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Abstract

Precipitation-hardenable stainless steels (PHSS) are widely used in various applications in
the aeronautical industry such in as landing gear supports, actuators, and fasteners, among
others. This research aims to study the pitting corrosion behavior of passivated martensitic
precipitation-hardening stainless steel, which underwent passivation for 120 min at 25 ◦C
and 50 ◦C in citric and nitric acid baths before being immersed in solutions containing 1 wt.%
sulfuric acid (H2SO4) and 5 wt.% sodium chloride (NaCl). Electrochemical characterization
was realized employing electrochemical noise (EN), while microstructural analysis em-
ployed scanning electron microscopy (SEM). The result indicates that EN reflects localized
pitting corrosion mechanisms. Samples exposed to H2SO4 revealed activation–passivation
behavior, whereas those immersed in NaCl exhibited pseudo-passivation, indicative of an
unstable oxide film. Current densities in both solutions ranged from 10−3 to 10−5 mA/cm2,
confirming susceptibility to localized pitting corrosion in all test conditions. The sus-
ceptibility to localized attack is associated with the generation of secondary oxides on
the surface.

Keywords: corrosion; passivation; martensitic stainless steel; electrochemical noise

1. Introduction
In the aerospace industry, a variety of components such as actuators, landing gear

supports, and fasteners are manufactured from stainless steel because these materials
offer good mechanical strength and corrosion resistance in the presence of aggressive
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atmospheres. In different industry sectors, corrosion causes significant economic losses.
In the aeronautical industry, costs vary and are associated with various factors such as
industry regulations, preventive maintenance practices, and technological advances [1–4].

Stainless steels are alloys containing [Fe-Cr] (at least 11% chromium) with nickel
additions and have a variety of applications. Stainless steels can be classified based on their
microstructure and precipitates, as ferritic, austenitic, martensitic, duplex, and precipitation
hardening (PH) [5,6]. The aeronautical industry relies on precipitation-hardenable (PH)
steels for their superior properties, including low weight, high mechanical strength, and
excellent corrosion resistance. PH stainless steels (PHSS) fall into two categories: semi-
austenitic, known for high ductility and corrosion resistance, and martensitic, valued
for their strength-to-weight ratio [7–11]. Key industrial stainless steels like 17-4PH, 17-
7PH, and 15-7Mo were introduced by Armco (USA) in 1948, followed by semi-austenitic
AM350 and AM355, and martensitic Custom 630, 455, and 450, produced by Carpenter
Technology Corporation and ATI Materials. These steels serve in turbine blade, rotor, and
shaft manufacturing. Additionally, 15-5 PH steel from Penn Stainless Products, Inc., is used
in aircraft structural components [12–14].

Alloys such as stainless steels have high corrosion resistance performance due to the
protective film of chromium oxide (Cr2O3) that forms on the surface and is characterized by
being a thin, invisible, and compact film. The chemical treatment that allows the growth of
the oxidation film is known as passivation and improves corrosion resistance. Passivation
treatment was discovered by chemist Christian Friedrich Schönbein in the mid-19th century,
and is commonly performed on stainless steels using an oxidizing agent such as nitric
acid [15–21]. The addition of elements such as Cr with Mo decreases pitting corrosion. Also,
elements such as N and Cu can help reduce these problems. The passive film of Cr plays
a crucial role in reducing the corrosion rate; however, SS has transitioned from a single
passivation trend to exhibiting pitting corrosion [22,23]. Surface factors (heterogeneity,
roughness, microstructure, etc.) are important to determine the corrosion behavior of
material; defects in the atomic layer, the difference in phases, and roughness will reduce the
corrosion resistance [24–26]. Factors such as reducing gases, alkaline solutions, mechanical
wear, or non-oxidizing acids can disrupt the oxide film, accumulating corrosion products
in specific zones [27,28].

Different studies [29–32] propose that citric acid could serve as an environmentally
friendly alternative to nitric acid, which is widely used for anti-corrosion treatments.
Adjusting specific parameters, such as duration, temperature, and electrolytic baths during
passivation has enhanced the passive layer’s properties. It is also crucial to recognize
that anodic reactions involving iron dissolution lead to chromium and iron oxide films
forming, which create the passive layer characteristic of stainless steel, ensuring corrosion
resistance [33].

Research on the corrosion behavior of stainless steels has focused on accelerated
corrosion testing (salt spray chamber) and localized corrosion, pitting nucleation, and
passive, pseudopassive, and transpassive zones to understand the corrosion mechanisms of
these steels. Corrosion studies have been conducted using electrochemical techniques such
as potentiodynamic (PP) and galvanodynamic (PG) polarization, cyclic potentiodynamic
polarization (CPP), electrochemical impedance spectroscopy (EIS), and electrochemical
noise (EN). The latter technique has allowed for data analysis in time, time-frequency, and
frequency, respectively [14–21]. However, the literature on the corrosion of PH steels is
limited, and it is necessary to determine the corrosion mechanism and the behavior of the
passive layer that forms.

Some of the stainless steel passivation studies using electrochemical techniques are
summarized as follows: the electrochemical noise technique used by Suresh and Mudali
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in 2014 [34] analyzed the corrosion behavior of austenitic 304 stainless steel immersed in
ferric chloride (FeCl3), finding an important relationship between the frequency analysis
through power spectral density (PSD) and time analysis (statistical study, noise resistance
(Rn) and localization index (IL)) to find the localized pitting corrosion mechanism. In
2018, Lara et al. [35], investigated precipitation-hardenable steels, having as reference
an austenitic 304 steel; the corrosion kinetics were studied by electrochemical noise in
the current and potential mode, potentiodynamic polarization tests were reported, and
the passivation process was carried out using citric acid as an environmentally friendly
option; the results indicated that the passivation films formed were different in the different
passivation acids, as the evaluations were carried out in sulfuric acid and sodium chloride.
In other investigations, potentiodynamic polarization and electrochemical impedance
spectroscopy were used to study the oxide film through charge transfer processes in
authentic passivated stainless steels such as 304 [36]. The electrochemical characteristics of
SS have also been studied by varying the pH concentrations in aerated solutions, resulting
in a decrease in the pH of the oxidizing solution that promotes the formation of protective
films, improving the corrosion resistance of the substrates [37–41]. Pei-de Han et al., in
2022–2023, studied superaustenitic steel S31254 by potentiodynamic polarization and
electrochemical impedance spectroscopy to see the effect of boron on the dissolution and
repair of the passive films of these steels, in the presence of sulfuric acid; they resulted in
better corrosion resistance with the addition of boron [42,43].

Recent investigations on PHSS, such as CUSTOM450 (martensitic) and AM350
(austenitic) steels, have focused on hydrogen diffusion, fatigue behavior, and microstruc-
tural characterization [44–47]. Samaniego et al. [4,8,20] studied the corrosion behavior of
CUSTOM450- and AM350-passivated PHSS steels using electrochemical noise and electro-
chemical impedance spectroscopy in acid baths. The CUSTOM 450 PHSS showed the best
results in corrosion behavior in acid baths. The primary research for this type of alloy has
been conducted using potentiodynamic polarization and spectroscopy impedance. There-
fore, this research will utilize EN to investigate the transient behavior and its correlation
with corrosion.

This study analyzed the pitting corrosion of martensitic precipitation-hardening stain-
less steel that had been passivated for 120 min at 25 and 50 ◦C using citric and nitric
acid baths and then immersed in solutions containing 1 wt.% sulfuric acid and 5 wt.%
sodium chloride. The electrochemical technique was electrochemical noise based on ASTM
G199-90. [48,49] The EN technique was analyzed, employing methods of classic statistics
and recurrence plots (RP). The RP is used for chaotic signals, as are the corrosion signals.
Few researchers used that method to study. The microstructural analysis was performed
by scanning electron microscopy (SEM) after the samples had been tested for corrosion.
Corrosion studies on stainless steels in recent years have focused on austenitic steels. PHSS
steels have few studies; these steels are used in components that require a combination of
excellent mechanical properties, as well as corrosion resistance due to aircraft exposure
in harsh environments. So, it is important to know the electrochemical corrosion in elec-
trolytes where aircraft commonly work, so that they can simulate marine, industrial (acid
rain), and urban atmospheres.

2. Materials and Methods
2.1. Materials

The commercial martensitic precipitation-hardening stainless steel used is equivalent
to CUSTOM 450 (AMS 5773, AMS Aerospace Material Specifications) in the shape of
rolled and heat-treated cylindrical bars. Stainless steel was employed and tested in the
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as-received condition; the nominal chemical composition of these stainless steels is shown
in Table 1 [50].

Table 1. Chemical composition of the martensitic PHSS (wt.%).

Element Martensitic PHSS

Cr 14.0–16.0
Ni 5.0–7.0
Mo 0.50–1.0
Mn 1.00 max
Cu 1.25–1.75
Nb 0.35–0.75
N ≤0.1
Si 1.00 max
S 0.030
C ≤0.05
Fe Balance

The metallography technique was used to prepared martensitic stainless steel samples
using silicon carbide sandpaper of varying grades (240, 400, 500, 600, and 800). For
corrosion tests the surface samples were roughened and polished using diamond paste,
and then cleaned with deionized water and ultrasound in ethanol for 10 min [51,52]. The
microstructure of martensitic PHSS was assessed using optical microscopy (OM, Olympus,
Hamburg, Germany). Using the metallography technique (roughing was performed from
240 to 4000 grit, and the polishing of the samples with a diamond paste), to reveal the
microstructure with a chemical agent called Fry’s, which was composed of 5 g CuCl, 40 mL
HCl, 30 mL H2O, and 25 mL of ethanol.

2.2. Microstructure of Martensitic PHSS

Figure 1 displays the microstructure of martensitic precipitation-hardening stainless
steel using optical microscopy. It shows the martensitic phase (α’) and remnants of retained
austenite (γ), respectively.

Figure 1. Martensitic PHSS microstructure analyzed by optical microscopy (Initial conditions), 200×.
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Martensitic precipitation-hardening stainless steel offers moderate mechanical strength
and outstanding corrosion resistance. When annealed, it achieves a yield strength exceeding
100 ksi (689 MPa); but through a single-stage heat hardening process it further enhances
toughness, ductility, and mechanical strength. The chosen aging temperature affects the
mechanical characteristics [52].

2.3. Chemical Passivation Treatment

The chemical passivation treatment on stainless steel was carried out based on the
ASTM A967-17 standard [15]. The procedure was carried out based on the stages mentioned
in the following experimental diagram (Figure 2) [53–55]:

Figure 2. Diagram of the stages of passivation treatment.

To identify each of the samples, the nomenclature in Table 2 was used (time and
material are omitted as they are constant parameters): The electrolytes are identified as 1
for H2SO4 and 2 for NaCl, the passivation baths C for citric acid and N for nitric acid, and
the temperature values are 25 and 50 ◦C, respectively. The description of all the parameters
of each of the samples tested is indicated in Table 2.

Table 2. General characteristics of the martensitic precipitation-hardening stainless steel samples.

Electrolyte Temperature (◦C) Time (min) Passivation Baths Nomenclature

H2SO4 (1)

25
120

Citric Acid
C6H8O7

(25% w/v)

1/C/25

50 1/C/50

25
120

Nitric Acid
HNO3

(45% v/v)

1/N/25

50 1/N/50

NaCl (2)

25
120

Citric Acid
C6H8O7

(25% w/v)

2/C/25

50 2/C/50

25
120

Nitric Acid
HNO3

(45% v/v)

2/N/25

50 2/N/50

2.4. Corrosion Measurement

Electrochemical corrosion measurements were performed to determine martensitic
precipitation-hardening stainless steel pitting corrosion using the electrochemical tech-
nique of electrochemical noise. Martensitic PHSS samples had an area of 1.0 cm2 and



Metals 2025, 15, 837 6 of 20

were immersed in two solutions: 1 wt% sulfuric acid and 5 wt% sodium chloride at room
temperature (25 ± 2 ◦C) [4,8,14]. For each experiment, two nominally identical specimens
were used as the working electrodes (WE1 and WE2) and a saturated calomel electrode
as the reference electrode (RE). Electrochemical current noise (ECN) was measured with a
galvanic coupling current between two identical working electrodes; simultaneously, elec-
trochemical potential noise (EPN) was measured linking one of the working electrodes and
a reference electrode. The electrochemical equipment was a potentiostat/galvanostat/ZRA
(produced by Solartron 1287A, Bognor Regis, UK). Electrochemical corrosion tests were
performed in triplicate.

Electrochemical noise measurements were based on ASTM G199-09 [56], acquiring
1024 data points at 1 data/second speed. A program created with MATLAB 2018a software
from Math Works (Natick, MA, USA) was used to process the EN data [56–58].

2.5. Microstructural Characterization

The surface analysis after corrosion testing was conducted with a scanning electron
microscope (SEM, JEOL-JSM-5610LV, Tokyo, Japan) equipped with a secondary electron
(SE) detector. The SEM operated at a beam energy of 20 kV and a working distance of
11–13 mm.

3. Results and Discussion
3.1. Corrosion Measurements
Electrochemical Noise

Electrochemical noise (EN) refers to spontaneous, low-level fluctuations in potential
and current during electrochemical processes. This technique is particularly effective for
monitoring localized corrosion, as its analysis depends on the signal type within the system.
A major advantage of EN is its ability to assess localized corrosion through a non-invasive
approach [59–62].

EN analysis is divided into time-domain, frequency-domain, frequency-time, and
chaotic systems. Initially, signals underwent statistical evaluation, with researchers such as
Mansfeld, Cottis, Turgosse, Eden, and Bertocci investigating the correlation between corro-
sion types and statistical metrics like localization index (LI) and pitting index, derived from
standard deviations of ECN and EPN. Additionally, the noise resistance (Rn) parameter was
introduced as an Rp equivalent, linking it to kinetic properties. Later studies incorporated
kurtosis and skewness to refine LI for improved corrosion classification [63–70].

EN signals comprise DC, stationary, and random components. Separating DC from
the stationary and random components is essential to analyze EN data effectively, as DC
can distort statistical, visual, and power spectral density (PSD) evaluations by introducing
artificial frequencies. Once DC is removed, low-frequency corrosion data remain unaffected.
EN can be mathematically represented, as shown in Equation (1), where x(t) is the EN
time series, mt is the DC component, st is the random component, and Yt is a stationary
component. The last two are functions that define the corrosion system [71–76]:

x(t) = mt + st + Yt (1)

To calculate noise resistance (Rn), the standard deviation from time series data must
be determined. These statistical parameters offer insights into corrosion mechanisms
and kinetics. Research by Turgoose and Cottis [63] revealed that higher corrosion rates
correspond to variance and standard deviation increases. Use Equation (2) to compute the
standard deviation (σ), standard deviation of the potential data (σv), standard deviation of



Metals 2025, 15, 837 7 of 20

the potential data (σI), working electrode area (A), and derive Rn (Equation (3)), utilizing
EN time series information (EPN and ECN) as the foundation:

σx =

√
x2 =

√√√√√ N
∑
1
(xi − x)2

N
(2)

Rn =
σv

σI
× A (3)

This study employed kurtosis and skewness to classify corrosion types. However,
the localization index (LI) was excluded, as Mansfeld and Sun [71] concluded in 1995 that
it has limitations and requires cautious application. A patent created by Reid and Eden
in 2001 [77] proposed that statistical moments, including skewness and kurtosis, can be
utilized to determine the corrosion type. These correspond to the third and fourth statistical
moments [77,78]. The following table shows the relationship between the values obtained
by kurtosis and skewness to determine the corrosion type of material (Table 3).

Table 3. Corrosion types are evaluated by kurtosis and skewness.

Corrosion Type Potential Current
Skewness Kurtosis Skewness Kurtosis

Uniform <±1 <3 <±1 <3
Pitting <−2 >>3 >±2 >>3
Transgranular (SCC) 4 20 −4 20
Intergranular (SCC #1) −6.6 18 to 114 1.5 to 3.2 6.4 to 15.6
Intergranular (SCC #2) −2 to −6 5 to 45 3 to 6 10 to 60

Figure 3 shows the time series of passivated martensitic precipitation-hardening
stainless steel exposed to H2SO4. Figure 3a shows how the sample 1/N/50 presented
higher amplitudes with values of 4 × 10−4 V, but the potential begins to be reduced. All
the signals presented a high transitory number. Figure 3b shows the time in the current
series; it presents a high transitory number with an amplitude higher for samples 1/C/50
and 1/N/50. The high number of transmissions indicates much pitting on the material
surface. That behavior is reflected in Table 4, where the LI of samples 1/C/50 and 1/N/50
are associated with localized corrosion.

Figure 3. Time series of electrochemical noise (a) potential and (b) current of martensitic precipitation-
hardening stainless steel exposed to H2SO4 solution.
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Table 4. Parameters obtained by EN for martensitic precipitation-hardening stainless steel in 1 wt.%
H2SO4 and 5 wt% NaCl solutions.

Electrolyte Parameters
Samples

1/C/25 1/C/50 1/N/25 1/N/50

H2SO4

Rn (Ω·cm2) 4060 ± 9 7027 ± 5 4734 ± 4 22146 ± 6

LI 0.07 ± 0.002 0.1 ± 0.002 0.2 ± 0.002 0.4 ± 0.002

Kurtosis 258 ± 3 240 ± 2 116 ± 2 83 ± 2

Skewness 15 ± 2.1 −3.7 ± 0.5 9.9 ± 0.6 8.1 ± 0.2

NaCl

Rn (Ω·cm2) 716 ± 7 1716 ± 11 2102 ± 13 44985 ± 16

LI 0.06 ± 0.002 0.02 ± 0.001 0.1 ±0.001 0.06 ± 0.001

Kurtosis 12 ± 0.01 13 ± 0.004 8 ± 0.005 49 ± 0.006

Skewness —1.5 ± 0.04 1.1 ± 0.01 —1.5 ± 0.05 3.2 ± 0.04

On the other hand, 1/C/25 presented a mixed corrosion process with a value of 0.07,
indicating that both processes are occurring on the surface. In the kurtosis and skewness
evaluation, all samples presented values related to pitting corrosion. The sample 1/N/50
exhibited a higher Rn value (22146 Ω·cm2). Additionally, the sample passivated at 50 ◦C
in citric acid showed the second-highest Rn value of 7027 Ω·cm2, indicating that when
passivation temperature increases, the corrosion resistance of passivated steel increases.
The samples specified at 25 ◦C presented 4000 Ω·cm2 values with less corrosion resistance.

Figure 4 shows the time series of martensitic precipitation-hardening stainless steel
exposed to NaCl. Figure 4a shows the potential time series, where 1/25/N presents a high
amplitude with values o 14 × 10−2 V at the beginning but with a decrease in amplitude;
that behavior is presented by the rest of the samples, indicating that a reduction of ionic
transference occurs due to a stabilization of the material’s surface. The current in time series
(Figure 4b) shows that sample 1/N/50 presented a lower amplitude than the other samples;
that behavior is associated with a lower corrosion kinetic, so 1/N/50 presented the highest
Rn with 44,965 Ω·cm2. In this medium, the samples passivated in citric acid presented
the lower corrosion rate resistance with 700 and 1700 Ω·cm2,, respectively. However,
the samples exposed to citric acid LI values related to the mixed corrosion process and
1/N/50. All the kurtosis results indicated to localized corrosion occurs; however, skewness
shows how 1/C/50 has a value of uniform corrosion. The rest of the values are related
to localized corrosion; however, the values are very close to the division of localized to
uniform corrosion.

Non-linear (chaotic) systems can be analyzed using recurrence plots (RPs), which
identify whether processes follow deterministic recurrence patterns. If a system is determin-
istic (D), it corresponds to localized processes, whereas recurrence in its domain suggests
uniform behavior [61,62].

A recurrence plot (RP) is a two-dimensional binary diagram illustrating temporal
patterns in a single observable time series, such as current (I) in this study. It represents
trajectory recurrences (xiin Rm) at specific time points (i, j) within an (m)-dimensional
phase space and a defined threshold (ε). The RP consists of a square matrix with black and
white dots along time axes (ti, tj), where black dots mark state recurrences at position (ti, tj);
The matrix formulation is provided in Equation (4) [78,79]:

Rij = Θ
(

ε −
∥∥∥→xi −

→
xj

∥∥∥), i, j = 1, . . . . N (4)
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Figure 5 shows the recurrence plots of samples exposed to H2SO4. Figure 5a shows the
behavior of 1/C/25. This sample exhibited a localized process trend, similar to Figure 5b,
where the samples were transitory. However, the number of vertical and horizontal
lines indicate that the localized process occurs periodically; therefore, for that reason,
the determinism value (DET) from Table 5, of all the samples, is between 0.93 and 0.87, and
the recurrence (RR) with values are from 0.2 to 0.60. Also, trapping time (TT), the value
associated with the repeatability time, is between 6 and 12, indicating that the process is
repeated too periodically. That suggests that a pitting uniform corrosion process is probably
occurring on the surface. Also, the breaking and passivation of a passive layer is associated
with this behavior.

Figure 4. Time series of electrochemical noise (a) potential and (b) current of martensitic precipitation-
hardening stainless steel exposed to NaCl solution.

Table 5. Parameters obtained by recurrence plot analysis for martensitic precipitation-hardening
stainless steel in 1 wt.% H2SO4 and 5 wt% NaCl solutions.

Electrolyte Parameters
Samples

1/C/25 1/C/50 1/N/25 1/N/50

H2SO4

RR 0.606 ± 0.006 0.211 ± 0.005 0.5 ± 0.01 0.295 ± 0.006

Det 0.937 ± 0.003 0.827 ± 0.002 0.871 ± 0.002 0.856 ± 0.008

L 7.72 ± 0.004 4.682 ± 0.006 4.468 ± 0.005 4.204 ± 0.004

LAM 0.962 ± 0.005 0.902 ± 0.002 0.932 ± 0.002 0.924 ± 0.005

TT 12.5 ± 0.01 7.14 ± 0.01 6.85 ± 0.01 6.34 ± 0.01

NaCl

RR 0.196 ± 0.002 0.255 ± 0.001 0.113 ± 0.004 0.096 ± 0.004

Det 0.992 ± 0.006 0.992 ± 0.008 0.986 ± 0.005 0.386 ± 0.004

L 20.82 ± 0.05 20.46 ± 0.02 24.61 ± 0.03 2.33 ± 0.02

LAM 0.996 ± 0.002 0.996 ± 0.001 0.993 ± 0.002 0.493 ± 0.004

TT 30.905 ± 0.002 32.635 ± 0.002 31.327 ± 0.002 2.576 ± 0.002
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Figure 5. Recurrence plots of martensitic precipitation-hardening stainless steel. (a) 1/C/25,
(b) 1/C/50, (c) 1/N/25, and (d) 1/N/50 exposed to H2SO4 solution.

Figure 6 shows the recurrence plots of samples exposed to NaCl. The behaviors of
samples 1/C/25, 1/C/50, and 1/N/25 are similar, with localized processes before the
second 1000 and the lack of transience. This behavior is related to localized corrosion with
a low frequency; hence, the TT value is lower. On the other hand, sample 1/N/50 pre-
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sented multiple lines vertically and horizontally, with values associated with linearity (L),
indicating uniform corrosion on the surface. It can be associated with a passivation process.

Figure 6. Recurrence plots of martensitic precipitation-hardening stainless steel. (a) 1/C/25,
(b) 1/C/50, (c) 1/N/25, and (d) 1/N/50 exposed to NaCl.
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3.2. SEM Characterization of PHSS After Electrochemical Corrosion Measurements

Following electrochemical corrosion measurements, the surface morphology of each
sample was examined using SEM to study the reaction of materials against corrosion. SEM
analysis revealed that localized pitting corrosion occurred on all passivated stainless steel
surfaces, with some conditions only showing pit nucleation, while others demonstrated
severe localized attack.

The martensitic PHSS passivated at 25 and 50 ◦C (Figure 7a–d) was exposed to H2SO4

and presented pit nucleation with pits measuring approximately 10 microns in size.

Figure 7. SEM-SE surface morphology of passivated martensitic precipitation-hardening stainless
steel in citric (a,b) and nitric (c,d) acids at 25 and 50 ◦C for 120 min, exposed in H2SO4 solutions (after
corrosion testing).

For the martensitic precipitation-hardening stainless steel immersed in NaCl under
similar passivation conditions (Figure 8a–d), pitting corrosion was observed with pit sizes
exceeding 100 microns.

In previous studies, precipitation-hardening martensitic stainless steels displayed
distinctive profiles due to different electrochemical behavior in NaCl and H2SO4 test
solutions, indicating passivation during the anodic reaction, along with variability in pitting
potentials. When martensitic stainless steel is immersed in H2SO4 solution, a passivation
layer forms on the surface of the chromium-rich alloy, improving corrosion resistance
and initiating protective mechanisms. Iron and chromium oxides play a critical role in
creating the passive film in stainless steels by interacting with hydroxyl ions. High current
densities in martensitic stainless-steel samples result in transpassivation and secondary
passivation. On the other hand, samples immersed in NaCl solution exhibit pseudo-
passivation, reflecting the presence of an unstable protective layer. This defense system
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forms a passive Cr-rich oxide and oxyhydroxide film that protects the substrate from
chloride ions (Cl−) while preventing oxygen penetration into the inner layer [30,31,80].

Figure 8. SEM-SE surface morphology of passivated martensitic precipitation-hardening stainless
steel in citric (a,b) and nitric (c,d) acids at 25 and 50 ◦C for 120 min, exposed in NaCl solutions (after
corrosion testing).

According to various authors [31,32], unstable passivation layers increase current
density in stainless steels exposed to NaCl, thus altering corrosion kinetics. In contrast,
austenitic stainless steels in H2SO4 solutions displayed transient phenomena linked to
transpassivation, characterized by passive film disruption, and secondary passivation,
associated with passive layer regeneration.

The passive region is the formation site for iron oxide and chromium oxide coatings,
often identified in martensitic stainless steel [32,81–84]. The selective dissolution of Cr3+

from the stainless-steel surface results in the chromium trihydroxide complex, Cr(OH)3

(Equation (5)). Subsequently, Cr(OH)3 reacts to develop a continuous chromium oxide
passive layer, Cr2O3, on the surface (Equation (6)) [32,85]:

Cr3+ + 3OH− → Cr(OH)3 + 3e− (5)

Cr(OH)3 + Cr + 3OH− → Cr2O3 + 3H2O + 3e− (6)

As mentioned before, iron and chromium oxidation mainly cause anodic reactions
during the passivation film development stage. The iron oxidation processes are illustrated
in Equations (7)–(9) [32,86,87]:

3Fe + 8OH− → Fe3O4 + 4H2O + 8e− (7)
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2Fe3O4 + 2OH− + 2H2O → 6FeOOH + 2e− (8)

2Fe3O4 + 2OH− → 3Fe2O3 + H2O + 2e− (9)

Passivated martensitic precipitation-hardening stainless steel samples immersed in
sulfuric acid under both passivation conditions exhibit pseudo-passivation, characterized
by an unstable oxide layer alongside distinct secondary passivation. Research suggests that
the Cr(OH)3 film’s formation may be connected to this pseudo-passivation behavior [88,89].

The samples passivated in nitric acid performed better at 50 ◦C than at 25 ◦C. The
diffusion process of passivation in nitric acid is more straightforward and generates a more
stable passive layer due to the exothermic properties of nitric acid. On the other hand, citric
acid is an endothermal chemical, and the properties of the oxide layer generated at 50 ◦C
decreased the corrosion resistance [88].

The electrochemical noise results show that samples exposed to H2SO4 presented a
lower value of TT, indicating that pitting attack occurs recurrently. That behavior means
that the pitting attack is uniform. That is, pitting nucleation occurs (as SEM shows). On
the other hand, when the sample is exposed to NaCl, it presents a localized attack. That
behavior is related to Cl− ions’ preference to attack the sample surface in specific zones,
generating the localization of corrosion.

Various researchers have applied recurrence plots (RP) to classify corrosion
types [32,61,81–83,90–92]. Valavanis et al. [93] propose that RP is useful for identify-
ing dynamic states, transitions, and complex physicochemical processes such as passiv-
ity, pitting, and uniform corrosion. Garcia-Ochoa [92] highlights RP’s role in analyzing
non-linear systems and electrochemical processes, emphasizing its necessity for scientific
disciplines requiring such assessments. Since corrosion behaves as a chaotic or non-linear
system [94,95], RP and recurrence quantification analysis (RQA) provide valuable insights
into the corrosion process.

EN showed the types of corrosion and the stability of the passive layer; however,
some transients were present. It occurs due to the instability of the oxide passive layer
created in the sample. This will be dissolved when an oxide soluble in an aqueous solution
is generated. However, the presence of multiple alloying elements such as Ni, Mo, Mn,
Cu, and hydroxides facilitates the generation of other oxides that can be unstable under
aqueous media. As a secondary oxide layer is generated, the corrosion process begins
to occur in those specific zones. Figure 9 shows how localized attacks occur on another
passive layer. Also, information obtained from SEM-EDS shows how elements such as Ni,
Cu, and Fe are present on the surface. Hence, the corrosive ions attack the more susceptible
oxides (solubility, porosity, and/or cracking conditions) [92–96].

Figure 9. Schema of preference attacks in secondary oxides created during the passivation process.
The secondary oxides are unstable.
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The literature highlights that stainless steels develop a protective passive film enriched
with oxides and hydroxides, distinct from films formed in natural conditions. Chemical
passivation treatments typically remove surface contaminants, producing a cleaner and
more protective passive film on stainless steel surfaces [97,98].

Using different techniques to characterize EN signals is important, and several authors
have demonstrated that the statistical approach indicates that corrosion classification is
largely inconsistent. This is attributed to LI variability; researchers like Eden and Mansfeld
have pointed out the constraints of statistical evaluation, noting that Eden originally
introduced LI years earlier to define corrosion types. Consequently, LI should be applied at
the discretion of corrosion identification. Additionally, the signal examined using statistical
methods must avoid a DC component to minimize standard deviation and yield a more
precise outcome [99–101]. For that reason, in this research, recurrence plots were employed,
and in this way, the results obtained by LI, kurtosis, and skewness were validated. It is
important to mention that fact. The results obtained by recurrence plots helped to determine
that if a well-localized process occurs on the surface, some samples will be passivated again.
Conventional statistical methods cannot obtain that interpretation.

4. Conclusions
The present research investigates the passive state of passivated martensitic precipitation-

hardening stainless steel in citric and nitric acid baths at 25 and 50 ◦C for 120 min and
immersed in 1 wt.% H2SO4 and 5 wt.% NaCl solutions; considering the current results of
experiments, the following can be concluded:

• The electrochemical noise results indicated that the martensitic precipitation-hardening
stainless steel samples exposed to H2SO4 presented uniform pitting corrosion attacks.

• The samples exposed to NaCl presented pitting corrosion attacks. It is due to the
susceptibility of PHSS to pitting generated by Cl− ions in preference zones due to the
presence of two phases.

• The passivation of martensitic PHSS samples increased the corrosion resistance; how-
ever, the susceptibility to localized corrosion increased for passivated samples.

• Localized attacks occurred due to secondary oxide formation that facilitated surface
differences, attacking in preference zones.

• Surface morphologies obtained by SEM indicate that the passivated martensitic
precipitation-hardening stainless steel samples exhibit pitting corrosion, which is
more intense when the steels are exposed to NaCl solution due to the aggressivity of
Cl− ion.

• The best performance of passivation in nitric acid at 50 ◦C relates to the exothermic
properties of the solution.

• The citric acid passivation process on stainless steels could be an environmentally
friendly alternative to the frequently used nitric acid passivation process; however, it
is necessary to increase research. The corrosion resistance increases, but the efficiency
in comparison to nitric acid is lower.
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