivers may make decisions

that di↵er from those recommended by the multi-agent system. This divergence

reflects real-world variability and emphasizes the importance of human judgment

in operations. For e↵ective implementation, system usability is a priority since

operators may lack specialized knowledge in information technology. Guidelines

for designing usable mixed-initiative systems thus ensure accessibility and intuitive

interaction, accommodating a range of user expertise (Kumarswamy, 2020).



Chapter 3

Methodology

This chapter details the steps taken to carry out the experimentation needed to

answer the research questions, achieve the objectives, and evaluate the hypothe-

ses presented in Chapter 1. Figure 3.1 depicts a high-level flow of the research

methodology, which considers the definition of the exogenous, variables and collec-

tion instruments of the problem, the design of heuristics and the mixed-initiative

system, and the experimentation and analysis of the results.

Figure 3.1: High-level methodology process.

3.1 Exogenous Factors

Three exogenous factors were selected to simulate disruptions on the bus route and

analyze how agents mitigate these e↵ects: random speed limits, passenger arrival

rate variations, and random bus breakdowns.

35
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• Random Speed Limits: Speed limits on routes between stops are randomized,

mimicking events like tra�c or construction conditions. Parameters include

the probability of speed increases or decreases.

• Passenger Arrival Rate Variations: Passenger arrival rates at stops are ran-

domized to reflect variations in demand. Parameters include the likelihood

and degree of demand fluctuation.

• Random bus breakdowns: External events to simulate bus breakdowns or ac-

cidents. A suspension probability is applied at each time unit, testing the

multi-agent system’s resilience to bus outages.

3.2 Independent and dependent problem

variables

We define a set of dependent and independent variables, which can be parameterized,

to assess the e↵ectiveness of the multi-agent system’s heuristics against exogenous

factors. Independent variables allow customization of the MAS environment and ex-

perimentation, while dependent variables allow for answering the research questions

outlined in Chapter 1.

Independent Variables consider the following factors: the presence or absence

of the exogenous factors described in the previous section, the presence or absence

of agent heuristics, the presence or absence of user interaction (i.e., mixed-initiative

system), the presence or absence of bus bunching strategies (i.e., bus-holding, skip-

stop, deadheading, and speed regulation).

The dependent variables answer the hypothesis and research questions pro-

posed for this work. These variables provide results for the average bus headway

deviation and the average passenger waiting time. The first variable is calculated for

each time unit of the simulation, tracking the variability in spacing between buses.
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The second variable measures how long passengers wait, from arrival at a stop until

bus pick-up, in simulation time units.

3.3 Design Instrumentation

Instruments are specified to capture and measure independent variable e↵ects accu-

rately. Positions of buses and distances between each pair of buses are saved and

analyzed in real-time. These calculations provide an ongoing record of headway

deviation and passenger waiting times across each simulation run.

3.4 Heuristics

Heuristics were created to allow the multi-agent system to respond adaptively to

exogenous disruptions, thereby mitigating the e↵ects on bus performance. The agent

heuristics take into account several variables like the current position and capacity of

each bus, current passenger arrival rate at each stop, speed limits between stops, and

positions of the buses on the public transport network. The proposed heuristics are

the speed-limiting bus-holding heuristic, dead-heading level heuristic, and temporary

bus-stop creation heuristic.

3.4.1 Heuristic I: Speed limiting bus-holding heuristic

When a bus agent encounters a decreased speed limit on an avenue, due to exogenous

events in the network, the following protocol is executed:

1. The bus agent reports the reduced speed to the central control agent.

2. The central control agent notifies other bus agents that the indicated avenue

has a decreased speed limit.

3. On the following stop after the a↵ected avenue, buses will be instructed to
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perform a bus holding for an amount of time proportional to the speed limit

reported (i.e., the lower the speed limit, the longer the holding time).

Figure 3.2 shows how the system responds at upstream and downstream stops

based on speed changes.

Figure 3.2: Central control actions in response to reduced speed limits: Heuristic I

When the speed limit returns to normal, the bus agent updates the central

control agent, who then informs other agents to normalize their speed parameters.

3.4.2 Heuristic II: Dead-heading level heuristic

The dead-heading level heuristic is used to mitigate the e↵ects of randomness in

passenger arrival rate at bus stops. It consists of labeling each bus stop with dead-

heading level according to its passenger demand. The dead-heading level indicates

the number of buses that must make a skip-stop before the stop can be served.

For example, a stop with a dead-heading level of one will be served by a bus only

when another bus has previously skipped the stop. Initially, stops are marked with

a dead-heading level of zero.

The dead-heading level protocol is as follows when the passenger arrival rate

at a bus stop surpasses the usual demand:

1. A bus agent identifies a higher demand at a stop, notifying the central control

agent of the situation.
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2. In response, the central control agent applies the dead-heading strategy, ad-

justing each stop’s dead-heading level according to demand. The stop with a

high passenger rate decreases its dead-heading level by one, while the other

stops increase their levels by one.

3. Once bus agents receive the message from the central control agent, they re-

calculate their intentions to consider the stop with high passenger demand.

Figure 3.3 shows an example of the specific stops to be prioritized based on

demand fluctuations, managing bus spacing.

Figure 3.3: Heuristic II: Dead-heading level heuristic adjustments in response to

increased passenger arrival rates

3.4.3 Heuristic III: Temporary bus-stop creation

heuristic

Exogenous events like bus breakdowns or road accidents can disable bus operations.

To simulate such cases, the MAS system allows for establishing a probability of a bus

being suspended from the route services for each time unit during the simulation.

To account for the random suspension of buses, a new heuristic is introduced. The

idea of the new heuristic is to create a temporary bus stop in the public network

where the bus is disabled, in order to re-plan the intentions of the rest of the bus

agents. The protocol for the heuristic is as follows:
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1. When a bus suspends its service on a route, it notifies the central control agent

of the situation.

2. The central control agent sends a message to the other bus agents about the

suspended bus, and that a temporary stop has been added at the location of the

suspended bus. Notice that this temporary stop will not have new passengers

arriving, it only contains the stranded passengers from the suspended bus

(Figure 3.4).

3. Bus agents recalculate their intentions to consider the new temporary stop

(Figure 3.5).

4. If a bus agent satisfies the passenger demand at the temporary stop, it notifies

the central control agent about it (Figure 3.6).

5. Once the central control agent receives a message that the demand is satisfied

in a temporary stop, it removes it from the route, notifying the network about

it to resume planned operations.

Figure 3.4: Visual representation of central control agent actions for heuristic III (1)
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Figure 3.5: Visual representation of central control agent actions for heuristic III (2)

Figure 3.6: Visual representation of central control agent actions for heuristic III (3)
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3.5 Mixed-Initiative System

A mixed-initiative system was developed to analyze the impact of human interven-

tion within the system. The mixed-initiative system allows users to input decision-

making parameters, simulating human intervention, to control bus spacing and man-

age disruptions. Figure 3.7 shows the user interface prototype, enabling parameter

adjustments such as bus holding time and skip-stop decisions.

Figure 3.7: User interface proof of concept for mixed-initiative system control.

Furthermore, Figure 3.8 shows the simulator integrated with the Mixed-Initiative

system prototype. Notice that the simulator allows users to interact, in real time,

with the public transportation system. Users can move forward or backward in time

in the simulator, and at the same time enact certain actions for each transportation

unit in the network. The simulator provides information on the status of the net-

work regarding the actual capacity of the buses, the number of passengers left at

bus stops, actual speeds, and so on; important criteria for making decisions.
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Figure 3.8: Mixed-Initiative Simulator

3.6 Sample Selection

The experiment evaluation includes three sample types: one based on real data from

the ECOVIA system and two datasets used in previous studies. The data from

ECOVIA system was obtained on 2018. These diverse samples allow us to compare

the results of our approach with previous work and to validate the consistency of

the proposed solution. The next chapter describes the characteristics of the di↵erent

datasets that define the public transport networks selected for evaluation.

3.7 Experimental Design

The research questions from Chapter 1 guide the experimental design. Table 3.1 lists

the 16 combinations of the independent variables to address the following evaluation

categories:
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• Performance Di↵erence with/without Exogenous Events: To estimate the im-

pact of exogenous factors on bus bunching and passenger waiting times. Recall,

from previous chapters, that the exogenous events considered are: speed limit

randomness (SLR), arrival rate randomness (ARR), and Bus Suspension Ran-

domness (BSR).

• System Robustness with Heuristics: To evaluate agent adaptability to exoge-

nous events.

• E↵ect of Mixed-Initiative System: To examine performance improvements from

user intervention.

• Impact of Combined Exogenous Events: To identify which events most a↵ect

multi-agent performance.

3.8 Results Analysis

The results, discussed in the next Chapter, will be analyzed using ANOVA to eval-

uate variance across di↵erent experimental conditions, with visualizations showing

dependent variable trends across simulations. These analyses provide insights into

the e↵ectiveness of the multi-agent system, heuristics, and mixed-initiative system.

Minitab stadistic software will be used for ANOVA.



Chapter 3. Methodology 45

Independent

Variables

Exogeneous

Factors

Experiment SLR ARR BSR

Mixed-Initiative

System
Heuristics

1

2 X X X X

3 X X X X

4 X X X

5 X X X

6 X X

7 X X X

8 X X

9 X X

10 X X X

11 X X

12 X X

13 X

14 X X

15 X

16 X

Table 3.1: Design of Experiments
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Results and Discussion

This chapter details the results obtained after the empirical evaluation, based on the

experimental design described in section 3.7. For each of the 16 experiments, com-

bining the input from the independent variables, 10 evaluation runs were performed,

with a significance level of 0.05 for the ANOVA test. The experiments were carried

out on a Windows 11 system with i5 11400 processor and 16GB RAM.

Table 4.1 shows the characteristics of the three public transportation networks

considered for evaluation. The properties consider the number of stops and buses

in the network, the number of calls to the solver, the maximum alighting time for

passengers to get o↵ the units, and the dwelling parameter corresponding to the

maximum time buses remain in a bus stop.

These networks consider two types of transport services commonly used to

study the bus bunching problem: the fixed-route service and the bus rapid transit

service (National Center for Mobility Management, 2023). Vehicles run on regularly

scheduled routes with fixed stops and no deviation in networks with a fixed-route

service. Typically, fixed-route services are characterized by printed schedules or

timetables with designated bus stops where passengers alight and board larger transit

vehicles. On the other hand, bus-rapid transit networks operate independently from

all modes of transportation on an exclusive right-of-way route. It often serves as

an express service with a minimal number of stops. ECOVIA, the final network in

Table 4.1, can be seen as a bus-rapid transit network that provides services using

46
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Public Transport

Properties

Fixed-route

Service

Bus rapid

Transit
ECOVIA

Stops 10 10 40

Buses 7 7 10

Bus Holding Solver Calls 4 4 15

Bus Alight 0.15 0.15 0.14

Bus Dwell 0.25 0.25 0.14

Overtake TRUE FALSE FALSE

Circular TRUE FALSE FALSE

Table 4.1: Public Transportation Network Properties for Evaluation

an exclusive lane1. It is a real bus network containing 40 stations implemented in

Monterrey, Mexico.

Table 4.2 shows the empirical evaluation results after averaging 10 simulation

runs for each of the 16 simulation scenarios. The table depicts two important metrics

involved with the bus bunching problem, the average headway (AH) between a pair

of buses in the network (i.e., a distance measure), and the average passenger waiting

time (APWT) of users in the network.

4.1 Performance of the MAS in the presence of

Exogenous Events

The first research question of this work addresses the di↵erence in performance (bus

bunching, passenger waiting time) for the multi-agent system when we consider

exogenous events in a simulation environment. We consider experiments 1 and 10

from Table 3.1 to answer this question. Experiment 1 is the baseline in our evaluation

since such an experiment does not consider exogenous factors; therefore, it measures

1https://metromonterrey.com/ecovia/
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Transportation

Network

Fixed-route

Service

Bus Rapid

Transit
ECOVIA

Experiment AH APWT AH APWT AH APWT

1 0.779 83.79 0.797 82.48 12.04 81.91

2 0.581 89.17 0.787 87.11 12.52 83.07

3 0.807 81.21 0.795 82.75 12.97 83.33

4 0.781 82.49 0.788 81.92 12.21 83.88

5 0.794 81.97 0.790 82.23 12.73 83.65

6 0.786 81.45 0.789 82.69 12.43 83.73

7 0.788 82.71 0.798 82.28 12.15 82.91

8 0.786 81.79 0.788 81.83 12.68 82.18

9 0.787 81.62 0.794 81.36 12.99 83.51

10 0.891 91.71 0.896 92.31 13.88 97.15

11 0.792 82.34 0.797 81.94 12.84 83.08

12 0.786 81.61 0.795 82.71 12.44 82.21

13 0.785 82.47 0.797 82.57 12.69 83.84

14 0.788 81.34 0.789 82.41 0.788 81.34

15 0.789 81.41 0.788 81.67 0.789 81.41

16 0.787 81.94 0.798 81.22 0.787 81.94

Table 4.2: Empirical evaluation results
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plain multi-agent system performance without external factors. On the other hand,

experiment 10 considers exogenous events to assess their impact on the MAS. In both

experiments, there is no support from the mixed-initiative system or the proposed

heuristics.

The results, shown in Table 4.2, indicate that there is a significant di↵erence

between the means of both experiments once we performed an ANOVA test, which

shows that exogenous factors impact the performance of the service of transportation

networks. For example, there is an increase in the average passenger waiting time

of 9.45% once exogenous factors are introduced for the fixed route service, 11.91%

for the rapid transit service bus, and 18.60% for ECOVIA. This is an indication

that systems have to take into account external events to provide more robust and

reliable solutions.

4.2 Impact of the Mixed-Initiative System in

the MAS

The second research question, proposed in this thesis work, is related to estimating

the impact of the mixed-initiative system in the MAS. Experiments 2 and 10 are

considered. The first experiment includes exogenous events and the mixed-initiative

system intervention, while the second one excludes such a system from the MAS.

We can observe, in Table 4.2, that the intervention of experts, through the

mixed-initiative system, improves the performance of the MAS when exogenous

events are present. Notice that average passenger waiting times are shorter for the

three di↵erent transportation networks when the MAS is supported by the mixed-

initiative system. Users have to wait on average 2.85% longer for the fixed-route

service, almost 6% more for the bus rapid service, and a significant 17% increase

for the ECOVIA if we do not allow expert intervention through the mixed-initiative

system during the decision-making cycle.
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4.3 Performance of the MAS in the presence of

Exogenous Events when augmented with

Heuristics

To answer research question three related to estimating the impact of integrating

bus bunching heuristics into the MAS when exogenous events are present, we con-

sider experiments 3 and 10 from our experimental design. Recall that experiment 3

considers the three exogenous factors, analyzed in this thesis, with a MAS integrated

with heuristics, while in experiment 10 heuristics are disabled.

Notice that integrating heuristics into the MAS increases the e�ciency of the

transport networks. In the empirical evaluation, the heuristic-based MAS results in

shorter average passenger waiting times for the three transport networks. For exam-

ple, if we do not consider heuristics, fixed-route service results in 12.93% longer av-

erage passenger waiting times, bus rapid service in 11.55%, and ECOVIA in 16.58%;

thus justifying heuristic integration.

4.4 Aggregated Impact of Exogenous Events on

the MAS

The final question concerns identifying if there is a combination of exogenous events

that most a↵ect MAS performance. To answer such a question, the analysis considers

experiments 10 to 16 for a MAS without any support, and experiments 3 to 9 for

a MAS integrated with heuristics (see Table 3.1). We want to observe whether

exogenous events a↵ect a MAS di↵erently when you have heuristic support.

We can observe, in Figure 4.1, that the three exogenous events combined sig-

nificantly increase the average waiting passenger time (APWT) in the three public

transportation networks for the MAS without additional support, ECOVIA being
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Figure 4.1: Impact of Exogenous Events on APWT in MAS without Support
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Figure 4.2: Impact of Exogenous Events on APWT in MAS with Heuristic Support

the network that is most a↵ected. Notice that the MAS remains stable for any pair-

wise combination of exogenous factors. It appears that the Speed Limit Randomness

(SLR) factor in isolation tends to slightly a↵ect more of the three networks.

Figure 4.2 shows the results of combining external events for the MAS with

heuristic support. First, we can observe that ECOVIA is the public network that

results in larger APWTs, which is equivalent to the behavior of the MAS without

support. However, this time, combining the three external factors does not always

result in larger APWTs, implying that heuristics play a role in keeping networks

more robust to external events. For example, it is interesting that for the Fixed-

route service, combining the three factors or evaluating each factor individually,

results in better APWTs than any pairwise combination of them.
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Figure 4.3: Global Results on main MAS Configurations
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Finally, Figure 4.3 shows a summary of the main results for the three public

networks under di↵erent evaluation configurations. The leftmost column shows the

behavior of the MAS when there are no exogenous events; as expected, the APWTs

are smaller than the rightmost column, which includes such external factors but

without any support for the system.

Once we introduce mixed-initiative support (MIX) and heuristics, the MAS

will reduce the average passenger waiting times, proving the value of the interven-

tions. The fully automated system, augmented with heuristics, shows better APWT

performance than considering a human expert in the loop. Further work will elab-

orate on these findings to integrate human experts and artificial intelligence agents

to work in coordination on the bus-bunching problem.
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Conclusions

The research presented in this thesis aimed to address the bus-bunching problem

through the design and implementation of a Multi-Agent System (MAS) integrated

with heuristic algorithms and a mixed-initiative approach. The proposed system,

BUSIMA, was evaluated in simulated scenarios reflecting real-world complexities,

including exogenous events such as varying tra�c conditions, passenger arrival rates,

and speed limitations. The findings demonstrate significant advancements in public

transportation e�ciency, validating the contributions made through this research.

5.1 Key Findings

5.1.1 Impact of Exogenous Events

The presence of exogenous events significantly increases the challenges associated

with maintaining bus schedules. The simulation results indicate that without any

system support, average passenger waiting times (APWT) increase notably, partic-

ularly for high-density networks like ECOVIA.

The integration of heuristics within the MAS reduced APWT and improved

route e�ciency by adapting dynamically to these external factors. This robustness

highlights the e↵ectiveness of the proposed system.
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5.1.2 Heuristic Contributions

Three specific heuristics were developed and validated:

1. Speed Limiting Bus-Holding: Controlled bus speeds to maintain equitable

headways.

2. Dead-Heading Level Adjustments: Optimized bus deployment based on pas-

senger density.

3. Temporary Bus Stop Creation: Improved passenger access in high-demand

areas.

These heuristics contributed to an average reduction in APWT by up to 14.22%

in ECOVIA, 10.35% in Fixed-route service, and 11.44% in Bus Rapid Transit com-

pared to scenarios without support.

5.1.3 Mixed-Initiative System

The inclusion of a Mixed-initiative system allowed human experts to intervene

in decision-making. While the fully automated MAS, integrated with heuristics,

demonstrated superior performance in terms of APWT, the mixed-initiative ap-

proach provides flexibility for human judgment integration in complex or unforeseen

scenarios and shows better performance than the MAS without support.

5.2 Contributions

This thesis provides three significant contributions to the domain of intelligent trans-

portation systems:

1. Definition of Exogenous Factors: Three critical exogenous factors (speed ran-

domness, variable passenger arrival rates, and random bus breakdowns) were
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identified, and their impact on bus route performance was quantified.

2. Development of Adaptive Heuristics: Heuristic algorithms were designed to

enable the MAS to adapt e↵ectively to exogenous disturbances, ensuring im-

proved stability and e�ciency in public transportation systems.

3. Development of Mixed-Initiative System: AMIX system was developed through

a simulation environment to capture human expert intervention on public

transportation networks.

5.3 Future Work

Several avenues for further exploration and enhancement of the proposed system

have been identified:

1. Interface Improvements: Enhance the simulation interface to allow reversal to

previous ticks, enabling more detailed scenario analysis and decision-making.

Implement save-and-load functionality for simulation instances to facilitate

peer review and collaborative scenario testing.

2. Integration of Additional Strategies: Explore recently developed strategies,

such as short-turning mechanisms, where buses skip certain stops to better

serve high-demand areas. These could complement existing heuristics and

further reduce bus bunching.

3. Real-World Deployment: Conduct pilot implementations of BUSIMA in real

public transportation networks, such as ECOVIA, to validate its e�cacy un-

der real-world conditions. Insights from such deployments could reveal new

challenges and opportunities for system refinement.

4. Human-Agent Coordination: Expand research on the coordination between

human experts and AI agents, aiming to optimize the balance between auto-

mated decision-making and human intervention.
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The findings of this thesis underscore the potential of MAS and heuristic al-

gorithms in mitigating exogenous events for the bus-bunching problem, even in the

face of complex, real-world challenges. The robust performance of BUSIMA high-

lights its viability as a practical solution for public transportation systems, with the

flexibility to incorporate human expertise. Future work will aim to build on these

foundations, advancing the field of intelligent transportation systems and improving

urban mobility for diverse populations.
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agent planning: A survey. ACM Computing Surveys (CSUR), 50(6):1–32.

Tsoi, K. H. and Loo, B. P. (2022). Bus bunching from a stop-based perspective:

insights from visual analytics. In Proceedings of the Institution of Civil Engineers-

Municipal Engineer, volume 175, pages 2–15. Thomas Telford Ltd.

Vismara, L., Saw, V.-L., and Chew, L. Y. (2021). Bunching dynamics of buses in

a loop. In International Conference on Intelligent Transportation Engineering,

pages 203–212. Springer.

Vismara, L., Saw, V.-L., and Chew, L. Y. (2022). Synchronising bus bunching

to the spikes in service demand reduces commuters’ waiting time. Complexity,

2022(1):8996439.

Walker, M. and Whittaker, S. (1995). Mixed initiative in dialogue: An investigation

into discourse segmentation. arXiv preprint cmp-lg/9504007.

Walton, D. (2005). Fundamentals of critical argumentation. Cambridge University

Press.

Wang, J. and Sun, L. (2020). Dynamic holding control to avoid bus bunching: A

multi-agent deep reinforcement learning framework. Transportation Research Part

C: Emerging Technologies, 116:102661.

Wang, J. and Sun, L. (2021). Reducing bus bunching with asynchronous multi-agent

reinforcement learning. arXiv preprint arXiv:2105.00376.

Wang, P., Chen, X., Chen, W., Cheng, L., and Lei, D. (2018). Provision of bus

real-time information: Turning passengers from being contributors of headway

irregularity to controllers. Transportation Research Record, 2672(8):143–151.



Bibliography 69

Wang, P., Chen, X., Zheng, Y., Cheng, L., Wang, Y., and Lei, D. (2021). Providing

real-time bus crowding information for passengers: A novel policy to promote

high-frequency transit performance. Transportation Research Part A: Policy and

Practice, 148:316–329.

Wang, X. (2022). Integrating conventional headway control with reinforcement learn-

ing to avoid bus bunching. arXiv preprint arXiv:2210.00201.

Wang, Z., Jiang, R., Jiang, Y., Gao, Z., and Liu, R. (2024). Modelling bus bunch-

ing along a common line corridor considering passenger arrival time and transfer

choice under stochastic travel time. Transportation Research Part E: Logistics and

Transportation Review, 181:103378.

Weigand, H. and Dignum, V. (2004). I am autonomous, you are autonomous. In

Agents and Computational Autonomy: Potential, Risks, and Solutions 1, pages

227–236. Springer.

Weiss, G. (1999). Multiagent systems: a modern approach to distributed artificial

intelligence. MIT press.

Welding, P. (1957). The instability of a close-interval service. Journal of the opera-

tional research society, 8(3):133–142.

Weyns, D., Omicini, A., and Odell, J. (2007). Environment as a first class abstraction

in multiagent systems. Autonomous agents and multi-agent systems, 14:5–30.

Wu, W., Liu, R., and Jin, W. (2017). Modelling bus bunching and holding control

with vehicle overtaking and distributed passenger boarding behaviour. Trans-

portation Research Part B: Methodological, 104:175–197.

Xin, Q., Fu, R., Yu, S., Ukkusuri, S. V., and Jiang, R. (2021). Modeling bus bunching

and anti-bunching control accounting for signal control and passenger swapping

behavior. Journal of Public Transportation, 23(1):31–62.



Bibliography 70

Yang, J., Zhou, H., Chen, X., and Cheng, L. (2019). Applying the support vector

machine to predicting headway-based bus bunching. In CICTP 2019, pages 1542–

1553.

Yang, Y., Cheng, J., and Liu, Y. (2024). An overview of solutions to the bus bunching

problem in urban bus systems. Frontiers of Engineering Management, pages 1–15.

Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K. (1998). The distributed

constraint satisfaction problem: Formalization and algorithms. IEEE Transactions

on knowledge and data engineering, 10(5):673–685.

Zhang, H., Liang, S., Han, Y., Ma, M., and Leng, R. (2020). A prediction model

for bus arrival time at bus stop considering signal control and surrounding tra�c

flow. IEEE Access, 8:127672–127681.

Zhao, J., Dessouky, M., and Bukkapatnam, S. (2006). Optimal slack time for

schedule-based transit operations. Transportation Science, 40(4):529–539.

Zhao, S., Lu, C., Liang, S., and Liu, H. (2016). A self-adjusting method to resist

bus bunching based on boarding limits. Mathematical Problems in Engineering,

2016(1):8950209.

Zhou, L., Wang, Y., and Cui, H. (2017). The bus auxiliary driving system based on

multi-agent strategy. J. Softw., 12(9):722–731.



Ficha autobiográfica
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el área de la inteligencia artificial en sistemas multiagentes, la cual es la rama a la

que dedico mis estudios.

71


