Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Subdirección de Estudios de Posgrado

EMPAQUETAMIENTO ÓPTIMO DE OBJETOS SUAVES IRREGULARES

POR

Luis Ángel Gutiérrez Rodríguez

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTORADO EN INGENIERÍA DE SISTEMAS

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Subdirección de Estudios de Posgrado

EMPAQUETAMIENTO ÓPTIMO DE OBJETOS SUAVES IRREGULARES

POR

Luis Ángel Gutiérrez Rodríguez

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTORADO EN INGENIERÍA DE SISTEMAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Facultad de Ingeniería Mecánica y Eléctrica Posgrado

Los miembros del Comité de Evaluación de Tesis recomendamos que la tesis "Empaquetamiento óptimo de objetos suaves irregurales", realizada por el estudiante Luis Ángel Gutiérrez Rodríguez, con número de matrícula 1484412, sea aceptada para su defensa como requisito parcial para obtener el grado de Doctorado en Ingeniería de Sistemas.

El Comité de Evaluación de Tesis

Dr. Igor Semionovich Litvinchev Director

Dr. Luis Alfonso Infante Rivera Co-director

Dra. Iris Abril Martínez Salazar Revisora

Dra. Edith Lucero Ozuna Espinosa Revisora

Dr. José Antonio Marmolejo Saucedo Revisor

Dr. Fernando López Irarragorri Revisor

Dr. José Daniel Mosquera Artamonov Revisor

Vº. B%

Subdirector de Estudios de Posgrado

Institución

190001

Programa

557620

Acta núm.

366

A mi esposa Claudia Estefania,
por ser mi compañera, confidente,
ayudarme a salir a delante, ser ese
pilar que necesité todos y cada uno
de los días del Doctorado.
Siempre orientándome para no perder
el rumbo. Por ser ese complemento
emocional e intelectual que necesité
para lograr este enorme reto académico.
Y por traer al mundo al ser más maravilloso
que he conocido, nuestro hijo Luis Esteban
a quien también le dedico este trabajo.

ÍNDICE GENERAL

A	Agradecimientos				
\mathbf{R}_{0}	Resumen X				
1.	Intr	roducción			
	1.1.	Empaquetamiento de triángulos	2		
	1.2.	Empaquetamiento de polígonos complejos	7		
	1.3.	Objetivos y alcances	8		
		1.3.1. Objetivo general	8		
		1.3.2. Objetivos específicos	8		
		1.3.3. Alcances de la investigación	9		
	1.4.	Justificación e importancia	10		
	1.5.	Hipótesis	11		
2.	Rev	risión de Literatura	12		
	2.1.	Los Problemas de Corte y Empaquetamiento	13		
		2.1.1. La tipología de Dyckhoff	14		

ÍNDICE GENERAL VII

		2.1.2. La t	ipología de Wäscher	. 15
	2.2.	Trabajos re	ealizados en empaquetamiento de objetos 2D	. 18
		2.2.1. Emp	paquetamiento de objetos regulares	. 18
		2.2.2. Emp	paquetamiento de objetos irregulares	. 20
		2.2.3. Emp	paquetamiento de objetos suaves	. 21
	2.3.	Trabajos re	ealizados en empaquetamiento de objetos 3D	. 24
		2.3.1. Emp	paquetamiento de objetos regulares	. 24
		2.3.2. Emp	paquetamiento de objetos irregulares	. 27
		2.3.3. Emp	paquetamiento de objetos suaves	. 29
	2.4.	Conclusión	de la Revisión de Literatura	. 33
3.	Fori	nulación M	Iatemática	35
3.			Iatemática se de empaquetamiento óptimo	
3.		Modelo bas		. 36
3.	3.1.	Modelo bas 3.1.1. Desc	e de empaquetamiento óptimo	. 36 . 37
3.	3.1. 3.2.	Modelo bas 3.1.1. Desc Modelo mat	re de empaquetamiento óptimo	. 36 . 37
3.	3.1. 3.2. 3.3.	Modelo bas 3.1.1. Desc Modelo mat	te de empaquetamiento óptimo	. 36 . 37 . 39
3.	3.1.3.2.3.3.3.4.	Modelo bas 3.1.1. Desc Modelo mat Modelo mat	temático para suavidad mínima con triángulos	. 36 . 37 . 39 . 43
	3.1.3.2.3.3.3.4.3.5.	Modelo bas 3.1.1. Desc Modelo mat Modelo mat	te de empaquetamiento óptimo	. 36 . 37 . 39 . 43
	3.1. 3.2. 3.3. 3.4. 3.5.	Modelo bas 3.1.1. Desc Modelo mat Modelo mat Modelo mat	te de empaquetamiento óptimo	. 36 . 37 . 39 . 43 . 47

ÍNDICE GENERAL VIII

		4.1.2.	Equipo en la Nube	61
		4.1.3.	Equipo Workstation	61
		4.1.4.	Análisis de los Tres Entornos	62
	4.2.	Herrar	mientas (Software)	63
		4.2.1.	Entorno de Programación y Modelado	63
		4.2.2.	Solucionadores	64
		4.2.3.	Transferencia de parámetros personalizados al subsolver	65
5.	Res	ultado	s Computacionales	66
	5 1	Dofini	ción de las Instancias	66
	9.1.	Demin	Jon de las instancias	00
		5.1.1.	Por tipo de polígono	66
		5.1.2.	Por cantidad de polígonos	67
		5.1.3.	Por grado de suavidad	67
		5.1.4.	Por tipo de contenedor	67
		5.1.5.	Por algoritmo utilizado	68
	5.2.	Clasifi	cación de las Instancias	68
	5.3.	Genera	ación y Origen de las Instancias	69
	5.4.	Impor	tancia de las Instancias en el Análisis de Resultados	70
	5.5.	Conte	nedor Cuadrado con Algoritmo MinZ	71
	5.6.	Conte	nedor Cuadrado con Algoritmo MinRho	82
	5.7.	Conte	nedor Circular con Algoritmo MinZ	93

ÍNDICE GENERAL IX

	5.8.	Contenedor Circular con Algoritmo MinRho	104
6.	Con	clusiones y Trabajo Futuro	115
	6.1.	Conclusiones	115
	6.2.	Trabajo Futuro	117
Α.	Res	umen comparativo de estudios relevantes	121
	A.1.	Comparativa de trabajos en empaquetamiento 2D	122
	A.2.	Comparativa de trabajos en empaquetamiento 3D	125
В.	Triá	ngulos en Cuadrados Contenedor Mínimo	12 9
	B.1.	Resultados del Algoritmo de Mínimo Contenedor en el Contenedor Cuadrado	129
C.	Triá	ngulos en Cuadrados Suavidad Mínima	160
	C.1.	Resultados del Algoritmo de Mínima Suavidad en el Contenedor Cuadrado	160
D.	Triá	ngulos en Círculos Contenedor Mínimo	191
	D.1.	Resultados del Algoritmo de Mínimo Contenedor en el Contenedor Circular	191
Ε.	Tria	ngulos en Círculos Suavidad Mínima	222
	E.1.	Resultados del Algoritmo de Mínima Suavidad en el Contenedor Circular	222

ÍNDICE GENERAL X

F.	Cua	drados en Cuadrados Contenedor Mínimo	25 3
	F.1.	Resultados del Algoritmo de Mínimo Contenedor en el Contenedor Cuadrado	253
G.	Cua	drados en Cuadrados Suavidad Mínima	269
	G.1.	Resultados del Algoritmo de Mínima Suavidad en el Contenedor Cuadrado	269
Н.	Cua	drados en Círculos Contenedor Mínimo	285
	H.1.	Resultados del Algoritmo de Mínimo Contenedor en el Contenedor Circular	285
I.	Cua	drados en Círculos Suavidad Mínima	301
	I.1.	Resultados del Algoritmo de Mínima Suavidad en el Contenedor Circular	301
J.	Pen	tágonos en Cuadrados Contenedor Mínimo	317
	J.1.	Resultados del Algoritmo de Mínimo Contenedor en el Contenedor Cuadrado	317
K.	Pen	tágonos en Cuadrados Suavidad Mínima	328
	K.1.	Resultados del Algoritmo de Mínima Suavidad en el Contenedor Cuadrado	328
L.	Pen	tagonos en Círculos Contenedor Mínimo	339

ÍNDICE GENERAL XI

L.:	1. Resultados del Algoritmo de Mínimo Contenedor en el Contenedor	
	Circular	339
M.Pe	entagonos en Círculos Suavidad Mínima	350
Μ.	1. Resultados del Algoritmo de Mínima Suavidad en el Contenedor Cir-	
	cular	350

ÍNDICE DE FIGURAS

1.1.	Tres triángulos duros en contenedor cuadrado	3
1.2.	Dos triángulos con suavidad limitada en contenedor cuadrado	4
1.3.	Tres triángulos duros en contenedor circular	5
1.4.	Tres triángulos con suavidad ilimitada en contenedor circular	6
1.5.	Pentágono con triangulación abanico	6
1.6.	Diferentes polígonos con triangulación abanico	7
3.1.	Algoritmo de Triangulación de Polígonos	48
5.1.	Contenedor cuadrado con 9 polígonos duros (MinZ)	72
5.2.	Contenedor cuadrado con 8 polígonos duros y 1 suave (MinZ) $$	73
5.3.	Contenedor cuadrado con 7 polígonos duros y 2 suaves (MinZ)	74
5.4.	Contenedor cuadrado con 6 polígonos duros y 3 suaves (MinZ)	75
5.5.	Contenedor cuadrado con 5 polígonos duros y 4 suaves (MinZ)	76
5.6.	Contenedor cuadrado con 4 polígonos duros y 5 suaves (MinZ)	77
5.7.	Contenedor cuadrado con 3 polígonos duros y 6 suaves (MinZ)	78

ÍNDICE DE FIGURAS XIII

5.8. Contenedor cuadrado con 2 polígonos duros y 7 suaves (MinZ)	79
5.9. Contenedor cuadrado con 1 polígono duro y 8 suaves (MinZ)	80
5.10. Contenedor cuadrado con 9 polígonos suaves (MinZ) $\ \ldots \ \ldots \ \ldots$	81
5.11. Contenedor cuadrado con 9 polígonos duros (Min Rho) $\ \ \dots \dots \dots$	83
5.12. Contenedor cuadrado con 8 polígonos duros y 1 suave (MinRho)	84
5.13. Contenedor cuadrado con 7 polígonos duros y 2 suaves (MinRho) $$	85
5.14. Contenedor cuadrado con 6 polígonos duros y 3 suaves (MinRho) $$	86
5.15. Contenedor cuadrado con 5 polígonos duros y 4 suaves (MinRho) $$	87
5.16. Contenedor cuadrado con 4 polígonos duros y 5 suaves (MinRho) $$	88
5.17. Contenedor cuadrado con 3 polígonos duros y 6 suaves (MinRho) $$	89
5.18. Contenedor cuadrado con 2 polígonos duros y 7 suaves (MinRho) $$	90
5.19. Contenedor cuadrado con 1 polígono duro y 8 suaves (MinRho) $$	91
5.20. Contenedor cuadrado con 9 polígonos suaves (Min Rho) $\ \ldots \ \ldots$	92
5.21. Contenedor círculo con 9 polígonos duros (MinZ) $\ \ldots \ \ldots \ \ldots$	94
5.22. Contenedor círculo con 8 polígonos duros y 1 suave (MinZ)	95
5.23. Contenedor círculo con 7 polígonos duros y 2 suaves (MinZ) $$	96
5.24. Contenedor círculo con 6 polígonos duros y 3 suaves (MinZ) $\ \ldots \ \ldots$	97
5.25. Contenedor círculo con 5 polígonos duros y 4 suaves (MinZ) $$	98
5.26. Contenedor círculo con 4 polígonos duros y 5 suaves (MinZ) $$	99
5.27. Contenedor círculo con 3 polígonos duros y 6 suaves (MinZ) 1	100

ÍNDICE DE FIGURAS XIV

5.28. Contenedor círculo con 2 polígonos duros y 7 suaves (MinZ) 101
5.29. Contenedor círculo con 1 polígono duro y 8 suaves (MinZ) 102
5.30. Contenedor círculo con 9 polígonos suaves (MinZ) 103
5.31. Contenedor círculo con 9 polígonos duros (MinRho) 105
5.32. Contenedor círculo con 8 polígonos duros y 1 suave (MinRho) 106
5.33. Contenedor círculo con 7 polígonos duros y 2 suaves (MinRho) 107
5.34. Contenedor círculo con 6 polígonos duros y 3 suaves (MinRho) 108
5.35. Contenedor círculo con 5 polígonos duros y 4 suaves (MinRho) 109
5.36. Contenedor círculo con 4 polígonos duros y 5 suaves (MinRho) 110
5.37. Contenedor círculo con 3 polígonos duros y 6 suaves (MinRho) 111
5.38. Contenedor círculo con 2 polígonos duros y 7 suaves (MinRho) 112
5.39. Contenedor círculo con 1 polígono duro y 8 suaves (MinRho) 113
5.40. Contenedor círculo con 9 polígonos suaves (MinRho)
B.1. 1 Triángulo en contenedor cuadrangular con algoritmo MinZ 130
B.2. 2 Triángulos en contenedor cuadrangular con algoritmo MinZ 131
B.3. 3 Triángulos en contenedor cuadrangular con algoritmo MinZ 132
B.4. 4 Triángulos en contenedor cuadrangular con algoritmo MinZ 133
B.5. 5 Triángulos en contenedor cuadrangular con algoritmo MinZ 134
B.6. 6 Triángulos en contenedor cuadrangular con algoritmo MinZ 135
B.7. 7 Triángulos en contenedor cuadrangular con algoritmo MinZ 136

ÍNDICE DE FIGURAS XV

B.8. 8 Triángulos en contenedor cuadrangular con algoritmo MinZ .	1	37
${\rm B.9.~9~Tri\acute{a}ngulos~en}$ contenedor cuadrangular con algoritmo ${\rm MinZ}$.	1	38
B.10.10 Triángulos en contenedor cuadrangular con algoritmo MinZ	$Z \dots 1$	39
B.11.11 Triángulos en contenedor cuadrangular con algoritmo MinZ	$Z \dots 1$	40
B.12.12 Triángulos en contenedor cuadrangular con algoritmo MinZ	$Z \dots 1$	41
B.13.13 Triángulos en contenedor cuadrangular con algoritmo MinZ	$Z \dots 1$	42
B.14.14 Triángulos en contenedor cuadrangular con algoritmo MinZ	$Z \dots 1$	43
B.15.15 Triángulos en contenedor cuadrangular con algoritmo MinZ	$Z \dots 1$	44
B.16.16 Triángulos en contenedor cuadrangular con algoritmo MinZ	$Z \dots 1$	45
B.17.17 Triángulos en contenedor cuadrangular con algoritmo MinZ	$Z \dots 1$	46
B.18.18 Triángulos en contenedor cuadrangular con algoritmo MinZ	$Z \dots 1$	47
B.19.19 Triángulos en contenedor cuadrangular con algoritmo MinZ	Z 1	48
B.20.20 Triángulos en contenedor cuadrangular con algoritmo MinZ	Z 1	49
B.21.21 Triángulos en contenedor cuadrangular con algoritmo MinZ	Z 1	50
B.22.22 Triángulos en contenedor cuadrangular con algoritmo MinZ	Z 1	51
B.23.23 Triángulos en contenedor cuadrangular con algoritmo MinZ	Z 1	52
B.24.24 Triángulos en contenedor cuadrangular con algoritmo MinZ	Z 1	53
B.25.25 Triángulos en contenedor cuadrangular con algoritmo MinZ	Z 1	54
B.26.26 Triángulos en contenedor cuadrangular con algoritmo MinZ	Z 1	55
B.27.27 Triángulos en contenedor cuadrangular con algoritmo MinZ	. 1	56

ÍNDICE DE FIGURAS XVI

B.28.28 Triángulos en contenedor cuadrangular con algoritmo MinZ 157
B.29.29 Triángulos en contenedor cuadrangular con algoritmo MinZ 158
B.30.30 Triángulos en contenedor cuadrangular con algoritmo MinZ 159
C.1. 1 Triángulo en contenedor cuadrangular con algoritmo MinRho 161
C.1. 1 Irrangulo en contenedor cuadrangular con algoritmo Minitino 101
C.2. 2 Triángulos en contenedor cuadrangular con algoritmo Min Rho $$ 162
C.3. 3 Triángulos en contenedor cuadrangular con algoritmo MinRho 163
C.4. 4 Triángulos en contenedor cuadrangular con algoritmo MinRho 164
C.5. 5 Triángulos en contenedor cuadrangular con algoritmo MinRho 165
C.6. 6 Triángulos en contenedor cuadrangular con algoritmo MinRho 166
C.7. 7 Triángulos en contenedor cuadrangular con algoritmo MinRho 167
C.8. 8 Triángulos en contenedor cuadrangular con algoritmo MinRho 168
C.9. 9 Triángulos en contenedor cuadrangular con algoritmo MinRho 169
C.10.10 Triángulos en contenedor cuadrangular con algoritmo MinRho 170
C.11.11 Triángulos en contenedor cuadrangular con algoritmo MinRho 171
C.12.12 Triángulos en contenedor cuadrangular con algoritmo MinRho 172
C.13.13 Triángulos en contenedor cuadrangular con algoritmo MinRho 173
C.14.14 Triángulos en contenedor cuadrangular con algoritmo MinRho 174
C.15.15 Triángulos en contenedor cuadrangular con algoritmo MinRho 175
C.16.16 Triángulos en contenedor cuadrangular con algoritmo MinRho 176
C.17.17 Triángulos en contenedor cuadrangular con algoritmo MinRho 177

ÍNDICE DE FIGURAS XVII

C.18.18 Triángulos en contenedor cuadrangular con algoritmo MinRho 178
C.19.19 Triángulos en contenedor cuadrangular con algoritmo MinRho 179
C.20.20 Triángulos en contenedor cuadrangular con algoritmo MinRho 180
C.21.21 Triángulos en contenedor cuadrangular con algoritmo MinRho 183
C.22.22 Triángulos en contenedor cuadrangular con algoritmo MinRho 182
C.23.23 Triángulos en contenedor cuadrangular con algoritmo MinRho 183
C.24.24 Triángulos en contenedor cuadrangular con algoritmo MinRho 184
C.25.25 Triángulos en contenedor cuadrangular con algoritmo MinRho 185
C.26.26 Triángulos en contenedor cuadrangular con algoritmo MinRho 186
C.27.27 Triángulos en contenedor cuadrangular con algoritmo MinRho 187
C.28.28 Triángulos en contenedor cuadrangular con algoritmo MinRho 188
C.29.29 Triángulos en contenedor cuadrangular con algoritmo MinRho 189
C.30.30 Triángulos en contenedor cuadrangular con algoritmo MinRho 190
D.1. 1 Triángulo en contenedor circular con algoritmo MinZ 192
D.2. 2 Triángulos en contenedor circular con algoritmo MinZ 193
D.3. 3 Triángulos en contenedor circular con algoritmo MinZ 194
D.4. 4 Triángulos en contenedor circular con algoritmo MinZ 198
D.5. 5 Triángulos en contenedor circular con algoritmo MinZ 196
D.6. 6 Triángulos en contenedor circular con algoritmo MinZ 197
D.7. 7 Triángulos en contenedor circular con algoritmo MinZ 198

ÍNDICE DE FIGURAS XVIII

D.8. 8 Triángulos en contenedor circular con algoritmo MinZ	99
D.9. 9 Triángulos en contenedor circular con algoritmo Min Z	:00
D.10.10 Triángulos en contenedor circular con algoritmo MinZ 2	:01
D.11.11 Triángulos en contenedor circular con algoritmo MinZ 2	:02
D.12.12 Triángulos en contenedor circular con algoritmo MinZ 2	:03
D.13.13 Triángulos en contenedor circular con algoritmo MinZ 2	:04
D.14.14 Triángulos en contenedor circular con algoritmo MinZ 2	:05
D.15.15 Triángulos en contenedor circular con algoritmo MinZ 2	:06
D.16.16 Triángulos en contenedor circular con algoritmo MinZ 2	:07
D.17.17 Triángulos en contenedor circular con algoritmo MinZ 2	:08
D.18.18 Triángulos en contenedor circular con algoritmo MinZ 2	:09
D.19.19 Triángulos en contenedor circular con algoritmo MinZ 2	10
D.20.20 Triángulos en contenedor circular con algoritmo MinZ 2	11
D.21.21 Triángulos en contenedor circular con algoritmo MinZ 2	12
D.22.22 Triángulos en contenedor circular con algoritmo MinZ 2	13
D.23.23 Triángulos en contenedor circular con algoritmo MinZ 2	14
D.24.24 Triángulos en contenedor circular con algoritmo MinZ 2	15
D.25.25 Triángulos en contenedor circular con algoritmo MinZ 2	16
D.26.26 Triángulos en contenedor circular con algoritmo MinZ 2	17
D.27.27 Triángulos en contenedor circular con algoritmo MinZ 2	218

ÍNDICE DE FIGURAS XIX

D.28.28 Triángulos en contenedor circular con algoritmo MinZ 219
D.29.29 Triángulos en contenedor circular con algoritmo MinZ
D.30.30 Triángulos en contenedor circular con algoritmo MinZ
E.1. 1 Triángulo en contenedor circular con algoritmo MinRho
E.2. 2 Triángulos en contenedor circular con algoritmo MinRho 224
E.3. 3 Triángulos en contenedor circular con algoritmo MinRho 225
E.4. 4 Triángulos en contenedor circular con algoritmo MinRho 226
E.5. 5 Triángulos en contenedor circular con algoritmo MinRho
E.6. 6 Triángulos en contenedor circular con algoritmo MinRho 228
E.7. 7 Triángulos en contenedor circular con algoritmo MinRho 229
E.8. 8 Triángulos en contenedor circular con algoritmo MinRho 230
E.9. 9 Triángulos en contenedor circular con algoritmo MinRho 231
E.10.10 Triángulos en contenedor circular con algoritmo MinRho 232
E.11.11 Triángulos en contenedor circular con algoritmo MinRho 233
E.12.12 Triángulos en contenedor circular con algoritmo MinRho 234
E.13.13 Triángulos en contenedor circular con algoritmo MinRho 235
E.14.14 Triángulos en contenedor circular con algoritmo MinRho 236
E.15.15 Triángulos en contenedor circular con algoritmo MinRho 237
E.16.16 Triángulos en contenedor circular con algoritmo MinRho 238
E.17.17 Triángulos en contenedor circular con algoritmo MinRho 239

ÍNDICE DE FIGURAS XX

E.18.18 Triángulos en contenedor circular con algoritmo MinRho 240
E.19.19 Triángulos en contenedor circular con algoritmo MinRho 241
E.20.20 Triángulos en contenedor circular con algoritmo MinRho 242
E.21.21 Triángulos en contenedor circular con algoritmo MinRho 243
E.22.22 Triángulos en contenedor circular con algoritmo MinRho 244
E.23.23 Triángulos en contenedor circular con algoritmo MinRho 245
E.24.24 Triángulos en contenedor circular con algoritmo MinRho 246
E.25.25 Triángulos en contenedor circular con algoritmo MinRho 247
E.26.26 Triángulos en contenedor circular con algoritmo MinRho 248
E.27.27 Triángulos en contenedor circular con algoritmo MinRho 249
E.28.28 Triángulos en contenedor circular con algoritmo MinRho 250
E.29.29 Triángulos en contenedor circular con algoritmo MinRho 251
E.30.30 Triángulos en contenedor circular con algoritmo MinRho 252
F.1. 1 Cuadrado en contenedor cuadrangular con algoritmo MinZ 254
F.2. 2 Cuadrados en contenedor cuadrangular con algoritmo MinZ 255
F.3. 3 Cuadrados en contenedor cuadrangular con algoritmo MinZ 256
F.4. 4 Cuadrados en contenedor cuadrangular con algoritmo MinZ 257
F.5. 5 Cuadrados en contenedor cuadrangular con algoritmo MinZ 258
F.6. 6 Cuadrados en contenedor cuadrangular con algoritmo MinZ 259
F.7. 7 Cuadrados en contenedor cuadrangular con algoritmo MinZ 260

ÍNDICE DE FIGURAS XXI

F.8. 8 Cuadrados en contenedor cuadrangular con algoritmo MinZ 261
F.9. 9 Cuadrados en contenedor cuadrangular con algoritmo MinZ 262
F.10.10 Cuadrados en contenedor cuadrangular con algoritmo MinZ 263
F.11.11 Cuadrados en contenedor cuadrangular con algoritmo MinZ 264
F.12.12 Cuadrados en contenedor cuadrangular con algoritmo MinZ 265
F.13.13 Cuadrados en contenedor cuadrangular con algoritmo MinZ 266
F.14.14 Cuadrados en contenedor cuadrangular con algoritmo MinZ 267
F.15.15 Cuadrados en contenedor cuadrangular con algoritmo MinZ 268
G.1. 1 Cuadrado en contenedor cuadrangular con algoritmo MinRho 270
G.2. 2 Cuadrados en contenedor cuadrangular con algoritmo MinRho 271
G.3. 3 Cuadrados en contenedor cuadrangular con algoritmo MinRho 272
G.4. 4 Cuadrados en contenedor cuadrangular con algoritmo MinRho 273
G.5. 5 Cuadrados en contenedor cuadrangular con algoritmo MinRho 274
G.6. 6 Cuadrados en contenedor cuadrangular con algoritmo MinRho 275
G.7. 7 Cuadrados en contenedor cuadrangular con algoritmo MinRho 276
G.8. 8 Cuadrados en contenedor cuadrangular con algoritmo MinRho 277
G.9. 9 Cuadrados en contenedor cuadrangular con algoritmo MinRho 278
G.10.10 Cuadrados en contenedor cuadrangular con algoritmo MinRho 279
G.11.11 Cuadrados en contenedor cuadrangular con algoritmo MinRho 280
G.12.12 Cuadrados en contenedor cuadrangular con algoritmo MinRho 281

ÍNDICE DE FIGURAS XXII

G.13.13 Cuadrados en contenedor cuadrangular con algoritmo MinRho 282
G.14.14 Cuadrados en contenedor cuadrangular con algoritmo MinRho 283
G.15.15 Cuadrados en contenedor cuadrangular con algoritmo MinRho 284
H.1. 1 Cuadrado en contenedor circular con algoritmo MinZ 286
H.2. 2 Cuadrados en contenedor circular con algoritmo MinZ 287
H.3. 3 Cuadrados en contenedor circular con algoritmo MinZ 288
H.4. 4 Cuadrados en contenedor circular con algoritmo MinZ 289
H.5. 5 Cuadrados en contenedor circular con algoritmo MinZ 290
H.6. 6 Cuadrados en contenedor circular con algoritmo MinZ 291
H.7. 7 Cuadrados en contenedor circular con algoritmo MinZ
H.8. 8 Cuadrados en contenedor circular con algoritmo MinZ
H.9. 9 Cuadrados en contenedor circular con algoritmo MinZ 294
H.10.10 Cuadrados en contenedor circular con algoritmo MinZ 295
H.11.11 Cuadrados en contenedor circular con algoritmo MinZ 296
H.12.12 Cuadrados en contenedor circular con algoritmo MinZ 297
H.13.13 Cuadrados en contenedor circular con algoritmo MinZ 298
H.14.14 Cuadrados en contenedor circular con algoritmo MinZ 299
H.15.15 Cuadrados en contenedor circular con algoritmo MinZ 300
I.1. 1 Cuadrado en contenedor circular con algoritmo MinRho 302
I.2. 2 Cuadrados en contenedor circular con algoritmo MinRho 303

ÍNDICE DE FIGURAS XXIII

I.3. 3 Cuadrados en contenedor circular con algoritmo MinRho 304
I.4. 4 Cuadrados en contenedor circular con algoritmo MinRho 305
I.5. 5 Cuadrados en contenedor circular con algoritmo MinRho 306
I.6. 6 Cuadrados en contenedor circular con algoritmo MinRho 307
I.7. 7 Cuadrados en contenedor circular con algoritmo MinRho 308
I.8. 8 Cuadrados en contenedor circular con algoritmo MinRho 309
I.9. 9 Cuadrados en contenedor circular con algoritmo MinRho 310
I.10. 10 Cuadrados en contenedor circular con algoritmo MinRho 311
I.11. 11 Cuadrados en contenedor circular con algoritmo MinRho 312
I.12. 12 Cuadrados en contenedor circular con algoritmo MinRho 313
I.13. 13 Cuadrados en contenedor circular con algoritmo MinRho 314
I.14. 14 Cuadrados en contenedor circular con algoritmo MinRho 315
I.15. 15 Cuadrados en contenedor circular con algoritmo MinRho 316
J.1. 1 Pentágono en contenedor cuadrangular con algoritmo MinZ 318
J.2. 2 Pentágonos en contenedor cuadrangular con algoritmo MinZ 319
J.3. 3 Pentágonos en contenedor cuadrangular con algoritmo MinZ 320
J.4. 4 Pentágonos en contenedor cuadrangular con algoritmo MinZ 321
J.5. 5 Pentágonos en contenedor cuadrangular con algoritmo MinZ 322
J.6. 6 Pentágonos en contenedor cuadrangular con algoritmo MinZ 323
J.7. 7 Pentágonos en contenedor cuadrangular con algoritmo MinZ 324

ÍNDICE DE FIGURAS XXIV

J.8. 8 Pentágonos en contenedor cuadrangular con algoritmo MinZ 325
J.9. 9 Pentágonos en contenedor cuadrangular con algoritmo MinZ 326
J.10. 10 Pentágonos en contenedor cuadrangular con algoritmo MinZ 327
K.1. 1 Pentágono en contenedor cuadrangular con algoritmo MinRho 329
$\rm K.2.~2$ Pentágonos en contenedor cuadrangular con algoritmo Min Rho 330
${\rm K.3.~3~Pent\'{a}gonos~en}$ contenedor cuadrangular con algoritmo ${\rm MinRho}$ 331
${\rm K.4.~4~Pent\'{a}gonos~en}$ contenedor cuadrangular con algoritmo ${\rm MinRho}$ 332
K.5. 5 Pentágonos en contenedor cuadrangular con algoritmo MinRho 333
K.6. 6 Pentágonos en contenedor cuadrangular con algoritmo MinRho 334
K.7. 7 Pentágonos en contenedor cuadrangular con algoritmo MinRho 335
K.8. 8 Pentágonos en contenedor cuadrangular con algoritmo MinRho 336
K.9. 9 Pentágonos en contenedor cuadrangular con algoritmo MinRho 337
K.10.10 Pentágonos en contenedor cuadrangular con algoritmo MinRho 338
L.1. 1 Pentágono en contenedor circular con algoritmo MinZ
L.2. 2 Pentágonos en contenedor circular con algoritmo MinZ 341
L.3. 3 Pentágonos en contenedor circular con algoritmo MinZ 342
L.4. 4 Pentágonos en contenedor circular con algoritmo MinZ 343
L.5. 5 Pentágonos en contenedor circular con algoritmo MinZ 344
L.6. 6 Pentágonos en contenedor circular con algoritmo MinZ 345
L.7. 7 Pentágonos en contenedor circular con algoritmo MinZ 346

ÍNDICE DE FIGURAS XXV

L.8. 8 Pentágonos en contenedor circular con algoritmo MinZ
L.9. 9 Pentágonos en contenedor circular con algoritmo MinZ 348
L.10.10 Pentágonos en contenedor circular con algoritmo MinZ 349
M.1. 1 Pentágono en contenedor circular con algoritmo MinRho 351
M.2. 2 Pentágonos en contenedor circular con algoritmo MinRho 352
M.3. 3 Pentágonos en contenedor circular con algoritmo MinRho 353
M.4. 4 Pentágonos en contenedor circular con algoritmo MinRho 354
M.5. 5 Pentágonos en contenedor circular con algoritmo MinRho 355
M.6. 6 Pentágonos en contenedor circular con algoritmo MinRho 356
M.7. 7 Pentágonos en contenedor circular con algoritmo MinRho 357
M.8. 8 Pentágonos en contenedor circular con algoritmo MinRho 358
M.9. 9 Pentágonos en contenedor circular con algoritmo MinRho 359
M.1010 Pentágonos en contenedor circular con algoritmo MinRho 360

ÍNDICE DE TABLAS

2.1.	Clasificación de Dyckhoff	14
2.2.	Clasificación de C&P Problems clásicos con la tipología de Dyckhoff .	15
2.3.	Clasificación de Wäscher	17
2.4.	Clasificación de C&P Problems clásicos con la tipología de Wäscher $$.	17
3.1.	Parámetros del modelo de empaquetamiento óptimo	36
3.2.	Parámetros del modelo de mínimo contenedor con triángulos suaves .	40
3.3.	Parámetros del modelo de suavidad mínima con triángulos suaves	44
3.4.	Parámetros del modelo de mínimo contenedor con polígonos suaves .	50
3.5.	Parámetros del modelo de suavidad mínima con polígonos suaves	54
5.1.	Información de Figura 5.1	72
5.2.	Información de Figura 5.2	73
5.3.	Información de Figura 5.3	74
5.4.	Información de Figura 5.4	75
5.5.	Información de Figura 5.5	76

ÍNDICE DE TABLAS XXVII

5.6.	Información	de	Figura	5.6			 •					•			77
5.7.	Información	de	Figura	5.7	•		 •		 ٠	 •	 •				78
5.8.	Información	de	Figura	5.8	•	•						•			79
5.9.	Información	de	Figura	5.9			 •					•			80
5.10.	Información	de	Figura	5.10			 •							•	81
5.11.	Información	de	Figura	5.11			 •		 ٠	 •	 •				83
5.12.	Información	de	Figura	5.12	•	•	 •					•	 •		84
5.13.	Información	de	Figura	5.13			 •					•			85
5.14.	Información	de	Figura	5.14		•						•			86
5.15.	Información	de	Figura	5.15											87
5.16.	Información	de	Figura	5.16											88
5.17.	Información	de	Figura	5.17											89
5.18.	Información	de	Figura	5.18		•						•			90
5.19.	Información	de	Figura	5.19		•						•			91
5.20.	Información	de	Figura	5.20											92
5.21.	Información	de	Figura	5.21											94
5.22.	Información	de	Figura	5.22								•			95
5.23.	Información	de	Figura	5.23								•			96
5.24.	Información	de	Figura	5.24			 •								97
5.25.	Información	de	Figura	5.25											98

ÍNDICE DE TABLAS XXVIII

5.26. Información de Figura 5.26	. 99
5.27. Información de Figura 5.27	. 100
5.28. Información de Figura 5.28	. 101
5.29. Información de Figura 5.29	. 102
5.30. Información de Figura 5.30	. 103
5.31. Información de Figura 5.31	. 105
5.32. Información de Figura 5.32	. 106
5.33. Información de Figura 5.33	. 107
5.34. Información de Figura 5.34	. 108
5.35. Información de Figura 5.35	. 109
5.36. Información de Figura 5.36	. 110
5.37. Información de Figura 5.37	. 111
5.38. Información de Figura 5.38	. 112
5.39. Información de Figura 5.39	. 113
5.40. Información de Figura 5.40	. 114
B.1. Información de Figura B.1	. 130
B.2. Información de Figura B.2	. 131
B.3. Información de Figura B.3	. 132
B.4. Información de Figura B.4	. 133
B.5. Información de Figura B.5	. 134

ÍNDICE DE TABLAS XXIX

B.6. Información de Figura B.6 .		 				 						135
B.7. Información de Figura B.7 .		 	•	 •		 						136
B.8. Información de Figura B.8 .		 	٠		 •	 						137
B.9. Información de Figura B.9 .		 		 •	 •	 						138
B.10.Información de Figura B.10		 				 						139
B.11.Información de Figura B.11		 				 						140
B.12.Información de Figura B.12	•	 	•	 •								141
B.13.Información de Figura B.13	•	 	•	 •	 •	 	•					142
B.14.Información de Figura B.14	•	 		 •	 •	 	•					143
B.15.Información de Figura B.15		 				 						144
B.16.Información de Figura B.16		 				 						145
B.17.Información de Figura B.17		 				 						146
B.18.Información de Figura B.18	•	 	•	 •	 •	 	•					147
B.19.Información de Figura B.19	•	 	٠		 •					•		148
B.20.Información de Figura B.20	•	 	•	 •		 	•					149
B.21.Información de Figura B.21	•	 		 ·		 		•				150
B.22.Información de Figura B.22	•	 		 ·		 		•				151
B.23.Información de Figura B.23	•	 	•	 •								152
B.24. Información de Figura B.24	•	 	٠	 •	 •					•		153
B.25.Información de Figura B.25		 				 						154

ÍNDICE DE TABLAS XXX

B.26.Información de Figura B.26	5
B.27.Información de Figura B.27	6
B.28.Información de Figura B.28	7
B.29.Información de Figura B.29	8
B.30.Información de Figura B.30	9
C.1. Información de Figura C.1	1
C.2. Información de Figura C.2	52
C.3. Información de Figura C.3	3
C.4. Información de Figura C.4	64
C.5. Información de Figura C.5	5
C.6. Información de Figura C.6	6
C.7. Información de Figura C.7	;7
C.8. Información de Figura C.8	8
C.9. Información de Figura C.9	9
C.10.Información de Figura C.10	'0
C.11.Información de Figura C.11	'1
C.12.Información de Figura C.12	'2
C.13.Información de Figura C.13	'3
C.14.Información de Figura C.14	'4
C.15.Información de Figura C.15	'5

ÍNDICE DE TABLAS XXXI

C.16.Información de Figura C.16	•			 								176
C.17.Información de Figura C.17	•			 								177
C.18.Información de Figura C.18				 								178
C.19.Información de Figura C.19				 								179
C.20. Información de Figura C.20	•	•	 •	 								180
C.21.Información de Figura C.21	-		 •	 								181
C.22.Información de Figura C.22	•	•	 •	 								182
C.23.Información de Figura C.23			 •	 	•		 •				•	183
C.24. Información de Figura C.24			 •	 								184
C.25.Información de Figura C.25			 •	 	•		 •				•	185
C.26.Información de Figura C.26			 •	 								186
C.27.Información de Figura C.27				 								187
C.28.Información de Figura C.28				 								188
C.29.Información de Figura C.29			 •	 	•	 •	 •	•			•	189
C.30.Información de Figura C.30				 								190
D.1. Información de Figura D.1 .				 			 					192
D.2. Información de Figura D.2 .			 •	 	•		 					193
D.3. Información de Figura D.3 .				 			 					194
D.4. Información de Figura D.4 .				 			 					195
D.5. Información de Figura D.5 .				 			 					196

ÍNDICE DE TABLAS XXXII

D.6. Información de Figura D.6	 	 	 					197
D.7. Información de Figura D.7	 	 	 			•		198
D.8. Información de Figura D.8	 	 	 					199
D.9. Información de Figura D.9	 	 	 					200
D.10.Información de Figura D.10	 	 	 					201
D.11.Información de Figura D.11	 	 	 					202
D.12.Información de Figura D.12	 	 	 					203
D.13.Información de Figura D.13	 	 	 					204
D.14.Información de Figura D.14	 	 	 					205
D.15.Información de Figura D.15	 	 	 					206
D.16.Información de Figura D.16	 	 	 					207
D.17.Información de Figura D.17	 	 	 					208
D.18.Información de Figura D.18	 	 	 					209
D.19.Información de Figura D.19	 	 	 					210
D.20.Información de Figura D.20	 	 	 					211
D.21.Información de Figura D.21	 	 	 					212
D.22.Información de Figura D.22	 	 	 	 •		•		213
D.23.Información de Figura D.23	 	 	 					214
D.24.Información de Figura D.24	 	 	 					215
D.25.Información de Figura D.25	 	 	 				 	216

ÍNDICE DE TABLAS XXXIII

D.26.Información de Figura D.26
D.27.Información de Figura D.27
D.28.Información de Figura D.28
D.29.Información de Figura D.29
D.30.Información de Figura D.30
E.1. Información de Figura E.1
E.2. Información de Figura E.2
E.3. Información de Figura E.3
E.4. Información de Figura E.4
E.5. Información de Figura E.5
E.6. Información de Figura E.6
E.7. Información de Figura E.7
E.8. Información de Figura E.8
E.9. Información de Figura E.9
E.10. Información de Figura E.10
E.11. Información de Figura E.11
E.12. Información de Figura E.12
E.13. Información de Figura E.13
E.14. Información de Figura E.14
E.15.Información de Figura E.15

ÍNDICE DE TABLAS XXXIV

E.16.Información de Figura E.16	
E.17.Información de Figura E.17	
E.18.Información de Figura E.18	
E.19.Información de Figura E.19	
E.20. Información de Figura E.20	
E.21.Información de Figura E.21	
E.22.Información de Figura E.22	
E.23.Información de Figura E.23	
E.24.Información de Figura E.24	
E.25.Información de Figura E.25	
E.26. Información de Figura E.26	
E.27. Información de Figura E.27	
E.28. Información de Figura E.28	
E.29. Información de Figura E.29	
E.30.Información de Figura E.30	
F.1. Información de Figura F.1 .	
F.2. Información de Figura F.2 .	
F.3. Información de Figura F.3 .	
F.4. Información de Figura F.4 .	
F.5. Información de Figura F.5.	

ÍNDICE DE TABLAS XXXV

F.6. Información de Figura F.6	259
F.7. Información de Figura F.7	260
F.8. Información de Figura F.8	261
F.9. Información de Figura F.9	262
F.10. Información de Figura F.10	263
F.11. Información de Figura F.11	264
F.12. Información de Figura F.12	265
F.13. Información de Figura F.13	266
F.14. Información de Figura F.14	267
F.15. Información de Figura F.15	268
G.1. Información de Figura G.1	270
G.2. Información de Figura G.2	271
G.3. Información de Figura G.3	272
G.4. Información de Figura G.4	273
G.5. Información de Figura G.5	274
G.6. Información de Figura G.6	275
G.7. Información de Figura G.7	276
G.8. Información de Figura G.8	277
G.9. Información de Figura G.9	278
G.10.Información de Figura G.10	279

ÍNDICE DE TABLAS XXXVI

G.11.Información de Figura G.11	280
G.12.Información de Figura G.12	281
G.13.Información de Figura G.13	282
G.14.Información de Figura G.14	283
G.15.Información de Figura G.15	284
H.1. Información de Figura H.1	286
H.2. Información de Figura H.2	287
H.3. Información de Figura H.3	288
H.4. Información de Figura H.4	289
H.5. Información de Figura H.5	290
H.6. Información de Figura H.6	291
H.7. Información de Figura H.7	292
H.8. Información de Figura H.8	293
H.9. Información de Figura H.9	294
H.10.Información de Figura H.10	295
H.11.Información de Figura H.11	296
H.12.Información de Figura H.12	297
H.13.Información de Figura H.13	298
H.14.Información de Figura H.14	299
H.15.Información de Figura H.15	300

ÍNDICE DE TABLAS XXXVII

I.1. Información de Figura I.1	302
I.2. Información de Figura I.2	303
I.3. Información de Figura I.3	304
I.4. Información de Figura I.4	305
I.5. Información de Figura I.5	306
I.6. Información de Figura I.6	307
I.7. Información de Figura I.7	308
I.8. Información de Figura I.8	309
I.9. Información de Figura I.9	310
I.10. Información de Figura I.10	311
I.11. Información de Figura I.11	312
I.12. Información de Figura I.12	313
I.13. Información de Figura I.13	314
I.14. Información de Figura I.14	315
I.15. Información de Figura I.15	316
J.1. Información de Figura J.1	318
J.2. Información de Figura J.2	319
J.3. Información de Figura J.3	320
J.4. Información de Figura J.4	321
J.5. Información de Figura J.5	322

ÍNDICE DE TABLAS XXXVIII

J.6. Información de Figura J.6
J.7. Información de Figura J.7
J.8. Información de Figura J.8
J.9. Información de Figura J.9
J.10. Información de Figura J.10
K.1. Información de Figura K.1
K.2. Información de Figura K.2
K.3. Información de Figura K.3
K.4. Información de Figura K.4
K.5. Información de Figura K.5
K.6. Información de Figura K.6
K.7. Información de Figura K.7
K.8. Información de Figura K.8
K.9. Información de Figura K.9
K.10.Información de Figura K.10
L.1. Información de Figura L.1
L.2. Información de Figura L.2
L.3. Información de Figura L.3
L.4. Información de Figura L.4
L.5. Información de Figura L.5

ÍNDICE DE TABLAS XXXIX

L.6. Información de Figura L.6	345
L.7. Información de Figura L.7	346
L.8. Información de Figura L.8	347
L.9. Información de Figura L.9	348
L.10. Información de Figura L.10	349
M.1. Información de Figura M.1	351
M.2. Información de Figura M.2	352
M.3. Información de Figura M.3	353
M.4. Información de Figura M.4	354
M.5. Información de Figura M.5	355
M.6. Información de Figura M.6	356
M.7. Información de Figura M.7	357
M.8. Información de Figura M.8	358
M.9. Información de Figura M.9	359
M.10Información de Figura M.10	360

AGRADECIMIENTOS

Agradezco a la Universidad Autónoma de Nuevo León (UANL) por la oportunidad que me brindó para realizar mis estudios de posgrado.

A la Facultad de Ingeniería Mecánica y Eléctrica (FIME) por el apoyo brindado durante mis estudios de maestría.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el apoyo económico otorgado mediante la beca de estudios de tiempo completo bajo la beca con el Curriculum Vitae Unico(CVU) 854945.

Agradezco al Posgrado en Ingeniería de Sistemas (PISIS) por darme la oportunidad de realizar mis estudios de doctorado.

Quiero expresar mi agradecimiento al Dr. Igor S. Litvinchev, director de la tesis, por haberme guiado durante todo este tiempo, darme consejos para mejorar mi investigación, aconsejarme en el rumbo a tomar en esta línea de investigación y ayudarme a desarrollar mi potencial académico y profesional.

Agradezco a todos los doctores del Posgrado por ser grandes mentores, por la gran calidad y desempeño aplicado a las clases y por ayudarme a desarrollar mis habilidades de análisis y de investigación científica. Agradezco a mis compañeros de PISIS por su compañía y ayuda durante mis estudios.

AGRADECIMIENTOS XLI

Agradezco profundamente a mi familia: mis padres Luis Carlos y Luz María, así como a mi hermano Carlos Antonio, que siempre están apoyándome y estuvieron haciéndolo durante el transcurso de mis estudios tanto en el ámbito profesional y el personal, siempre ayudándome a enfrentar las adversidades y apoyándome cuando no veía la salida. Gracias a ustedes he podido completar esta meta, recordándome que si alcanzo el triunfo aquí no habrá fronteras para mí.

Por último, agradezco de todo corazón a mi esposa Claudia Estefania, por comprenderme, ayudarme, apoyarme, no dejarme desistir, ser el apoyo inmediato que siempre necesité, la voz de la razón y mi motivo para seguir mejorando como profesional y como persona, ser mi compañera de vida y mi mejor amiga y además por siempre estar a mi lado incondicionalmente.

RESUMEN

Luis Ángel Gutiérrez Rodríguez.

Candidato para obtener el grado de Doctorado en Ingeniería de Sistemas.

Universidad Autónoma de Nuevo León.

Facultad de Ingeniería Mecánica y Eléctrica.

Título del estudio: Empaquetamiento Óptimo de Objetos Suaves Irregu-Lares.

Número de páginas: 374.

OBJETIVOS Y MÉTODO DE ESTUDIO: El objetivo de la presente investigación consiste en aplicar y desarrollar modelos matemáticos no lineales para el empaquetado óptimo de objetos suaves en contenedores convexos con dimensiones optimizadas. Un objeto suave se define como una figura cuya área se mantiene constante, mientras que la longitud de sus lados puede variar dentro de un rango controlado por un parámetro de suavidad. Un polígono unitario se define como un polígono regular cuyos lados tienen una longitud unitaria. Para representar computacionalmente polígonos con más de tres lados, se emplea la triangulación tipo abanico, técnica aplicable tanto a objetos convexos como no convexos.

Contribuciones y conclusiones: Se proponen diversos modelos matemáticos no lineales para el problema de empaquetado de objetos suaves, los cuales permiten obtener soluciones óptimas bajo distintas configuraciones geométricas. El presente trabajo aporta una innovación al campo del empaquetamiento de objetos suaves al demostrar que, mediante la modificación del parámetro de suavidad y el uso de la triangulación tipo abanico, es posible empaquetar tanto objetos convexos como no convexos en contenedores convexos. Este enfoque amplía las posibilidades de diseño en empaquetamientos óptimos y establece una base sólida para futuras investigacio-

RESUMEN XLIII

nes en el ámbito del empaquetado de objetos complejos.

Los avances de esta investigación han sido divulgados mediante publicaciones en revistas indexadas, capítulos de libros, ponencias en congresos nacionales e internacionales y seminarios especializados, como se detalla a continuación:

ARTÍCULOS EN REVISTAS INDEXADAS:

Litvinchev, I., Infante, L., Romanova, T., Martinez-Noa, A., Gutierrez, L. (2024). Packing Soft Convex Polygons in an Optimized Convex Container. Mobile Networks and Applications, 29, 211–220. https://doi.org/10.1007/s11036-023-02286-5

Capítulos de libros:

- Litvinchev, I., Infante, L., Romanova, T., Martinez-Noa, A., Gutierrez, L. (2024). Optimized Packing Soft Convex Polygons. In: Marmolejo-Saucedo, J.A., Rodríguez-Aguilar, R., Vasant, P., Litvinchev, I., Retana-Blanco, B.M. (eds) Computer Science and Engineering in Health Services. COMPSE 2022. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-34750-4_7
- Yaskov, G., Stoyan, Y., Romanova, T., Chuhai, A., Gutierrez, L. (2025). Optimized Designing of Parts for Additive Manufacturing. In: Altenbach, H., Gao, X.W., Syngellakis, S., Cheng, A.H.D., Lampart, P., Tkachuk, A. (eds) Advances in Mechanical and Power Engineering II. CAMPE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-82979-6_25

Ponencias en Congresos Internacionales:

• Gutierrez-Rodriguez, L. A. (2022). Optimized Packing Soft Convex Polygons. Ponencia presentada en el EAI COMPSE 2022 - 6th EAI International Conference on Computer Science and Engineering, organizado por EAI (European Alliance of Innovation) conferencia virtual, 6 de octubre de 2022. Disponible en https://compse-conf.eai-conferences.org/2022/.

Ponencias en Congresos Nacionales:

RESUMEN XLIV

■ Gutierrez-Rodriguez, L. A. (2023). Empaquetado óptimo de objetos convexos suaves. Ponencia presentada en el Primer ciclo de conferencias del Posgrado en Ingeniería de Sistemas 2023 (PISIS-FIME-UANL), Conferencia virtual, 17 de marzo de 2023. Disponible en https://www.youtube.com/watch?v= G3Sfz5ybW7o.

- Gutierrez-Rodriguez, L. A. (2023). Empaquetado óptimo de objetos convexos suaves. Conferencia invitada en el Seminario del Posgrado en Ciencias con Orientación en Matemáticas (PCOM-FCFM-UANL), Auditorio Dr. Eladio Sáenz Quiroga, 21 de septiembre de 2023. Disponible en https://www. facebook.com/share/p/1DfhpWiwHf/.
- Gutierrez-Rodriguez, L. A. (2024). Novedades sobre el empaquetado óptimo de objetos suaves. Ponencia presentada en el Segundo ciclo de conferencias del Posgrado en Ingeniería de Sistemas 2024 (PISIS-FIME-UANL), Conferencia virtual, 23 de agosto de 2024. Disponible en https://www.youtube.com/ watch?v=rDDSCybTNsA.

Firma del asesor: Dr. Igor Semionovich Litvinchev

Dr. Luis Alfonso Infante Rivera

Capítulo 1

Introducción

El empaquetado óptimo se refiere a la disposición más eficiente o adecuada de objetos en un espacio determinado. Los objetos suaves son aquellos que se pueden comprimir sin esfuerzo y cambian de forma con facilidad. Los objetos que se empaquetan son polígonos. Un polígono es un objeto geométrico que existe en un espacio de dos dimensiones finitas.

El Problema de Empaquetamiento, **BPP** por sus siglas en inglés, es un problema de optimización combinatoria que tiene una complejidad computacional NP-difícil. Este problema está compuesto por un conjunto de objetos y otro de contenedores. Los objetos deben ser completamente empaquetados dentro del contenedor, sin que exista una superposición entre ellos. El contenedor es una región convexa y en algunas variantes es un único contenedor. El objetivo es minimizar la cantidad de contenedores o el tamaño del contenedor para almacenar todos los objetos.

Se implementan y analizan diversos modelos no lineales para la resolución del problema que, en conjunto, nos ayudan a generar soluciones óptimas en poco tiempo. Los polígonos tienen características básicas como sus vértices, aristas. También tienen características derivadas como la longitud de las aristas y el área.

1.1 EMPAQUETAMIENTO DE TRIÁNGULOS

Para la definir el problema de empaquetamiento óptimo de objetos suaves se consideran cinco elementos principales, el contenedor, los objetos a empaquetar, la no superposición de los objetos, la conservación del área y longitud de lados de los triángulos y la suavidad de los mismos.

El contenedor se modela como una región convexa cuya área se expresa mediante la fórmula correspondiente, por ejemplo, un contenedor cuadrado se representa en A = lado*lado y el contenedor circular se expresa en $A = \pi*radio^2$. Los objetos a empaquetar están representados por vértices y están definidos por las coordenadas cartesianas para cada vértice del triángulo. Se asume que todos los objetos están dentro del contenedor, por lo tanto, para la no superposición de los objetos se utiliza un hiperplano separador para cada pareja de triángulos. Para empaquetar objetos suaves se incluyen restricciones métricas para controlar el tamaño de los lados del triángulo. El tamaño de los lados es calculado con la distancia euclidiana de los vértices que componen cada lado.

La suavidad de los lados se controla mediante un parámetro porcentual asociado al tamaño de cada lado. Si la suavidad de un objeto es 0% este mantendrá su forma regular y le llamaremos "polígono duro". Si la suavidad va desde cualquier valor entre 0% y hasta 100% les llamaremos "polígonos de suavidad limitada". Si se retiran las restricciones métricas de los lados y se mantiene constante el área del polígono, tendremos un "polígono de suavidad ilimitada".

En este trabajo se utilizan dos tipos de contenedores, los cuadrangulares y los circulares. Se comienza con el polígono más simple, el triángulo equilátero y la propiedad que fijamos es su área. Posteriormente con polígonos complejos que dividiremos con la triangulación abanico y también su área será fijada.

A continuación se presentan ejemplos de los diferentes tipos de suavidad. En

todos los ejemplos se utilizan el triángulos equilateros como objeto a empaquetar. Cuando suavizamos un triángulo éste podrá dejar de ser equilátero, pero tendrá un área fija igual al área de un triángulo equilátero de lado una unidad de longitud, que es $\sqrt{3}/4 \approx 0.43301270189u^2$.

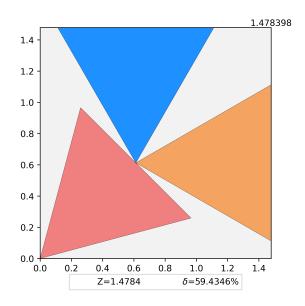


FIGURA 1.1: Tres triángulos duros en contenedor cuadrado

En la figura 1.1 se tienen tres **triángulos duros** en un contenedor cuadrado. Esta configuración representa la solución de empaquetado óptimo en un contenedor de lado de 1.478398 y que tiene una densidad de $59.4346\,\%$

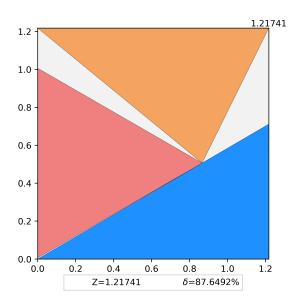


FIGURA 1.2: Dos triángulos con suavidad limitada en contenedor cuadrado

En figura 1.2 se tiene el empaquetado óptimo de tres triángulos y a diferencia de la figura 1.1 se puede notar que los triángulos amarillo y azul tienen una **suavidad limitada** de un 15 %. Se observa que el lado del contenedor ahora es 1.21741, y tiene una densidad de 87.6492 %. Este empaquetado óptimo nos indica dos observaciones relevantes; Primero, cuando un triángulo tiene **suavidad limitada** puede deformarse de manera independiente, priorizando la minimización del contenedor. Segundo, entre más triángulos de **suavidad limitada** tenga un contenedor, aumentará la densidad de empaquetado óptimo.

El segundo tipo de contenedor es el circular y se empaquetan en el tres triángulos duros. El empaquetado óptimo de estos tres triángulos se muestra en figura 1.3 donde tenemos un circulo de radio 0.953512 con una densidad de empaquetado del 45.4799%.

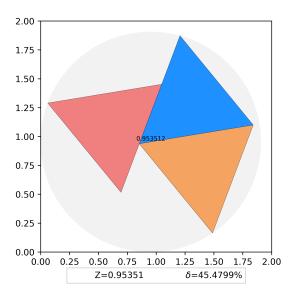


FIGURA 1.3: Tres triángulos duros en contenedor circular

Se empaquetaron también los mismos triángulos pero con suavidad ilimitada, y como resultado de empaquetar triángulos, se obtiene un polígono de T+2 lados, siendo T la cantidad de triángulos a empaquetar. En la figura 1.4 se muestra éste empaquetado óptimo con tres triángulos, se observa la formación un **pentágono** irregular. Ésto sentó la base para poder trabajar con polígonos complejos.

Un polígono complejo es cualquier polígono regular que tenga más de 3 vértices y que pueda ser dividido con la triangulación abanico. La triangulación abanico es un método que consiste en elegir un vértice de un polígono y trazar diagonales a los demás vértices. Además, este algoritmo puede ser calculado en tiempo lineal y se puede aplicar sobre polígonos convexos, pero también se puede utilizar en polígonos no convexos con un único vértice entrante. Con estas características se puede empaquetar objetos convexos y no convexos en el mismo contenedor.

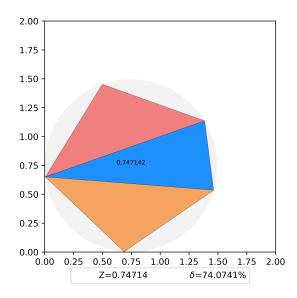


FIGURA 1.4: Tres triángulos con suavidad ilimitada en contenedor circular

Es importante señalar que en un contenedor circular, no importa cuantos polígonos ni con que tipo de suavidad lo empaquetemos, debido a que el contenedor es una curva y los polígonos inscritos no pueden cubrir toda su área.

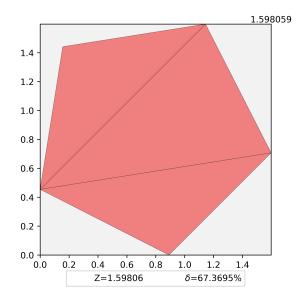


FIGURA 1.5: Pentágono con triangulación abanico

1.2 Empaquetamiento de polígonos complejos

En los polígonos complejos el área sigue siendo la característica que se fija y esta es la del polígono regular equilátero. En un pentágono como en la figura 1.5 la triangulación abanico formaría tres triángulos isósceles, dos de ellos con área semejante y un tercero con área diferente, pero las tres áreas sumadas son equivalentes al área de un pentágono regular equilátero.

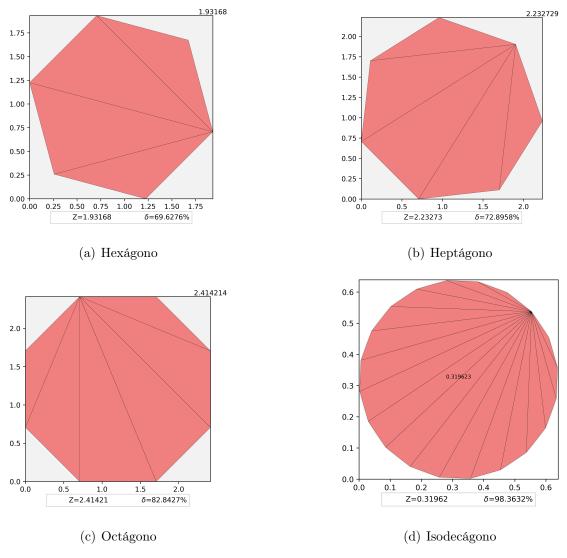


FIGURA 1.6: Diferentes polígonos con triangulación abanico

Este mismo principio se puede aplicar a cualquier polígono regular con una mayor cantidad de vértices, como por ejemplo hexágonos, heptágonos, octágonos, isodecágonos como se muestra en la figura 1.6.

1.3 Objetivos y alcances

El presente trabajo tiene como objetivo principal el desarrollo y análisis de modelos matemáticos no lineales para resolver el problema de empaquetamiento óptimo de objetos suaves y rígidos en contenedores convexos, maximizando la eficiencia en la utilización del espacio. El enfoque se basa en representar computacionalmente los objetos mediante polígonos triangulados, con posibilidad de deformación controlada (suavidad), y evaluar distintas estrategias de modelado y solución mediante solvers globales.

1.3.1 Objetivo general

Desarrollar un modelo de optimización no lineal para el empaquetamiento eficiente de objetos suaves y rígidos en contenedores convexos, con el fin de evaluar su desempeño en términos de densidad de empaquetamiento y capacidad de adaptación a distintas formas geométricas.

1.3.2 Objetivos específicos

- Formular matemáticamente objetos suaves como polígonos cuya área se mantiene constante, pero cuyos lados pueden variar dentro de un rango controlado por un parámetro de suavidad.
- Implementar una estrategia de triangulación tipo abanico para representar

computacionalmente polígonos convexos y no convexos.

- Formular distintos modelos de empaquetamiento: para objetos rígidos, para objetos suaves y para una combinación de ambos.
- Evaluar la eficiencia del empaquetamiento a través de la densidad alcanzada y la dimensión mínima del contenedor, en escenarios cuadrados y circulares.
- Validar computacionalmente los modelos propuestos mediante herramientas de optimización global como Knitro y BARON en conjunto.
- Comparar el desempeño entre distintas configuraciones y analizar la capacidad del modelo para adaptarse a contextos no tradicionales como logística verde o simulaciones biológicas.

1.3.3 Alcances de la investigación

- El estudio se limita a contenedores bidimensionales convexos, específicamente cuadrados y círculos.
- Los objetos a empaquetar son polígonos suaves y/o rígidos, representados mediante triangulación tipo abanico.
- La evaluación se centra en la densidad de empaquetamiento y en la dimensión mínima Z del contenedor necesario para lograr el acomodo sin superposición.
- Se considera que todos los objetos mantienen constante su área durante las transformaciones, permitiendo la deformación únicamente a través de los lados (suavidad).
- No se incluye en este trabajo la extensión a modelos tridimensionales, aunque se contempla como una línea de investigación futura.
- El enfoque es de carácter computacional; no se incluyen datos empíricos ni validación experimental fuera del entorno de simulación matemática.

1.4 Justificación e importancia

El objetivo de esta investigación es aplicar y desarrollar modelos matemáticos no lineales para el empaquetado óptimo de objetos suaves en contenedores convexos con dimensiones optimizadas. Un objeto suave se define como una figura geométrica cuya área permanece constante, pero cuyos lados pueden modificar su longitud dentro de un porcentaje permitido de suavidad. Además, se considera como polígono unitario aquel que es regular y cuyos lados miden exactamente una unidad de longitud.

El alcance de este trabajo incluye el estudio y la implementación de estrategias de triangulación para representar objetos suaves, permitiendo su manipulación geométrica y optimización dentro de contenedores de distintas formas. En particular, se emplea la triangulación abanico para descomponer polígonos con más de tres lados, técnica que es válida tanto para polígonos convexos como no convexos. Esta descomposición facilita la formulación de las restricciones geométricas y la evaluación de intersecciones entre objetos.

La metodología propuesta consiste en desarrollar un modelo de optimización no lineal que utiliza variables geométricas para representar la forma, posición y orientación de cada objeto dentro del contenedor. Se evita la superposición de objetos a través de una comparación uno a uno entre triángulos, tanto internos como externos al polígono de cada objeto, lo que garantiza un empaquetado libre de interferencias.

Una característica innovadora de este enfoque es la priorización de la densidad de empaquetado, aun cuando esto implique perder la convexidad en algunos objetos complejos, tratados como polígonos irregulares y no convexos. Esta perspectiva permite ampliar significativamente las posibilidades de empaquetado eficiente en una amplia variedad de formas geométricas, más allá de las figuras regulares tradicionales.

1.5 HIPÓTESIS

El empaquetado óptimo de objetos suaves en contenedores convexos constituye un problema relevante dentro del campo de la optimización geométrica, con aplicaciones en sectores industriales, logísticos y de diseño computacional. Los objetos a empaquetar son modelados como polígonos suaves, definidos por vértices conectados por lados cuya longitud puede variar dentro de un rango controlado por un parámetro de suavidad, manteniendo constante su área.

Para representar computacionalmente estos objetos, se emplea la triangulación tipo abanico, que descompone cada polígono en n-2 triángulos, siendo n el número de vértices del objeto. La disposición de los objetos se realiza en contenedores convexos (cuadrados o círculos), cuya dimensión característica está representada por la variable Z, correspondiente al lado en el cuadrado y al radio en el círculo.

La eficiencia del empaquetamiento es evaluada mediante la densidad de empaquetamiento, definida como la razón entre el área total cubierta por los objetos
y el área total del contenedor. Este indicador permite cuantificar la capacidad del
modelo para minimizar el espacio desaprovechado en la configuración final. Con base
en lo anterior, se plantea la siguiente hipótesis de investigación.

Hipótesis: Si se permite el empaquetado simultáneo de polígonos suaves convexos y no convexos dentro de un mismo contenedor convexos, siempre que dichos polígonos sean susceptibles de ser triangulados mediante una triangulación tipo abanico, entonces se logrará una mayor densidad de empaquetamiento en comparación con configuraciones que restringen la convexidad de los objetos. Esta mejora se reflejará en una reducción en la dimensión Z requerida para contener los objetos sin superposición, y será validada mediante la solución de modelos de optimización no lineal utilizando solvers globales.

Capítulo 2

REVISIÓN DE LITERATURA

El presente capítulo tiene como propósito efectuar un análisis crítico y sistemático de los principales desarrollos teóricos y aplicados en el ámbito de los problemas de corte y empaquetamiento. En primera instancia, se examinan las tipologías clásicas propuestas por Dyckoff y Wascher, las cuales constituyen referentes fundamentales para la clasificación y estructuración conceptual de esta línea de investigación.

A continuación, se lleva a cabo una revisión exhaustiva de los estudios más relevantes relativos al empaquetamiento de objetos bidimensionales, categorizados según su naturaleza geométrica en regulares, irregulares y suaves. De manera análoga, se aborda el estado del arte en empaquetamiento tridimensional, siguiendo la misma clasificación para facilitar la comparación y el análisis.

Finalmente, se presentan las conclusiones derivadas de la revisión bibliográfica, destacando las tendencias predominantes, las limitaciones identificadas y las oportunidades para el desarrollo futuro del campo. Cabe señalar que, para complementar el análisis realizado, el Apéndice A contiene un resumen comparativo de los estudios más significativos incluidos en esta revisión, con el fin de proporcionar una visión consolidada y detallada del estado actual del conocimiento.

2.1 Los Problemas de Corte y Empaquetamiento

Los problemas de corte y empaquetamiento, conocidos en la literatura como Cutting and Packing Problems, comprenden situaciones en las que intervienen dos conjuntos de entidades: los contenedores y los objetos. Los objetos deben ser acomodados dentro de los contenedores sin superposición [Gutiérrez Rodríguez, 2019]. Ambas entidades tienen características particulares, dependiendo de la dimensión geométrica sobre la que se esté trabajando.

A comienzos del siglo XX se establecieron las bases teóricas de estos problemas mediante análisis matemáticos centrados en la planificación industrial. Estos análisis surgieron ante la necesidad de optimizar la producción, dado que incrementar únicamente la cantidad o calidad de los recursos no era suficiente para alcanzar los objetivos planteados.

Los problemas de empaquetamiento poseen un amplio espectro de aplicaciones en diversas áreas. Entre las más recientes se encuentran la logística y el transporte de mercancías [Zhu et al., 2021, Mazur et al., 2021]; el control fronterizo de bienes [Ermis et al., 2021]; la química, particularmente en el estudio del comportamiento de fluidos [Jammula et al., 2022, Goodson et al., 2022]; y la física, en la optimización del uso del espacio en reactores nucleares [Vijayan et al., 2022] y la cristalización de polímeros [Radovanović et al., 2022]. En el área biológica, se han explorado diseños moleculares basados en empaquetamientos hexagonales [Li et al., 2022a]. Asimismo, se han propuesto nuevos algoritmos y modelos para abordar dichos problemas [Li et al., 2022b, Wang et al., 2022].

2.1.1 La tipología de Dyckhoff

Dyckhoff [Dyckhoff, 1990] propone una clasificación de los problemas de corte y empaquetamiento (C& P), basada en su estructura lógica. Esta se fundamenta en dos conjuntos principales de datos que definen entidades espaciales de una o más dimensiones, denominadas figuras. Estas figuras se dividen en dos categorías: los contenedores, que son las ubicaciones donde se almacenarán los objetos, y los objetos, que son las entidades que deben ser ordenadas.

Una característica distintiva de los problemas C& P radica en el proceso de corte o empaquetado, el cual implica combinaciones geométricas de los objetos dentro de los contenedores. Las figuras que no coinciden con los tamaños de los objetos suelen tratarse como pérdidas, o como espacio vacío en el Problema del Bin Packing (BPP) o los residuos resultantes del corte en el Problema del Stock-Cut (CSP).

La estructura lógica de estos problemas se resume en cuatro directrices, las cuales se utilizan para clasificar un problema de C&P, como se ilustra en la Tabla 2.1.

Dimensión (1) una dimensión (2) dos dimensiones (3) tres dimensiones (n) n-dimensiones con n >3 Tipo de Asignación (B) Una selección de objetos a todos los contenedores (V) Todos los objetos a una selección de contenedores Conjunto de contenedores (O) Un solo contenedor (I) Contenedores idénticos (D) Contenedores de diferentes formas Conjunto de objetos (F) Pocos objetos de diferentes formas (M) Muchos objetos de muchas formas diferentes (R) Muchos objetos de pocas formas diferentes (no congruentes) Muchos objetos de formas congruentes

Tabla 2.1: Clasificación de Dyckhoff

La tipología de Dyckhoff permite representar formalmente distintos problemas

de empaquetamiento, como se muestra en la Tabla 2.2. Por ejemplo, el problema clásico de Bin Packing se clasifica como 1/V/I/M.

Problema	Dimensión	Asignación	Contenedores	Objetos
Knapsack Problem	1	В	О	F
Cutting Stock Problem	1	V	I	R
Bin Packing Problem	1	V	I	M

Tabla 2.2: Clasificación de C&P Problems clásicos con la tipología de Dyckhoff

2.1.2 La tipología de Wäscher

Wäscher et al. [Wäscher et al., 2007] presentan una revisión crítica de la tipología de Dyckhoff, señalando que en ciertos casos puede inducir ambigüedad al permitir múltiples codificaciones para un mismo problema. Para ilustrar este punto, se examina el Problema de Carga de Vehículos (*Vehicle Loading Problem* o **VLP**), que puede ser codificado de dos maneras diferentes: 1/V/I/F y 1/V/I/M. La notación 'F' se utiliza cuando hay pocos objetos de diversas formas, mientras que 'M' indica que hay muchos objetos de muchas formas diferentes. Ambas codificaciones, F y M, pueden encajar dentro de la definición clásica del VLP.

Otro ejemplo es el Problema de Empaquetamiento Bidimensional, también conocido como Problema de Empaquetamiento de Tiras (Strip-Packing Problem o SPP), que puede ser codificado de dos maneras: 2/V/O/M y 2/V/D/M. La letra 'O' se usa cuando el contenedor es único. Sin embargo, si imaginamos que el contenedor se divide en "tiras"(strips) y estas tiras son de diferentes formas, se utiliza el código 'D'. Además, aunque no se menciona en la revisión de Dyckhoff, el SPP también puede ser codificado como 2/V/I/M, cuando las tiras en el contenedor son particiones idénticas entre sí.

La posibilidad de múltiples codificaciones para un mismo caso evidencia la necesidad de una clasificación más precisa, como la propuesta por Wäscher.

Considerando que la clasificación de Dyckhoff se basa en cuatro directrices, la propuesta de Wäscher introduce una reformulación que permite una codificación más clara. Esta tipología incorpora la variabilidad de la dimensionalidad, una redefinición del tipo de asignación basada en maximización de salida y minimización de entrada, y una categorización más detallada del conjunto de objetos.

Sobre la dimensionalidad, se mantiene de igual manera y se agrega que la posibilidad de que las dimensiones sean fijas o no. El tipo de asignación, cambian las categorías de 'B' y 'V' a 'Output Maximization' que es una definición más clara de lo que representa 'B' e 'Input Minimization' que es una definición de lo que representa 'V'. El conjunto de tipos de contenedores pasa a ser una directriz definida en los subproblemas, manteniéndose las tres clasificaciones. Por último, la directriz de la clasificación del conjunto de objetos, donde se obvia que todos los objetos tienen formas congruentes, así que se elimina de el código 'C'. Y en esta tipología se cuentan con cuatro códigos, siendo, idénticos, débilmente heterogéneo, fuertemente heterogéneo y arbitrarios. Adaptaremos la clasificación de Wäscher como lo hicimos con Dyckhoff y se muestra en la Tabla 2.3.

Dimensión

- (1) una dimensión
- (2) dos dimensiones
- (3) tres dimensiones
- (n) n-dimensiones con n > 3

Dimensionalidad

- (f) dimensionalidad fija
- (v) dimensionalidad variable

Tipo de Asignación

- (+) Maximización de la Salida
- (-) Minimización de la Entrada

Conjunto de contenedores

- (O) Un solo contenedor
- (I) Contenedores idénticos
- (D) Contenedores débilmente heterogéneos
- (F) Contenedores fuertemente heterogéneos

Conjunto de objetos

- (I) Objetos idénticos
- (D) Objetos débilmente heterogéneos
- (F) Objetos fuertemente heterogéneos
- (A) Objetos de forma arbitraria

Tabla 2.3: Clasificación de Wäscher

Aplicando la tipología de Wäscher podemos representar los problemas antes mencionados con esta clasificación, como se ve en la Tabla 2.4. El **VLP** clásico es un problema de una dimensión, de dimensionalidad fija, donde el tipo de asignación es de minimización de entrada donde deben agregarse todos los objetos a una selección de contenedores. Los contenedores tienen una forma idéntica y los objetos tienen muchos formas diferentes. En la tipología de Wäscher se clasifica como 1/f/-/I/A.

Problema	Dimensión	Dimensionalidad	Asignación	Contenedores	Objetos
Vehicle Loading Problem	1	f	-	I	A
Strip-Packing Problem	2	f	-	F	F
Optimized Packing Soft Polygons	2	v	-	0	A

Tabla 2.4: Clasificación de C&P Problems clásicos con la tipología de Wäscher

2.2 Trabajos realizados en empaquetamiento de objetos 2D

Esta sección presenta una revisión de los trabajos existentes sobre el empaquetamiento de objetos bidimensionales, diferenciando entre aquellos que consideran objetos regulares, irregulares o con cierto grado de suavidad.

2.2.1 Empaquetamiento de objetos regulares

Chazelle [Chazelle et al., 1989] estudia problemas geométricos extremos en dos y tres dimensiones, relacionados con la intersección de subdivisiones convexas y politopos convexos. Se abordan aspectos combinatorios y computacionales, se establecen límites precisos para funciones extremas, y se describen algoritmos polinómicos aplicables a los casos analizados.

Gensane [Gensane & Ryckelynck, 2005] establece una relación entre s_n , el lado del cuadrado más pequeño en el cual es posible empaquetar n cuadrados congruentes, y el supremo de la inflación máxima $\Omega(C)$ de las configuraciones admisibles C. Se calculan y analizan las propiedades de Ω en un dominio acotado, y se mejoran empaquetamientos conocidos para n=11,29 y 37, además de proponer una solución alternativa para n=18.

Kallrath [Kallrath, 2009] aborda la optimización de cortes de círculos, rectángulos y polígonos convexos en placas rectangulares, con el objetivo de minimizar el área total utilizada. El estudio considera tanto restricciones de tamaño como formulaciones no lineales enteras para múltiples placas. Se emplean hiperplanos separadores y técnicas diversas que permiten obtener soluciones óptimas para conjuntos pequeños de objetos en tiempos reducidos.

Friedman [Friedman, 2009] analiza el problema del empaquetamiento de cua-

drados en cuadrados. Define s(n) como el lado del cuadrado más pequeño en el que pueden colocarse n cuadrados unitarios sin superposición. Se presenta un resumen histórico del problema, se reportan las mejores cotas conocidas para s(n) cuando $n \leq 100$, y se desarrollan demostraciones para varios casos específicos.

Yuan et al. [Yuan et al., 2019] investigan las respuestas locales en ensamblajes de partículas elípticas sometidas a corte biaxial. Mediante un sistema de corte especializado, se identifican patrones complejos de deformación y anisotropía. El modelo de volumen libre se utiliza para explicar las diferencias estructurales observadas en las zonas de corte.

Vijayan et al. [Vijayan et al., 2022] investigan estructuras hexagonales empacadas bajo cargas mecánicas y con la presencia de defectos. Se emplea el Método de Elementos Discretos (DEM) para simular interacciones granulares. El estudio muestra cómo los defectos inducen concentraciones de fuerza localizadas, lo que tiene implicaciones para el diseño estructural eficiente.

Huang et al. [Huang et al., 2023] se centran en problemas de empaquetamiento inverso en ensamblajes de discos en dos dimensiones. Se exploran diversas configuraciones de partículas (congruentes, incongruentes y superpuestas), las cuales se representan como secuencias genéticas y se optimizan mediante algoritmos evolutivos. Se identifican formas con alta densidad de empaquetamiento, como el círculo, el triángulo isósceles y el anillo abierto.

Romanova et al. [Romanova et al., 2023] abordan el problema de acomodar elipses suaves en un contenedor rectangular convexo de altura mínima. Las elipses pueden rotarse y deformarse conservando su área. Se introducen restricciones de diseño basadas en la función phi y se plantea una formulación de optimización no convexa, cuya solución se obtiene mediante técnicas numéricas. El modelo tiene aplicaciones en la modelización de medios porosos y en la industria de petróleo y gas.

2.2.2 Empaquetamiento de objetos irregulares

Bennell y Oliveira [Bennell & Oliveira, 2009] realizan una revisión del desarrollo histórico de los problemas de corte y empaquetamiento, con énfasis en las configuraciones que involucran formas irregulares. Se destaca cómo el avance en la capacidad computacional y las técnicas geométricas ha impulsado la evolución de este campo durante más de cuatro décadas. El estudio también presenta desafíos metodológicos y direcciones futuras de investigación.

Scheithauer [Scheithauer, 2018] presenta una obra integral sobre problemas de optimización asociados al corte y empaquetado. Se exponen enfoques de modelado, métodos de solución, límites óptimos y análisis del desempeño de algoritmos heurísticos. El texto aborda tanto objetos regulares como irregulares, convirtiéndose en un recurso relevante para estudiantes, profesionales e investigadores.

Leão et al. [Leao et al., 2020] examinan problemas de empaquetamiento de piezas irregulares y regulares dentro de contenedores de mayor tamaño, con el objetivo de minimizar el desperdicio de espacio. El estudio sistematiza diversos modelos matemáticos bajo un marco de notación unificado y destaca oportunidades de investigación orientadas a aplicaciones prácticas.

Romanova et al. [Romanova et al., 2021a] introducen el concepto de empaquetamiento disperso, el cual busca maximizar la distancia entre los objetos y los límites del contenedor. Se plantea un modelo de programación no lineal apoyado en la función phi, dirigido a objetos bidimensionales delimitados por arcos y segmentos rectos. Se propone un algoritmo de solución y se reportan resultados computacionales que validan el enfoque.

Romanova et al. [Romanova et al., 2021b] abordan el problema de disposición óptima de elipses en un dominio poligonal, maximizando el factor de empaquetamiento. Las elipses pueden rotarse y escalarse, y las restricciones se modelan mediante la función phi. Se desarrolla un algoritmo de optimización local que permite ajustar

las elipses al contorno, con aplicaciones potenciales en el diseño para manufactura aditiva.

Li et al. [Li et al., 2022a] desarrollan una estrategia sintética innovadora para obtener derivados de triazatrinaptileno con estructura estrellada, así como triazatriantrileno. Los compuestos son caracterizados tanto en solución como en estado sólido mediante técnicas como voltametría cíclica y espectroscopía UV-vis. Se identifican patrones de empaquetamiento hexagonal en fase cristalina, lo cual sugiere nuevas posibilidades en el diseño de materiales con propiedades tridimensionales de transporte de carga.

Radovanovic et al. [Radovanović et al., 2022] sintetizan un complejo de cobalto cuya estructura cristalina revela cadenas aniónicas onduladas. La red tridimensional incluye capas supramoleculares conectadas por enlaces de hidrógeno. Se observa una degradación térmica del complejo hacia Co y Co_3O_4 , lo que evidencia implicaciones relevantes para el entendimiento del empaquetamiento en sistemas cristalinos complejos.

2.2.3 Empaquetamiento de objetos suaves

Young [Young et al., 2001] aborda el problema del manejo de módulos flexibles en el diseño de planos de planta, proponiendo una solución óptima mediante programación geométrica y relajación lagrangiana. El método, implementado dentro de un esquema de recocido simulado, demuestra ser considerablemente más eficiente que enfoques previos, con una mejora de al menos 15 veces en tiempo de ejecución para conjuntos de datos con más de 50 módulos.

Åström et al. [Astrom & Karttunen, 2006] investigan agregados celulares considerados como unidades encapsuladas por membranas sujetas a diferencias de presión. El estudio analiza la formación de patrones y el espaciado intercelular, y demuestra que la aparición de canales vacíos depende de los mecanismos de adhesión celular. Se

observa que una ligera frustración en el empaquetamiento puede romper el bloqueo de difusión del solvente en condiciones de alta presión.

Ibaraki et al. [Ibaraki & Nakamura, 2006] proponen un modelo para el empaquetamiento de rectángulos con formas ajustables bajo restricciones de perímetro y área. Se emplean técnicas de programación lineal y convexa junto con secuencias relativas y búsqueda local, obteniendo un enfoque híbrido eficaz para instancias con hasta 50 rectángulos.

Nagamochi et al. [NAGAMOCHI, 2006] formulan el problema de empaquetar n rectángulos flexibles en un rectángulo fijo. Se demuestra que, si el área del contenedor es suficiente y la razón de aspecto máxima de los rectángulos no supera el valor 3, entonces es posible lograr un empaquetamiento válido.

Fügenschuh [Fugenschuh et al., 2014] presenta un algoritmo de aproximación polinómico para disponer rectángulos con áreas dadas, minimizando la longitud total de bordes. Al comparar con métodos existentes, se constata que el enfoque propuesto mejora los tiempos de solución y proporciona límites primal y dual más ajustados.

Ji et al. [Ji et al., 2017] introducen un algoritmo iterativo de empaquetamiento para módulos flexibles con contorno fijo. El enfoque se basa en fusiones ordenadas de rectángulos y asignación de espacio muerto. Se propone un marco jerárquico para la disposición, cuya eficacia se demuestra mediante experimentos que reducen significativamente la longitud de los cables.

Brenner y Pawlewicz [Brenner, 2018] estudian el empaquetamiento de rectángulos con relaciones de aspecto variables dentro de un cuadrado. Se demuestra que siempre existe una solución factible si el área del cuadrado es al menos $\rho_{\gamma} := \max\left\{\frac{4\gamma}{4\gamma-1}, \frac{2}{\gamma}\right\} \text{ veces mayor que la suma de las áreas rectangulares. Además, se demuestra que dicho límite es óptimo.}$

Bui et al. [Bui et al., 2019] analizan la partición eficiente de regiones rectangulares en n subrectángulos mediante cortes de guillotina. Se abordan tres variantes:

minimizar la suma de perímetros, el perímetro máximo y la relación de aspecto máxima. Mientras la primera se resuelve en $O(n \log n)$, las otras son NP-difíciles. Se proponen formulaciones y soluciones aproximadas respaldadas por análisis experimentales.

Jiang et al. [Jiang et al., 2019] desarrollan un modelo para el crecimiento, división y empaquetamiento de células deformables. Utilizan métodos de interfaz difusa y una función de energía libre para evitar superposición. Se incorporan la respuesta mecánica del citoesqueleto y la membrana celular. Los experimentos numéricos evidencian la evolución de grupos multicelulares y su energía libre bajo diversas condiciones.

Litvinchev et al. [Litvinchev et al., 2024] abordan el empaquetamiento de polígonos convexos suaves en contenedores convexos optimizados. Los objetos mantienen su área constante, aunque su forma puede variar dentro de límites definidos. Se modelan restricciones de no superposición, contención y conservación de área, y se resuelve un modelo de optimización no lineal. Los experimentos con triángulos y pentágonos suaves demuestran la eficacia del enfoque propuesto.

Litvinchev et al. [Litvinchev et al., 2020] también estudian problemas de empaquetado optimizado en los que objetos representados como politopos convexos pueden rotarse y trasladarse dentro de contenedores. Se proponen formulaciones analíticas para las restricciones geométricas y se resuelve el problema mediante técnicas de optimización no lineal. Los resultados computacionales validan la efectividad del enfoque.

Archer et al. [Archer et al., 2022] exploran configuraciones aperiódicas basadas en mosaicos de rectángulos y triángulos equiláteros con simetría hexagonal. Se diseñan sistemas de partículas blandas con interacciones de dos longitudes, logrando estados estables aperiódicos. Se describe el mosaico del bronce áureo y su generalización, proponiendo nuevos diseños de cuasicristales más allá de la simetría dodecagonal tradicional.

2.3 Trabajos realizados en empaquetamiento de objetos 3D

Esta sección presenta una revisión de los trabajos relacionados con el empaquetamiento de objetos tridimensionales. La revisión se organiza según la regularidad de los objetos: regulares, irregulares y aquellos con propiedades de suavidad geométrica.

2.3.1 Empaquetamiento de objetos regulares

Stoyan et al. [Stoyan et al., 2005] estudian el problema de empaquetar poliedros convexos en un paralelepípedo de altura mínima, bajo la suposición de orientación fija. Se formula un modelo matemático específico y se desarrolla un método exacto basado en una modificación del método Simplex. Se presentan ejemplos que ilustran la efectividad del enfoque.

Miller y Cacciuto [Miller & Cacciuto, 2011] realizan simulaciones numéricas de partículas coloidales suaves y repulsivas, modeladas mediante un potencial elástico generalizado en 2D y sobre superficies esféricas. Se analiza el diagrama de fases y se identifican estructuras ordenadas a bajas temperaturas. En el caso esférico, se aborda una variante del problema de Thomson para $N \leq 12$ partículas.

Baule et al. [Baule & Makse, 2014] abordan el empaquetamiento teórico de partículas con formas arbitrarias mediante un enfoque estadístico de volumen constante. Se calculan fracciones de empaquetamiento para partículas esféricas y no esféricas, lo cual representa un avance importante en la comprensión de estados de materia densamente empaquetados.

Zhao et al. [Zhao et al., 2015] utilizan el Método de Elementos Discretos (DEM) para estudiar el empaquetamiento aleatorio de partículas tetraédricas, considerando parámetros como fricción, proporción geométrica y excentricidad. Se determina que

la fricción influye significativamente en la densidad y el número de coordinación. Los resultados concuerdan con datos experimentales.

Dong et al. [Dong et al., 2016] investigan empaquetamientos de partículas no esféricas utilizando celdas de Voronoi y simulaciones DEM. Se estudian partículas elipsoidales y cilíndricas, cuantificando el impacto de la fricción y la forma sobre propiedades estructurales. Los hallazgos contribuyen a la teoría estadística de materiales granulares.

Pankratov [Pankratov et al., 2019] aborda el problema de empaquetar elipses rotables en un contenedor poligonal convexo, minimizando el coeficiente de escala del contenedor. Se introducen funciones phi y quasi-phi para modelar restricciones geométricas, y se propone un procedimiento de solución basado en programación no lineal y algoritmos híbridos.

Ng et al. [Ng & Ge, 2020] estudian la proporción de vacíos en mezclas ternarias de elipsoides similares mediante simulaciones DEM. Se desarrolla un modelo fenomenológico que predice la porosidad de mezclas de partículas no esféricas, con validación en datos experimentales de arenas lavadas.

Romanova et al. [Romanova et al., 2020] se enfocan en el empaquetamiento de elipsoides de revolución en contenedores cilíndricos con volumen mínimo. Se proponen dos modelos, uno exacto y otro basado en aproximación por esferas múltiples. Ambos modelos emplean la función phi y se validan mediante simulaciones con hasta 500 elipsoides.

Mazur et al. [Mazur et al., 2021] proponen un algoritmo para determinar secuencias físicas de carga en pallets para transporte aéreo. Basado en requisitos reales y colaboraciones con aerolíneas, el algoritmo considera estabilidad, criterios de aptitud y restricciones operativas. La evaluación con datos reales demuestra su aplicabilidad.

Neto et al. [Neto & Wriggers, 2021] desarrollan un modelo basado en el Prin-

cipio del Trabajo Virtual y el Método de Elementos Discretos para representar partículas tridimensionales como poliedros rígidos. Se simulan interacciones complejas entre partículas irregulares como arena o balasto, con alta precisión en el rastreo de contactos.

Romanova et al. [Romanova et al., 2021c] introducen el concepto de empaquetamiento disperso tridimensional, aplicado al diseño de estantes cilíndricos en procesos de desbarbado térmico. El modelo maximiza la distancia entre objetos y las paredes del contenedor. Se utiliza programación no lineal con función phi y se reportan resultados numéricos representativos.

Zhu et al. [Zhu et al., 2021] proponen el algoritmo DDTS, una combinación de búsqueda en árbol y redes neuronales convolucionales para resolver el problema de empaquetamiento 3D a gran escala (3D-BPP). Implementado en sistemas logísticos reales, el algoritmo mejora la tasa de carga y reduce costos significativamente.

Artiaco et al. [Artiaco et al., 2022] desarrollan CALiPPSO, un algoritmo para el empaquetamiento mecánicamente estable de esferas duras sin necesidad de potenciales. Se resuelven problemas de optimización lineal que garantizan configuraciones isostáticas. El software es de código abierto y los resultados validan predicciones teóricas de campo medio.

Li et al. [Li et al., 2022b] abordan el problema de carga de contenedores heterogéneos a gran escala (HCLP). Se diseña un algoritmo híbrido adaptativo basado en búsqueda en vecindarios grandes (HALNS), que supera a enfoques existentes en instancias del mundo real pertenecientes a una empresa logística multinacional.

Romanova et al. [Romanova et al., 2023] presentan un modelo para acomodar elipses suaves en un contenedor rectangular convexo, minimizando su altura. Se introducen restricciones mediante la función phi y se desarrolla una técnica de solución para el problema no convexo. El enfoque se valida con experimentos numéricos y tiene aplicaciones en geociencias e ingeniería de reservorios.

2.3.2 Empaquetamiento de objetos irregulares

Stoyan et al. [Stoyan et al., 2004] abordan el problema de empaquetar poliedros no convexos con formas espaciales arbitrarias en un paralelepípedo de altura mínima, considerando orientación fija sin rotación. Se desarrolla un modelo matemático y se proponen soluciones aproximadas mediante una metaheurística basada en la búsqueda de mínimos locales. Se incluyen ejemplos y resultados computacionales que demuestran la aplicabilidad del método.

Pankratov [Pankratov et al., 2015] estudia el problema de empaquetamiento de objetos convexos multinivel dentro de un contenedor rectangular de volumen mínimo, permitiendo traslaciones y rotaciones continuas. Se emplean funciones quasi-phi para modelar restricciones geométricas y se plantea un modelo de programación no lineal con un algoritmo de inicio válido y optimización local. Los resultados numéricos muestran la eficacia del enfoque propuesto.

Zhao et al. [Zhao et al., 2017] utilizan el método de elementos discretos (DEM) para modelar la transición entre el empaquetamiento aleatorio flojo (RLP) y el empaquetamiento aleatorio compacto (RCP) de partículas tetraédricas sometidas a vibración mecánica tridimensional. Se analizan la densidad de empaquetamiento, número de coordinación y mecanismos de densificación como el llenado por empuje y por salto, alcanzando una densidad máxima de aproximadamente 0.7402.

Araujo et al. [Araujo et al., 2019] proponen una nueva taxonomía para problemas de empaquetamiento tridimensional irregular (3DIP) en el contexto de la manufactura aditiva. Se establecen definiciones claras, criterios de clasificación e instancias del problema. Además, se introduce un conjunto de datos de referencia para evaluar metodologías computacionales existentes y fomentar investigaciones futuras.

Romanova et al. [Romanova et al., 2019] resuelven el problema de empaquetar elipses en un dominio poligonal, maximizando el factor de empaquetamiento. Se permite rotación y traslación continua de las elipses, utilizando restricciones geométricas formuladas mediante la técnica phi. Se plantea un modelo MIP que resuelve subproblemas NLP mediante un algoritmo de inicio factible y procedimientos de optimización.

Pankratov [Pankratov et al., 2019] aborda el empaquetamiento de elipses con orientación variable dentro de un contenedor poligonal convexo, minimizando el coeficiente de escala necesario para contener los objetos. Se introducen funciones phi y quasi-phi para modelar restricciones, y se aplica una combinación de algoritmos de inicio y procedimientos de optimización no lineal.

Zhao et al. [Zhao et al., 2020] utilizan simulaciones DEM para estudiar empaquetamientos aleatorios de mezclas binarias de tetraedros y esferas. Se analiza la influencia de forma, tamaño y composición en la densidad de empaquetamiento. Se demuestra que el diámetro de empaquetamiento equivalente es universal y que las propiedades microestructurales no varían significativamente con la composición.

Deng et al. [Deng et al., 2021] comparan las propiedades mecánicas de empaquetamientos de esferocilindros e intersecantes. Se observa que la relación de aspecto y la fricción afectan significativamente la compresibilidad y la estabilidad estructural, lo cual es relevante para aplicaciones en ingeniería de materiales granulares.

Zhao et al. [Zhao et al., 2021] desarrollan un algoritmo para determinar contactos multipunto entre partículas cóncavas utilizando funciones paramétricas. El enfoque, validado mediante simulaciones, permite representar eficientemente una variedad amplia de formas de partículas en contextos de elementos discretos.

Goodson et al. [Goodson et al., 2022] investigan el autoensamblaje de mezclas de copolímeros en bloque (BCPs) cíclicos y lineales. Se demuestra que una impureza del 10 % en BCPs cíclicos tiene un impacto mínimo en las dimensiones del patrón generado, y que mezclar BCPs cíclicos con lineales permite ajustar el tamaño de las características nanométricas, con aplicaciones en nanolitografía.

2.3.3 Empaquetamiento de objetos suaves

En esta sección se abordan los estudios relacionados con el empaquetamiento tridimensional de objetos suaves, los cuales se clasifican en dos categorías: objetos regulares suaves y objetos irregulares suaves. A continuación, se describen los trabajos más relevantes en la literatura científica correspondiente a cada una de estas categorías, destacando sus principales contribuciones metodológicas y aplicaciones.

2.3.3.1 Empaquetamiento de objetos regulares suaves

Winkelmann [Winkelmann, 2016] desarrolla una tesis doctoral centrada en el estudio de estructuras columnares generadas mediante el empaquetamiento denso de esferas. Estas configuraciones presentan aplicaciones en botánica, espumas y nanociencia. Mediante simulaciones computacionales, análisis teóricos y experimentación básica, se construye un diagrama de fases que incluye transiciones estructurales y desplazamientos lineales. Se propone un modelo teórico para cadenas de esferas en potenciales cónicos y se sugieren líneas futuras de investigación.

Winkelmann y Bortz [Winkelmann et al., 2017] calculan el diagrama de fases de estructuras columnares de esferas blandas sometidas a presión. Se identifica la aparición y desaparición de desplazamientos de líneas espirales contiguas conforme aumenta la presión. Estos fenómenos se validan experimentalmente en columnas de burbujas sujetas a drenaje forzado.

Bouhid de Aguiar et al. [Bouhid de Aguiar et al., 2018] estudian empaquetamientos de microgeles deformables, los cuales superan el límite clásico de empaquetamiento aleatorio de esferas duras. La resistencia a la compresión depende de la densidad: en estados laxos, la deformación de microgeles absorbe la presión, mientras que en configuraciones densas se observa expulsión de agua. La aparición de macrovoids estructurales influye en la presión osmótica y debe considerarse en modelos predictivos.

Liu et al. [Liu et al., 2020] presentan un método de simulación para imágenes densas de tomografía crioelectrónica, en el cual se empaquetan 400 macromoléculas de 20 tipos distintos en un citoplasma simulado. El modelo emplea esferas con posiciones relativas fijas para macromoléculas y posiciones flexibles para ultraestructuras, incorporando membranas y filamentos. El resultado es una compresión mayor y un volumen ocupado menor que en modelos tradicionales.

Chen et al. [Chen et al., 2021] utilizan imágenes por resonancia magnética para caracterizar el empaquetamiento de elipsoides de hidrogel blandos. Se encuentra que, a medida que aumenta la densidad de empaquetamiento, disminuyen las fluctuaciones en volumen libre y aumentan las asociadas a deformación. Las temperaturas granulares y la entropía configuracional permanecen constantes debido a transformaciones estructurales estadísticamente afines.

Jammula et al. [Jammula et al., 2022] proponen modelos mejorados para predecir la retención de líquidos y la velocidad de inundación en empaques de chapa metálica usados en columnas de contacto. Los modelos consideran como parámetros principales el área superficial y la fracción de vacío, y superan en precisión a modelos existentes, validándose con datos experimentales.

Liu et al. [Liu et al., 2022] introducen un modelo híbrido basado en elementos discretos y finitos (DEFEM) para simular el movimiento y la deformación de partículas blandas. El modelo utiliza elementos dinámicos incrustados para representar fuerzas de colisión y permite simular deformación, traslación y rotación de manera independiente. Es aplicable también a partículas no esféricas.

Zuo et al. [Zuo et al., 2022] formulan un modelo matemático de empaquetamiento tridimensional de objetos deformables en contextos logísticos y de manufactura, como la cadena de suministro de alimentos frescos. El modelo incorpora un factor de compresibilidad, lo que mejora la utilización del espacio entre un 8 % y un 28 %, con implicaciones en la reducción de costos de empaque y entrega.

Coutinho et al. [Coutinho et al., 2023] abordan el problema de carga de contenedores con productos de papel tisú de baja densidad, considerando su deformación durante el proceso de empaque. Se desarrolla una metodología basada en datos para modelar la deformación y se integra en un modelo MINLP. Aplicado a un caso real, se observan incrementos del $4\,\%$ al $7\,\%$ en la densidad de carga, y hasta un $40\,\%$ en validación experimental.

Jao et al. [Jao et al., 2023] estudian el empaquetamiento de bolas blandas mediante la energía Hookean-Voronoi. Se exploran configuraciones densas de polímeros deformables en dominios rectangulares periódicos, y se encuentra que bajo ciertas condiciones se genera una teselación hexagonal regular. Simulaciones numéricas revelan que el sistema tiende hacia configuraciones cuasiordenadas de baja energía.

2.3.3.2 Empaquetamiento de objetos irregulares suaves

Liang et al. [Liang et al., 2015] aplican un algoritmo estocástico de empaquetamiento digital para predecir la porosidad de sedimentos fluviales, considerando tanto el tamaño como la forma de las partículas. Se comparan las predicciones del modelo con mediciones de laboratorio en muestras naturales y comerciales, observándose que la forma influye significativamente en la porosidad, a pesar de la generación de estructuras de empaquetamiento relativamente sueltas.

Akram et al. [Akram, 2019] proponen un modelo matemático que incorpora configuraciones de empaque flexibles, superando limitaciones de enfoques tradicionales para cuerpos rígidos. El modelo es validado mediante un estudio de caso en un centro de empaque, y se complementa con un sistema automatizado basado en inteligencia artificial para la detección de defectos, contribuyendo al avance en automatización inteligente.

Lu et al. [Lu et al., 2019] examinan el empaquetamiento de nanopartículas cúbicas recubiertas con ADN, observando patrones espaciales inusuales causados por

la anisotropía de las capas. Se identifica una organización en zigzag en fases cúbicas y tetragonales, atribuida a la interacción entre curvatura superficial y preferencias de los ligandos, lo que abre nuevas posibilidades en diseño de materiales nanométricos.

Pedroso et al. [Pedroso, 2020] investigan el empaquetamiento de semifluidos en aplicaciones industriales, modelado como una variante del problema de la mochila bidimensional con cortes de guillotina. Se permite la división ilimitada de materiales y se exploran soluciones prácticas con propiedades matemáticas particulares. Los experimentos computacionales comparan diversos métodos, destacando la aplicabilidad industrial del estudio.

Giammona et al. [Giammona & Campas, 2021] estudian el empaquetamiento celular durante las etapas embrionarias tempranas, simulando dinámicas celulares y explorando el impacto de parámetros físicos como fuerzas entre células y restricciones geométricas. Se observa que la geometría del embrión influye directamente en los patrones de empaquetamiento, lo cual es relevante para el desarrollo biológico.

Ma et al. [Ma et al., 2021] presentan un enfoque robótico para empaquetar objetos elásticos lineales en cajas estándar. Se desarrolla un modelo geométrico híbrido que combina visión en línea y plantillas de referencia, junto con un generador automático de puntos guía y un planificador de acciones. El sistema es validado experimentalmente, mostrando eficacia con objetos de distinta longitud y forma.

Paredes-Goyes et al. [Paredes-Goyes et al., 2021] introducen un modelo acoplado de sinterización y crecimiento de grano en materiales particulados mediante el método de elementos discretos (DEM). Se integran leyes de contacto mejoradas y transferencia de masa, validando el modelo con datos experimentales. Se analiza el impacto del tamaño inicial de las partículas en la cinética de crecimiento.

Kuang et al. [Kuang et al., 2022] modelan la morfogénesis embrionaria utilizando Caenorhabditis elegans como sistema biológico. Se integran datos de división celular en un modelo de campo de fase, reproduciendo con precisión el empaquetamiento celular. El modelo predice interacciones físicas clave y sugiere colaboración

entre mecánica y genética en el desarrollo embrionario.

Laghmach et al. [Laghmach et al., 2022] exploran el empaquetamiento dinámico de ARN en el núcleo celular eucariota. Se estudia la separación de fases de proteínas y ácidos nucleicos mediante modelos computacionales, con énfasis en ARN 1D. Los resultados combinan principios de materia blanda y biología celular para explicar la organización intracelular.

Wang et al. [Wang & Hauser, 2022] abordan el problema del empaquetamiento robótico estable de objetos irregulares, maximizando la densidad de empaque y garantizando la factibilidad de movimientos. Se propone un algoritmo constructivo complementado con una heurística de minimización de mapa de alturas. Se incluyen estrategias de robustecimiento ante incertidumbre, y los resultados experimentales demuestran la efectividad del enfoque propuesto.

2.4 CONCLUSIÓN DE LA REVISIÓN DE LITERATURA

La revisión detallada de la literatura especializada ha permitido identificar una amplia variedad de enfoques aplicados al problema del empaquetamiento en dos y tres dimensiones. Estos enfoques abarcan desde modelos que consideran objetos con geometría fija, tanto regulares como irregulares, hasta propuestas que incorporan deformabilidad controlada o simulaciones físicas para representar el comportamiento de los objetos empaquetados.

Sin embargo, no se han encontrado antecedentes que aborden simultáneamente la regularidad geométrica de los objetos y la capacidad de modificar la longitud de sus lados bajo una restricción de conservación de área, es decir, el estudio de objetos suaves regulares. Esta ausencia evidencia una oportunidad para el desarrollo de nuevos modelos matemáticos que consideren este tipo de objetos.

El presente trabajo introduce un modelo original que clasifica los objetos según

su nivel de suavidad: objetos rígidos (sin deformación), objetos suaves limitados (con deformación controlada mediante un parámetro) y objetos suaves ilimitados (con deformación libre, restringida únicamente por el área). Esta clasificación permite representar la transición de geometrías regulares a formas irregulares e incluso no convexas, aspecto que no ha sido tratado en investigaciones previas.

Asimismo, se propone un enfoque de doble optimización basado en dos algoritmos secuenciales: el algoritmo de minimización del contenedor (MinZ), que busca reducir las dimensiones del contenedor necesario para alojar los objetos, y el algoritmo de minimización de suavidad (MinRho), que aplica una segunda fase de optimización destinada a disminuir el grado de deformación de los objetos, conservando la configuración óptima obtenida en la primera fase. Este planteamiento permite generar soluciones alternativas que no podrían ser obtenidas mediante técnicas convencionales.

En función de la evidencia recopilada, puede concluirse que no se han identificado trabajos que aborden el problema del empaquetamiento de objetos suaves regulares bajo una estrategia de doble optimización como la aquí propuesta, lo cual respalda la originalidad y el carácter innovador de esta investigación.

Para complementar la revisión bibliográfica, se presenta en el Apéndice A un resumen comparativo de los estudios más relevantes analizados a lo largo del capítulo. Este apéndice tiene como finalidad facilitar una visión consolidada y sintética de las características, metodologías y resultados principales de las investigaciones consideradas, contribuyendo así a una mejor comprensión del estado del arte en los problemas de corte y empaquetamiento.

Capítulo 3

FORMULACIÓN MATEMÁTICA

En el presente capítulo se describen los modelos desarrollados para abordar el problema del empaquetamiento óptimo de objetos. Se detallan las modificaciones introducidas con el objetivo de permitir el empaquetamiento de objetos con formas suaves e irregulares, ampliando así el alcance de los enfoques clásicos.

En primer lugar, se definen las variables de decisión, la función objetivo, las restricciones y los parámetros correspondientes a cada uno de los modelos. Posteriormente, se presenta la estructura general de esta clase de problemas no lineales, proporcionando un marco conceptual que facilite la comprensión de sus particularidades y desafíos inherentes.

Los modelos matemáticos no lineales propuestos se clasifican en dos categorías, de acuerdo con el objetivo específico que persiguen. El primer tipo de modelos, denominado modelos de contenedor óptimo para triángulos y polígonos, buscan minimizar el tamaño del contenedor necesario para albergar un conjunto dado de objetos. El segundo tipo de modelos, conocidos como modelo de suavidad óptima para el mínimo contenedor de triángulos y polígonos, se centra en la minimización del parámetro de suavidad, optimizando el valor de suavidad para que los objetos con características suaves sean empaquetados.

Asimismo, se describe el algoritmo de triangulación en abanico, una técnica em-

pleada en el proceso de empaquetamiento de polígonos. Este algoritmo permite una representación y manipulación eficiente de las formas poligonales al descomponerlas en componentes triangulares más manejables, lo que contribuye a un empaquetamiento más eficiente.

La estructura adoptada en este capítulo permite abordar los principales aspectos teóricos y metodológicos que sustentan los modelos propuestos en esta investigación, estableciendo las bases para la optimización de contenedores y el empaquetamiento de objetos con geometría compleja.

3.1 Modelo base de empaquetamiento óptimo

En [Litvinchev et al., 2024] se propone la siguiente nomenclatura y un modelo base para el problema de empaquetamiento óptimo de objetos poligonales convexos. Sea $\Omega(R)$ un dominio convexo acotado en \mathbb{R}^2 definido por un vector de sus parámetros métricos $R \in \mathbb{R}^m$. Sea $T_k(X^k)$ para k = 1, 2...K polígonos convexos acotados en \mathbb{R}^2 . Sea J_k el número de vértices del k^{th} polígono. Sea $X_k = \{X_k^j \in \mathbb{R}^2, j \in J_k\}$ los vértices del k^{th} polígono. Denotemos por $S_k(X_k)$ el área del polígono k^{th} correspondiente.

Parámetros

Parámetro	Descripción
\mathcal{K}	Conjunto de polígonos a empaquetar
$\Omega(R)$	Función que genera el contenedor
$J_{\mathcal{K}}$	Cantidad de vértices del polígono \mathcal{K}
$ ho_k$	Suavidad de los lados del polígono $k \in \mathcal{K}$
d_k	Longitud de cada lado del polígono $k \in \mathcal{K}$
S_{k0}	Área del polígono regular k de tamaño de cada lado d_k

Tabla 3.1: Parámetros del modelo de empaquetamiento óptimo

Variables de decisión

- X_k : Conjunto de coordenadas de los vértices del k-ésimo polígono.
- R: Parámetro que representa la dimensión característica del contenedor.

Función Objetivo

$$\begin{array}{cc}
\text{minimize} & R \\
X, R
\end{array} \tag{3.1}$$

Restricciones

$$T_k(X_k) \cap T_p(X_p) = \emptyset, \quad \forall k, p \in \{1, 2, \dots, K\}, k > p \quad \text{(No superposición)} \quad (3.2)$$

$$T_k(X_k) \subseteq \Omega(R), \quad k = 1, 2, \dots, K \quad \text{(Contenedor)}$$
 (3.3)

$$S_k(X_k) = S_{k0}, \quad k = 1, 2, \dots, K$$
 (Conservación de área) (3.4)

$$G(X,R) \le 0$$
 (Restricción métrica) (3.5)

3.1.1 Descripción de las restricciones del modelo

A continuación se presentan de forma detallada cada uno de los componentes del modelo matemático presentado en [Litvinchev et al., 2024]:

3.1.1.1 No Superposición

Para garantizar la no superposición entre objetos, la ecuación (3.2) establece que para T_k y T_p debe existir un hiperplano separador definido por un vector $v_{kp} \in \mathbb{R}^2$ y un escalar b_{kp} , tal que:

$$v_{kp}^t X \le b_{kp} \text{ por cada } X \in T_k$$
 (3.6)

$$v_{kp}^t X \ge b_{kp} \text{ por cada } X \in T_p$$
 (3.7)

Esto se puede reescribir como:

$$\max\{v_{kp}^t X : X \in T_k\} \le b_{kp} \tag{3.8}$$

$$\min\{v_{kp}^t X : X \in T_p\} \ge b_{kp} \tag{3.9}$$

O lo que es lo mismo:

$$\max\{v_{kp}^t X : X \in T_k\} \le \min\{v_{kp}^t X : X \in T_p\}$$
 (3.10)

Dado que el óptimo de una función lineal sobre un conjunto convexo y acotado se alcanza en alguno de sus vértices, se establece lo siguiente:

$$\alpha_{kp} = \max\{v_{kp}^t X_k^j : X_k^j \in T_k\} \le \min\{v_{kp}^t X_k^j : X_k^j \in T_p\} = -\beta_{kp}$$
 (3.11)

Entonces por la definición de max y min:

$$\alpha_{kp} + \beta_{kp} \le 0 \tag{3.12}$$

$$\alpha_{kp} \ge v_{kp}^t X_k^j : j \in J_k \tag{3.13}$$

$$-\beta_{kp} \le v_{kp}^t X_p^j : j \in J_p \tag{3.14}$$

$$v_{kp} \neq 0 \tag{3.15}$$

3.1.1.2 Contenedor

Dado que $\Omega(R)$ es un conjunto convexo, la ecuación (3.3) implica condiciones de contención equivalentes a:

$$T_k(X_k) \subseteq \Omega(R), \quad k = 1, 2...K \tag{3.16}$$

son equivalentes:

$$X_k^j \in \Omega(R), \quad j \in J_k, \quad k = 1, 2...K$$
 (3.17)

3.1.1.3 Conservación de área

Para conservar el área, en la ecuación (3.4) se emplea la fórmula de Herón, la cual permite calcular el área de un triángulo a partir de la longitud de sus lados:

$$area = \sqrt{s(s-a)(s-b)(s-c)}, \quad donde \ s = \frac{a+b+c}{2}$$
 (3.18)

3.1.1.4 Restricciones métricas

En la ecuación (3.5), las restricciones métricas permiten controlar las longitudes de los lados de los polígonos. Para ello, se introduce el parámetro ρ , el cual representa un porcentaje de *suavidad* sobre la longitud de referencia d_k .

$$(1 - \rho_k)d_k \le ||X_k^j - X_k^{j+1}|| \le (1 + \rho_k)d_k, \quad j = 1, 2...J_k, \quad k = 1, 2...K$$
 (3.19)

Donde d_k representa la longitud del lado $\overline{X_k^j X_k^{j+1}}$

3.2 Modelo matemático para contenedor mínimo con triángulos

En esta sección se presenta el modelo matemático empleado en el desarrollo de la presente investigación. Dicho modelo se fundamenta en el planteamiento propuesto por [Litvinchev et al., 2024], adaptado a las particularidades del problema de empaquetamiento de objetos suaves e irregulares. Se formularon restricciones específicas para cada tipo de contenedor, atendiendo a sus características geométricas particulares.

Se definen tres funciones que describen las condiciones de empaquetamiento de triángulos en distintos tipos de contenedor. En el caso de un contenedor cuadrado, la función S(Z), donde Z representa la longitud del lado del cuadrado, establece

las condiciones necesarias para un empaquetamiento eficiente. Para un contenedor circular, la función C(Z), en la que Z corresponde al radio del círculo, garantiza que los triángulos queden acomodados de manera óptima dentro de la región circular.

La siguiente expresión corresponde al área de un triángulo equilátero, la cual se deriva de la fórmula general para calcular el área de un polígono regular en función del número de lados n y la longitud de cada lado l.

$$A_{\blacktriangle} = \frac{n \cdot l^2}{4 \cdot \tan\left(\frac{\pi}{n}\right)} = \frac{3 \cdot l^2}{4 \cdot \tan\left(\frac{\pi}{3}\right)} = \frac{3 \cdot l^2}{4 \cdot \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3 \cdot l^2 \cdot \sqrt{3}}{4 \cdot 3} = \frac{l^2 \cdot \sqrt{3}}{4}$$
(3.20)

A continuación presentamos los parámetros del modelo matemático para contenedor mínimo con triángulos:

Parámetros

Parámetro	Descripción
τ	Conjunto de triángulos en el modelo de empaquetamiento
ν	Conjunto de vértices de los triángulos
α_{kp}	Distancia desde el triángulo k al triángulo p
β_{kp}	Distancia desde el triángulo p al triángulo k
$ u_{kp} $	Vector normal al hiperplano separador entre los triángulos k y p
λ_i^j	Lado j del triángulo i
σ_i	Semiperímetro del triángulo i
A_i	Área del triángulo i
ρ_i	Parámetro de suavidad en los lados en el triángulo i
d_i	Longitud de referencia de cada lado en el triángulo i
$v_{ m máx}$	Es el elemento más grande de ${\mathcal V}$
$\Omega(Z,c)$	Contenedor definido por una dimensión característica Z y un tipo geométrico especificado por c
S(Z)	Contenedor de forma cuadrada
C(Z)	Contenedor de forma circular

Tabla 3.2: Parámetros del modelo de mínimo contenedor con triángulos suaves

Variables de decisión

- X_i^j : Coordenadas en \mathbb{R}^2 del vértice j perteneciente al triángulo i.
- Z: Dimensión característica del contenedor.

Función Objetivo

$$\begin{array}{ll}
\text{minimize} & Z \\
Z, X, \alpha, \beta, \rho, \nu
\end{array}$$
(3.21)

Restricciones

$$S(Z) = \{ (x_i^j, y_i^j) \in X_i^j \mid 0 \le x_i^j \le Z, \ 0 \le y_i^j \le Z \}$$
(3.22)

$$C(Z) = \{ (x_i^j, y_i^j) \in X_i^j \mid (x_i^j - Z)^2 + (y_i^j - Z)^2 \le Z^2 \}$$
(3.23)

$$\Omega(Z,c) = \begin{cases}
S(Z) & \text{si } c = 1 \\
C(Z) & \text{si } c = 2
\end{cases}$$
(3.24)

$$X_i^j \in \Omega(Z, c), \quad \forall j \in \mathcal{V}, \, \forall i \in \mathcal{T}, \forall c \in \{1, 2\}$$
 (3.25)

$$\alpha_{kp} \ge \nu_{kp} \cdot X_k^j, \quad \forall j \in \mathcal{V}, \, k, p \in \mathcal{T} \, | \, k > p$$
 (3.26)

$$-\beta_{kp} \le \nu_{kp} \cdot X_p^j, \quad \forall j \in \mathcal{V}, \, k, p \in \mathcal{T} \, | \, k > p$$
 (3.27)

$$\alpha_{kp} + \beta_{kp} \le 0, \quad k, p \in \mathcal{T} \mid k > p$$
 (3.28)

$$\|\nu_{kp}\|^2 \ge 1, \quad k, p \in \mathcal{T} \mid k > p$$
 (3.29)

$$\lambda_i^j = \begin{cases} \|X_i^j - X_i^{j+1}\|, & \text{si } j \neq v_{\text{máx}} \\ \|X_i^j - X_i^1\|, & \text{si } j = v_{\text{máx}} \end{cases} \quad \forall j \in \mathcal{V}, \ \forall i \in \mathcal{T}$$
 (3.30)

$$\frac{1}{2} \sum_{i \in \mathcal{V}} \lambda_i^j = \sigma_i, \quad \forall i \in \mathcal{T}$$
 (3.31)

$$\left[\sigma_i \prod_{j \in \mathcal{V}} \left(\sigma_i - \lambda_i^j\right)\right]^{\frac{1}{2}} = A_i, \quad \forall i \in \mathcal{T}$$
(3.32)

$$(1 - \rho_i)d_i \le \lambda_i^j \le (1 + \rho_i)d_i, \quad \forall j \in \mathcal{V}, \, \forall i \in \mathcal{T}$$
 (3.33)

$$Z, \alpha_{kp}, \beta_{kp}, \rho_i, \sigma_i, \lambda_i^j \in \mathbb{R}^1$$
 (3.34)

$$\nu_{kp}, X_i^j \in \mathbb{R}^2 \tag{3.35}$$

La función objetivo (3.21) tiene como propósito minimizar la variable Z, mediante el ajuste de los valores correspondientes a las variables α , β , ρ , ν y X. El modelo también incluye restricciones que limitan los valores que las variables pueden tomar, las cuales explicaremos a continuación.

Las restricciones (3.22-3.24) definen las condiciones geométricas correspondientes a los distintos tipos de contenedor considerados en el modelo. En particular, la restricción (3.24) especifica la elección entre un contenedor cuadrado S(Z) o uno circular C(Z), de acuerdo con el parámetro c. Es decir, la restricción ajusta la factibilidad de cada tipo de contenedor en función de las condiciones específicas del problema. La restricción (3.25), junto con las anteriores, garantiza que los triángulos permanezcan contenidos dentro del contenedor seleccionado. Cada triángulo se representa mediante sus vértices, definidos por las variables de decisión X_i^j .

El conjunto de restricciones (3.26 – 3.29) modela la existencia de un hiperplano separador entre cada par de triángulos. Dicho hiperplano divide el plano en dos regiones, de manera que los vértices de distintos triángulos se ubiquen en lados opuestos. Las restricciones garantizan la separación efectiva de los conjuntos convexos definidos por los vértices de triángulos equiláteros con suavidad variable. Las ecuaciones (3.26) y (3.27) establecen los límites de separación mediante los parámetros α_{kp} y β_{kp} , mientras que la ecuación (3.28) impide la superposición entre regiones. En la solución óptima, los parámetros α_{kp} y β_{kp} tienden a igualarse, reflejando una separación simétrica. Finalmente, la ecuación (3.29) impone una restricción sobre la norma del vector ν_{kp} , con el fin de asegurar una separación adecuada.

La longitud de cada lado del triángulo se determina mediante la distancia euclidiana entre pares consecutivos de vértices, según se expresa en la ecuación (3.30), lo que permite mantener las proporciones geométricas del triángulo. La restricción (3.31) especifica el cálculo del semiperímetro a partir de dichas longitudes. Posteriormente, mediante la fórmula de Herón establecida en la ecuación (3.32), se calcula

el área del triángulo, asegurando la consistencia geométrica del modelo.

La restricción (3.33) regula el tamaño y la suavidad de los lados de los triángulos a empaquetar. En este contexto, d_i representa la longitud de referencia de cada lado del triángulo y actúa como parámetro de control dimensional. Esta restricción garantiza que los triángulos cumplan con condiciones geométricas que preserven sus proporciones y aseguren una transición continua entre sus lados. En particular, permite ajustar el nivel de suavidad mediante el parámetro ρ_i .

Finalmente, la restricción (3.34) establece que las variables Z, α_{kp} , β_{kp} , ρ_i , σ_i y λ_i^j pertenecen al espacio \mathbb{R}^1 , mientras que la restricción (3.35) indica que las variables ν_{kp} y X_i^j pertenecen al espacio \mathbb{R}^2 , con componentes (ν_x, ν_y) y (x_i^j, y_i^j) , respectivamente.

3.3 Modelo matemático para suavidad mínima con triángulos

En esta sección se presenta un modelo matemático formulado con el propósito de optimizar el parámetro de suavidad en el empaquetamiento de triángulos dentro de un contenedor. Este modelo parte de una solución inicial obtenida mediante el modelo de contenedor mínimo, en el cual se asignan valores fijos de suavidad a cada triángulo. Si bien dicha asignación garantiza la validez geométrica del empaquetamiento, no asegura una solución óptima en términos de suavidad.

El objetivo del modelo es determinar el valor mínimo del parámetro de suavidad que permita empaquetar todos los triángulos en un contenedor cuya dimensión no exceda la definida por la solución inicial. Este planteamiento garantiza no solo la viabilidad geométrica del empaquetamiento, sino también una mayor eficiencia en el uso del espacio disponible. A continuación, se definen las funciones que modelan las condiciones asociadas a los distintos tipos de contenedores.

La fórmula utilizada para calcular el área de los triángulos corresponde al caso del triángulo equilátero de lado l, definida como:

$$A_{\blacktriangle} = \frac{l^2 \cdot \sqrt{3}}{4} = 0.25\sqrt{3} \tag{3.36}$$

A continuación presentamos los parámetros del modelo matemático para suavidad mínima con triángulos suaves:

Parámetros

Parámetro	Descripción
\mathcal{T}	Conjunto de triángulos en el modelo de empaquetamiento
V	Conjunto de vértices de los triángulos
α_{kp}	Distancia desde el triángulo k al triángulo p
β_{kp}	Distancia desde el triángulo p al triángulo k
$ u_{kp} $	Vector normal al hiperplano separador entre los triángulos k y p
λ_i^j	Lado j del triángulo i
σ_i	Semiperímetro del triángulo i
A_i	Área del triángulo i
Z^*	Es la dimensión característica que proviene del modelo de contenedor mínimo
ρ^*	Es la suavidad máxima que proviene del modelo de contenedor mínimo
d_i	Longitud de referencia de cada lado en el triángulo i
$v_{ m máx}$	Es el elemento más grande de ${\cal V}$
$\Omega(Z,c)$	Contenedor de dimensión característica Z y del tipo c
S(Z)	Contenedor de forma cuadrada
C(Z)	Contenedor de forma circular

Tabla 3.3: Parámetros del modelo de suavidad mínima con triángulos suaves

Variables de decisión

 $X_i^j=$ es el par de coordenadas en \mathbb{R}^2 del vértice j en el triángulo i, $\rho=$ Es el porcentaje de suavidad en los lados de los triángulos.

Función Objetivo

$$\begin{array}{ll}
\text{minimize} & \rho \\
Z, X, \alpha, \beta, \rho, \nu
\end{array} \tag{3.37}$$

Restricciones

$$S(Z) = \{ (x_i^j, y_i^j) \in X_i^j \mid 0 \le x_i^j \le Z, \ 0 \le y_i^j \le Z \mid Z \le Z^* \}$$
(3.38)

$$C(Z) = \{ (x_i^j, y_i^j) \in X_i^j \mid (x_i^j - Z)^2 + (y_i^j - Z)^2 \le Z^2 \mid Z \le Z^* \}$$
(3.39)

$$\Omega(Z,c) = \begin{cases}
S(Z) & \text{si } c = 1 \\
C(Z) & \text{si } c = 2
\end{cases}$$
(3.40)

$$X_i^j \in \Omega(Z, c), \quad \forall i \in \mathcal{T}, \forall j \in \mathcal{V}, \forall c \in \{1, 2\}$$
 (3.41)

$$\alpha_{kp} \ge \nu_{kp} \cdot X_k^j, \quad \forall j \in \mathcal{V}, \, k, p \in \mathcal{T} \, | \, k > p$$

$$(3.42)$$

$$-\beta_{kp} \le \nu_{kp} \cdot X_p^j, \quad \forall j \in \mathcal{V}, \, k, p \in \mathcal{T} \, | \, k > p \tag{3.43}$$

$$\alpha_{kp} + \beta_{kp} \le 0, \quad k, p \in \mathcal{T} \mid k > p \tag{3.44}$$

$$\|\nu_{kp}\|^2 \ge 1, \quad k, p \in \mathcal{T} \mid k > p$$
 (3.45)

$$\lambda_{i}^{j} = \left\{ \begin{array}{c} \left\| X_{i}^{j} - X_{i}^{j+1} \right\|, & \text{si } j \neq v_{\text{máx}} \\ \left\| X_{i}^{j} - X_{i}^{1} \right\|, & \text{si } j = v_{\text{máx}} \end{array} \right. \quad \forall j \in \mathcal{V}, \ \forall i \in \mathcal{T}$$

$$(3.46)$$

$$\frac{1}{2} \sum_{j \in \mathcal{V}} \lambda_i^j = \sigma_i, \quad \forall i \in \mathcal{T}$$
(3.47)

$$\left[\sigma_{i} \prod_{j \in \mathcal{V}} \left(\sigma_{i} - \lambda_{i}^{j}\right)\right]^{\frac{1}{2}} = A_{i}, \quad \forall i \in \mathcal{T}$$
(3.48)

$$(1 - \rho)d_i \le \lambda_i^j \le (1 + \rho)d_i, \quad \forall j \in \mathcal{V}, \, \forall i \in \mathcal{T}, \rho \le \rho^*$$
 (3.49)

$$\rho, Z, \alpha_{kp}, \beta_{kp}, \sigma_i, \lambda_i^j \in \mathbb{R}^1$$
(3.50)

$$\nu_{kp}, X_i^j \in \mathbb{R}^2 \tag{3.51}$$

La función objetivo, representada en la ecuación (3.37), busca minimizar el valor de la variable ρ , correspondiente al nivel de suavidad permitido en los lados de los triángulos. Para lograrlo, se ajustan las variables α , β , ν y X, bajo un conjunto de restricciones que se detallan a continuación.

Las restricciones (3.38 – 3.40) especifican las propiedades geométricas asociadas a cada tipo de contenedor: cuadrado S(Z), circular C(Z). La función $\Omega(Z,c)$ permite seleccionar dinámicamente el tipo de contenedor en función del parámetro c, asegurando que el modelo se adapte a las necesidades del problema planteado. Por su parte, la restricción (3.41), en conjunto con las anteriores, garantiza que los vértices de los triángulos queden dentro del contenedor especificado. Cada triángulo se representa mediante sus vértices (x_i^j, y_i^j) , definidos por las variables de decisión X_i^j .

El grupo de restricciones (3.42-3.45) establece un hiperplano que actúa como frontera para dividir el plano en dos regiones distintas. Esto asegura que los vértices de triángulos diferentes, interpretados como conjuntos convexos, se encuentren en lados opuestos del hiperplano. Las ecuaciones (3.42) y (3.43) determinan los límites de separación utilizando los parámetros α_{kp} y β_{kp} , manteniendo una distancia adecuada entre las regiones. Además, la ecuación (3.44) previene que la suma de estos parámetros genere solapamientos entre clases, mientras que (3.45) introduce una restricción sobre la norma de los vectores, asegurando que el hiperplano funcione.

La ecuación (3.48) utiliza la fórmula de Herón para calcular el área de los triángulos, a partir de las distancias euclidianas entre sus vértices (3.46). Para utilizar la formula de Herón es necesario calcular el Semi-perímetro que se representa en la ecuación (3.47). Esto permite verificar la validez geométrica del modelo, al tiempo que se preservan las proporciones de cada triángulo.

La restricción (3.49) desempeña un papel crucial en el control tanto de las dimensiones como de la suavidad de los lados de los triángulos. El parámetro ρ regula la tolerancia en las longitudes de los lados con respecto a una longitud de referencia d_i , asegurando que los triángulos mantengan sus proporciones.

Por último, las restricciones (3.50) y (3.51) especifican los espacios vectoriales a los que pertenecen las variables del modelo. Mientras que ρ , Z, α_{kp} y β_{kp} pertenecen a \mathbb{R}^1 , las variables ν_{kp} y X_i^j se encuentran en \mathbb{R}^2 , delimitando claramente el dominio de cada una.

3.4 Modelo matemático para contenedor mínimo con polígonos

En esta sección se introduce un modelo orientado al empaquetamiento de polígonos suaves, el cual generaliza el enfoque previamente aplicado a triángulos. Dado que los polígonos regulares poseen un mayor número de vértices, se requiere una aproximación que facilite su manipulación dentro del proceso de modelado. Para este fin, se emplea la técnica conocida como **triangulación en abanico**, que permite dividir un polígono con n vértices en n-2 triángulos.

La técnica de triangulación en abanico presenta diversas ventajas relevantes para el contexto del empaquetamiento geométrico:

- Simplicidad computacional: La conexión de un vértice fijo con los vértices consecutivos del polígono permite generar los triángulos de forma eficiente y sin ambigüedades.
- Compatibilidad algorítmica: La transformación de polígonos en triángulos permite la reutilización de algoritmos previamente diseñados para empaquetamiento de triángulos, eliminando la necesidad de desarrollar nuevos procedimientos para formas poligonales.
- Estructura uniforme: Los triángulos resultantes comparten un vértice común, lo que facilita tanto su representación como su análisis posterior.

A continuación, se presenta el algoritmo que implementa la técnica de triangulación en abanico, el cual constituye un componente fundamental para la generación de triángulos a partir de cada polígono regular.

FIGURA 3.1: Algoritmo de Triangulación de Polígonos

El propósito del algoritmo consiste en realizar la triangulación de un polígono simple con n vértices, representado como $V = \{v_1, v_2, \ldots, v_n\}$, y devolver una lista con n-2 tuplas, cada una correspondiente a los vértices de un triángulo interior. El algoritmo comienza verificando si el número de vértices es igual a tres; en tal caso, se retorna directamente el triángulo correspondiente. Para el caso general (n > 3), se genera un conjunto inicial vacío que almacena las tuplas de vértices generadas. Mediante un ciclo, se construyen los triángulos conectando un vértice fijo con pares consecutivos, y finalmente se retorna el conjunto de triángulos resultante.

El algoritmo opera de la siguiente manera:

- 1. Inicialmente, se verifica la condición $|V| \ge 3$. Si el polígono tiene exactamente tres vértices (|V| = 3), entonces este ya es un triángulo y se retorna directamente como solución, ya que no se requiere partición adicional.
- 2. Para el caso general, donde n > 3, se define un conjunto inicial vacío $Polygon = \{\emptyset\}$, que almacenará las tuplas correspondientes a los triángulos generados.
- 3. A continuación, se itera sobre los índices de los vértices $i=1,2,\ldots,n-2$. En cada iteración:
 - Se genera un triángulo $T_i^j = (v_i, v_{i+1}, v_n)$, donde los vértices son v_i , v_{i+1} (consecutivos en el polígono) y v_n (el último vértice del polígono).

- Este triángulo se añade al conjunto Polygon mediante la operación de unión: $Polygon \leftarrow Polygon \cup \{T_i^j\}$.
- 4. Finalmente, tras completar las iteraciones, se retorna el conjunto Polygon, que contiene exactamente n-2 triángulos disjuntos, asegurando una triangulación válida del polígono.

El algoritmo implementa un procedimiento directo para resolver el problema de la triangulación, garantizando que la salida cumpla con las propiedades geométricas requeridas.

El área de un polígono regular se calcula mediante la siguiente expresión, donde n representa el número de lados y l la longitud de cada uno:

$$A_p = \frac{n \cdot l^2}{4 \cdot \tan\left(\frac{\pi}{n}\right)} \tag{3.52}$$

A continuación presentamos los parámetros del modelo matemático para contenedor mínimo con triángulos:

Parámetros

Parámetro	Descripción
\mathcal{P}	Conjunto de polígonos en el modelo de empaquetamiento
\mathcal{V}_i	Conjunto de vértices del polígono i
\mathcal{T}_i	Conjunto de triángulos del polígono i
\mathcal{V}_i^t	Conjunto de vértices del triángulo t del polígono i
α_{ikp}	Distancia desde el triángulo k al triángulo p ambos del polígono i
β_{ikp}	Distancia desde el triángulo p al triángulo k ambos del polígono i
$ u_{ikp} $	Vector normal al hiperplano separador entre los triángulos k y p del polígono i
α_{ikjp}	Distancia desde el triángulo k del polígono i al triángulo p del polígono j
β_{ikjp}	Distancia desde el triángulo p del polígono i al triángulo k del polígono j
ν_{ikjp}	Vector normal al hiperplano separador entre los triángulos k del polígono i y p del polígono j
λ_i^j	Lado j del polígono i
σ_i^t	Semiperímetro del triángulo t del polígono i
A_i	Área del polígono i
ρ_i	Parámetro de suavidad en los lados en el polígono i
d_i	Longitud de referencia de cada lado en el polígono i
v_{min}	Es el elemento más pequeño de \mathcal{V}_i^t
$v_{ m m\acute{a}x}$	Es el elemento más grande de \mathcal{V}_i^t
$\Omega(Z,c)$	Contenedor de dimensión característica Z y del tipo c
S(Z)	Contenedor de forma cuadrada
C(Z)	Contenedor de forma circular

Tabla 3.4: Parámetros del modelo de mínimo contenedor con polígonos suaves

Variables de decisión

 $X_i^j = \text{es el par de coordenadas en } \mathbb{R}^2$ del vértice j en el polígono i,

 $Z=\mathrm{es}$ la dimensión característica del contenedor.

Función Objetivo

$$\begin{array}{ll}
\text{minimize} & Z \\
Z, X, \alpha, \beta, \rho, \nu
\end{array}$$
(3.53)

Restricciones

$$S(Z) = \{ (x_i^j, y_i^j) \in X_i^j \mid 0 \le x_i^j \le Z, \ 0 \le y_i^j \le Z \}$$
(3.54)

$$C(Z) = \{ (x_i^j, y_i^j) \in X_i^j \mid (x_i^j - Z)^2 + (y_i^j - Z)^2 \le Z^2 \}$$
(3.55)

$$\Omega(Z,c) = \begin{cases}
S(Z) & \text{si } c = 1 \\
C(Z) & \text{si } c = 2
\end{cases}$$
(3.56)

$$X_i^j \in \Omega(Z, c), \quad \forall j \in \mathcal{V}_i^t, \, \forall t \in \mathcal{T}_i, \, \forall i \in \mathcal{P}, \, \forall c \in \{1, 2\}$$
 (3.57)

$$\alpha_{ikp} \ge \nu_{ikp} \cdot X_k^j, \quad \forall j \in \mathcal{V}_i^k, \ k, p \in \mathcal{T}_i \mid k > p, \ \forall i \in \mathcal{P}$$
 (3.58)

$$-\beta_{ikp} \le \nu_{ikp} \cdot X_p^j, \quad \forall j \in \mathcal{V}_i^p, \ k, p \in \mathcal{T}_i \mid k > p, \ \forall i \in \mathcal{P}$$

$$(3.59)$$

$$\alpha_{ikp} + \beta_{ikp} \le 0, \quad k, p \in \mathcal{T}_i \mid k > p, \, \forall i \in \mathcal{P}$$
 (3.60)

$$\|\nu_{ikp}\|^2 \ge 1, \quad k, p \in \mathcal{T}_i \mid k > p, \, \forall i \in \mathcal{P}$$
 (3.61)

$$\alpha_{ikjp} \ge \nu_{ikjp} \cdot X_k^l, \quad \forall l \in \mathcal{V}_i^k, \ k, p \in \mathcal{T}_i \mid k > p, \ \forall i, j \in \mathcal{P} \mid j > i$$

$$(3.62)$$

$$-\beta_{ikjp} \le \nu_{ikjp} \cdot X_p^l, \quad \forall l \in \mathcal{V}_j^p, \ k, p \in \mathcal{T}_j \mid k > p, \ \forall i, j \in \mathcal{P} \mid j > i$$
(3.63)

$$\alpha_{ikjp} + \beta_{ikjp} \le 0, \quad k, p \in \mathcal{T}_i \cup \mathcal{T}_j \mid k > p, \, \forall i, j \in \mathcal{P} \mid j > i$$
 (3.64)

$$\|\nu_{ikjp}\|^2 \ge 1, \quad k, p \in \mathcal{T}_i \cup \mathcal{T}_j \mid k > p, \, \forall i, j \in \mathcal{P} \mid j > i$$

$$(3.65)$$

$$\lambda_{i}^{j} = \begin{cases} \left\| X_{i}^{j} - X_{i}^{j+1} \right\|, & \text{si } j \neq v_{\text{máx}} \\ \left\| X_{i}^{v_{\text{máx}}} - X_{i}^{v_{\text{mín}}} \right\|, & \text{si } j = v_{\text{máx}} \end{cases} \quad \forall j \in \mathcal{V}_{i}^{t}, \ \forall t \in \mathcal{T}_{i}, \ \forall i \in \mathcal{P}$$
 (3.66)

$$\frac{1}{2} \sum_{j \in \mathcal{V}_i^t} \lambda_i^j = \sigma_i^t, \quad \forall t \in \mathcal{T}_i, \, \forall i \in \mathcal{P}$$
(3.67)

$$\sum_{t \in \mathcal{T}_i} \left(\left[\sigma_i^t \prod_{j \in \mathcal{V}_i^t} \left(\sigma_i^t - \lambda_i^j \right) \right]^{\frac{1}{2}} \right) = A_i, \quad \forall i \in \mathcal{P}$$
(3.68)

$$(1 - \rho_i)d_i \le \lambda_i^j \le (1 + \rho_i)d_i, \quad \forall j \in \mathcal{V}_i, \, \forall i \in \mathcal{P}$$
 (3.69)

$$Z, \alpha_{ikp}, \beta_{ikp}, \alpha_{ikjp}, \beta_{ikjp}, \rho_i, \sigma_i^t, \lambda_i^j \in \mathbb{R}^1$$
(3.70)

$$\nu_{kp}, \nu_{ikjp}, X_i^j \in \mathbb{R}^2 \tag{3.71}$$

La función objetivo del modelo, formulada en la ecuación (3.53), busca minimizar el valor de Z, el cual representa la dimensión característica del contenedor destinado a alojar los polígonos triangulados. Este valor se obtiene mediante la optimización conjunta de las variables X, α , β , ν y ρ . A continuación, se describen las restricciones que estructuran el modelo.

Las ecuaciones (3.54) y (3.55) definen las propiedades geométricas de los contenedores considerados en el modelo: cuadrado S(Z) y circular C(Z). La función $\Omega(Z,c)$, establecida en la ecuación (3.56), permite seleccionar dinámicamente el tipo de contenedor según el valor del parámetro c, permitiendo la adaptación del modelo

a distintos escenarios de empaquetamiento. Por su parte, la restricción (3.57) asegura que los vértices de los triángulos que componen cada polígono, representados mediante (x_i^j, y_i^j) , se mantengan dentro de los límites del contenedor definido.

El conjunto de restricciones comprendido entre las ecuaciones (3.58) y (3.61), así como entre (3.62) y (3.65), establece hiperplanos separadores que garantizan la no superposición entre triángulos. Estas restricciones aseguran que los vértices correspondientes a distintos triángulos, interpretados como conjuntos convexos, queden en lados opuestos de dichos hiperplanos. En particular, las ecuaciones (3.58) y (3.59) definen los límites de separación mediante los parámetros α_{ikp} y β_{ikp} , mientras que (3.60) impide la superposición al restringir la suma de dichos parámetros. Finalmente, (3.61) introduce una condición sobre la norma mínima de los vectores ν_{ikp} , garantizando la efectividad geométrica del hiperplano.

La ecuación (3.68) utiliza la fórmula de Herón para determinar el área de los triángulos resultantes de la triangulación, a partir de las distancias euclidianas entre sus vértices, calculadas según la ecuación (3.66). Esta formulación asegura la validez geométrica de cada triángulo y preserva sus proporciones. Además, la restricción (3.67) permite calcular el semiperímetro correspondiente a cada uno de los triángulos interiores.

La restricción (3.69) controla las longitudes de los lados de los triángulos a través del parámetro de suavidad ρ_i . Este parámetro establece una tolerancia sobre la longitud de referencia d_i , garantizando que las dimensiones de los triángulos se mantengan dentro de un intervalo aceptable y respeten las proporciones geométricas requeridas.

Finalmente, las restricciones (3.70) y (3.71) delimitan los espacios vectoriales de las variables involucradas en el modelo. Las variables Z, α_{ikp} , β_{ikp} , α_{ikjp} , β_{ikjp} y ρ_i pertenecen al espacio unidimensional \mathbb{R}^1 , mientras que las variables vectoriales ν_{ikp} , ν_{ikjp} y X_i^j se definen en \mathbb{R}^2 , lo que permite establecer de forma precisa el dominio de cada componente.

3.5 Modelo matemático para suavidad mínima con polígonos

En esta sección se extiende el concepto de empaquetamiento asociado a la minimización de la suavidad, con el objetivo de reducir el valor del parámetro ρ , el cual controla la tolerancia permitida en las longitudes de los lados de los triángulos que conforman los polígonos a empaquetar. La finalidad del modelo es determinar el valor mínimo de ρ que posibilite el empaquetamiento de los polígonos dentro de un contenedor, manteniendo o incrementando la eficiencia sin comprometer sus propiedades geométricas. La minimización de ρ implica una reducción en la suavidad de los polígonos, favoreciendo un ajuste más preciso de los triángulos y, en consecuencia, una ocupación más eficiente del espacio disponible en el contenedor.

El parámetro ρ se define como un valor común a todos los polígonos considerados en el modelo, con el fin de establecer un nivel uniforme de suavidad en las longitudes de sus lados. Esta uniformidad garantiza que los objetos se ajusten de forma coherente a las restricciones geométricas impuestas por el modelo matemático.

Si bien el objetivo principal del modelo consiste en minimizar globalmente el valor de ρ , una posible extensión consistiría en permitir que este parámetro varíe de manera independiente para cada polígono. Esta generalización aportaría mayor flexibilidad, ya que ciertos objetos podrían admitir una menor suavidad que otros. No obstante, dicha extensión se encuentra fuera del alcance de la presente investigación, la cual se restringe al caso en que ρ adopta un valor constante para todos los elementos del conjunto. Por otra parte, el área de un polígono regular se determina mediante la siguiente expresión, donde n representa el número de lados y l la longitud de cada uno:

$$A_p = \frac{n \cdot l^2}{4 \cdot \tan\left(\frac{\pi}{n}\right)} \tag{3.72}$$

A continuación, se presentan los parámetros utilizados en la formulación del modelo matemático para el empaquetamiento de polígonos con suavidad mínima. Estos parámetros definen los conjuntos, dimensiones geométricas y relaciones espaciales necesarias para caracterizar las propiedades de los polígonos y sus descomposiciones triangulares, así como su interacción dentro del contenedor.

Parámetros

Parámetro	Descripción
\mathcal{P}	Conjunto de polígonos en el modelo de empaquetamiento
\mathcal{V}_i	Conjunto de vértices del polígono i
\mathcal{T}_i	Conjunto de triángulos del polígono i
\mathcal{V}_i^t	Conjunto de vértices del triángulo t del polígono i
α_{ikp}	Distancia desde el triángulo k al triángulo p ambos del polígono i
β_{ikp}	Distancia desde el triángulo p al triángulo k ambos del polígono i
ν_{ikp}	Vector normal al hiperplano separador entre los triángulos k y p del polígono i
α_{ikjp}	Distancia desde el triángulo k del polígono i al triángulo p del polígono j
β_{ikjp}	Distancia desde el triángulo p del polígono i al triángulo k del polígono j
ν_{ikjp}	Vector normal al hiperplano separador entre los triángulos k del polígono i y p del polígono j
λ_i^j	Lado j del polígono i
σ_i^t	Semiperímetro del triángulo t del polígono i
A_i	Área del polígono i
Z^*	Es dimensión característica que proviene del modelo de contenedor mínimo
ρ^*	Es la suavidad máxima que proviene del modelo de contenedor mínimo
d_i	Longitud de referencia de cada lado en el polígono i
v_{min}	Es el elemento más pequeño de \mathcal{V}_i
$v_{ m máx}$	Es el elemento más grande de \mathcal{V}_i
$\Omega(Z,c)$	Contenedor de dimensión característica Z y del tipo c
S(Z)	Contenedor de forma cuadrada
C(Z)	Contenedor de forma circular

Tabla 3.5: Parámetros del modelo de suavidad mínima con polígonos suaves

Las variables de decisión del modelo se detallan a continuación. Estas variables describen las posiciones espaciales de los vértices de los triángulos que componen los polígonos, así como el parámetro de suavidad que se busca minimizar:

Variables de decisión

 $X_i^j = \text{Coordenadas en } \mathbb{R}^2 \text{ del vértice } j \text{ en el triángulo } i,$

 $\rho = \text{Parámetro de suavidad asociado a los lados del polígono.}$

Función Objetivo

$$\begin{array}{ll}
\text{minimize} & \rho \\
Z, X, \alpha, \beta, \rho, \nu
\end{array} \tag{3.73}$$

Restricciones

$$S(Z) = \{ (x_i^j, y_i^j) \in X_i^j \mid x_i^j \le Z, y_i^j \le Z \mid Z \le Z^* \}$$
(3.74)

$$C(Z) = \{ (x_i^j, y_i^j) \in X_i^j \mid (x_i^j - Z)^2 + (y_i^j - Z)^2 \le Z^2 \mid Z \le Z^* \}$$
(3.75)

$$\Omega(Z,c) = \begin{cases} S(Z) & \text{si } c = 1\\ C(Z) & \text{si } c = 2 \end{cases}$$
(3.76)

$$X_i^j \in \Omega(Z, c), \quad \forall j \in \mathcal{V}_i^t, \, \forall t \in \mathcal{T}_i, \, \forall i \in \mathcal{P}, \, \forall c \in \{1, 2\}$$
 (3.77)

$$\alpha_{ikp} \ge \nu_{ikp} \cdot X_k^j, \quad \forall j \in \mathcal{V}_i^k, \, k, p \in \mathcal{T}_i \, | \, k > p, \, \forall i \in \mathcal{P}$$
 (3.78)

$$-\beta_{ikp} \le \nu_{ikp} \cdot X_p^j, \quad \forall j \in \mathcal{V}_i^p, \, k, p \in \mathcal{T}_i \, | \, k > p, \, \forall i \in \mathcal{P}$$

$$(3.79)$$

$$\alpha_{ikp} + \beta_{ikp} \le 0, \quad k, p \in \mathcal{T}_i \mid k > p, \, \forall i \in \mathcal{P}$$
 (3.80)

$$\|\nu_{ikp}\|^2 \ge 1, \quad k, p \in \mathcal{T}_i \mid k > p, \, \forall i \in \mathcal{P}$$
 (3.81)

$$\alpha_{ikjp} \ge \nu_{ikjp} \cdot X_k^l, \quad \forall l \in \mathcal{V}_i^k, \ k, p \in \mathcal{T}_i \mid k > p, \ \forall i, j \in \mathcal{P} \mid j > i$$
 (3.82)

$$-\beta_{ikjp} \le \nu_{ikjp} \cdot X_p^l, \quad \forall l \in \mathcal{V}_j^p, \ k, p \in \mathcal{T}_j \mid k > p, \ \forall i, j \in \mathcal{P} \mid j > i$$
(3.83)

$$\alpha_{ikjp} + \beta_{ikjp} \le 0, \quad k, p \in \mathcal{T}_i \cup \mathcal{T}_j \mid k > p, \, \forall i, j \in \mathcal{P} \mid j > i$$
 (3.84)

$$\|\nu_{ikjp}\|^2 \ge 1, \quad k, p \in \mathcal{T}_i \cup \mathcal{T}_j \mid k > p, \, \forall i, j \in \mathcal{P} \mid j > i$$

$$(3.85)$$

$$\lambda_i^j = \begin{cases} \|X_i^j - X_i^{j+1}\|, & \text{si } j \neq v_{\text{máx}} \\ \|X_i^{v_{\text{máx}}} - X_i^{v_{\text{mín}}}\|, & \text{si } j = v_{\text{máx}} \end{cases} \quad \forall j \in \mathcal{V}_i^t, \, \forall t \in \mathcal{T}_i, \, \forall i \in \mathcal{P}$$
 (3.86)

$$\frac{1}{2} \sum_{j \in \mathcal{V}_i^t} \lambda_i^j = \sigma_i^t, \quad \forall t \in \mathcal{T}_i, \ \forall i \in \mathcal{P}$$
(3.87)

$$\sum_{t \in \mathcal{T}_i} \left(\left[\sigma_i^t \prod_{j \in \mathcal{V}_i^t} \left(\sigma_i^t - \lambda_i^j \right) \right]^{\frac{1}{2}} \right) = A_i, \quad \forall i \in \mathcal{P}$$
(3.88)

$$(1-\rho)d_i \le \lambda_i^j \le (1+\rho)d_i, \quad \forall j \in \mathcal{V}_i, \, \forall i \in \mathcal{P}, \mid \rho \le \rho^*$$
 (3.89)

$$Z, \alpha_{ikp}, \beta_{ikp}, \alpha_{ikjp}, \beta_{ikjp}, \rho_i, \sigma_i^t, \lambda_i^j \in \mathbb{R}^1$$
 (3.90)

$$\nu_{kp}, \nu_{ikjp}, X_i^j \in \mathbb{R}^2 \tag{3.91}$$

La función objetivo del modelo, expresada en la ecuación (3.73), consiste en minimizar el valor del parámetro ρ , que representa el nivel de suavidad permitido en las longitudes de los lados de los polígonos. Esta minimización tiene como propósito optimizar la compacidad del empaquetamiento, favoreciendo configuraciones geométricas con menor variabilidad en las dimensiones laterales de los triángulos componentes.

Las ecuaciones (3.74) y (3.75) definen las características geométricas de los posibles contenedores, los cuales pueden adoptar forma cuadrada, representada por S(Z), o forma circular, representada por C(Z). La función $\Omega(Z,c)$, especificada en la ecuación (3.76), permite seleccionar de manera paramétrica el tipo de contenedor a utilizar, en función del valor del parámetro c. Por su parte, la restricción (3.77) garantiza que todos los vértices (x_i^j, y_i^j) de los triángulos que conforman los polígonos permanezcan dentro de los límites establecidos por el contenedor seleccionado.

Las restricciones comprendidas entre las ecuaciones (3.78) y (3.81), así como entre (3.82) y (3.85), definen un conjunto de hiperplanos separadores destinados a evitar la superposición entre triángulos, ya sea dentro de un mismo polígono o entre polígonos distintos. Estas restricciones garantizan que los vértices correspondientes a diferentes triángulos, considerados como subconjuntos convexos, queden ubicados en lados opuestos del hiperplano definido. En particular, las ecuaciones (3.78) y (3.79) delimitan los espacios mediante los parámetros α_{ikp} y β_{ikp} , mientras que la ecuación (3.80) impone una condición que evita el solapamiento al restringir la suma de dichos parámetros. Finalmente, la ecuación (3.81) establece una cota inferior para la norma de los vectores normales ν_{ikp} , lo que asegura la correcta orientación y funcionalidad del hiperplano separador.

La ecuación (3.88) incorpora la fórmula de Herón para calcular el área de los triángulos, a partir de las longitudes de sus lados, las cuales se obtienen median-

te las distancias euclidianas entre los vértices X_i^j , como se define en (3.86). Esta formulación garantiza la consistencia geométrica de cada triángulo, preservando sus proporciones y asegurando su validez estructural dentro del modelo. Asimismo, la ecuación (3.87) define el semiperímetro de cada triángulo, lo cual es un requisito previo indispensable para la correcta aplicación de la fórmula de Herón.

La restricción (3.89) impone una cota sobre la longitud de los lados de los triángulos, regulada por el parámetro de suavidad ρ . Este parámetro establece una tolerancia simétrica respecto a una longitud de referencia d_i , de modo que cada lado debe encontrarse dentro de un intervalo proporcional a dicha referencia. Esta condición asegura que las proporciones geométricas de los triángulos se mantengan dentro de márgenes razonables, preservando la coherencia estructural de los polígonos durante el empaquetamiento.

Finalmente, las restricciones (3.90) y (3.91) especifican los espacios vectoriales a los que pertenecen las variables empleadas en el modelo. En particular, las variables escalares Z, α_{ikp} , β_{ikp} , α_{ikjp} , β_{ikjp} , ρ_i , σ_i^t y λ_i^j están definidas en el espacio \mathbb{R}^1 , mientras que las variables vectoriales ν_{ikp} , ν_{ikjp} y X_i^j se encuentran en \mathbb{R}^2 . Esta especificación permite delimitar de manera precisa el dominio matemático de cada componente del modelo de optimización.

Capítulo 4

METOLODOLOGÍA

En el presente capítulo se describen los procedimientos experimentales desarrollados con base en los modelos formulados en el capítulo previo. Inicialmente, se expone el entorno de pruebas empleado para la ejecución de los experimentos. Posteriormente, se detallan las condiciones de terminación, la inicialización de los modelos mediante soluciones factibles, así como otras consideraciones fundamentales adoptadas para garantizar la validez y reproducibilidad de los resultados obtenidos.

Asimismo, se describen las características de las instancias generadas específicamente para evaluar el desempeño de los modelos propuestos, las cuales constituyen referencias estándar tanto para este estudio como para futuras investigaciones relacionadas con el problema abordado.

La ejecución de los experimentos se llevó a cabo mediante el uso de una licencia académica de *AMPL*, en conjunto con los solucionadores *BARON* y *KNITRO*, empleando las versiones vigentes hasta junio de 2023. A continuación, se detallan las condiciones del entorno computacional en el cual se efectuaron las pruebas de los modelos.

AMPL (acrónimo de "A Mathematical Programming Language") [Fourer et al., 2003] es un lenguaje de programación algebraica desarrollado específicamente para la resolución de problemas de optimización matemática, tanto lineales como

no lineales. Su objetivo principal consiste en proporcionar una interfaz flexible y robusta que facilite el modelado y la solución eficiente de problemas de programación matemática. La capacidad de integrar diversos solucionadores, tales como BARON y KNITRO, lo posiciona como una herramienta versátil en ámbitos tanto académicos como aplicados relacionados con la optimización matemática.

MINLP-BARON, en adelante referido como BARON, (acrónimo de "Branch And Reduce Optimization Navigator") [Khajavirad & Sahinidis, 2018] es un solucionador global diseñado para la resolución de problemas de optimización no lineales, tanto convexos como no convexos, que emplea técnicas de ramificación y reducción. Su principal objetivo consiste en obtener soluciones globales de manera eficiente, con especial énfasis en problemas no convexos, mediante métodos como la relajación de restricciones y la exploración del espacio de soluciones mediante particionamiento.

Artelys-Knitro, en adelante denominado KNITRO, (acrónimo de "Nonlinear Interior point Trust Region Optimization") [Byrd et al., 2006] es un solucionador especializado en problemas de optimización no lineal que implementa métodos avanzados, tales como los métodos de puntos interiores y regiones de confianza. Su principal objetivo es proporcionar una solución robusta y eficiente para problemas de optimización no lineales, tanto con restricciones como sin ellas. KNITRO fue inicialmente desarrollado en 2001 a partir de investigaciones académicas realizadas en la Universidad Northwestern y ha sido objeto de mejoras continuas por parte de los desarrolladores de Artelys desde entonces.

4.1 Entorno de Pruebas (Hardware)

La presente sección describe el entorno de pruebas empleado para la evaluación de los modelos propuestos. Inicialmente, la experimentación se realizó utilizando el entorno computacional local que se detalla a continuación. Esta metodología facilitó la obtención de resultados preliminares y la calibración de los parámetros del modelo

en un ambiente controlado, lo que favoreció la validación inicial de las formulaciones.

No obstante, conforme se presentaron instancias de mayor complejidad, evidenciada por el incremento en la cantidad de polígonos, variables y restricciones, resultó necesario trasladar la experimentación a un entorno en la nube, haciendo uso del servidor *NEOS*. Esta transición permitió aprovechar recursos computacionales superiores, posibilitando la resolución de problemas que excedían las capacidades del equipo local.

NEOS Server, en adelante denominado NEOS, (acrónimo de Network-Enabled Optimization System) [Czyzyk et al., 1998, Dolan, 2001, Gropp & Moré, 1997] es un servicio gratuito basado en Internet para la resolución de problemas de optimización numérica. Hospedado en los Wisconsin Institutes of Discovery de la Universidad de Wisconsin en Madison, el servidor NEOS ofrece acceso a más de sesenta solucionadores de vanguardia en diversas categorías de optimización. Este servicio está disponible sin costo para usuarios de cualquier parte del mundo, constituyéndose en una herramienta accesible y eficiente para la resolución de problemas complejos de optimización sin requerir infraestructura computacional propia.

En el entorno en la nube, se utilizaron soluciones iniciales generadas localmente como punto de partida para acelerar la búsqueda de soluciones óptimas. Estas soluciones fueron posteriormente refinadas mediante la aplicación de los solucionadores disponibles en *NEOS*, lo que facilitó una exploración más eficiente del espacio de soluciones y contribuyó a mejorar la calidad de los resultados obtenidos.

Sin embargo, se identificaron limitaciones relevantes al utilizar *NEOS*, particularmente en cuanto a la restricción de un tiempo máximo de ejecución de ocho horas por instancia. Esta limitación constituyó un obstáculo en la resolución de problemas de elevada complejidad, ya que, al incrementarse el tamaño de las instancias, el tiempo disponible resultó insuficiente para asegurar la convergencia hacia soluciones óptimas o para realizar una exploración exhaustiva del espacio de soluciones.

4.1.1 EQUIPO LOCAL

Los experimentos fueron ejecutados en una computadora Lenovo modelo Y50, equipada con un procesador Intel Core i7-4710HQ a 2.50 GHz, que dispone de cuatro núcleos físicos y ocho núcleos lógicos, así como una memoria caché L3 de 6 MB. El sistema cuenta con 12 GB de memoria RAM DDR3 a 1600 MHz y una memoria de intercambio configurada con 24 GB de memoria virtual. Adicionalmente, dispone de un disco de estado sólido ADATA SU630 de 500 GB, lo cual garantiza un rendimiento adecuado para las tareas de optimización computacional.

4.1.2 Equipo en la Nube

Adicionalmente, se emplearon recursos en la nube proporcionados por el servidor de solucionadores *NEOS*. Las especificaciones del servidor incluyen un modelo Dell PowerEdge R430 equipado con dos procesadores Intel Xeon E5-2698 a 2.3 GHz, que en conjunto proporcionan treinta y dos núcleos de procesamiento. El servidor dispone de 192 GB de memoria RAM y un sistema de almacenamiento compuesto por cuatro discos de 300 GB configurados en RAID 5, lo que garantiza redundancia y alta velocidad en las operaciones de entrada/salida. Finalmente, cuenta con una conexión a Internet de un gigabit por segundo, lo que facilita el acceso y procesamiento eficiente de las instancias.

4.1.3 EQUIPO WORKSTATION

Además del entorno local y del entorno en la nube proporcionado por *NEOS*, se incorporó un tercer entorno destinado a la ejecución de experimentos con problemas de mayor complejidad. Este entorno correspondió a una estación de trabajo (workstation) con características avanzadas diseñadas para soportar cargas computacionales

intensivas.

La estación de trabajo cuenta con un procesador *Intel Xeon E5-2620 v3* a 2.40 GHz, que dispone de doce núcleos para la ejecución simultánea de procesos. Asimismo, dispone de 64 GB de memoria RAM, lo que permite manejar modelos con un número significativo de variables y restricciones sin comprometer la estabilidad del sistema. El sistema operativo utilizado es *Windows 10 Pro*, versión 22H2.

Esta configuración facilitó la ejecución eficiente de modelos de gran escala sin las limitaciones temporales impuestas por *NEOS*. De este modo, la estación de trabajo constituyó una solución intermedia entre el entorno local y la nube, proporcionando un entorno computacional robusto y accesible para abordar problemas de alta complejidad.

4.1.4 Análisis de los Tres Entornos

La incorporación del tercer entorno, la estación de trabajo, representó una mejora significativa en la capacidad para resolver problemas complejos en comparación con los entornos previamente empleados. Mientras que el entorno local resultaba adecuado para pruebas preliminares y ajustes iniciales, y NEOS proporcionaba soluciones avanzadas pero con limitaciones relevantes en cuanto al tiempo de ejecución, la estación de trabajo ofreció una combinación equilibrada de potencia computacional y accesibilidad. Este entorno permitió la realización de experimentos con instancias que demandaban tiempos de procesamiento prolongados y recursos computacionales más robustos.

Gracias a su configuración de hardware de alto rendimiento, la estación de trabajo posibilitó el abordaje de instancias de gran escala que requerían una mayor capacidad de cómputo y tiempos de ejecución extendidos sin las restricciones temporales impuestas por otros entornos. En consecuencia, este entorno se constituyó como un elemento fundamental para la obtención de resultados más precisos y completos

durante la experimentación, favoreciendo el avance en el desarrollo y validación de los modelos propuestos.

4.2 HERRAMIENTAS (SOFTWARE)

En la presente sección se describen las herramientas de software utilizadas en el desarrollo y experimentación de los modelos propuestos, incluyendo las versiones específicas y configuraciones relevantes asociadas.

4.2.1 Entorno de Programación y Modelado

Se empleó *Python* para el desarrollo de scripts auxiliares y la automatización de procesos asociados con la generación y análisis de datos, utilizando la versión **3.10**. Asimismo, se utilizó **PYOMO 6.6.2** para modelar los problemas y utilizar *AMPL* junto con sus solucionadores. Se seleccionó un **ConcreteModel** en lugar de un **AbstractModel**, generando cada instancia de forma individual con el fin de asegurar una mayor personalización durante las pruebas.

Python es un lenguaje de programación de alto nivel, interpretado y de propósito general, caracterizado por su sintaxis sencilla y alta legibilidad. Desde su creación, Python [Van Rossum & Drake, 2009] ha alcanzado amplia aceptación en la comunidad de desarrollo debido a su versatilidad y a la extensa disponibilidad de bibliotecas y frameworks. Para el presente trabajo se utilizó la versión 3.11.4, publicada en junio de 2023.

Pyomo (abreviatura de "Python Optimization Modeling") [Bynum et al., 2021, Hart et al., 2011] es un lenguaje de modelado algebraico de optimización implementado en Python. Este framework permite la definición de problemas de optimización lineales, no lineales, enteros mixtos y dinámicos mediante una sinta-

xis accesible y flexible. Su desarrollo se originó en investigaciones lideradas por los Sandia National Laboratories, evolucionando posteriormente para incorporar herramientas avanzadas orientadas a la modelación y solución de problemas complejos de optimización.

El acceso al servidor *NEOS* posibilitó la ejecución de modelos en un entorno de computación en la nube, aprovechando solucionadores avanzados sin costo adicional. Este recurso resultó especialmente útil durante las etapas iniciales del estudio, facilitando la validación de los modelos y la realización de experimentos con instancias de menor escala.

4.2.2 Solucionadores

Se emplearon los siguientes solucionadores especializados:

- BARON, versión 23.3.11, fue fundamental para la obtención de soluciones óptimas en problemas no convexos. Entre las configuraciones más relevantes se establecieron un tiempo máximo de ejecución (maxtime) de 12 horas, un número máximo de hilos (threads) configurado en 1, y tolerancias numéricas ajustadas a valores de 1 × 10⁻⁶ para las restricciones absolutas (epsa) y relativas (epsr). Asimismo, se habilitó la generación de archivos de seguimiento y resumen por instancia (trace y sumfile, respectivamente), junto con la definición de nlpsol para utilizar Knitro como subsolucionador.
- Knitro, versión 13.2.0, fue configurado empleando varias opciones clave orientadas a optimizar el proceso de resolución. Se seleccionó el algoritmo alg = 1, que aplica el enfoque Interior/Direct, adecuado para resolver problemas de optimización no lineales. Además, se permitió que Knitro solicitara evaluaciones del Hessiano sin el componente objetivo mediante la opción hessian_no_f = 1, optimizando el uso de cálculos durante las iteraciones. Finalmente, se configuró el uso de dos hilos con la opción numthreads = 2, permitiendo aprovechar

el paralelismo para la resolución de subproblemas y mejorando la eficiencia del proceso de optimización.

Cabe destacar que los parámetros relacionados con la pre-solución (presolve y presolve_level) fueron definidos directamente por BARON, sin intervención explícita en la configuración de Knitro. Esta integración automática permitió que BARON aprovechara las capacidades de Knitro sin requerir configuraciones adicionales por parte del usuario.

Las licencias de ambos solucionadores fueron proporcionadas por AMPL, lo cual facilitó su integración en el desarrollo del presente trabajo.

4.2.3 Transferencia de parámetros personalizados al subsolver.

Durante el uso conjunto de *BARON* y *Knitro* se identificó una limitación relativa a la incapacidad de *BARON* para transferir parámetros personalizados directamente a *Knitro*. Para solventar esta restricción, se implementó una solución alternativa basada en la creación de un archivo de script que facilitara la transferencia de dichos parámetros. En particular, se desarrollaron un archivo por lotes (.bat) para el sistema operativo Windows y un archivo de script (.sh) para Linux, los cuales permitieron inyectar parámetros personalizados en el comando de *BARON*. Estos archivos recibían los parámetros predefinidos dentro del entorno del usuario e integraban dichas configuraciones en el proceso de ejecución de *BARON* mediante la opción de archivo de parámetros (optionsfile) de *Knitro*. De esta manera, se posibilitó el ajuste de configuraciones específicas de *Knitro* sin depender exclusivamente de las opciones estándar de integración entre los solucionadores, proporcionando un control más preciso sobre las configuraciones de *Knitro*.

Capítulo 5

RESULTADOS COMPUTACIONALES

Este capítulo expone los resultados obtenidos del empaquetamiento de diversas figuras geométricas —triángulos, cuadrados y pentágonos— en contenedores de forma cuadrada y circular, empleando los algoritmos MinZ y MinRho. El propósito principal es analizar la eficiencia de cada método y su repercusión en la disposición de los objetos dentro de los contenedores.

5.1 DEFINICIÓN DE LAS INSTANCIAS

En el presente estudio, una instancia se define como una configuración específica de elementos involucrados en el problema de empaquetamiento. Cada instancia se caracteriza mediante cinco parámetros fundamentales:

5.1.1 POR TIPO DE POLÍGONO

Se generaron instancias correspondientes a triángulos, cuadrados y pentágonos. Cada tipo de figura plantea distintos desafíos geométricos en el proceso de empaquetamiento.

5.1.2 POR CANTIDAD DE POLÍGONOS

La cantidad de elementos presentes en cada instancia influye directamente en la complejidad del problema. Se utilizaron instancias con diferentes números de figuras para evaluar el desempeño de los algoritmos propuestos.

5.1.3 Por grado de suavidad

El grado de suavidad determina la flexibilidad con la que los polígonos pueden adaptarse a la forma del contenedor durante el proceso de empaquetamiento. Las configuraciones utilizadas en este estudio se clasifican de la siguiente manera:

- **r00**: configuración completamente rígida, sin posibilidad de deformación.
- r01 a r10: niveles progresivos de suavidad, con incrementos graduales en la flexibilidad de los polígonos.
- rXX: configuración con suavidad ilimitada, que permite la máxima adaptación de forma.

5.1.4 POR TIPO DE CONTENEDOR

El tipo de contenedor utilizado en cada instancia influye directamente en la estrategia de empaquetamiento y en la eficiencia espacial alcanzada. En este estudio se consideran dos tipos de contenedores: cuadrados (**Squ**) y circulares (**Cir**), cada uno con características geométricas particulares que afectan la disposición de los polígonos.

5.1.5 Por algoritmo utilizado

Cada instancia fue resuelta inicialmente mediante el algoritmo **MinZ**, encargado de generar soluciones factibles al problema de empaquetamiento. Posteriormente, dichas soluciones fueron validadas utilizando el algoritmo **MinRho**, cuya función consiste en verificar la optimalidad y factibilidad geométrica de las configuraciones obtenidas.

Cada instancia se nombra usando estos elementos en el siguiente formato:

donde 'T' indica que la figura es un triángulo, '30' representa la cantidad de polígonos, 'r07' se refiere a una suavidad del 70%, 'Squ' indica un contenedor cuadrado y 'MinZ' es el algoritmo utilizado.

5.2 Clasificación de las Instancias

Las instancias consideradas en este estudio se organizan conforme a una serie de criterios que permiten estructurar y analizar de manera sistemática los distintos escenarios de prueba.

- 1. Tipo de polígono: Se han considerado instancias conformadas por triángulos, cuadrados y pentágonos. Cada uno de estos tipos geométricos implica desafíos particulares en términos de disposición espacial, debido a sus propiedades angulares y de simetría.
- 2. Cantidad de polígonos: Las instancias se han diseñado con diferentes cantidades de figuras geométricas, lo que permite evaluar el impacto del tamaño del problema en el rendimiento computacional de los algoritmos aplicados.

- 3. Grado de suavidad: La suavidad representa el nivel de flexibilidad en las aristas de los polígonos. Esta característica se parametriza en distintos niveles, desde una configuración totalmente rígida hasta una suavidad ilimitada, de la siguiente forma:
 - a) **r00:** Corresponde a configuraciones completamente rígidas, sin deformaciones admisibles.
 - b) **r01 a r10:** Representan niveles crecientes de suavidad, donde la deformación permitida es progresiva.
 - c) rXX: Indica suavidad ilimitada, es decir, máxima permisividad en las deformaciones del contorno.
- 4. **Tipo de contenedor:** Se han empleado dos geometrías distintas para los contenedores: cuadrados (Squ) y circulares (Cir). La elección del tipo de contenedor incide directamente en la complejidad del problema de empaquetamiento y en la eficiencia de las soluciones obtenidas.
- 5. Algoritmo utilizado: Cada instancia ha sido resuelta inicialmente mediante el algoritmo MinZ, encargado de generar la solución, y posteriormente validada mediante MinRho, con el propósito de confirmar su factibilidad u optimalidad bajo los criterios definidos.

5.3 GENERACIÓN Y ORIGEN DE LAS INSTANCIAS

Las instancias empleadas en el presente estudio han sido generadas específicamente con el objetivo de establecer un conjunto de referencia para la evaluación de modelos de empaquetamiento. Algunas de las instancias correspondientes a configuraciones completamente rígidas (r00) han sido adaptadas a partir de problemas clásicos documentados en la literatura especializada, lo que permite validar la metodología empleada frente a casos conocidos.

Por otro lado, las configuraciones con grados de suavidad intermedia o ilimitada (r01 a rXX) constituyen propuestas novedosas desarrolladas en el marco de esta investigación. Estas instancias fueron diseñadas con el propósito de explorar escenarios más flexibles que reflejen condiciones prácticas con mayor fidelidad, ampliando así el espectro de análisis respecto a los enfoques tradicionales.

5.4 Importancia de las Instancias en el Análisis de Resultados

El análisis detallado de las instancias permite evaluar rigurosamente el desempeño de los algoritmos MinZ y MinRho en escenarios variados. La diversidad en las configuraciones de las instancias facilita la identificación de tendencias en términos de calidad de las soluciones obtenidas, tiempos computacionales requeridos y eficiencia en el empaquetamiento.

Este enfoque contribuye a una comprensión más profunda de las fortalezas y limitaciones de cada método, proporcionando un marco sólido para la interpretación objetiva de los resultados y la comparación con estudios previos en el área.

5.5 CONTENEDOR CUADRADO CON ALGORITMO MINZ

En esta primera configuración se presentan los resultados obtenidos al aplicar el algoritmo **MinZ** sobre un conjunto de nueve objetos dispuestos dentro de un contenedor de forma cuadrada. El conjunto a empaquetar está compuesto por tres triángulos, tres cuadrados y tres pentágonos, todos ellos polígonos regulares de lado 1 unidad. Estos objetos representan una diversidad geométrica que permite evaluar el comportamiento del modelo ante distintos grados de complejidad en las formas.

El objetivo de MinZ es minimizar el tamaño del contenedor necesario para empaquetar el conjunto de objetos, sin realizar ajustes posteriores sobre la suavidad de sus lados. En cada conjunto de iteraciones se define explícitamente qué objetos se comportan como duros (sin deformación) y cuáles son suaves, según lo establecido en la imagen de referencia que acompaña a cada experimento.

La instancia **r00** representa el caso base, en el cual todos los objetos son tratados como duros. A partir de **r01** hasta **r10**, los objetos suaves incrementan progresivamente su capacidad de deformación del 10% al 100%, manteniendo constante su área. Finalmente, en la instancia **rXX**, se permite una suavidad *ilimitada*, lo cual puede dar lugar a formas irregulares y no convexas, con el fin de maximizar la eficiencia del empaquetamiento.

Los resultados de cada instancia incluyen visualizaciones gráficas del arreglo final, así como tablas con los valores cuantitativos relevantes. Se destacan observaciones sobre la deformación visible en los objetos suaves, la eficiencia del uso del área del contenedor y los patrones de organización espacial. La imagen de referencia incluida en cada resultado indica claramente cuáles objetos fueron definidos como suaves o duros, facilitando la interpretación y comparación entre instancias.

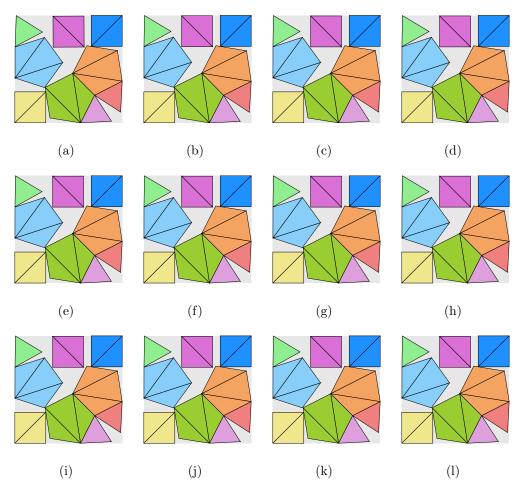


FIGURA 5.1: Contenedor cuadrado con 9 polígonos duros (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S0-r00	5.1-(a)	3.466273	0.00%	78.74%
S0-r01	5.1-(b)	3.466273	10.00%	78.74%
S0-r02	5.1-(c)	3.466273	20.00%	78.74%
S0-r03	5.1-(d)	3.466273	30.00%	78.74%
S0-r04	5.1-(e)	3.466273	40.00%	78.74%
S0-r05	5.1-(f)	3.466273	50.00%	78.74%
S0-r06	5.1-(g)	3.466273	60.00%	78.74%
S0-r07	5.1-(h)	3.466273	70.00%	78.74%
S0-r08	5.1-(i)	3.466273	80.00%	78.74%
S0-r09	5.1-(j)	3.466273	90.00%	78.74%
S0-r10	5.1-(k)	3.466273	100.00%	78.74%
S0-rXX	5.1-(1)	3.466273	∞	78.74%

Tabla 5.1: Información de Figura 5.1

En este conjunto de instancias, todos los objetos son duros. Aún así, se trató de buscar una configuración diferente con las restricciones de suavidad, siendo la que encontramos con lado 3.466273 la mejor solución encontrada, con una densidad de $78.74\,\%$.

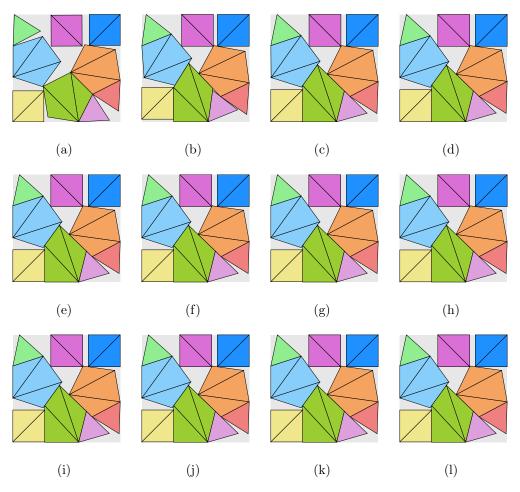
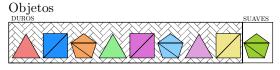



FIGURA 5.2: Contenedor cuadrado con 8 polígonos duros y 1 suave (MinZ)

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
S1-r00	5.2-(a)	3.466273	0.00%	78.74%
S1-r01	5.2-(b)	3.378651	10.00%	82.88%
S1-r02	5.2-(c)	3.367878	20.00%	83.41%
S1-r03	5.2-(d)	3.367286	30.00%	83.42%
S1-r04	5.2-(e)	3.367286	40.00%	83.42%
S1-r05	5.2-(f)	3.367271	50.00%	83.43%
S1-r06	5.2-(g)	3.367228	60.00%	83.44%
S1-r07	5.2-(h)	3.367228	70.00%	83.44%
S1-r08	5.2-(i)	3.367228	80.00%	83.44%
S1-r09	5.2-(j)	3.367228	90.00%	83.44%
S1-r10	5.2-(k)	3.367228	100.00%	83.44%
S1-rXX	5.2-(1)	3.367228	∞	83.44%

Tabla 5.2: Información de Figura 5.2

En este conjunto de instancias podemos observar que el pentagono verde olivo es suave, una vez que este polígono alcanza una suavidad superior al $60\,\%$ la densidad máxima alcanzada es $83.44\,\%$ con un tamaño de lado del contenedor de 3.367228.

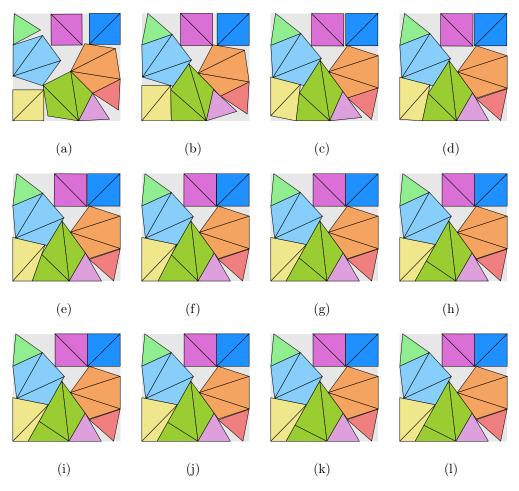
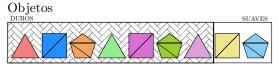



FIGURA 5.3: Contenedor cuadrado con 7 polígonos duros y 2 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S2-r00	5.3-(a)	3.466273	0.00%	78.74%
S2-r01	5.3-(b)	3.348555	10.00%	84.37%
S2-r02	5.3-(c)	3.329133	20.00%	85.36%
S2-r03	5.3-(d)	3.319279	30.00%	85.87%
S2-r04	5.3-(e)	3.312449	40.00%	86.22%
S2-r05	5.3-(f)	3.307398	50.00%	86.48%
S2-r06	5.3-(g)	3.305840	60.00%	86.56%
S2-r07	5.3-(h)	3.305831	70.00%	86.57%
S2-r08	5.3-(i)	3.305831	80.00%	86.57%
S2-r09	5.3-(j)	3.305831	90.00%	86.57%
S2-r10	5.3-(k)	3.305831	100.00%	86.57%
S2-rXX	5.3-(1)	3.305831	∞	86.57%

Tabla 5.3: Información de Figura 5.3

En este conjunto de instancias ahora tenemos un cuadrado y un pentágono suaves. En esta ocasión, la densidad es mayor con 2 polígonos suaves que con 1 solamente. Además el cuadrado suave parece acoplarse cada vez más al pentágono suave. A partir del $70\,\%$ de suavidad se logra la densidad máxima que es $86.57\,\%$ con contenedor de lado 3.305831

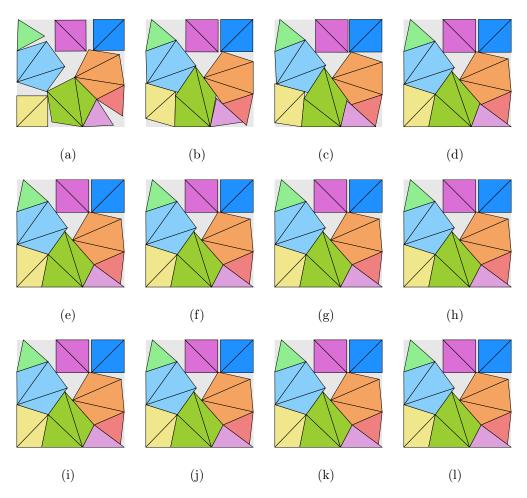
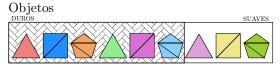



FIGURA 5.4: Contenedor cuadrado con 6 polígonos duros y 3 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
S3-r00	5.4-(a)	3.466273	0.00%	78.74%
S3-r01	5.4-(b)	3.332304	10.00%	85.20%
S3-r02	5.4-(c)	3.297254	20.00%	87.02%
S3-r03	5.4-(d)	3.276045	30.00%	88.15%
S3-r04	5.4-(e)	3.275964	40.00%	88.15%
S3-r05	5.4-(f)	3.275899	50.00%	88.16%
S3-r06	5.4-(g)	3.275899	60.00%	88.16%
S3-r07	5.4-(h)	3.275899	70.00%	88.16%
S3-r08	5.4-(i)	3.275899	80.00%	88.16%
S3-r09	5.4-(j)	3.275899	90.00%	88.16%
S3-r10	5.4-(k)	3.275899	100.00%	88.16%
S3-rXX	5.4-(1)	3.275899	∞	88.16%

Tabla 5.4: Información de Figura 5.4

Se muestran los resultados 3 objetos suaves, podemos ver que a partir del $50\,\%$ de suavidad la densidad se vuelve constante $88.16\,\%$ y con tamaño de contenedor 3.275899. En la solución de $30\,\%$ al $40\,\%$ el pentágono suave se acopla junto con el cuadrado suave obteniendo su posición definitiva.

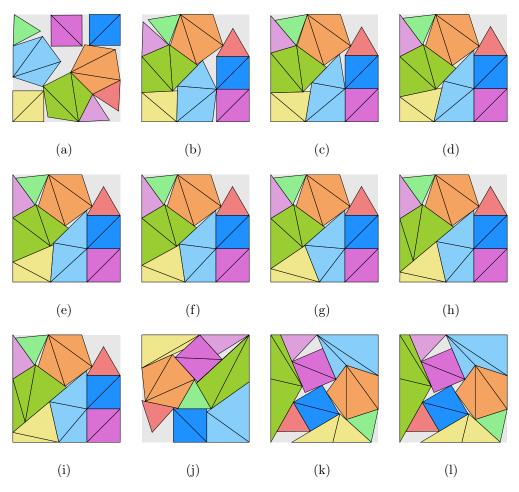


FIGURA 5.5: Contenedor cuadrado con 5 polígonos duros y 4 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
S4-r00	5.5-(a)	3.466273	0.00%	78.74%
S4-r01	5.5-(b)	3.293103	10.00%	87.24%
S4-r02	5.5-(c)	3.243393	20.00%	89.93%
S4-r03	5.5-(d)	3.228027	30.00%	90.79%
S4-r04	5.5-(e)	3.224252	40.00%	91.00%
S4-r05	5.5-(f)	3.222399	50.00%	91.11%
S4-r06	5.5-(g)	3.220881	60.00%	91.19%
S4-r07	5.5-(h)	3.219790	70.00%	91.26%
S4-r08	5.5-(i)	3.219704	80.00%	91.27%
S4-r09	5.5-(j)	3.211122	90.00%	91.75%
S4-r10	5.5-(k)	3.195504	100.00%	92.65%
S4-rXX	5.5-(1)	3.195504	∞	92.65%

Tabla 5.5: Información de Figura 5.5

En este conjunto de instancias, podemos observar que con 4 polígonos suaves, la densidad aumenta junto con la suavidad y a su vez, el contenedor disminuye. Excepcionalmente podemos observar que el polígono celeste empieza a convertirse en un objeto no convexo e irregular, pero siguen siendo 3 triángulos con vértices en común siendo parte del pentágono.

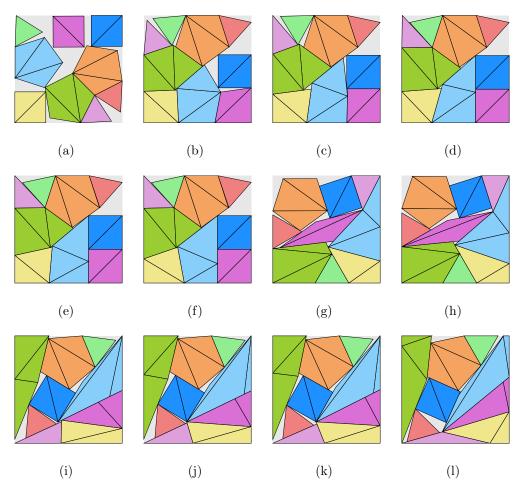
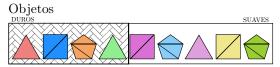



FIGURA 5.6: Contenedor cuadrado con 4 polígonos duros y 5 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
S5-r00	5.6-(a)	3.466273	0.00%	78.74%
S5-r01	5.6-(b)	3.250302	10.00%	89.55%
S5-r02	5.6-(c)	3.207239	20.00%	91.97%
S5-r03	5.6-(d)	3.190171	30.00%	92.96%
S5-r04	5.6-(e)	3.188504	40.00%	93.05%
S5-r05	5.6-(f)	3.187301	50.00%	93.13%
S5-r06	5.6-(g)	3.182122	60.00%	93.43%
S5-r07	5.6-(h)	3.169836	70.00%	94.15%
S5-r08	5.6-(i)	3.162885	80.00%	94.57%
S5-r09	5.6-(j)	3.160438	90.00%	94.71%
S5-r10	5.6-(k)	3.159213	100.00%	94.79%
S5-rXX	5.6-(1)	3.153265	∞	95.15%

Tabla 5.6: Información de Figura 5.6

Aquí tenemos más de la mitad de polígonos suaves, vemos en un principio como el cuadrado morado se resiste a cambiar la forma hasta que llega a un $60\,\%$ de suavidad. En la solución con suavidad $60\,\%$ el pentágono celeste nuevamente se vuelve un objeto irregular. Al momento parece que los polígonos suaves con más vértices tienden a convertirse en no convexos.

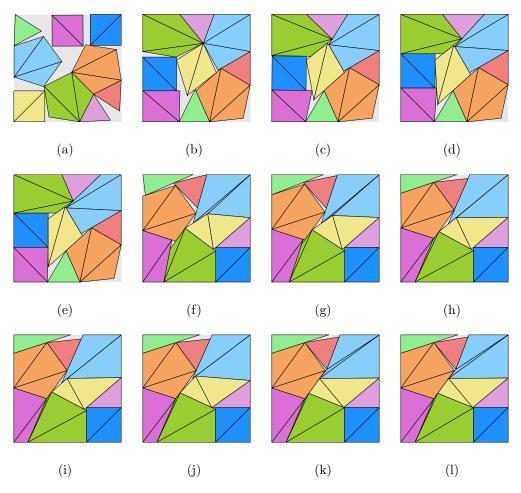
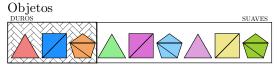



FIGURA 5.7: Contenedor cuadrado con 3 polígonos duros y 6 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
S6-r00	5.7-(a)	3.466273	0.00%	78.74%
S6-r01	5.7-(b)	3.180952	10.00%	93.50%
S6-r02	5.7-(c)	3.139440	20.00%	95.99%
S6-r03	5.7-(d)	3.133179	30.00%	96.37%
S6-r04	5.7-(e)	3.129037	40.00%	96.63%
S6-r05	5.7-(f)	3.111488	50.00%	97.72%
S6-r06	5.7-(g)	3.103439	60.00%	98.23%
S6-r07	5.7-(h)	3.097735	70.00%	98.59%
S6-r08	5.7-(i)	3.097083	80.00%	98.63%
S6-r09	5.7-(j)	3.095865	90.00%	98.71%
S6-r10	5.7-(k)	3.091210	100.00%	99.00%
S6-rXX	5.7-(1)	3.091210	∞	99.00%

Tabla 5.7: Información de Figura 5.7

En este conjunto de instancias tenemos 6 objetos suaves. Podemos observar que el polígono con más vértices, el pentágono celeste, después del $50\,\%$ de suavidad se convierte en un polígono irregular. Ahora tenemos 2 pentágonos suaves y uno tiende a irregularidad y el otro tiende a convertirse en un cuadrado, esto parece ser condicionado por los objetos que los rodean.

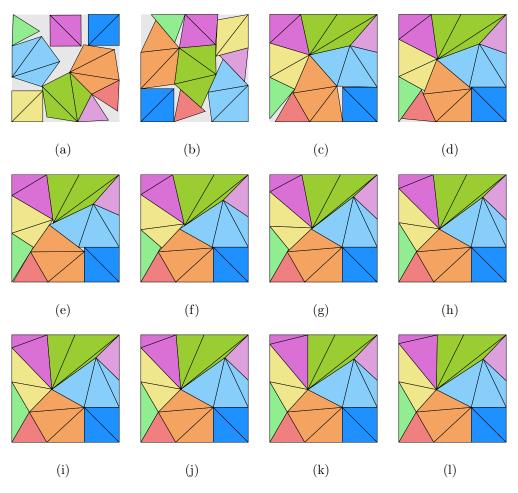


FIGURA 5.8: Contenedor cuadrado con 2 polígonos duros y 7 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S7-r00	5.8-(a)	3.466273	0.00%	78.74%
S7-r01	5.8-(b)	3.245342	10.00%	89.82%
S7-r02	5.8-(c)	3.107908	20.00%	97.94%
S7-r03	5.8-(d)	3.085333	30.00%	99.38%
S7-r04	5.8-(e)	3.081182	40.00%	99.65%
S7-r05	5.8-(f)	3.076944	50.00%	99.92%
S7-r06	5.8-(g)	3.075959	60.00%	99.99%
S7-r07	5.8-(h)	3.075787	70.00%	100.00%
S7-r08	5.8-(i)	3.075787	80.00%	100.00%
S7-r09	5.8-(j)	3.075787	90.00%	100.00%
S7-r10	5.8-(k)	3.075787	100.00%	100.00%
S7-rXX	5.8-(1)	3.075787	∞	100.00%

Tabla 5.8: Información de Figura 5.8

En este conjunto de instancias tenemos 7 polígonos suaves. Por primera vez, al tener la mayoría de objetos suaves, tenemos la densidad de $100\,\%$. El contenedor completamente lleno y con lado de contenedor 3.075787. Este $100\,\%$ de densidad se logró desde el $70\,\%$ de suavidad.

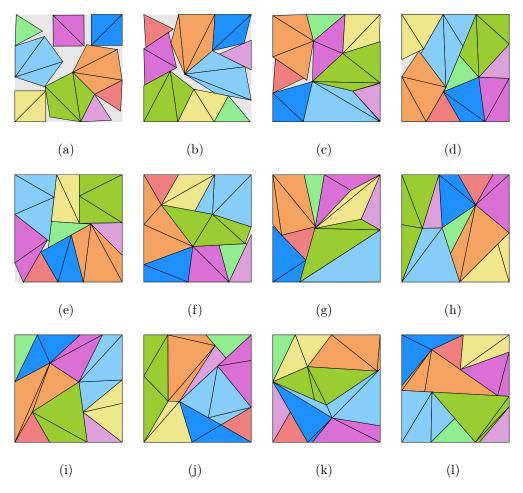
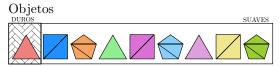



FIGURA 5.9: Contenedor cuadrado con 1 polígono duro y 8 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
S8-r00	5.9-(a)	3.466273	0.00%	78.74%
S8-r01	5.9-(b)	3.255562	10.00%	89.26%
S8-r02	5.9-(c)	3.120614	20.00%	97.15%
S8-r03	5.9-(d)	3.097300	30.00%	98.62%
S8-r04	5.9-(e)	3.092298	40.00%	98.94%
S8-r05	5.9-(f)	3.080055	50.00%	99.72%
S8-r06	5.9-(g)	3.076856	60.00%	99.93%
S8-r07	5.9-(h)	3.075787	70.00%	100.00%
S8-r08	5.9-(i)	3.075787	80.00%	100.00%
S8-r09	5.9-(j)	3.075787	90.00%	100.00%
S8-r10	5.9-(k)	3.075787	100.00%	100.00%
S8-rXX	5.9-(1)	3.075787	∞	100.00%

Tabla 5.9: Información de Figura 5.9

En este conjunto de instancias, tenemos ahora 3 pentágonos suaves. Y nuevamente, al 70 % de suavidad, conseguimos el 100 % de densidad en un tamaño de contenedor 3.075787. En la imagen (f) 2 pentágonos suaves tienden a convertirse en objetos no convexos. Es en (i) donde el pentágono naranja y en (k) donde el pentágono celeste son no convexos.

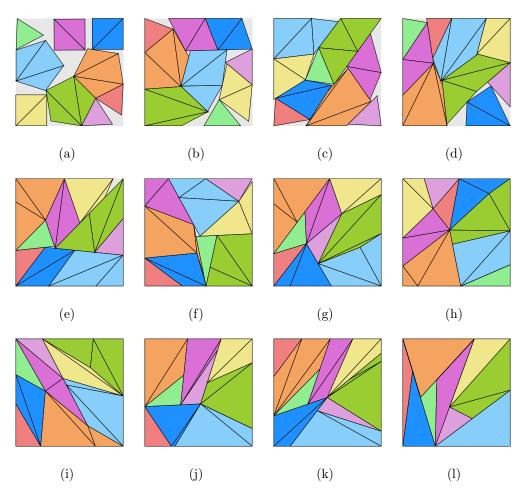


FIGURA 5.10: Contenedor cuadrado con 9 polígonos suaves (MinZ)

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
S9-r00	5.10-(a)	3.466273	0.00%	78.74%
S9-r01	5.10-(b)	3.223306	10.00%	91.06%
S9-r02	5.10-(c)	3.183912	20.00%	93.32%
S9-r03	5.10-(d)	3.155496	30.00%	95.01%
S9-r04	5.10-(e)	3.089985	40.00%	99.08%
S9-r05	5.10-(f)	3.083351	50.00%	99.51%
S9-r06	5.10-(g)	3.075787	60.00%	100.00%
S9-r07	5.10-(h)	3.075787	70.00%	100.00%
S9-r08	5.10-(i)	3.075787	80.00%	100.00%
S9-r09	5.10-(j)	3.075787	90.00%	100.00%
S9-r10	5.10-(k)	3.075787	100.00%	100.00%
S9-rXX	5.10-(1)	3.075787	∞	100.00%

Tabla 5.10: Información de Figura 5.10

Objetos

${\bf Observaciones:}$

En este conjunto de instancias, todos los objetos son suaves. A partir del 60 % de suavidad llegamos al 100 %. En la imagen (f) podemos observar que el pentágono naranja se vuelve completamente irregular. posteriormente en (g) y en (i) los pentágonos suaves son los que se convierten en no convexos e irregulares.

5.6 CONTENEDOR CUADRADO CON ALGORITMO MINRHO

En esta segunda configuración se presentan los resultados obtenidos al aplicar el algoritmo MinRho sobre los empaquetamientos previamente generados con el algoritmo MinZ, utilizando el mismo conjunto de nueve objetos: tres triángulos, tres cuadrados y tres pentágonos, todos ellos polígonos regulares de lado 1 unidad. La distribución entre objetos duros y suaves se mantiene de acuerdo con la imagen de referencia correspondiente a cada instancia.

A diferencia de MinZ, cuyo objetivo es minimizar el tamaño del contenedor, el algoritmo MinRho busca reducir la suavidad de los objetos suaves partiendo de una solución inicial ya optimizada. Esta segunda fase de optimización permite explorar si es posible disminuir la deformación de los polígonos sin perder la calidad del empaquetamiento, o bien confirmar que la solución obtenida con MinZ ya se encuentra próxima al óptimo.

Cada instancia se analiza para once niveles de suavidad: desde **r00** hasta **r10**, con incrementos del 10 % en la capacidad de deformación de los objetos suaves. La instancia **r00** se considera nuevamente como el caso base sin deformación, mientras que **rXX** representa el escenario con *suavidad ilimitada*, permitiendo a los objetos adoptar configuraciones extremas o no convexas.

Los resultados incluyen representaciones visuales del empaquetamiento tras la aplicación de MinRho, así como tablas con métricas relevantes que permiten comparar el nivel de suavidad final alcanzado respecto al configurado. Se discuten los cambios observados en la forma y distribución de los objetos suaves, así como los efectos del proceso de minimización sobre la geometría global del empaquetamiento. Al igual que en la sección anterior, se acompaña cada resultado con una imagen de referencia que indica qué objetos fueron definidos como suaves y cuáles como duros.

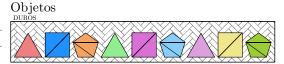



FIGURA 5.11: Contenedor cuadrado con 9 polígonos duros (MinRho)

Instancia	Figura	7 .		<i>S</i> .
Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S0-r00	5.11-(a)	3.466273	0.00%	78.74%
S0-r01	5.11-(b)	3.466273	0.00%	78.74%
S0-r02	5.11-(c)	3.466273	0.00%	78.74%
S0-r03	5.11-(d)	3.466273	0.00%	78.74%
S0-r04	5.11-(e)	3.466273	0.00%	78.74%
S0-r05	5.11-(f)	3.466273	0.00%	78.74%
S0-r06	5.11-(g)	3.466273	0.00%	78.74%
S0-r07	5.11-(h)	3.466273	0.00%	78.74%
S0-r08	5.11-(i)	3.466273	0.00%	78.74%
S0-r09	5.11-(j)	3.466273	0.00%	78.74%
S0-r10	5.11-(k)	3.466273	0.00%	78.74%
S0-rXX	5.11-(l)	3.466273	0.00%	78.74%

Tabla 5.11: Información de Figura 5.11

En estas instancias tenemos todos los objetos duros, el mínimo valor de suavidad es 0 % debido a que esta es la mejor solución conocida para objetos duros. Que la solución para el algoritmo de mínimo contenedor y la solución óptima encontrada para el algoritmo de mínima suavidad convergen, nos indican fuertemente que esta solución es óptima también para mínimo contenedor.

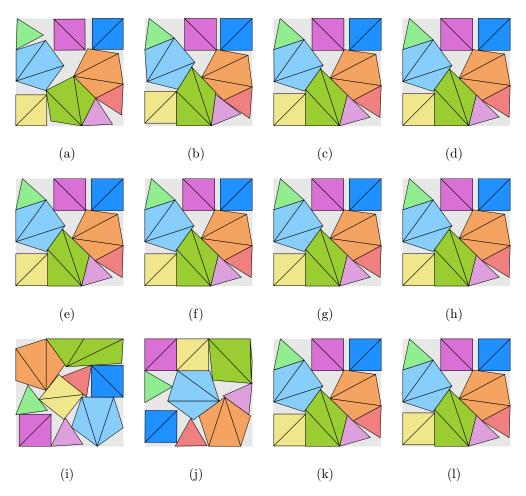
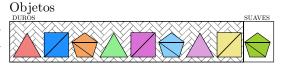



FIGURA 5.12: Contenedor cuadrado con 8 polígonos duros y 1 suave (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S1-r00	5.12-(a)	3.466273	0.00%	78.74%
S1-r01	5.12-(b)	3.378651	9.96%	82.88%
S1-r02	5.12-(c)	3.367878	20.00%	83.41%
S1-r03	5.12-(d)	3.367286	21.43%	83.42%
S1-r04	5.12-(e)	3.367286	21.43%	83.42%
S1-r05	5.12-(f)	3.367271	21.42%	83.43%
S1-r06	5.12-(g)	3.367228	21.41%	83.44%
S1-r07	5.12-(h)	3.367228	21.41%	83.44%
S1-r08	5.12-(i)	3.367228	21.41%	83.44%
S1-r09	5.12-(j)	3.367228	21.41%	83.44%
S1-r10	5.12-(k)	3.367228	21.41%	83.44%
S1-r XX	5.12-(1)	3.367228	21.41%	83.44%

Tabla 5.12: Información de Figura 5.12

En estas instancias, validamos las soluciones de tamaño de contenedor mínimo. En las imágenes de (a) y (c) vemos que la densidad y el tamaño de contenedor se mantienen iguales al problema de contenedor mínimo y la suavidad mínima es la misma $0\,\%$ y $20\,\%$ correspondientemente. Además la suavidad mínima para el empaquetamiento con mayor densidad es $21.41\,\%$.

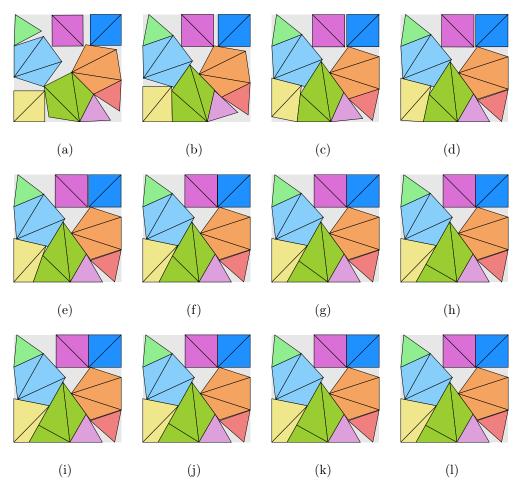
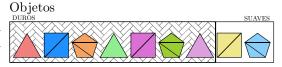



FIGURA 5.13: Contenedor cuadrado con 7 polígonos duros y 2 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
S2-r00	5.13-(a)	3.466273	0.00%	78.74%
S2-r01	5.13-(b)	3.348555	9.99%	84.37%
S2-r02	5.13-(c)	3.329133	20.00%	85.36%
S2-r03	5.13-(d)	3.319279	29.99%	85.87%
S2-r04	5.13-(e)	3.312449	39.93%	86.22%
S2-r05	5.13-(f)	3.307398	49.93%	86.48%
S2-r06	5.13-(g)	3.305840	52.91%	86.57%
S2-r07	5.13-(h)	3.305831	52.88%	86.57%
S2-r08	5.13-(i)	3.305831	52.88%	86.57%
S2-r09	5.13-(j)	3.305831	52.88%	86.57%
S2-r10	5.13-(k)	3.305831	52.88%	86.57%
S2-rXX	5.13-(1)	3.305831	52.88%	86.57%

Tabla 5.13: Información de Figura 5.13

En estas instancias, las imágenes (a) y (c) tienen una suavidad mínima correspondiente con la asignada en el tamaño mínimo de contenedor. En las instancias (b), (d), (e) y (f) las suavidades mínimas para lograr el mismo tamaño de contenedor son menores al valor asignado, pero por muy poco. A partir de (h) conseguimos la mayor densidad con una suavidad mínima de 52.88 %.

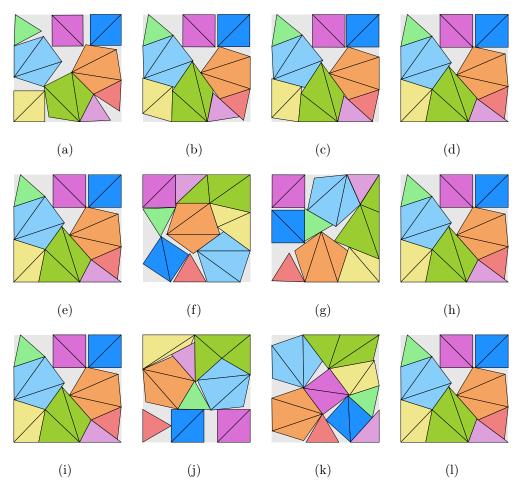
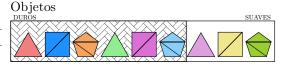



FIGURA 5.14: Contenedor cuadrado con 6 polígonos duros y 3 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S3-r00	5.14-(a)	3.466273	0.00%	78.74%
S3-r01	5.14-(b)	3.332304	9.99%	85.20%
S3-r02	5.14-(c)	3.297254	19.98%	87.02%
S3-r03	5.14-(d)	3.276045	29.30%	88.15%
S3-r04	5.14-(e)	3.275964	29.30%	88.15%
S3-r05	5.14-(f)	3.275899	29.84%	88.16%
S3-r06	5.14-(g)	3.275899	29.84%	88.16%
S3-r07	5.14-(h)	3.275899	29.84%	88.16%
S3-r08	5.14-(i)	3.275899	29.84%	88.16%
S3-r09	5.14-(j)	3.275899	29.84%	88.16%
S3-r10	5.14-(k)	3.275899	29.84%	88.16%
S3-rXX	5.14-(1)	3.275899	29.84%	88.16%

Tabla 5.14: Información de Figura 5.14

En las imágenes (a), (b) y (c) la suavidad mínima para esas soluciones son cercanas a la suavidad asignada en el algoritmo anterior. A partir de (f) la suavidad mínima es $29.84\,\%$ con el mínimo contenedor. Se observa que el Pentágono Verde Olivo, en (f) y (g) tiene una deformación sutil y se vuelven polígonos no convexos. Es más notorio en (j) la figura no convexa es el mismo Pentágono que .ªbraza.ªl Pentágono celeste.

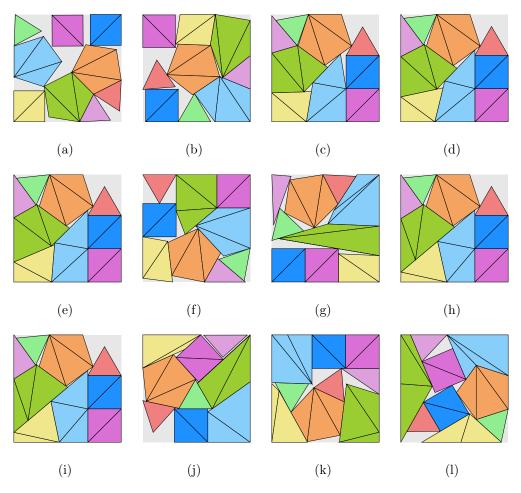
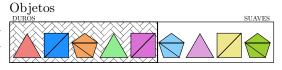



FIGURA 5.15: Contenedor cuadrado con 5 polígonos duros y 4 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S4-r00	5.15-(a)	3.466273	0.00%	78.74%
S4-r01	5.15-(b)	3.293103	8.26%	87.24%
S4-r02	5.15-(c)	3.243393	20.00%	89.93%
S4-r03	5.15-(d)	3.228027	30.00%	90.79%
S4-r04	5.15-(e)	3.224252	39.99%	91.00%
S4-r05	5.15-(f)	3.222399	24.13%	91.11%
S4-r06	5.15-(g)	3.220881	54.32%	91.19%
S4-r07	5.15-(h)	3.219790	70.00%	91.26%
S4-r08	5.15-(i)	3.219704	70.31%	91.27%
S4-r09	5.15-(j)	3.211122	80.87%	91.75%
S4-r10	5.15-(k)	3.195504	74.50%	92.65%
S4-rXX	5.15-(1)	3.195504	91.36%	92.65%

Tabla 5.15: Información de Figura 5.15

En este conjunto de instancias, podemos observar 4 polígonos suaves. Tenemos 3 instancias (c), (d) y (h), donde la suavidad mínima es igual a la asignada en el algoritmo de mínimo contenedor. Otra cosa que relevante que podemos observar, es que en (k) y (l) tienen el mismo tamaño de contenedor y la misma densidad, pero diferentes suavidades. En (l) el pentágono celeste se convierte no convexo e irregular.

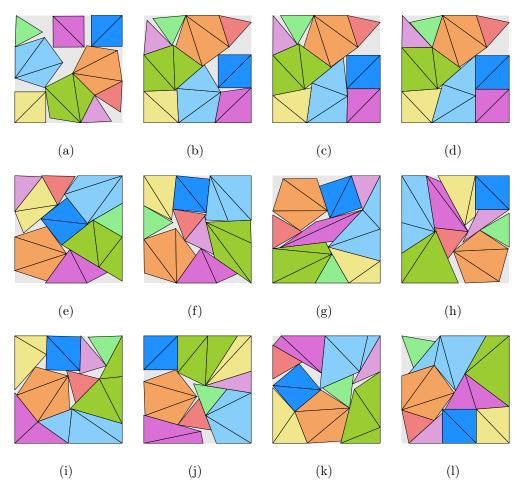
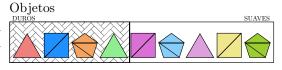



FIGURA 5.16: Contenedor cuadrado con 4 polígonos duros y 5 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S5-r00	5.16-(a)	3.466273	0.00%	78.74%
S5-r01	5.16-(b)	3.250302	10.00%	89.55%
S5-r02	5.16-(c)	3.207239	19.97%	91.97%
S5-r03	5.16-(d)	3.190171	30.00%	92.96%
S5-r04	5.16-(e)	3.188504	31.11%	93.05%
S5-r05	5.16-(f)	3.187301	32.08%	93.13%
S5-r06	5.16-(g)	3.182122	60.00%	93.43%
S5-r07	5.16-(h)	3.169836	66.97%	94.15%
S5-r08	5.16-(i)	3.162885	59.04%	94.57%
S5-r09	5.16-(j)	3.160438	74.39%	94.71%
S5-r10	5.16-(k)	3.159213	63.69%	94.79%
S5-rXX	5.16-(1)	3.153265	84.15%	95.15%

Tabla 5.16: Información de Figura 5.16

En este conjunto de instancias, tenemos que en (b), (d) y (g) la suavidad mínima es la misma asignada en el algoritmo de mínimo contenedor. Podemos observar que en (g) el pentágono celeste sutilmente se vuelve no convexo. En (i) el pentágono verde olivo y el cuadrado morado se vuelven no convexos, teniendo el mismo tamaño de contenedor que se obtuvo en mínimo contenedor, pero una configuración diferente.

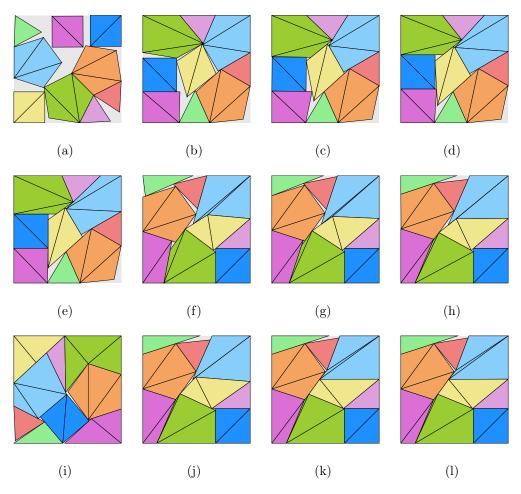


FIGURA 5.17: Contenedor cuadrado con 3 polígonos duros y 6 suaves (MinRho)

Instancia	Figura	$Z_{min_{\rho}}$	$\rho_{min_{ ho}}$	$\delta_{min_{ ho}}$
S6-r00	5.17-(a)	3.483208	0.00%	78.74%
S6-r01	5.17-(b)	3.180952	9.90%	93.50%
S6-r02	5.17-(c)	3.139440	20.00%	95.99%
S6-r03	5.17-(d)	3.133179	29.99%	96.37%
S6-r04	5.17-(e)	3.129037	39.99%	96.63%
S6-r05	5.17-(f)	3.111488	49.96%	97.72%
S6-r06	5.17-(g)	3.103439	60.00%	98.23%
S6-r07	5.17-(h)	3.097735	62.78%	98.59%
S6-r08	5.17-(i)	3.097083	79.29%	98.63%
S6-r09	5.17-(j)	3.095865	77.29%	98.71%
S6-r10	5.17-(k)	3.091210	78.45%	99.00%
S6-rXX	5.17-(1)	3.091210	78.45%	99.00%

Tabla 5.17: Información de Figura 5.17

En este conjunto de instancias (a), (c) y (g) tienen una suavidad mínima que es la misma que se asigna en el contenedor mínimo. En (b), (d), (e) y (f) la suavidad óptima es cercana a la suavidad asignada en el contenedor mínimo. Podemos observar que desde (f) hasta (l) los pentágonos se convierten en objetos no convexos e irregulares.

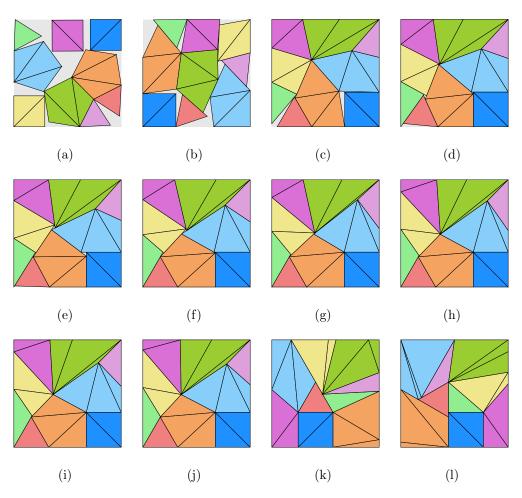


FIGURA 5.18: Contenedor cuadrado con 2 polígonos duros y 7 suaves (MinRho)

Instancia	Figura	$Z_{min_{\rho}}$	$\rho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S7-r00	5.18-(a)	3.466273	0.00%	78.74%
S7-r01	5.18-(b)	3.245342	10.00%	89.82%
S7-r02	5.18-(c)	3.107908	20.00%	97.94%
S7-r03	5.18-(d)	3.085333	30.00%	99.38%
S7-r04	5.18-(e)	3.081182	39.97%	99.65%
S7-r05	5.18-(f)	3.076944	50.00%	99.92%
S7-r06	5.18-(g)	3.075959	59.77%	99.99%
S7-r07	5.18-(h)	3.075787	65.68%	100.00%
S7-r08	5.18-(i)	3.075787	66.10%	100.00%
S7-r09	5.18-(j)	3.075787	71.05%	100.00%
S7-r10	5.18-(k)	3.075787	79.81%	100.00%
S7-rXX	5.18-(1)	3.075787	91.12%	100.00%

Tabla 5.18: Información de Figura 5.18

Al tener tantos polígonos suaves, las soluciones del algoritmo de mínimo contenedor en (a), (b), (c), (d) y (f) son las óptimas también en el algoritmo de suavidad mínima. A partir de la instancia (h) obtenemos 100 % de densidad. Cada una de las soluciones de con 100 % de densidad tienen una suavidad mínima variante en cada instancia, siendo la menor 65.68 % con tamaño de contenedor 3.075787.

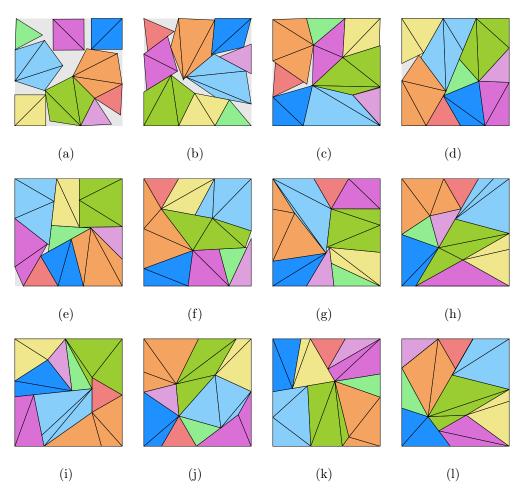
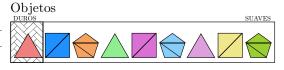



FIGURA 5.19: Contenedor cuadrado con 1 polígono duro y 8 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
S8-r00	5.19-(a)	3.466273	0.00%	78.74%
S8-r01	5.19-(b)	3.255562	9.95%	89.26%
S8-r02	5.19-(c)	3.120614	20.00%	97.15%
S8-r03	5.19-(d)	3.097300	30.00%	98.62%
S8-r04	5.19-(e)	3.092298	40.00%	98.94%
S8-r05	5.19-(f)	3.080055	50.00%	99.72%
S8-r06	5.19-(g)	3.076856	54.55%	99.93%
S8-r07	5.19-(h)	3.075787	59.94%	100.00%
S8-r08	5.19-(i)	3.075787	67.88%	100.00%
S8-r09	5.19-(j)	3.075787	56.84%	100.00%
S8-r10	5.19-(k)	3.075787	73.20%	100.00%
S8-rXX	5.19-(1)	3.075787	68.57%	100.00%

Tabla 5.19: Información de Figura 5.19

En este conjunto de instancias, las (a), (c), (d), (e) y (f) tienen tienen una suavidad óptima igual a la que se les asignó en el algoritmo de mínimo contenedor. En (b) está cerca del valor asignado, pero esto nos indica que la solución no es la mejor. Podemos observar en (j) que un cuadrado suave se vuelve no convexo. En (i) y (k) los pentágonos, además de no convexos se vuelven irregulares.

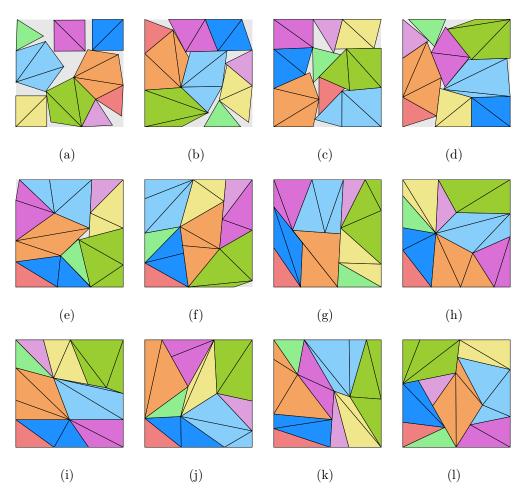


FIGURA 5.20: Contenedor cuadrado con 9 polígonos suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S9-r00	5.20-(a)	3.466273	0.00%	78.74%
S9-r01	5.20-(b)	3.223306	10.00%	91.06%
S9-r02	5.20-(c)	3.183912	16.57%	93.32%
S9-r03	5.20-(d)	3.155496	13.83%	95.01%
S9-r04	5.20-(e)	3.089985	39.67%	99.08%
S9-r05	5.20-(f)	3.083351	45.17%	99.51%
S9-r06	5.20-(g)	3.075787	55.30%	100.00%
S9-r07	5.20-(h)	3.075787	54.07%	100.00%
S9-r08	5.20-(i)	3.075787	53.79%	100.00%
S9-r09	5.20-(j)	3.075787	53.41%	100.00%
S9-r10	5.20-(k)	3.075787	69.89%	100.00%
S9-rXX	5.20-(1)	3.075787	54.73%	100.00%

Tabla 5.20: Información de Figura 5.20

Objetos

Observaciones:

En (a) y (b) la solución encontrada por el algoritmo de mínimo contenedor tienen la suavidad óptima, reafirmada por el algoritmo de suavidad mínima. En (g) el pentágono naranja se deforma y se convierte en un polígono no convexo e irregular. En (i) se puede ver una sutil deformación en el pentágono verde olivo. Y finalmente en (l) se puede observar que el pentágono celeste es no convexo e irregular.

5.7 CONTENEDOR CIRCULAR CON ALGORITMO MINZ

En esta configuración se aplicó el algoritmo **MinZ** utilizando un contenedor de forma *circular*, con el objetivo de minimizar su tamaño mientras se empaqueta el conjunto de nueve objetos: *tres triángulos, tres cuadrados y tres pentágonos*, todos *regulares con lados de 1 unidad*. Como en los casos anteriores, en cada instancia se define qué objetos son *duros* y cuáles *suaves*, de acuerdo con la imagen de referencia correspondiente.

El contenedor circular introduce un cambio importante en las condiciones geométricas del problema, al eliminar la linealidad de los bordes y favorecer disposiciones más radiales o simétricas. Bajo estas condiciones, el algoritmo MinZ calcula la configuración óptima que minimiza el radio del círculo necesario para contener todos los objetos, permitiendo la deformación de los suaves conforme al porcentaje de suavidad especificado.

Las instancias analizadas van desde **r00**, donde todos los objetos se consideran duros, hasta **r10**, con una progresión del 10 % al 100 % de suavidad permitida para los objetos suaves. La instancia **rXX** representa el caso de *suavidad ilimitada*, en el que los objetos pueden deformarse libremente siempre que conserven su área.

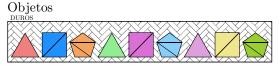

Los resultados incluyen representaciones visuales del empaquetamiento dentro del contenedor circular, junto con tablas de métricas relevantes para cada instancia. Se discuten patrones emergentes específicos de esta configuración, incluyendo el aprovechamiento radial del espacio y el impacto de la curvatura del contenedor sobre la deformación de los objetos suaves. También se incorpora una imagen de referencia que identifica la clasificación de los objetos en cada caso.

FIGURA 5.21: Contenedor círculo con 9 polígonos duros (MinZ)

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
S0-r00	5.21-(a)	1.982053	0.00%	76.65%
S0-r01	5.21-(b)	1.982053	10.00%	76.65%
S0-r02	5.21-(c)	1.982053	20.00%	76.65%
S0-r03	5.21-(d)	1.982053	30.00%	76.65%
S0-r04	5.21-(e)	1.982053	40.00%	76.65%
S0-r05	5.21-(f)	1.982053	50.00%	76.65%
S0-r06	5.21-(g)	1.982053	60.00%	76.65%
S0-r07	5.21-(h)	1.982053	70.00%	76.65%
S0-r08	5.21-(i)	1.982053	80.00%	76.65%
S0-r09	5.21-(j)	1.982053	90.00%	76.65%
S0-r10	5.21-(k)	1.982053	100.00%	76.65%
S0-rXX	5.21-(l)	1.982053	∞	76.65%

Tabla 5.21: Información de Figura 5.21

En este conjunto de instancias tenemos 9 polígonos de suavidad 0 % y como es de esperarse, en ningún nivel de suavidad la solución mejora o la densidad aumenta. Esta experimentación se realizó para validar que el modelo funcionara correctamente.

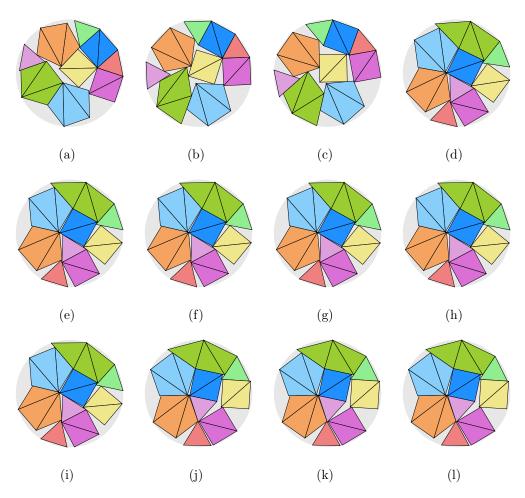
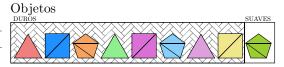



FIGURA 5.22: Contenedor círculo con 8 polígonos duros y 1 suave (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S1-r00	5.22-(a)	1.982053	0.00 %	76.65%
S1-r01	5.22-(b)	1.966430	10.00%	77.88%
S1-r02	5.22-(c)	1.957854	20.00%	78.56%
S1-r03	5.22-(d)	1.939862	30.00%	80.02%
S1-r04	5.22-(e)	1.939862	40.00%	80.02%
S1-r05	5.22-(f)	1.939862	50.00%	80.02%
S1-r06	5.22-(g)	1.939862	60.00%	80.02%
S1-r07	5.22-(h)	1.939862	70.00%	80.02%
S1-r08	5.22-(i)	1.939823	80.00%	80.03%
S1-r09	5.22-(j)	1.935319	90.00%	80.40%
S1-r10	5.22-(k)	1.935319	100.00%	80.40%
S1-rXX	5.22-(1)	1.935319	∞	80.40%

Tabla 5.22: Información de Figura 5.22

En este conjunto de instancias tenemos el Pentágono Verde Olivo como suave. En (d), (e), (f), (g) y (h) el nivel de suavidad no ayudó a encontrar una solución con menor tamaño del contenedor, quedándose en 80.02 % de densidad. El mínimo radio del contenedor circular es 1.935319, con una densidad del 80.40 %.

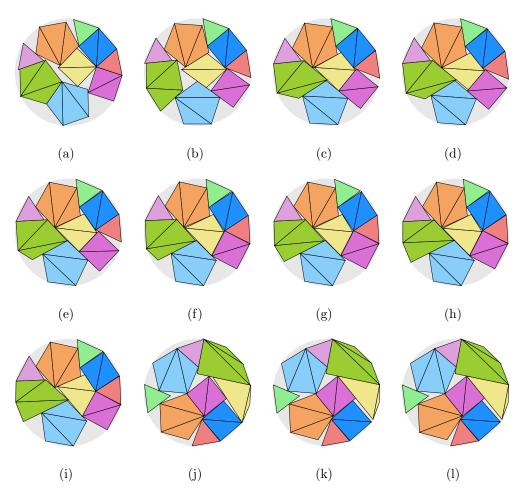
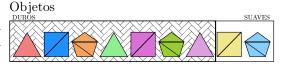



FIGURA 5.23: Contenedor círculo con 7 polígonos duros y 2 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S2-r00	5.23-(a)	1.982053	0.00%	76.65%
S2-r01	5.23-(b)	1.932925	10.00%	80.60%
S2-r02	5.23-(c)	1.910344	20.00%	82.52%
S2-r03	5.23-(d)	1.906879	30.00%	82.82%
S2-r04	5.23-(e)	1.903875	40.00%	83.08%
S2-r05	5.23-(f)	1.898923	50.00%	83.51%
S2-r06	5.23-(g)	1.895943	60.00%	83.77%
S2-r07	5.23-(h)	1.892880	70.00%	84.05%
S2-r08	5.23-(i)	1.891842	80.00%	84.14%
S2-r09	5.23-(j)	1.888454	90.00%	84.44%
S2-r10	5.23-(k)	1.887312	100.00%	84.54%
S2-rXX	5.23-(1)	1.887312	∞	84.54%

Tabla 5.23: Información de Figura 5.23

En este conjunto de instancias, tenemos ahora 2 polígonos suaves. Esto nos permite ver desde 10 % de suavidad al 100 % de suavidad, no hay configuraciones con el mismo tamaño de contenedor y la densidad aumenta con la suavidad. En (l) la instancia con suavidad infinita, el tamaño del contenedor se mantiene. Es interesante ver como los polígonos suaves tienden a acompañarse y acoplarse entre sí.

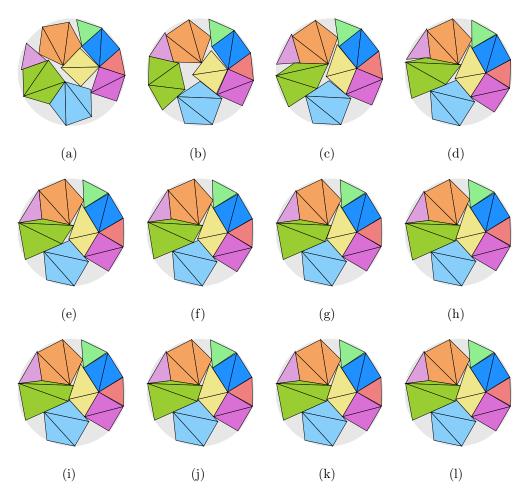
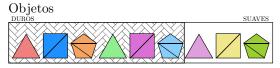



FIGURA 5.24: Contenedor círculo con 6 polígonos duros y 3 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
S3-r00	5.24-(a)	1.982053	0.00%	76.65%
S3-r01	5.24-(b)	1.934615	10.00%	80.46%
S3-r02	5.24-(c)	1.909935	20.00%	82.55%
S3-r03	5.24-(d)	1.899322	30.00%	83.48%
S3-r04	5.24-(e)	1.895304	40.00%	83.83%
S3-r05	5.24-(f)	1.893230	50.00%	84.01%
S3-r06	5.24-(g)	1.891160	60.00%	84.20%
S3-r07	5.24-(h)	1.890339	70.00%	84.27%
S3-r08	5.24-(i)	1.890339	80.00%	84.27%
S3-r09	5.24-(j)	1.890339	90.00%	84.27%
S3-r10	5.24-(k)	1.890339	100.00%	84.27%
S3-rXX	5.24-(l)	1.890339	∞	84.27%

Tabla 5.24: Información de Figura 5.24

En este conjunto de instancias, tenemos 3 polígonos suaves. A partir de la solución (h) la el tamaño del contenedor no puede reducirse más, quedando con un radio de contenedor de 1.890339 y una densidad de 84.27%. Otra vez los polígonos suaves tienen puntos de contacto entre ellos.

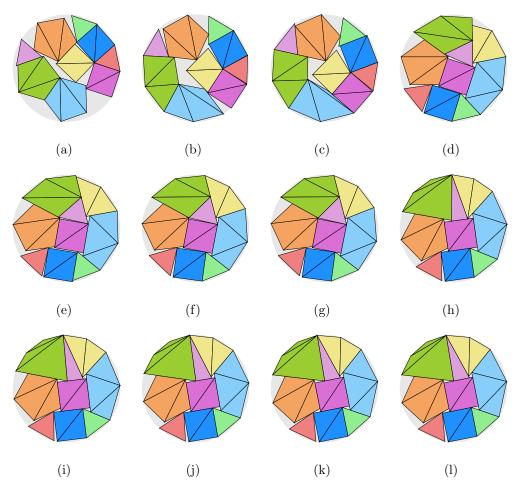
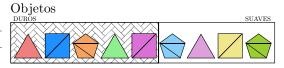



FIGURA 5.25: Contenedor círculo con 5 polígonos duros y 4 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S4-r00	5.25-(a)	1.982053	0.00%	76.65%
S4-r01	5.25-(b)	1.895588	10.00%	83.81%
S4-r02	5.25-(c)	1.864540	20.00%	86.62%
S4-r03	5.25-(d)	1.842801	30.00%	88.68%
S4-r04	5.25-(e)	1.835482	40.00%	89.38%
S4-r05	5.25-(f)	1.832946	50.00%	89.63%
S4-r06	5.25-(g)	1.832946	60.00%	89.63%
S4-r07	5.25-(h)	1.826813	70.00%	90.23%
S4-r08	5.25-(i)	1.826786	80.00%	90.24%
S4-r09	5.25-(j)	1.826786	90.00%	90.24%
S4-r10	5.25-(k)	1.826786	100.00%	90.24%
S4-rXX	5.25-(1)	1.826786	∞	90.24%

Tabla 5.25: Información de Figura 5.25

En este conjunto de instancias, tenemos 4 polígonos suaves, de los cuales 2 son pentágonos. A partir de la solución (i) la el tamaño del contenedor no puede reducirse más, quedando con un radio de contenedor de 1.826786 y una densidad de 90.24 %. Se puede observar que buscan tener la mayor cantidad de sus lados suaves con contacto con la cobertura curva del contenedor.

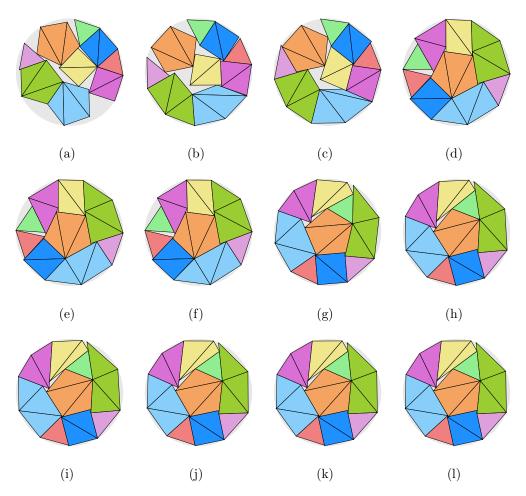
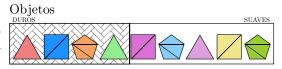



FIGURA 5.26: Contenedor círculo con 4 polígonos duros y 5 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S5-r00	5.26-(a)	1.982053	0.00%	76.65%
S5-r01	5.26-(b)	1.883784	10.00%	84.86%
S5-r02	5.26-(c)	1.854421	20.00%	87.57%
S5-r03	5.26-(d)	1.820907	30.00%	90.82%
S5-r04	5.26-(e)	1.820542	40.00%	90.86%
S5-r05	5.26-(f)	1.820394	50.00%	90.87%
S5-r06	5.26-(g)	1.808785	60.00%	92.04%
S5-r07	5.26-(h)	1.808254	70.00%	92.10%
S5-r08	5.26-(i)	1.808254	80.00%	92.10%
S5-r09	5.26-(j)	1.808254	90.00%	92.10%
S5-r10	5.26-(k)	1.808254	100.00%	92.10%
S5-rXX	5.26-(1)	1.808254	∞	92.10%

TABLA 5.26: Información de Figura 5.26

En este conjunto de instancias, tenemos 5 polígonos suaves. Tenemos 2 cuadrados y 2 pentágonos suaves, en las primeras instancias, se ve que los polígonos suaves se van a la región exterior del empaquetamiento. El pentágono naranja que es duro se mueve al centro del empaquetamiento. El pentágono verde olivo se convierte en un objeto no convexo e irregular.

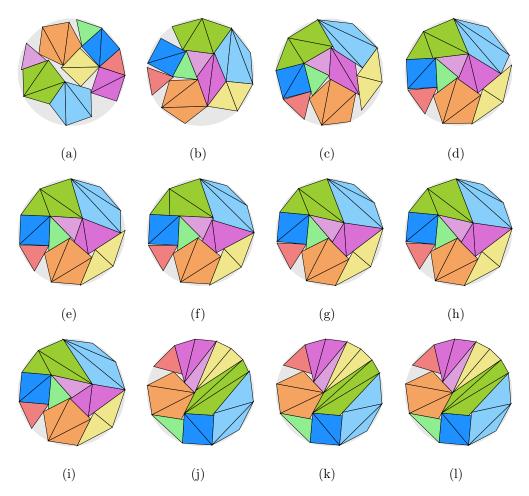


FIGURA 5.27: Contenedor círculo con 3 polígonos duros y 6 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S6-r00	5.27-(a)	1.982053	0.00%	76.65%
S6-r01	5.27-(b)	1.897312	10.00%	83.65%
S6-r02	5.27-(c)	1.851684	20.00%	87.83%
S6-r03	5.27-(d)	1.828271	30.00%	90.09%
S6-r04	5.27-(e)	1.823413	40.00%	90.57%
S6-r05	5.27-(f)	1.818323	50.00%	91.08%
S6-r06	5.27-(g)	1.816798	60.00%	91.23%
S6-r07	5.27-(h)	1.816798	70.00%	91.23%
S6-r08	5.27-(i)	1.816342	80.00%	91.28%
S6-r09	5.27-(j)	1.808484	90.00%	92.07%
S6-r10	5.27-(k)	1.807424	100.00%	92.18%
S6-rXX	5.27-(1)	1.807424	∞	92.18%

Tabla 5.27: Información de Figura 5.27

En este conjunto de instancias, el pentágono verde olivo en (e), (g), (h) e (i) se vuelve ligeramente no convexo e irregular. La mayoría de polígonos suaves están aproximándose al contorno del contenedor circular, porque en este modelo se prioriza el mínimo tamaño de contenedor. En (g) y (h) la solución tiene el mismo tamaño de contenedor 1.816798. En (k) y (l) el mínimo contenedor también es igual.

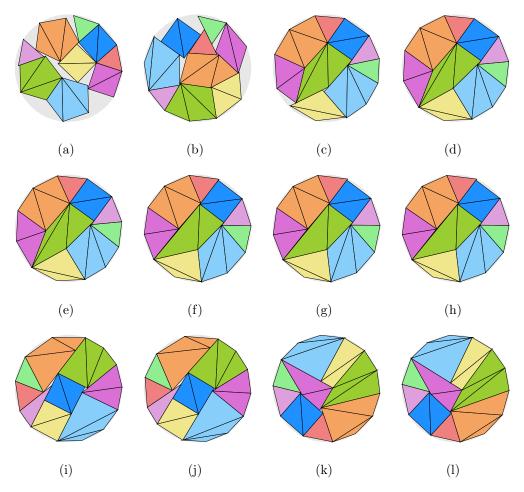


FIGURA 5.28: Contenedor círculo con 2 polígonos duros y 7 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S7-r00	5.28-(a)	1.982053	0.00%	76.65%
S7-r01	5.28-(b)	1.879864	10.00%	85.21%
S7-r02	5.28-(c)	1.793349	20.00%	93.63%
S7-r03	5.28-(d)	1.779232	30.00%	95.13%
S7-r04	5.28-(e)	1.779232	40.00%	95.13%
S7-r05	5.28-(f)	1.778285	50.00%	95.23%
S7-r06	5.28-(g)	1.778285	60.00%	95.23%
S7-r07	5.28-(h)	1.778285	70.00%	95.23%
S7-r08	5.28-(i)	1.777189	80.00%	95.34%
S7-r09	5.28-(j)	1.776514	90.00%	95.42%
S7-r10	5.28-(k)	1.774380	100.00%	95.65%
S7-rXX	5.28-(1)	1.773980	∞	95.69%

Tabla 5.28: Información de Figura 5.28

En este conjunto de instancias, podemos ver que en varios casos dos o más niveles de suavidad tienen el mismo tamaño de contenedor. Lo que indica que la densidad no aumente con mayor suavidad es que se da prioridad al empaquetamiento mínimo que al deformar los polígonos suaves. Además es la primera ocasión en que la suavidad $100\,\%$ y la suavidad ilimitada no tienen el mismo tamaño de contenedor.

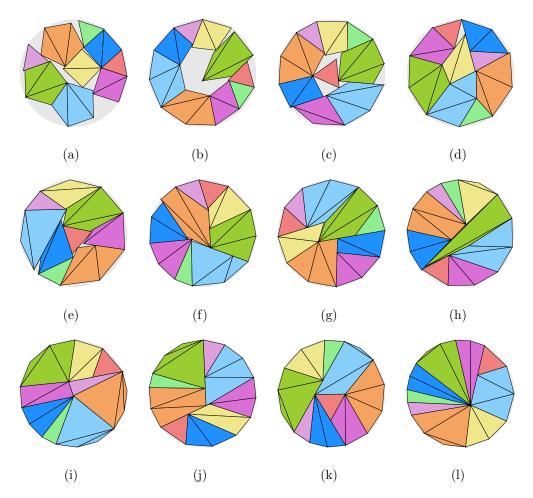


FIGURA 5.29: Contenedor círculo con 1 polígono duro y 8 suaves (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S8-r00	5.29-(a)	1.982053	0.00%	76.65%
S8-r01	5.29-(b)	1.972113	10.00%	77.43%
S8-r02	5.29-(c)	1.851516	20.00%	87.84%
S8-r03	5.29-(d)	1.810425	30.00%	91.88%
S8-r04	5.29-(e)	1.809725	40.00%	91.95%
S8-r05	5.29-(f)	1.778994	50.00%	95.15%
S8-r06	5.29-(g)	1.777239	60.00%	95.34%
S8-r07	5.29-(h)	1.771011	70.00%	96.01%
S8-r08	5.29-(i)	1.763792	80.00%	96.80%
S8-r09	5.29-(j)	1.763012	90.00%	96.88%
S8-r10	5.29-(k)	1.763012	100.00%	96.88%
S8-rXX	5.29-(1)	1.761058	∞	97.10%

Tabla 5.29: Información de Figura 5.29

En este conjunto de instancias, tenemos solo un objeto duro, el triángulo rojo. En todos los niveles de suavidad hay un incremento en la densidad. En (j) y (k) tenemos dos configuraciones con diferentes suavidad pero con el tamaño de contenedor iguales entre sí. Destaca que en (j) el objeto duro se posiciona al exterior del empaquetamiento y en (k) el objeto duro se posiciona en el centro del empaquetamiento.

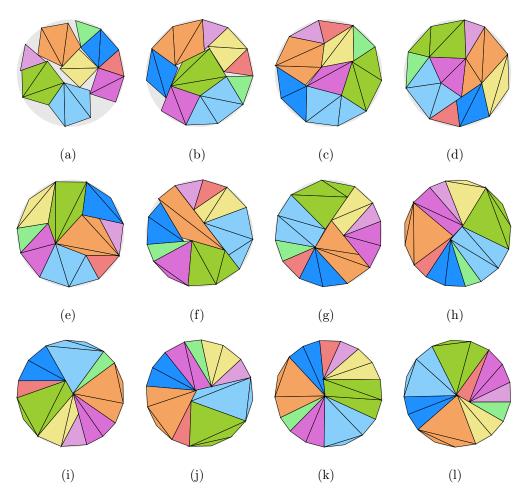


FIGURA 5.30: Contenedor círculo con 9 polígonos suaves (MinZ)

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
S9-r00	5.30-(a)	1.982053	0.00%	76.65%
S9-r01	5.30-(b)	1.815589	10.00%	91.35%
S9-r02	5.30-(c)	1.798862	20.00%	93.06%
S9-r03	5.30-(d)	1.797243	30.00%	93.23%
S9-r04	5.30-(e)	1.784336	40.00%	94.58%
S9-r05	5.30-(f)	1.778593	50.00%	95.19%
S9-r06	5.30-(g)	1.773333	60.00%	95.76%
S9-r07	5.30-(h)	1.759051	70.00%	97.32%
S9-r08	5.30-(i)	1.759051	80.00%	97.32%
S9-r09	5.30-(j)	1.758267	90.00%	97.41%
S9-r10	5.30-(k)	1.755611	100.00%	97.70%
S9-rXX	5.30-(1)	1.755611	∞	97.70%

Tabla 5.30: Información de Figura 5.30

Objetos

Observaciones:

En este conjunto de instancias, tenemos todos los objetos suaves. En las instancias (h) e (i) a pesar de tener suavidades diferentes son ambas soluciones del mismo tamaño de contenedor 1.759051. En (k) y (l) tenemos 2 configuraciones diferentes para el mínimo contenedor de 1.755611, es decir que la suavidad ilimitada no ayuda a aumentar la densidad.

5.8 CONTENEDOR CIRCULAR CON ALGORITMO MINRHO

En esta última configuración se presentan los resultados obtenidos al aplicar el algoritmo **MinRho** sobre las soluciones previamente generadas con MinZ en contenedores de forma *circular*. El conjunto de objetos a empaquetar permanece constante: tres triángulos, tres cuadrados y tres pentágonos, todos regulares de lado 1 unidad, con una distribución de objetos duros y suaves definida para cada instancia según una imagen de referencia.

El algoritmo MinRho parte de una solución inicial obtenida con MinZ y aplica un proceso de optimización orientado a minimizar la suavidad de los objetos definidos como deformables, es decir, busca reducir la magnitud de la deformación necesaria para mantener el empaquetamiento, sin incrementar el tamaño del contenedor. En esta configuración, el desafío adicional proviene de la forma circular del contenedor, que introduce restricciones geométricas distintas a las del contenedor cuadrado y favorece una disposición más densa y radial.

Se analizan instancias desde **r00** (todos los objetos duros) hasta **r10** (objetos suaves con 100 % de capacidad de deformación), y finalmente **rXX**, correspondiente al caso con *suavidad ilimitada*. Para cada instancia, se estudia el impacto del proceso de minimización sobre las formas geométricas de los objetos suaves y sobre la configuración general del empaquetamiento.

Los resultados incluyen visualizaciones gráficas del empaquetamiento optimizado, tablas con métricas relevantes y observaciones sobre los cambios geométricos introducidos por MinRho. Cada instancia se acompaña de una imagen de referencia que permite identificar visualmente qué objetos son suaves y cuáles son duros.

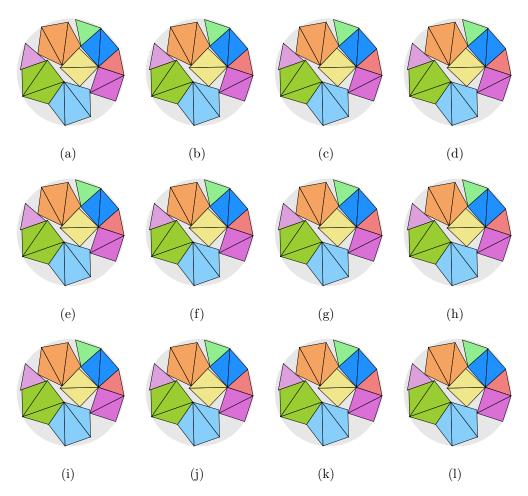
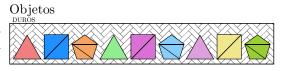



FIGURA 5.31: Contenedor círculo con 9 polígonos duros (MinRho)

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S0-r00	5.31-(a)	1.982053	0.00%	76.65%
S0-r01	5.31-(b)	1.982053	0.00%	76.65%
S0-r02	5.31-(c)	1.982053	0.00%	76.65%
S0-r03	5.31-(d)	1.982053	0.00%	76.65%
S0-r04	5.31-(e)	1.982053	0.00%	76.65%
S0-r05	5.31-(f)	1.982053	0.00%	76.65%
S0-r06	5.31-(g)	1.982053	0.00%	76.65%
S0-r07	5.31-(h)	1.982053	0.00%	76.65%
S0-r08	5.31-(i)	1.982053	0.00%	76.65%
S0-r09	5.31-(j)	1.982053	0.00%	76.65%
S0-r10	5.31-(k)	1.982053	0.00%	76.65%
S0-rXX	5.31-(1)	1.982053	0.00%	76.65%

Tabla 5.31: Información de Figura 5.31

En este conjunto de instancias, se comprueba que la solución obtenida en el algoritmo de contenedor mínimo es la solución con la suavidad óptima. Con un contenedor de radio 1.982053 con una densidad de $76.65\,\%$.

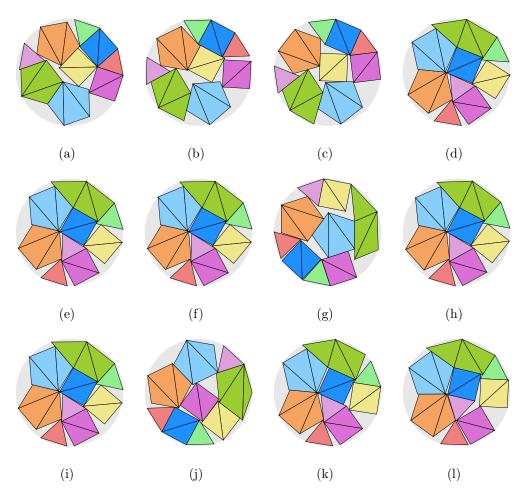
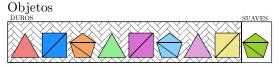



FIGURA 5.32: Contenedor círculo con 8 polígonos duros y 1 suave (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
S1-r00	5.32-(a)	1.982053	0.00%	76.65%
S1-r01	5.32-(b)	1.966430	4.88%	77.88%
S1-r02	5.32-(c)	1.957854	19.99%	78.56%
S1-r03	5.32-(d)	1.939862	27.84%	80.02%
S1-r04	5.32-(e)	1.939862	27.84%	80.02%
S1-r05	5.32-(f)	1.939862	27.84%	80.02%
S1-r06	5.32-(g)	1.939862	27.84%	80.02%
S1-r07	5.32-(h)	1.939862	27.84%	80.02%
S1-r08	5.32-(i)	1.939823	27.85%	80.04%
S1-r09	5.32-(j)	1.935319	20.62%	80.40%
S1-r10	5.32-(k)	1.935319	20.62%	80.40%
S1-rXX	5.32-(1)	1.935319	20.62%	80.40%

Tabla 5.32: Información de Figura 5.32

En estas instancias, en las soluciones desde (e) hasta (h) tienen el mismo radio de contenedor, pero son diferentes configuraciones. Además, estas mismas soluciones tienen una suavidad mínima de 27.84% con una densidad de 80.02%. Nos indica que se da prioridad a minimizar el tamaño del contenedor. Hasta que la suavidad no excede el 90% de suavidad, se encuentra una solución con una suavidad mínima de 20.62%.

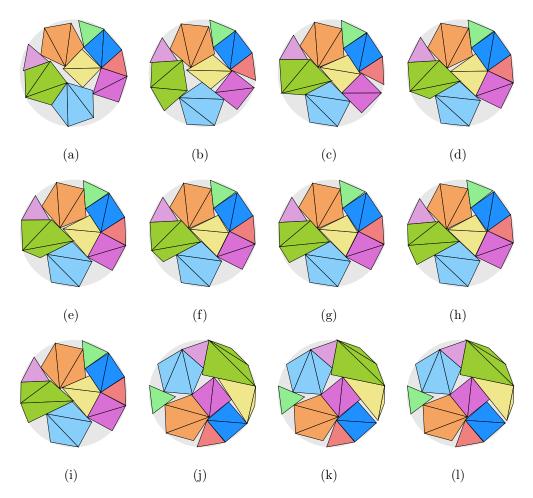
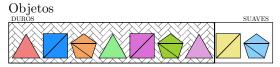



FIGURA 5.33: Contenedor círculo con 7 polígonos duros y 2 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S2-r00	5.33-(a)	1.982053	0.00%	76.65%
S2-r01	5.33-(b)	1.932925	10.00%	80.60%
S2-r02	5.33-(c)	1.910344	19.65%	82.52%
S2-r03	5.33-(d)	1.906879	25.08%	82.82%
S2-r04	5.33-(e)	1.903875	32.49%	83.08%
S2-r05	5.33-(f)	1.898923	49.98%	83.51%
S2-r06	5.33-(g)	1.895943	60.00%	83.77%
S2-r07	5.33-(h)	1.892880	69.90%	84.05%
S2-r08	5.33-(i)	1.891842	76.14%	84.14%
S2-r09	5.33-(j)	1.888454	96.30%	84.44%
S2-r10	5.33-(k)	1.887312	96.15%	84.54%
S2-rXX	5.33-(1)	1.887312	96.15%	84.54%

Tabla 5.33: Información de Figura 5.33

En estas instancias tenemos 2 polígonos suaves. En (a), (b) y (g) la solución que proviene del algoritmo de mínimo contenedor, al buscar la mínima suavidad, encontramos que la suavidad óptima es la que se asignó el modelo MinZ.

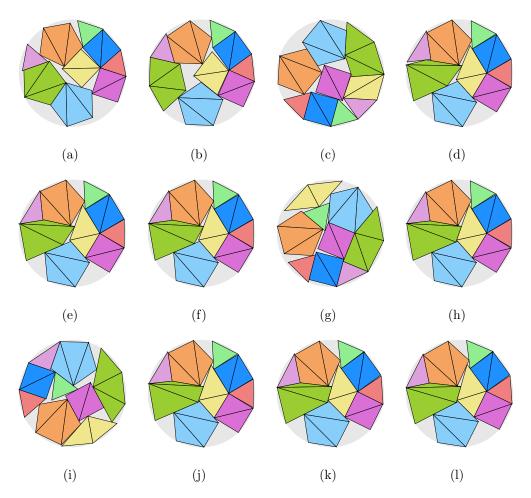
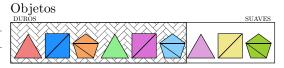



FIGURA 5.34: Contenedor círculo con 6 polígonos duros y 3 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
S3-r00	5.34-(a)	1.982053	0.00 %	76.65%
S3-r01	5.34-(b)	1.934615	10.00%	80.46%
S3-r02	5.34-(c)	1.909935	20.00%	82.55%
S3-r03	5.34-(d)	1.899322	30.00%	83.48%
S3-r04	5.34-(e)	1.895304	40.00%	83.83%
S3-r05	5.34-(f)	1.893230	50.00%	84.01%
S3-r06	5.34-(g)	1.891160	40.31%	84.20%
S3-r07	5.34-(h)	1.890339	62.97%	84.27%
S3-r08	5.34-(i)	1.890339	62.97%	84.27%
S3-r09	5.34-(j)	1.890339	62.97%	84.27%
S3-r10	5.34-(k)	1.890339	62.97%	84.27%
S3-rXX	5.34-(1)	1.890339	62.97%	84.27%

Tabla 5.34: Información de Figura 5.34

En este conjunto de instancias tenemos 3 polígonos suaves. Sucede algo interesante en este grupo, las soluciones desde (a) hasta (f) la solución de mínimo contenedor tiene la mínima suavidad óptima para ese tamaño de contenedor. Además a partir de la solución (h) tenemos un tamaño de contenedor mínimo de 1.890339 y una densidad de 84.27 %.

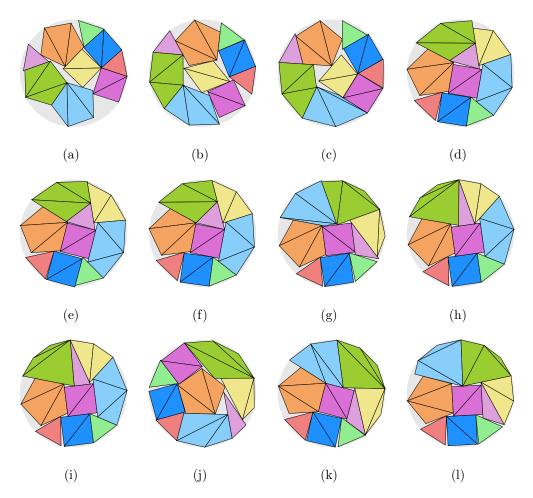
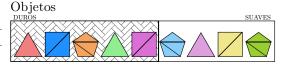



FIGURA 5.35: Contenedor círculo con 5 polígonos duros y 4 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S4-r00	5.35-(a)	1.982053	0.00%	76.65%
S4-r01	5.35-(b)	1.895588	6.35%	83.81%
S4-r02	5.35-(c)	1.864540	19.99%	86.62%
S4-r03	5.35-(d)	1.842801	30.00%	88.68%
S4-r04	5.35-(e)	1.835482	39.96%	89.38%
S4-r05	5.35-(f)	1.832950	46.19%	89.63%
S4-r06	5.35-(g)	1.832946	58.52%	89.63%
S4-r07	5.35-(h)	1.826813	63.35%	90.23%
S4-r08	5.35-(i)	1.826786	68.25%	90.24%
S4-r09	5.35-(j)	1.826786	68.25%	90.24%
S4-r10	5.35-(k)	1.826786	68.25%	90.24%
S4-rXX	5.35-(1)	1.826786	68.25%	90.24%

Tabla 5.35: Información de Figura 5.35

En este grupo de instancias, la solución (a) y (d) encuentran que la suavidad óptima encontrada es igual a la asignada en el algoritmo de MinZ. En (b), (c) y (e), la suavidad mínima es menor a la asignada, lo que nos indica que aún puede encontrarse una solución con un radio menor. A partir de la solución (i) se mantiene constante el tamaño del radio 1.826786 con una densidad de 90.24% y una suavidad mínima de 68.25%.

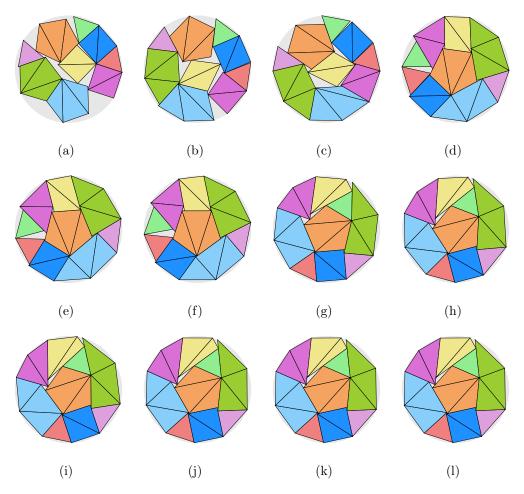
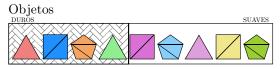



FIGURA 5.36: Contenedor círculo con 4 polígonos duros y 5 suaves (MinRho)

Instancia	Figura	$Z_{min_{\rho}}$	$\rho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S5-r00	5.36-(a)	1.982053	0.00%	76.65%
S5-r01	5.36-(b)	1.883784	5.30%	84.86%
S5-r02	5.36-(c)	1.854421	12.88%	87.57%
S5-r03	5.36-(d)	1.820907	30.00%	90.82%
S5-r04	5.36-(e)	1.820542	27.62%	90.86%
S5-r05	5.36-(f)	1.820394	28.31%	90.87%
S5-r06	5.36-(g)	1.808785	56.60%	92.04%
S5-r07	5.36-(h)	1.808254	66.62%	92.10%
S5-r08	5.36-(i)	1.808254	66.62%	92.10%
S5-r09	5.36-(j)	1.808254	66.62%	92.10%
S5-r10	5.36-(k)	1.808254	66.62%	92.10%
S5-rXX	5.36-(1)	1.808254	66.62%	92.10%

Tabla 5.36: Información de Figura 5.36

En este grupo de instancias, la solución (a) y (d) encuentran que la suavidad óptima encontrada es igual a la asignada en el algoritmo de MinZ. A partir de la solución (h) se mantiene constante el tamaño del radio 1.808254 con una densidad de $92.10\,\%$ y una suavidad mínima de $66.62\,\%$. Se puede observar que el pentágono verde olivo se convierte un polígono no convexo e irregular.

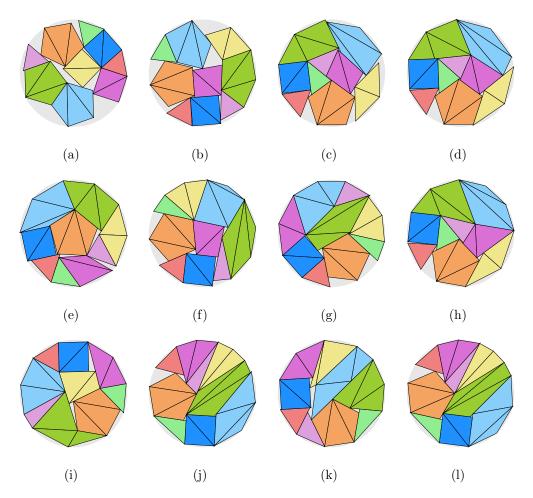
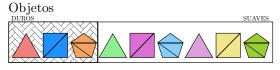



FIGURA 5.37: Contenedor círculo con 3 polígonos duros y 6 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
S6-r00	5.37-(a)	1.982053	0.00%	76.65%
S6-r01	5.37-(b)	1.897312	6.61%	83.65%
S6-r02	5.37-(c)	1.851684	17.72%	87.83%
S6-r03	5.37-(d)	1.828271	29.92%	90.09%
S6-r04	5.37-(e)	1.823413	21.95%	90.57%
S6-r05	5.37-(f)	1.818323	48.86%	91.08%
S6-r06	5.37-(g)	1.816798	50.10%	91.23%
S6-r07	5.37-(h)	1.816798	50.10%	91.23%
S6-r08	5.37-(i)	1.816342	65.93%	91.28%
S6-r09	5.37-(j)	1.808484	90.00%	92.07%
S6-r10	5.37-(k)	1.807424	90.04%	92.18%
S6-rXX	5.37-(1)	1.807424	95.91%	92.18%

Tabla 5.37: Información de Figura 5.37

En este conjunto de instancias, tenemos 6 polígonos suaves. En la solución (j) vemos que la solución obtenida por el algoritmo de mínimo contenedor es también la solución óptima para una suavidad del 90 %. En (k) y (l) tenemos dos configuraciones con el mismo tamaño del contenedor 1.807424 con una densidad de 92.18 %. En (i) el pentágono verde olivo es evidente que se convirtió en un objeto no convexo e irregular.

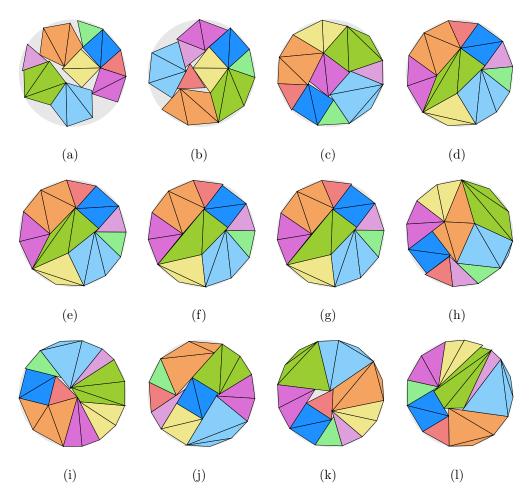


FIGURA 5.38: Contenedor círculo con 2 polígonos duros y 7 suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
S7-r00	5.38-(a)	1.982053	0.00%	76.65%
S7-r01	5.38-(b)	1.879864	6.70%	85.21%
S7-r02	5.38-(c)	1.793349	19.09%	93.63%
S7-r03	5.38-(d)	1.779232	29.82%	95.13%
S7-r04	5.38-(e)	1.779232	29.82%	95.13%
S7-r05	5.38-(f)	1.778297	29.82%	95.23%
S7-r06	5.38-(g)	1.778295	50.27%	95.23%
S7-r07	5.38-(h)	1.778285	69.73%	95.23%
S7-r08	5.38-(i)	1.777189	79.37%	95.34%
S7-r09	5.38-(j)	1.776514	90.00%	95.42%
S7-r10	5.38-(k)	1.774380	74.31%	95.65%
S7-rXX	5.38-(1)	1.773980	110.79%	95.69%

Tabla 5.38: Información de Figura 5.38

En este grupo de instancias, tenemos que en (h) e (i) el pentágono naranja se convierte en un objeto irregular y no convexo. Por primera ocasión al buscar la suavidad mínima para la instancia de suavidad ilimitada es superior al 100 %. Esto nos indica de hay niveles de suavidad en los que hay mayor densidad pero están por encima de los analizados en este trabajo.

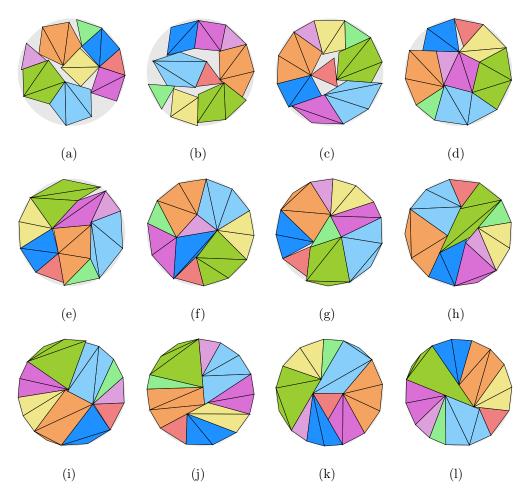


FIGURA 5.39: Contenedor círculo con 1 polígono duro y 8 suaves (MinRho)

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
S8-r00	5.39-(a)	1.982053	0.00%	76.65%
S8-r01	5.39-(b)	1.972113	3.86%	77.43%
S8-r02	5.39-(c)	1.851516	20.00%	87.84%
S8-r03	5.39-(d)	1.810425	23.03%	91.88%
S8-r04	5.39-(e)	1.809725	27.02%	91.95%
S8-r05	5.39-(f)	1.778994	37.52%	95.15%
S8-r06	5.39-(g)	1.777239	51.95%	95.34%
S8-r07	5.39-(h)	1.771011	59.62%	96.01%
S8-r08	5.39-(i)	1.763792	69.96%	96.80%
S8-r09	5.39-(j)	1.763013	84.32%	96.88%
S8-r10	5.39-(k)	1.763013	84.32%	96.88%
S8-rXX	5.39-(1)	1.761058	142.70%	97.10%

Tabla 5.39: Información de Figura 5.39

En este grupo de instancias, tenemos 8 de los 9 polígonos suaves. Vemos que en (e) los pentágonos naranja y verde olivo se convierten en irregulares y no convexos. Nuevamente, al buscar la suavidad mínima para la instancia de suavidad ilimitada es superior al $100\,\%$. Esto nos indica de hay niveles de suavidad en los que hay mayor densidad, siendo esta $142.70\,\%$ con una densidad de $97.10\,\%$.

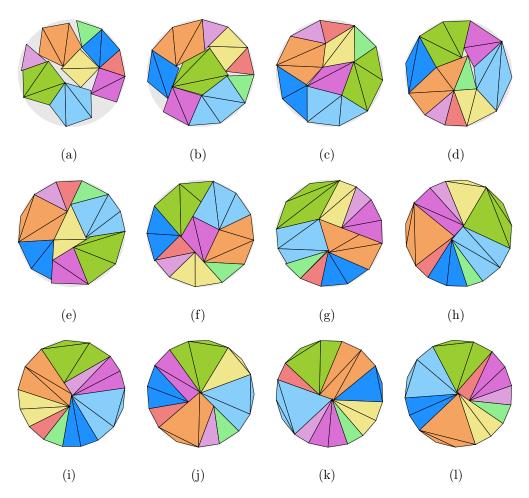


FIGURA 5.40: Contenedor círculo con 9 polígonos suaves (MinRho)

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
S9-r00	5.40-(a)	1.982053	0.00%	76.65%
S9-r01	5.40-(b)	1.815589	9.90%	91.35%
S9-r02	5.40-(c)	1.798862	19.97%	93.06%
S9-r03	5.40-(d)	1.797243	26.78%	93.23%
S9-r04	5.40-(e)	1.784336	32.41%	94.58%
S9-r05	5.40-(f)	1.778593	34.71%	95.19%
S9-r06	5.40-(g)	1.773333	43.83%	95.76%
S9-r07	5.40-(h)	1.759051	70.00%	97.32%
S9-r08	5.40-(i)	1.759051	70.00%	97.32%
S9-r09	5.40-(j)	1.758267	77.02%	97.41%
S9-r10	5.40-(k)	1.755611	76.39%	97.70%
S9-rXX	5.40-(1)	1.755611	76.39%	97.70%

Tabla 5.40: Información de Figura 5.40

Objetos

Observaciones:

En este grupo de instancias, todos los objetos son suaves. En las soluciones (a) y (h) la suavidad óptima es la misma que en el algoritmo de mínimo contenedor. En (b), (c), (d) y (e) la suavidad óptima es inferior a la del algoritmo MinZ, nos indica que las soluciones pueden mejorar. En (k) y (l) las soluciones tienen el radio de 1.755611 con una densidad de 97.70 % y una suavidad óptima de 76.39 %.

Capítulo 6

CONCLUSIONES Y TRABAJO FUTURO

En este capítulo se sintetizan las principales conclusiones derivadas del desarrollo y análisis de los modelos de empaquetamiento propuestos a lo largo de esta investigación, así como las líneas de trabajo futuro que permitirán extender y fortalecer dichos modelos. Se presentan reflexiones sobre la eficacia y las limitaciones de los enfoques implementados, con especial énfasis en su aplicabilidad práctica y en los retos computacionales asociados. Asimismo, se plantean diversas direcciones de investigación que buscan mejorar la generalización, escalabilidad y multidimensionalidad de los modelos, así como su integración en contextos estratégicos y multidisciplinarios.

6.1 Conclusiones

En este capítulo se presentan las principales conclusiones derivadas de los resultados obtenidos en la investigación realizada. Los resultados fueron analizados a partir de tres modelos de empaquetamiento: uno para objetos completamente rígidos, otro para objetos suaves utilizando una triangulación en forma de triángulo, y, por último, un modelo que permite el empaquetamiento de objetos suaves y rígidos de manera combinada.

Los resultados obtenidos permiten corroborar la hipótesis planteada respecto al

empaquetamiento simultáneo de polígonos suaves convexos y no convexos dentro de un contenedor convexo. Al permitir la triangulación tipo abanico de los polígonos, el modelo propuesto facilitó configuraciones con mayor densidad de empaquetamiento en comparación con aquellos enfoques que imponen restricciones estrictas de convexidad sobre los objetos.

Específicamente, la disminución observada en la dimensión Z necesaria para contener los objetos sin superposición confirma que la flexibilización en la forma de los polígonos conduce a una optimización más eficiente del espacio disponible. Este hallazgo se sustenta en la solución de los modelos de optimización no lineal mediante solvers globales, que validaron la reducción del parámetro Z bajo las condiciones señaladas.

Por tanto, la hipótesis resulta consistente con los resultados computacionales obtenidos, evidenciando que la incorporación de polígonos no convexos susceptibles de triangulación tipo abanico constituye una estrategia efectiva para mejorar la densidad del empaquetamiento, lo cual representa un avance significativo en la formulación y aplicación de modelos de empaquetamiento flexible.

Uno de los aspectos más relevantes de este estudio corresponde al modelo de empaquetamiento para objetos rígidos. Este modelo resulta ser el más complejo de resolver, tanto en términos de tiempo computacional como en el número de variables involucradas. No obstante, los resultados obtenidos proporcionan soluciones eficientes para empaquetar objetos con geometría rígida, aunque con una elevada demanda de recursos computacionales. Es importante señalar que, debido a la rigidez del modelo, su aplicabilidad para objetos suaves o de suavidad variable es limitada, lo que sugiere la necesidad de investigar nuevas aproximaciones en trabajos futuros.

El modelo propuesto para el empaquetamiento de objetos suaves, basado en triangulación con figuras triangulares, ha demostrado ser efectivo en determinados escenarios, particularmente para contenedores cuadrados. Este enfoque permite obtener soluciones relativamente óptimas en cuanto a la utilización del espacio disponible. Sin embargo, al aplicarse en contenedores circulares, se evidencian limitaciones derivadas de la incapacidad de los triángulos para adoptar formas cóncavas, lo cual impide un aprovechamiento óptimo del espacio en este tipo de contenedores. En consecuencia, la densidad de empaquetamiento resultante no supera en muchos casos el 90 %, lo que limita la eficacia del modelo para empaques circulares.

Por otro lado, el empaquetamiento combinado de objetos suaves junto con objetos rígidos representa un avance significativo. Esta combinación, que integra objetos con suavidad infinita y objetos rígidos, posibilita la obtención de soluciones óptimas en las que los objetos deformables pueden adoptar formas cóncavas manteniendo constante su área. Esta capacidad de deformación controlada no solo mejora la eficiencia del empaquetamiento, sino que también abre posibilidades para aplicaciones en ámbitos como simulaciones biológicas de células o estructuras moleculares, al emular comportamientos característicos de sistemas vivos.

Una contribución destacada de este trabajo es la validación de la optimalidad de la solución obtenida mediante un modelo de empaquetamiento óptimo de objetos suaves. Dicho modelo de densidad predefinida se emplea como modelo dual débil, lo que aporta una confirmación adicional de la coherencia y robustez del enfoque. Además, al mantener constante el área durante las experimentaciones, se han generado figuras geométricas que reproducen comportamientos similares a sistemas biológicos, lo cual no solo incrementa la eficiencia del empaquetamiento, sino que ofrece perspectivas novedosas en campos como la biología computacional y la nanotecnología.

6.2 Trabajo Futuro

El futuro de este campo de estudio presenta un panorama prometedor, por lo que resulta fundamental continuar explorando los alcances y limitaciones del modelo de empaquetamiento desarrollado en esta investigación. A pesar de los avances alcanzados, se identifican diversas áreas que requieren mayor profundización para

optimizar y generalizar los resultados.

Una de las primeras líneas de investigación consiste en analizar y comparar los métodos de triangulación empleados en este trabajo con alternativas existentes. La triangulación en polígonos complejos es un área aún en desarrollo, y es posible que técnicas más avanzadas puedan mejorar la eficiencia del modelo o adaptarse mejor a diferentes tipos de objetos. Evaluar las limitaciones actuales y proponer soluciones para superarlas es esencial para determinar la aplicabilidad del modelo a un espectro más amplio de problemas.

Asimismo, resulta relevante la publicación y difusión de los resultados obtenidos, con el fin de contribuir a la validación y expansión del modelo dentro de la comunidad científica. La divulgación de estos avances facilitará la retroalimentación de otros investigadores, lo cual podría derivar en mejoras significativas tanto en la formulación como en las aplicaciones prácticas.

Además, se considera necesario desarrollar métodos que permitan escalar el modelo propuesto a problemas de mayor envergadura, dado que la naturaleza no lineal del modelo implica desafíos para su aplicación a gran escala. La optimización de los procedimientos existentes para manejar problemas complejos sin sacrificar precisión o eficiencia representa un objetivo importante. En particular, la implementación de modelos de optimización multiobjetivo, que contemplen simultáneamente la maximización de la densidad de empaquetamiento y la minimización de la elasticidad requerida, constituiría un avance notable. Esta línea de investigación tiene potencial de aplicación en sectores como la logística y el diseño industrial, donde se requiere conjugar eficiencia espacial con control de propiedades materiales.

Una dirección prometedora para trabajo futuro es la extensión del modelo a tres dimensiones. El empaquetamiento óptimo tridimensional podría ofrecer aplicaciones valiosas en la optimización de empaques de productos con formas irregulares, tales como embalajes, logística y componentes electrónicos o biomédicos. La incorporación de nuevas restricciones, como el control de áreas de caras, volúmenes o diagonales

internas, proporcionaría mayor flexibilidad y permitiría soluciones más eficientes para una diversidad mayor de formas.

El principal desafío para la extensión tridimensional radica en la necesidad de desarrollar métodos de triangulación eficientes para poliedros complejos. Actualmente, los modelos de triangulación en 3D no son tan comunes ni eficientes como sus equivalentes bidimensionales, por lo que resulta indispensable investigar técnicas para dividir poliedros complejos en unidades manejables que faciliten la escalabilidad del modelo. Aunque este desafío es significativo, representa una oportunidad para ampliar sustancialmente las aplicaciones prácticas del empaquetamiento.

Otra línea de trabajo futura consiste en aplicar modelos de empaquetamiento (bin packing) a problemas relacionados con la gestión de proyectos (project management), en los cuales los proyectos se conceptualizan como objetos a empacar y el contenedor representa recursos limitados, tales como presupuesto, tiempo, personal o infraestructura. Esta analogía permite utilizar la estructura formal y computacional de los modelos de empaquetamiento para optimizar la asignación eficiente de recursos. La incorporación de restricciones propias de la gestión de proyectos, como prioridades, precedencias, limitaciones temporales o de compatibilidad, posibilita extender el modelo clásico hacia formulaciones más realistas y complejas. Investigaciones recientes han explorado variantes del problema de empaquetamiento en contextos no convencionales [Fasano, 2014] y modelos de selección de portafolios con múltiples criterios [Litvinchev et al., 2011, Fernandez et al., 2009], evidenciando el potencial para desarrollar enfoques matemáticos y heurísticos aplicables a la planificación estratégica en organizaciones públicas y privadas.

Dado que los modelos abordados en este trabajo son de gran escala, otra línea de investigación futura implica explorar métodos de descomposición, en particular la descomposición Lagrangiana, para facilitar su resolución. Este enfoque permite dividir el problema original en subproblemas más simples, mejorando la eficiencia computacional sin sacrificar la calidad de las soluciones. Las cotas inferiores gene-

radas mediante relajación Lagrangiana pueden además utilizarse como insumos en solvers como BARON, contribuyendo al refinamiento del modelo y a una convergencia más eficiente hacia soluciones óptimas. Diversos estudios han demostrado la efectividad de estas técnicas en problemas de localización, asignación y optimización combinatoria [Litvinchev & Ozuna, 2012, Litvinchev et al., 2010, Litvinchev, 2007].

Finalmente, resulta relevante investigar la aplicación de modelos de empaquetamiento con objetos deformables o flexibles (soft items) en problemas de logística verde, especialmente en el transporte de desechos. En numerosas situaciones, los materiales transportados no requieren mantener su forma original, lo que posibilita modelos más realistas y eficientes desde el punto de vista espacial. Este enfoque puede mejorar la eficiencia operativa en cadenas de suministro inversas y sistemas de reciclaje. En particular, se han desarrollado formulaciones multiperíodo y estocásticas en cadenas de suministro cerradas que podrían beneficiarse de esta modelación [Litvinchev et al., 2014].

En síntesis, el trabajo futuro debe orientarse a fortalecer y diversificar la aplicación de modelos de empaquetamiento, no solo en aspectos técnicos y dimensionales, sino también en su integración en contextos estratégicos como la gestión de proyectos, la logística sostenible y la resolución eficiente de modelos de gran escala. La exploración de enfoques multiobjetivo, técnicas de descomposición y la inclusión de objetos deformables permitirá abordar problemas más complejos y ampliar la aplicabilidad y robustez de los modelos existentes en entornos industriales variados.

APÉNDICE A

RESUMEN COMPARATIVO DE ESTUDIOS RELEVANTES

A continuación, se presentan dos tablas comparativa que resumen los principales trabajos encontrados en la literatura científica sobre el problema de empaquetamiento de objetos. La clasificación se realiza de acuerdo con la naturaleza de los objetos involucrados (regulares, irregulares o suaves), el número de dimensiones consideradas (bidimensional o tridimensional), así como otros aspectos relevantes como el tipo de contenedor, el tipo de objeto, el tamaño de las instancias analizadas y los métodos de solución empleados por los autores. Esta recopilación permite identificar tendencias metodológicas, avances recientes y vacíos de investigación en el área.

A.1 Comparativa de trabajos en empaquetamiento 2D

Artículo	Dim.	Contenedor	Objeto	Clase	Instancias	Método de Solución
[Chazelle et al., 1989]	2D,	Poliedros	Polígonos en	Regulares	n Indefinido	Algoritmos polinómicos, lí-
	3D	convexos	cortes			mites combinatorios
[Gensane & Ryckelynck, 2005]	2D	Cuadrado	Cuadrados	Regulares	n = 11, 18,	Inflación máxima y solucio-
			congruentes		29, 37	nes constructivas
[Kallrath, 2009]	2D	Rectangular	Polígonos	Regulares	Pequeñas	Formulación MINLP, hi-
			convexos			perplanos separadores
[Friedman, 2009]	2D	Cuadrado	Cuadrados	Regulares	$n \le 100$	Análisis teórico, cotas infe-
			unitarios			riores/superiores
[Yuan et al., 2019]	2D	Rectangular	Elipses	Regulares	$n_A = 1018,$	Modelo de volumen libre,
					$n_B = 972$	simulación mecánica
[Vijayan et al., 2022]	2D	Rectangular	Estructura	Regulares	n Cobertu-	DEM (Método de Elemen-
			hexagonal		ra	tos Discretos)
[Huang et al., 2023]	2D	Circular	Discos	Regulares	4 <n<180< td=""><td>Algoritmos evolutivos y ge-</td></n<180<>	Algoritmos evolutivos y ge-
						nética
[Romanova et al., 2023]	2D	Rectángulos,	Elipses sua-	Regulares	Medianas	Optimización no convexa,
		Cilindros	ves			función phi

Tabla A.1 – continuación

Artículo	Dim.	Contenedor	Objeto	Clase	Instancias	Método de Solución
[Bennell & Oliveira, 2009]	2D	Rectangular	Varios	Irregulares	Grandes	Revisión metodológica, evolución histórica
[Scheithauer, 2018]	2D	Varios	Variados	Irregulares	Medianas	Análisis de heurísticas y modelado
[Leao et al., 2020]	2D	Rectangular	Varios	Irregulares	n = 64	Marco unificado de notación, modelos matemáticos
[Romanova et al., 2021a]	2D	Circular	Arcos y seg- mentos	Irregulares	Medianas	Programación no lineal, función phi
[Romanova et al., 2021b]	2D	Polígono	Elipses rota- bles y escala- bles	Irregulares	Medianas	Optimización local, función phi
[Li et al., 2022a]	2D	Polígono	Moléculas en cristal	Irregulares	Real-world Dataset	Síntesis química, caracterización espectroscópica
[Radovanović et al., 2022]	2D	Rectangular	Cadenas aniónicas	Irregulares	Grandes	Cristalografía, enlaces de hidrógeno
[Young et al., 2001]	2D	Rectangular	Módulos fle- xibles	Suaves	n>50	Programación geométrica, recocido simulado
[Astrom & Karttunen, 2006]	2D	Rectangular	Agregados celulares	Suaves	$n \le 500$	Modelado de presión y adhesión celular

Tabla A.1 – continuación

Artículo	Dim.	Contenedor	Objeto	Clase	Instancias	Método de Solución
[Ibaraki & Nakamura, 2006]	2D	Rectangular	Rectángulos	Suaves	$n \ge 50$	PL, PC, búsqueda local
[NAGAMOCHI, 2006]	2D	Rectángulo	Rectángulos	Suaves	$n \ge 3$	Condiciones geométricas
		fijo	flexibles			de factibilidad
[Fugenschuh et al., 2014]	2D	Cuadrado	Rectángulos	Suaves	Literatura	Minimización de bordes,
			con área			comparación experimental
			dada			
[Ji et al., 2017]	2D	Rectángulo	Módulos fle-	Suaves	10 <n<300,< td=""><td>Fusiones ordenadas, jerar-</td></n<300,<>	Fusiones ordenadas, jerar-
			xibles		Literatura	quía espacial
[Brenner, 2018]	2D	Cuadrado	Rectángulos	Suaves	n Indefinido	Límites teóricos óptimos
			con aspecto			
			variable			
[Bui et al., 2019]	2D	Rectangular	Rectángulos	Suaves	10 <n<40< td=""><td>Modelos para corte, análi-</td></n<40<>	Modelos para corte, análi-
						sis de complejidad
[Jiang et al., 2019]	2D	Elipses	Células	Suaves	1 <n<12< td=""><td>Interfaz difusa, energía li-</td></n<12<>	Interfaz difusa, energía li-
			deformables			bre
[Litvinchev et al., 2024]	2D	Cuadrados y	Triángulos,	Suaves	n = 10, 45	MINLP, conservación de
		Circulos	pentágonos			área

A.2 Comparativa de trabajos en empaquetamiento 3D

Artículo	Dim.	Contenedor	Objeto	Clase	Instancias	Método de Solución
[Stoyan et al., 2005]	3D	Poliedros	Poliedros	Regulares	n = 7, 12,	Método exacto basado en
					25	Simplex
[Miller & Cacciuto, 2011]	3D	Superficie es-	Partículas	Regulares	$n \le 12$	Simulación de fases, pro-
		férica	coloidales			blema de Thomson
[Baule & Makse, 2014]	3D	Esfero-	Partículas	Regulares	Literatura	Enfoque estadístico de vo-
		Cilindros	esféricas y			lumen constante
			no esféricas			
[Zhao et al., 2015]	3D	Cilindros y	Tetraedros	Regulares	n = 502,	Simulación DEM, análisis
		cubos			533	de fricción
[Dong et al., 2016]	3D	Poliedros	Elipsoides y	Regulares	2000 < n <	DEM + Voronoi, análisis
			cilindros		12000	estructural
[Pankratov et al., 2019]	3D	Contenedor	Elipses rota-	Regulares	Variadas	Funciones phi y quasi-phi,
		poligonal	bles			optimización híbrida
[Ng & Ge, 2020]	3D	Cubos	Elipsoides	Regulares	n = 30000,	Modelo fenomenológico,
					Combina-	validación experimental
					ciones de 3	
					tipos	

Tabla A.2 – continuación

Artículo	Dim.	Contenedor	Objeto	Clase	Instancias	Método de Solución
[Romanova et al., 2020]	3D	Cilindro	Elipsoides de	Regulares	$n \le 500$	Modelos exactos y aproxi-
			revolución			mados con función phi
[Mazur et al., 2021]	3D	Pallet	Cajas	Regulares	Real-World	Algoritmo físico para se-
					Dataset	cuencia de carga
[Neto & Wriggers, 2021]	3D	Varias Com-	Poliedros rí-	Regulares	*	DEM + Principio de Tra-
		binaciones	gidos			bajo Virtual
[Romanova et al., 2021c]	3D	Estante cilín-	Objetos va-	Regulares	Variados	Programación no lineal con
		drico	riados			función phi
[Zhu et al., 2021]	3D	Containers	Cajas logísti-	Regulares	500 < n <	Red neuronal y búsqueda
			cas		1000	en árbol (DDTS)
[Artiaco et al., 2022]	3D	Infinito	Esferas duras	Regulares	Variados	Optimización lineal, CA-
						LiPPSO
[Li et al., 2022b]	3D	Containers	Contenedores	Regulares	Real-World	HALNS (búsqueda en ve-
			logísticos		Dataset	cindarios grandes)
[Stoyan et al., 2004]	3D	Poliedros	Poliedros no	Irregulares	Variadas	Metaheurística de mínimos
			convexos			locales
[Pankratov et al., 2015]	3D	Rectangular	Objetos con-	Irregulares	n = 7, 12,	Funciones quasi-phi, opti-
			vexos multi-		25, 98	mización local
			nivel			

Tabla A.2 – continuación

Artículo	Dim.	Contenedor	Objeto	Clase	Instancias	Método de Solución
[Zhao et al., 2017]	3D	Poliedro	Tetraedros	Irregulares	500 < n <	DEM, análisis de densifica-
					20000	ción vibratoria
[Araujo et al., 2019]	3D	Poliedro	Formas aditi-	Irregulares	Variadas	Clasificación, conjunto de
			vas			datos de referencia
[Romanova et al., 2019]	3D	Dominio po-	Elipses rota-	Irregulares	Variadas	Modelo MIP + subproble-
		ligonal	bles			mas NLP
[Pankratov et al., 2019]	3D	Contenedor	Elipses orien-	Irregulares	Variadas	Funciones phi/quasi-phi +
		poligonal	tables			optimización
[Zhao et al., 2020]	3D	Poliedro	Tetraedros y	Irregulares	200 < n <	DEM, análisis de microes-
			esferas		50000	tructura
[Deng et al., 2021]	3D	Poliedro	Esfero-	Irregulares	Variadas	Simulación de fricción y
			cilindros			compresibilidad
[Zhao et al., 2021]	3D	Poliedro	Partículas	Irregulares	Variadas	Representación paramétri-
			cóncavas			ca de contactos
[Goodson et al., 2022]	3D	Infinito	Copolímeros	Irregulares	n = 16	Autoensamblaje, mezcla
			en bloque			cíclica y lineal
[Winkelmann, 2016]	3D	Cilindros	Esferas blan-	Suaves	Variadas	Simulación, fases estructu-
			das			rales

Tabla A.2 – continuación

Artículo	Dim.	Contenedor	Objeto	Clase	Instancias	Método de Solución
[Winkelmann et al., 2017]	3D	Cilindros	Burbujas	Suaves	Variadas	Simulación a presión, vali-
						dación experimental
[Bouhid de Aguiar et al., 2018]	3D	Comprimido	Microgeles	Suaves	Max-	Compresión, expulsión de
					Densidad	agua
[Liu et al., 2020]	3D	Caja	Macromolécula	asSuaves	n = 400	Empaque simulando crio-
						tomografía
[Chen et al., 2021]	3D	Esferas	Elipsoides	Suaves	n Indefinido	RMN, análisis estadístico
			blandos			
[Jammula et al., 2022]	3D	Cilindro	Empaque de	Suaves	n Indefinido	Modelado empírico valida-
			contacto			do
[Liu et al., 2022]	3D	Esferas	Partículas	Suaves	Variadas	Modelo híbrido EF/ED
			deformables			(DEFEM)
[Zuo et al., 2022]	3D	Contenedores	Objetos	Suaves	Variadas	Factor de compresibilidad,
			logísticos			optimización
			blandos			
[Coutinho et al., 2023]	3D	Pallets	Productos de	Suaves	Real-World	MINLP, deformación in-
			papel tisú		Dataset	cluida
[Jao et al., 2023]	3D	Ilimitado	Polímeros	Suaves	n Indefinida	Simulación de energía y te-
			blandos			selación

Apéndice B

Triángulos en Cuadrados Contenedor Mínimo

B.1 RESULTADOS DEL ALGORITMO DE MÍNIMO CONTENEDOR EN EL CONTENEDOR CUADRADO

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínimo Contenedor en un contenedor cuadrado. El objetivo es empaquetar triángulos considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 30 triángulos dentro del contenedor cuadrado.

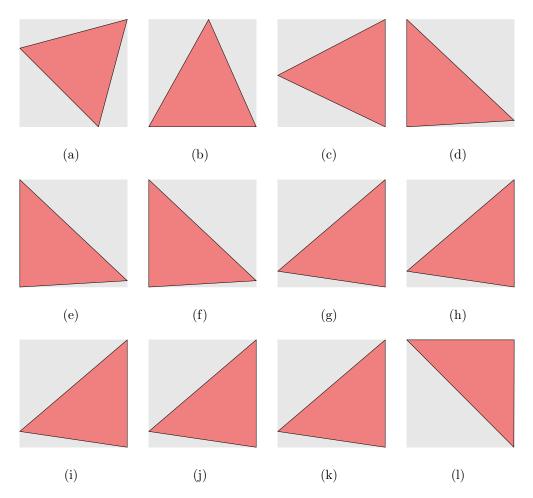


FIGURA B.1: 1 Triángulo en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T1-r00	B.1-(a)	0.965925	0.00%	46.41%
T1-r01	B.1-(b)	0.930604	10.00%	50.00%
T1-r02	B.1-(c)	0.930603	20.00%	50.00%
T1-r03	B.1-(d)	0.930603	30.00%	50.00%
T1-r04	B.1-(e)	0.930603	40.00%	50.00%
T1-r05	B.1-(f)	0.930603	50.00%	50.00%
T1-r06	B.1-(g)	0.930603	60.00%	50.00%
T1-r07	B.1-(h)	0.930603	70.00%	50.00%
T1-r08	B.1-(i)	0.930603	80.00%	50.00%
T1-r09	B.1-(j)	0.930603	90.00%	50.00%
T1-r10	B.1-(k)	0.930603	100.00%	50.00%
T1-rXX	B.1-(1)	0.930603	∞	50.00%

TABLA B.1: Información de Figura B.1

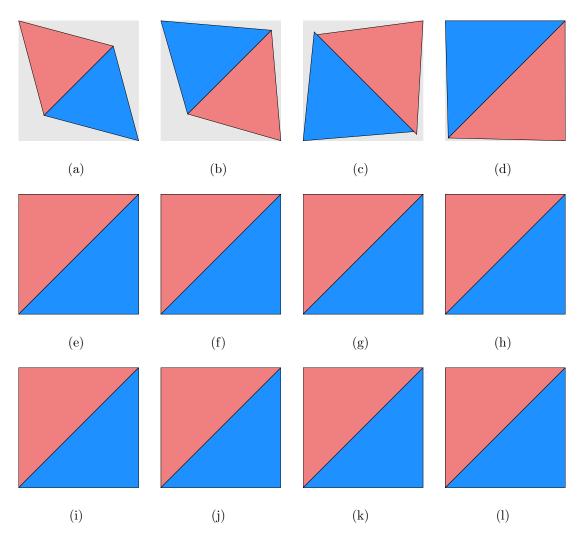


FIGURA B.2: 2 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T2-r00	B.2-(a)	1.224744	0.00 %	57.74%
T2-r01	B.2-(b)	1.113402	10.00%	69.86%
T2-r02	B.2-(c)	1.020618	20.00%	83.14%
T2-r03	B.2-(d)	0.942109	30.00%	97.57%
T2-r04	B.2-(e)	0.930604	40.00%	100.00%
T2-r05	B.2-(f)	0.930604	50.00%	100.00%
T2-r06	B.2-(g)	0.930604	60.00%	100.00%
T2-r07	B.2-(h)	0.930604	70.00%	100.00%
T2-r08	B.2-(i)	0.930604	80.00%	100.00%
T2-r09	B.2-(j)	0.930604	90.00%	100.00%
T2-r10	B.2-(k)	0.930604	100.00%	100.00%
T2-rXX	B.2-(1)	0.930604	∞	100.00%

Tabla B.2: Información de Figura B.2

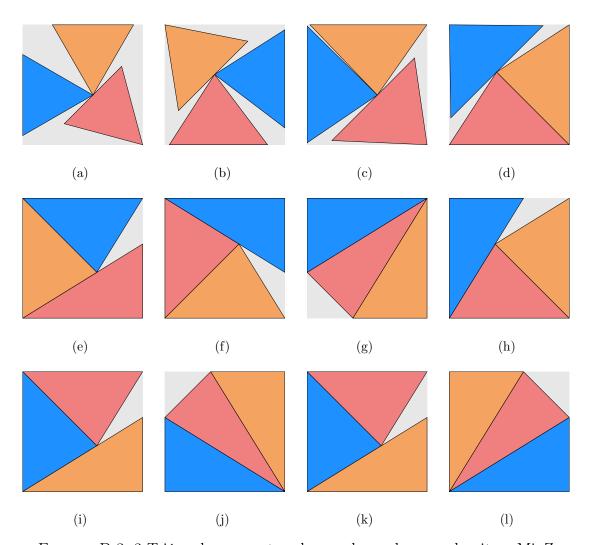


FIGURA B.3: 3 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T3-r00	B.3-(a)	1.478398	0.00%	59.43%
T3-r01	B.3-(b)	1.343998	10.00%	71.92%
T3-r02	B.3-(c)	1.231998	20.00%	85.59%
T3-r03	B.3-(d)	1.195475	30.00%	90.90%
T3-r04	B.3-(e)	1.183748	40.00%	92.71%
T3-r05	B.3-(f)	1.183748	50.00%	92.71%
T3-r06	B.3-(g)	1.183748	60.00%	92.71%
T3-r07	B.3-(h)	1.183748	70.00%	92.71%
T3-r08	B.3-(i)	1.183748	80.00%	92.71%
T3-r09	B.3-(j)	1.183748	90.00%	92.71%
T3-r10	B.3-(k)	1.183748	100.00%	92.71%
T3-rXX	B.3-(1)	1.183748	∞	92.71%

Tabla B.3: Información de Figura B.3

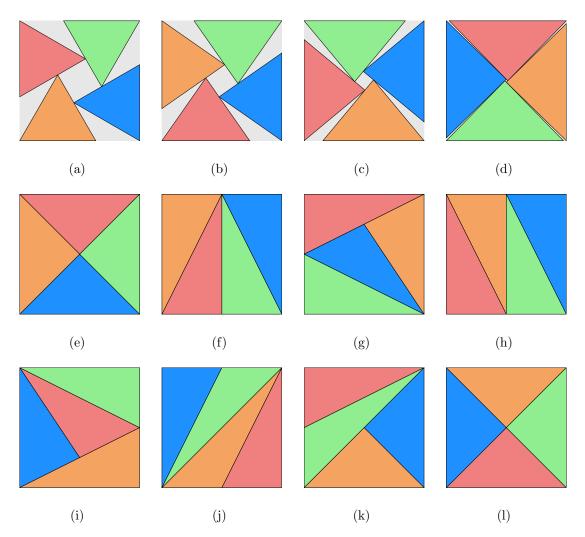


FIGURA B.4: 4 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T4-r00	B.4-(a)	1.577350	0.00 %	69.62%
T4-r01	B.4-(b)	1.503069	10.00%	76.67%
T4-r02	B.4-(c)	1.422857	20.00%	85.55%
T4-r03	B.4-(d)	1.331961	30.00%	97.63%
T4-r04	B.4-(e)	1.316074	40.00%	100.00%
T4-r05	B.4-(f)	1.316074	50.00%	100.00%
T4-r06	B.4-(g)	1.316074	60.00%	100.00%
T4-r07	B.4-(h)	1.316074	70.00%	100.00%
T4-r08	B.4-(i)	1.316074	80.00%	100.00%
T4-r09	B.4-(j)	1.316074	90.00%	100.00%
T4-r10	B.4-(k)	1.316074	100.00%	100.00%
T4-rXX	B.4-(1)	1.316074	∞	100.00%

Tabla B.4: Información de Figura B.4

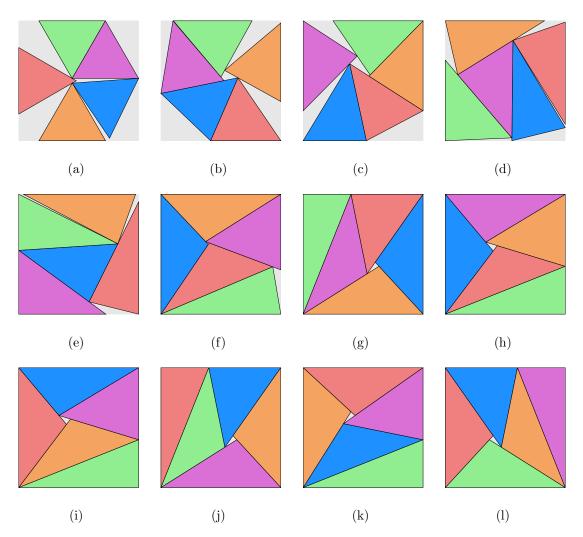


FIGURA B.5: 5 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T5-r00	B.5-(a)	1.803167	0.00%	66.59%
T5-r01	B.5-(b)	1.678429	10.00%	76.85%
T5-r02	B.5-(c)	1.599738	20.00%	84.60%
T5-r03	B.5-(d)	1.526322	30.00%	92.93%
T5-r04	B.5-(e)	1.496234	40.00%	96.71%
T5-r05	B.5-(f)	1.480803	50.00%	98.74%
T5-r06	B.5-(g)	1.473382	60.00%	99.73%
T5-r07	B.5-(h)	1.473382	70.00%	99.73%
T5-r08	B.5-(i)	1.473382	80.00%	99.73%
T5-r09	B.5-(j)	1.473382	90.00%	99.73%
T5-r10	B.5-(k)	1.473382	100.00%	99.73%
T5-rXX	B.5-(1)	1.473382	∞	99.73%

Tabla B.5: Información de Figura B.5

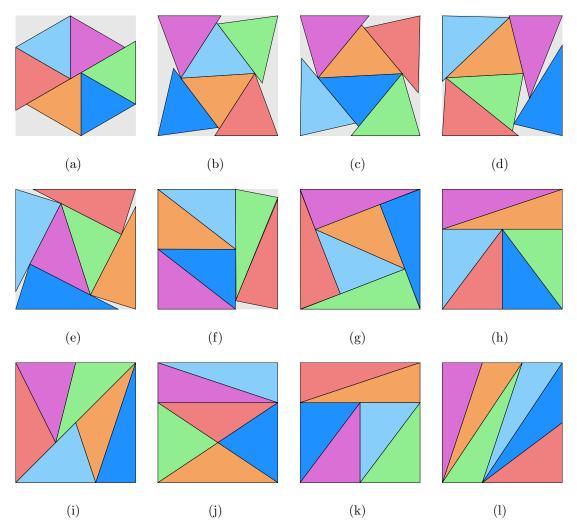


FIGURA B.6: 6 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T6-r00	B.6-(a)	1.901924	0.00 %	71.82%
T6-r01	B.6-(b)	1.779807	10.00%	82.02%
T6-r02	B.6-(c)	1.705927	20.00%	89.28%
T6-r03	B.6-(d)	1.682972	30.00%	91.73%
T6-r04	B.6-(e)	1.640538	40.00%	96.53%
T6-r05	B.6-(f)	1.634989	50.00%	97.19%
T6-r06	B.6-(g)	1.613578	60.00%	99.79%
T6-r07	B.6-(h)	1.611854	70.00%	100.00%
T6-r08	B.6-(i)	1.611854	80.00%	100.00%
T6-r09	B.6-(j)	1.611854	90.00%	100.00%
T6-r10	B.6-(k)	1.611854	100.00%	100.00%
T6-rXX	B.6-(1)	1.611854	∞	100.00%

Tabla B.6: Información de Figura B.6

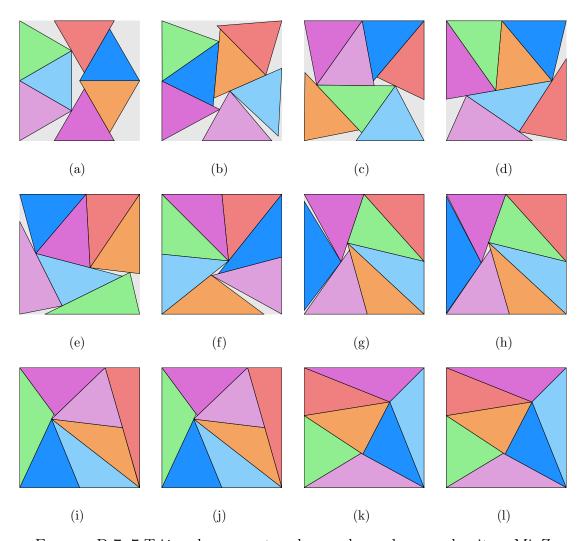


FIGURA B.7: 7 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T7-r00	B.7-(a)	1.999999	0.00 %	75.78%
T7-r01	B.7-(b)	1.901219	10.00%	83.86%
T7-r02	B.7-(c)	1.828463	20.00%	90.66%
T7-r03	B.7-(d)	1.794247	30.00%	94.15%
T7-r04	B.7-(e)	1.779477	40.00%	95.72%
T7-r05	B.7-(f)	1.765206	50.00%	97.28%
T7-r06	B.7-(g)	1.755548	60.00%	98.35%
T7-r07	B.7-(h)	1.747196	70.00%	99.29%
T7-r08	B.7-(i)	1.741760	80.00%	99.91%
T7-r09	B.7-(j)	1.741318	90.00%	99.96%
T7-r10	B.7-(k)	1.741011	100.00%	100.00%
T7-rXX	B.7-(1)	1.741011	∞	100.00%

Tabla B.7: Información de Figura B.7

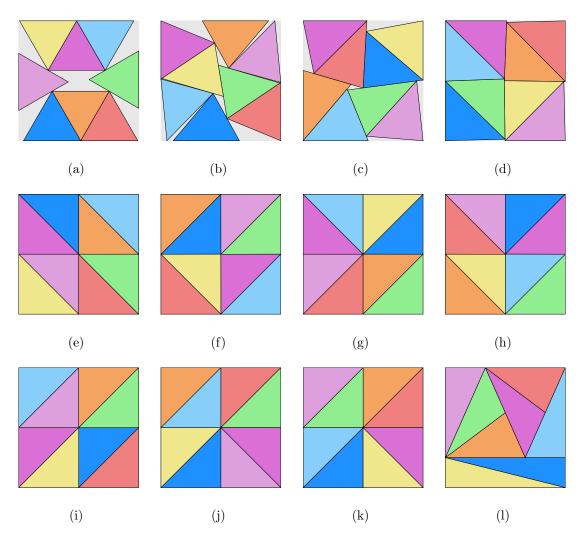


FIGURA B.8: 8 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T8-r00	B.8-(a)	2.098077	0.00%	78.70%
T8-r01	B.8-(b)	1.993902	10.00%	87.13%
T8-r02	B.8-(c)	1.924036	20.00%	93.58%
T8-r03	B.8-(d)	1.869717	30.00%	99.09%
T8-r04	B.8-(e)	1.861210	40.00%	100.00%
T8-r05	B.8-(f)	1.861210	50.00%	100.00%
T8-r06	B.8-(g)	1.861210	60.00%	100.00%
T8-r07	B.8-(h)	1.861209	70.00%	100.00%
T8-r08	B.8-(i)	1.861209	80.00%	100.00%
T8-r09	B.8-(j)	1.861209	90.00%	100.00%
T8-r10	B.8-(k)	1.861209	100.00%	100.00%
T8-rXX	B.8-(1)	1.861209	∞	100.00%

Tabla B.8: Información de Figura B.8

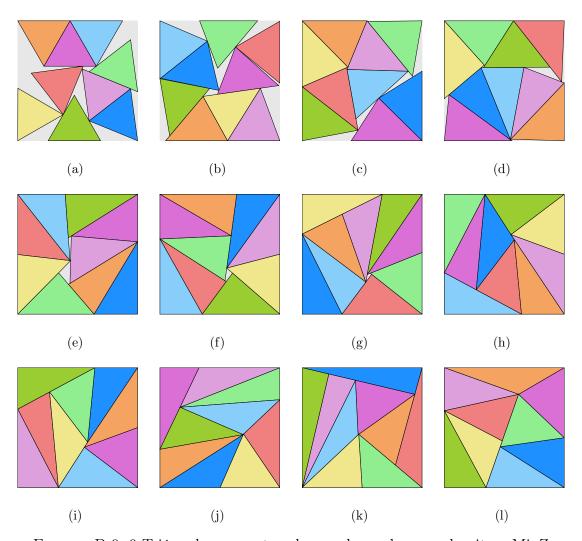


FIGURA B.9: 9 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T9-r00	B.9-(a)	2.287510	0.00 %	74.48%
T9-r01	B.9-(b)	2.129741	10.00%	85.92%
T9-r02	B.9-(c)	2.033005	20.00%	94.29%
T9-r03	B.9-(d)	2.003269	30.00%	97.11%
T9-r04	B.9-(e)	1.987240	40.00%	98.68%
T9-r05	B.9-(f)	1.977460	50.00%	99.66%
T9-r06	B.9-(g)	1.975404	60.00%	99.87%
T9-r07	B.9-(h)	1.974135	70.00%	100.00%
T9-r08	B.9-(i)	1.974135	80.00%	100.00%
T9-r09	B.9-(j)	1.974116	90.00%	100.00%
T9-r10	B.9-(k)	1.974114	100.00%	100.00%
T9-rXX	B.9-(1)	1.974114	∞	100.00%

Tabla B.9: Información de Figura B.9

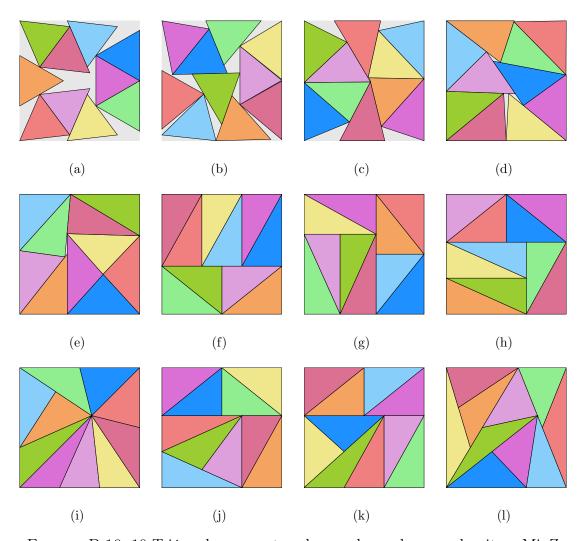


FIGURA B.10: 10 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T10-r00	B.10-(a)	2.377023	0.00%	76.64%
T10-r01	B.10-(b)	2.253724	10.00%	85.25%
T10-r02	B.10-(c)	2.169883	20.00%	91.97%
T10-r03	B.10-(d)	2.097280	30.00%	98.44%
T10-r04	B.10-(e)	2.082924	40.00%	99.81%
T10-r05	B.10-(f)	2.080894	50.00%	100.00%
T10-r06	B.10-(g)	2.080894	60.00%	100.00%
T10-r07	B.10-(h)	2.080894	70.00%	100.00%
T10-r08	B.10-(i)	2.080894	80.00%	100.00%
T10-r09	B.10-(j)	2.080894	90.00%	100.00%
T10-r10	B.10-(k)	2.080894	100.00%	100.00%
T10-rXX	B.10-(1)	2.080894	∞	100.00%

TABLA B.10: Información de Figura B.10

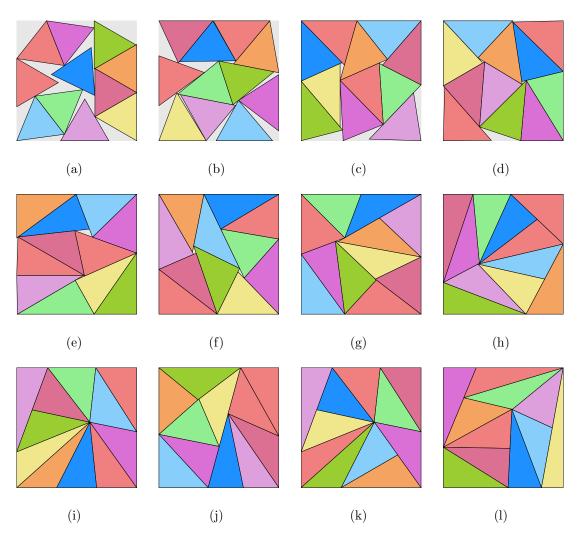


FIGURA B.11: 11 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T11-r00	B.11-(a)	2.490959	0.00%	76.76%
T11-r01	B.11-(b)	2.341937	10.00%	86.84%
T11-r02	B.11-(c)	2.245121	20.00%	94.50%
T11-r03	B.11-(d)	2.204739	30.00%	97.99%
T11-r04	B.11-(e)	2.190620	40.00%	99.26%
T11-r05	B.11-(f)	2.184958	50.00%	99.77%
T11-r06	B.11-(g)	2.182949	60.00%	99.96%
T11-r07	B.11-(h)	2.182471	70.00%	100.00%
T11-r08	B.11-(i)	2.182462	80.00%	100.00%
T11-r09	B.11-(j)	2.182462	90.00%	100.00%
T11-r10	B.11-(k)	2.182462	100.00%	100.00%
T11-rXX	B.11-(1)	2.182462	∞	100.00%

TABLA B.11: Información de Figura B.11

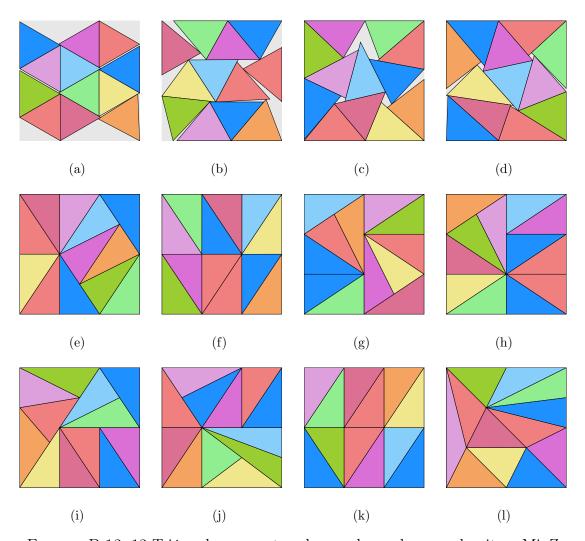


FIGURA B.12: 12 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T12-r00	B.12-(a)	2.562393	0.00%	79.14%
T12-r 01	B.12-(b)	2.435620	10.00%	87.59%
T12-r 02	B.12-(c)	2.348981	20.00%	94.17%
T12-r03	B.12-(d)	2.300347	30.00%	98.20%
T12-r 04	B.12-(e)	2.279507	40.00%	100.00%
T12-r05	B.12-(f)	2.279507	50.00%	100.00%
T12-r06	B.12-(g)	2.279507	60.00%	100.00%
T12-r 07	B.12-(h)	2.279507	70.00%	100.00%
T12-r08	B.12-(i)	2.279507	80.00%	100.00%
T12-r09	B.12-(j)	2.279507	90.00%	100.00%
T12-r10	B.12-(k)	2.279507	100.00%	100.00%
T12-rXX	B.12-(1)	2.279507	∞	100.00%

TABLA B.12: Información de Figura B.12

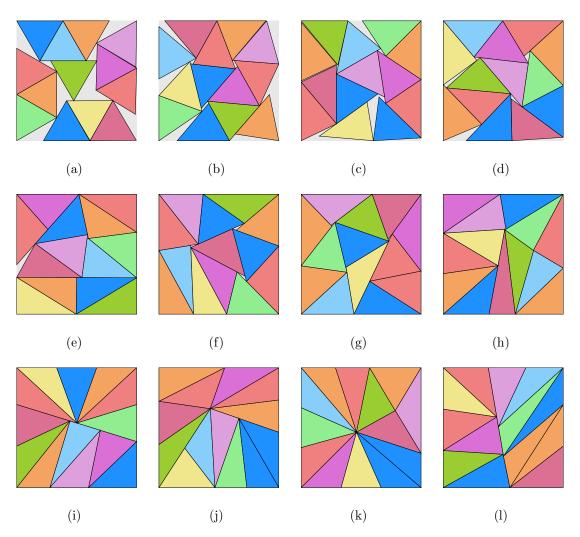


FIGURA B.13: 13 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T13-r00	B.13-(a)	2.595984	0.00%	83.53%
T13-r01	B.13-(b)	2.527491	10.00%	88.12%
T13-r02	B.13-(c)	2.452214	20.00%	93.61%
T13-r03	B.13-(d)	2.409329	30.00%	96.97%
T13-r04	B.13-(e)	2.382452	40.00%	99.17%
T13-r05	B.13-(f)	2.376369	50.00%	99.68%
T13-r06	B.13-(g)	2.373363	60.00%	99.93%
T13-r07	B.13-(h)	2.372673	70.00%	99.99%
T13-r08	B.13-(i)	2.372590	80.00%	100.00%
T13-r09	B.13-(j)	2.372590	90.00%	100.00%
T13-r10	B.13-(k)	2.372587	100.00%	100.00%
T13-rXX	B.13-(1)	2.372586	∞	100.00%

TABLA B.13: Información de Figura B.13

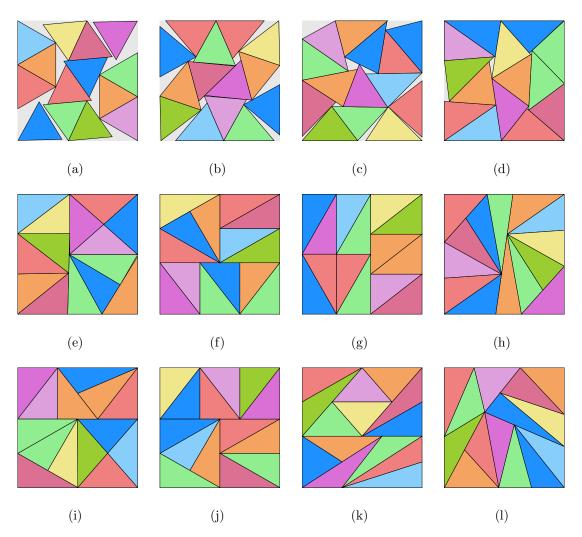


FIGURA B.14: 14 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T14-r00	B.14-(a)	2.726023	0.00%	81.58%
T14-r01	B.14-(b)	2.613743	10.00%	88.74%
T14-r02	B.14-(c)	2.558076	20.00%	92.64%
T14-r03	B.14-(d)	2.477646	30.00%	98.75%
T14-r04	B.14-(e)	2.464092	40.00%	99.84%
T14-r05	B.14-(f)	2.462149	50.00%	100.00%
T14-r06	B.14-(g)	2.462149	60.00%	100.00%
T14-r07	B.14-(h)	2.462149	70.00%	100.00%
T14-r08	B.14-(i)	2.462149	80.00%	100.00%
T14-r09	B.14-(j)	2.462149	90.00%	100.00%
T14-r10	B.14-(k)	2.462149	100.00%	100.00%
T14-rXX	B.14-(1)	2.462149	∞	100.00%

Tabla B.14: Información de Figura B.14

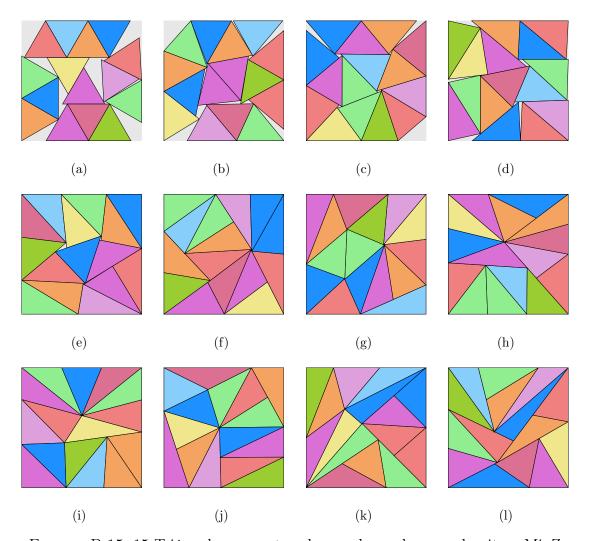


FIGURA B.15: 15 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T15-r00	B.15-(a)	2.830228	0.00 %	81.09%
T15-r01	B.15-(b)	2.672097	10.00%	90.97%
T15-r02	B.15-(c)	2.607388	20.00%	95.54%
T15-r03	B.15-(d)	2.584891	30.00%	97.21%
T15-r04	B.15-(e)	2.552516	40.00%	99.69%
T15-r05	B.15-(f)	2.548630	50.00%	100.00%
T15-r06	B.15-(g)	2.548592	60.00%	100.00%
T15-r07	B.15-(h)	2.548566	70.00%	100.00%
T15-r08	B.15-(i)	2.548566	80.00%	100.00%
T15-r09	B.15-(j)	2.548566	90.00%	100.00%
T15-r10	B.15-(k)	2.548566	100.00%	100.00%
T15-rXX	B.15-(1)	2.548566	∞	100.00%

TABLA B.15: Información de Figura B.15

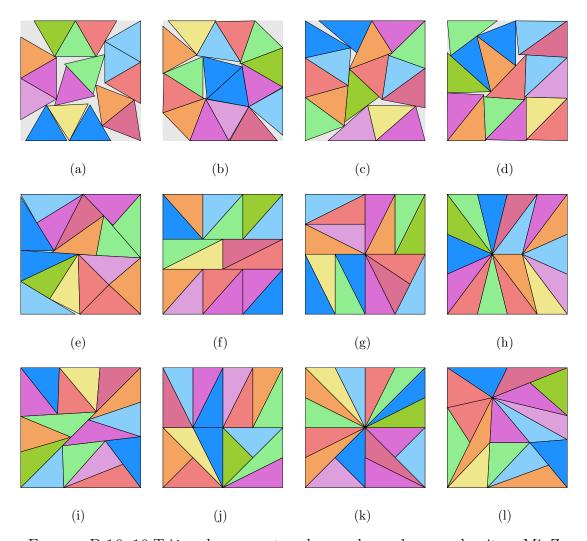


FIGURA B.16: 16 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T16-r00	B.16-(a)	2.900039	0.00 %	82.38 %
T16-r01	B.16-(b)	2.776700	10.00%	89.86%
T16-r02	B.16-(c)	2.707798	20.00%	94.49%
T16-r03	B.16-(d)	2.674170	30.00%	96.88%
T16-r04	B.16-(e)	2.640370	40.00%	99.38%
T16-r05	B.16-(f)	2.632149	50.00%	100.00%
T16-r06	B.16-(g)	2.632148	60.00%	100.00%
T16-r07	B.16-(h)	2.632148	70.00%	100.00%
T16-r08	B.16-(i)	2.632148	80.00%	100.00%
T16-r09	B.16-(j)	2.632148	90.00%	100.00%
T16-r10	B.16-(k)	2.632148	100.00%	100.00%
T16-rXX	B.16-(1)	2.632148	∞	100.00%

TABLA B.16: Información de Figura B.16

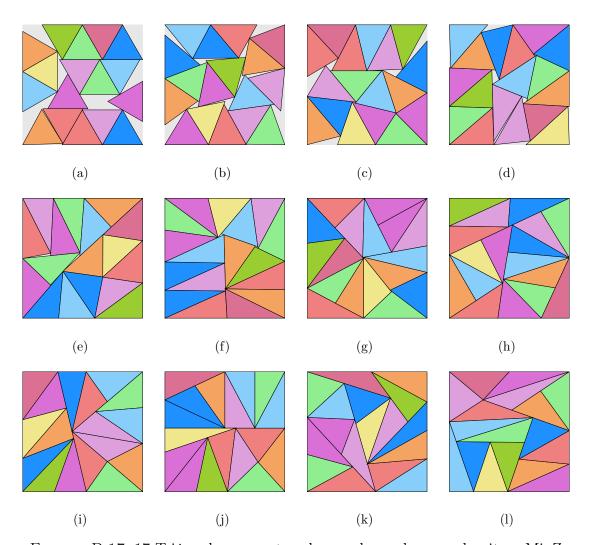


FIGURA B.17: 17 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T17-r00	B.17-(a)	2.982625	0.00%	82.75%
T17-r01	B.17-(b)	2.846256	10.00%	90.87%
T17-r02	B.17-(c)	2.777749	20.00%	95.40%
T17-r03	B.17-(d)	2.748619	30.00%	97.44%
T17-r04	B.17-(e)	2.719137	40.00%	99.56%
T17-r05	B.17-(f)	2.714325	50.00%	99.91%
T17-r06	B.17-(g)	2.713321	60.00%	99.99%
T17-r07	B.17-(h)	2.713176	70.00%	100.00%
T17-r08	B.17-(i)	2.713156	80.00%	100.00%
T17-r09	B.17-(j)	2.713156	90.00%	100.00%
T17-r10	B.17-(k)	2.713156	100.00%	100.00%
T17-rXX	B.17-(1)	2.713156	∞	100.00%

TABLA B.17: Información de Figura B.17

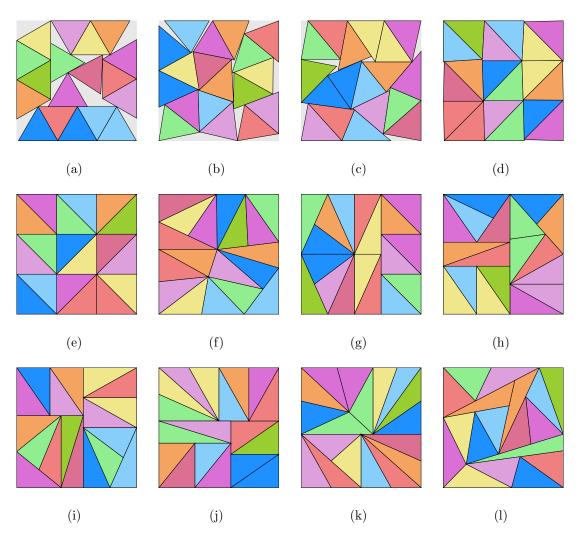


FIGURA B.18: 18 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T18-r00	B.18-(a)	3.051403	0.00%	83.71%
T18-r01	B.18-(b)	2.949590	10.00%	89.59%
T18-r02	B.18-(c)	2.869191	20.00%	94.68%
T18-r03	B.18-(d)	2.801201	30.00%	99.33%
T18-r04	B.18-(e)	2.791815	40.00%	100.00%
T18-r05	B.18-(f)	2.791815	50.00%	100.00%
T18-r06	B.18-(g)	2.791815	60.00%	100.00%
T18-r07	B.18-(h)	2.791815	70.00%	100.00%
T18-r08	B.18-(i)	2.791815	80.00%	100.00%
T18-r09	B.18-(j)	2.791815	90.00%	100.00%
T18-r10	B.18-(k)	2.791815	100.00%	100.00%
T18-rXX	B.18-(1)	2.791815	∞	100.00%

TABLA B.18: Información de Figura B.18

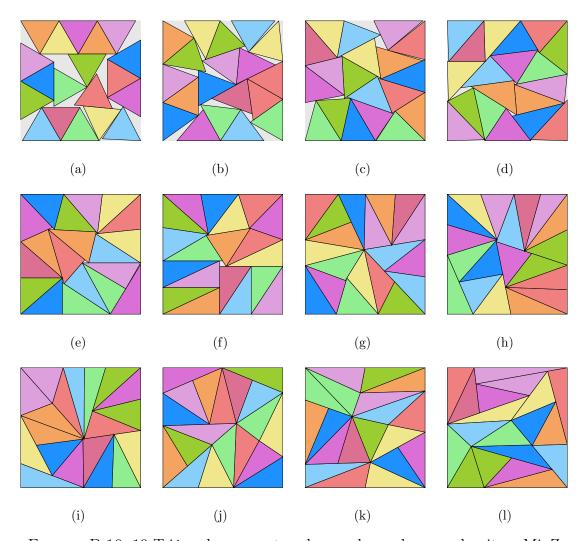


FIGURA B.19: 19 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T19-r00	B.19-(a)	3.129294	0.00%	84.02%
T19-r01	B.19-(b)	3.034403	10.00%	89.35%
T19-r02	B.19-(c)	2.936497	20.00%	95.41%
T19-r03	B.19-(d)	2.893046	30.00%	98.30%
T19-r04	B.19-(e)	2.871728	40.00%	99.76%
T19-r05	B.19-(f)	2.870990	50.00%	99.81%
T19-r06	B.19-(g)	2.868427	60.00%	99.99%
T19-r07	B.19-(h)	2.868372	70.00%	100.00%
T19-r08	B.19-(i)	2.868318	80.00%	100.00%
T19-r09	B.19-(j)	2.868317	90.00%	100.00%
T19-r10	B.19-(k)	2.868317	100.00%	100.00%
T19-rXX	B.19-(1)	2.868317	∞	100.00%

TABLA B.19: Información de Figura B.19

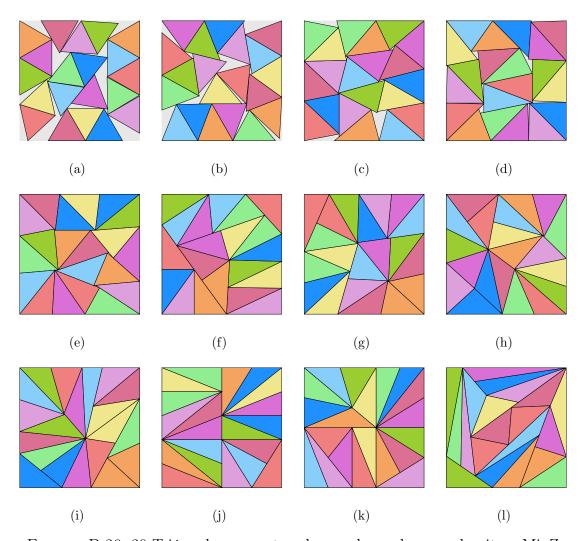


FIGURA B.20: 20 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T20-r00	B.20-(a)	3.230549	0.00%	82.98%
T20-r01	B.20-(b)	3.100441	10.00%	90.09%
T20-r02	B.20-(c)	2.992340	20.00%	96.72%
T20-r03	B.20-(d)	2.973208	30.00%	97.97%
T20-r04	B.20-(e)	2.943819	40.00%	99.93%
T20-r05	B.20-(f)	2.942879	50.00%	100.00%
T20-r06	B.20-(g)	2.942842	60.00%	100.00%
T20-r07	B.20-(h)	2.942834	70.00%	100.00%
T20-r08	B.20-(i)	2.942834	80.00%	100.00%
T20-r09	B.20-(j)	2.942831	90.00%	100.00%
T20-r10	B.20-(k)	2.942831	100.00%	100.00%
T20-rXX	B.20-(1)	2.942831	∞	100.00%

TABLA B.20: Información de Figura B.20

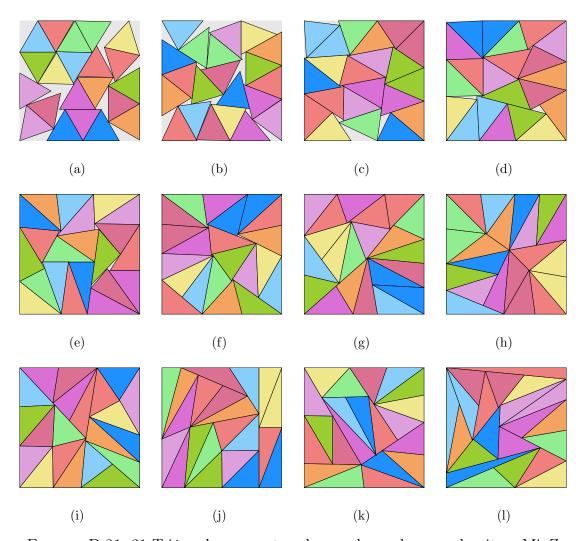


FIGURA B.21: 21 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T21-r00	B.21-(a)	3.318623	0.00%	82.57%
T21-r01	B.21-(b)	3.209386	10.00%	88.28%
T21-r02	B.21-(c)	3.071461	20.00%	96.39%
T21-r03	B.21-(d)	3.032053	30.00%	98.91%
T21-r04	B.21-(e)	3.025751	40.00%	99.32%
T21-r05	B.21-(f)	3.018173	50.00%	99.82%
T21-r06	B.21-(g)	3.015903	60.00%	99.97%
T21-r07	B.21-(h)	3.015512	70.00%	100.00%
T21-r08	B.21-(i)	3.015513	80.00%	100.00%
T21-r09	B.21-(j)	3.015513	90.00%	100.00%
T21-r10	B.21-(k)	3.015509	100.00%	100.00%
T21-rXX	B.21-(1)	3.015504	∞	100.00%

TABLA B.21: Información de Figura B.21

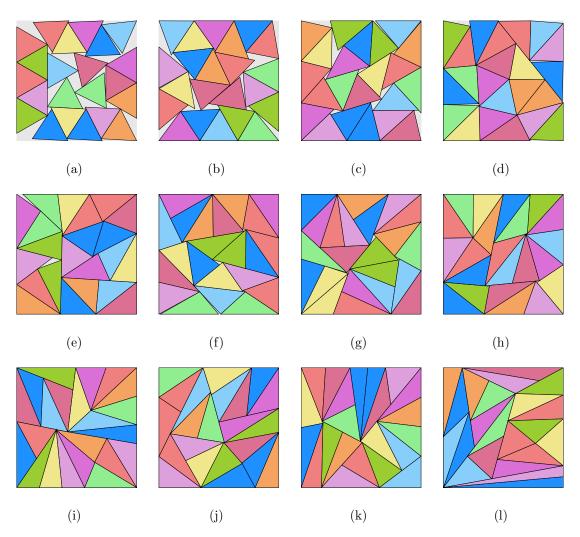


FIGURA B.22: 22 Triángulos en contenedor cuadrangular con algoritmo ${
m MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T22-r00	B.22-(a)	3.378529	0.00%	83.46%
T22-r01	B.22-(b)	3.224122	10.00%	91.64%
T22-r02	B.22-(c)	3.154985	20.00%	95.70%
T22-r03	B.22-(d)	3.110185	30.00%	98.48%
T22-r04	B.22-(e)	3.099773	40.00%	99.14%
T22-r05	B.22-(f)	3.093650	50.00%	99.54%
T22-r06	B.22-(g)	3.090317	60.00%	99.75%
T22-r07	B.22-(h)	3.087058	70.00%	99.96%
T22-r08	B.22-(i)	3.086666	80.00%	99.99%
T22-r09	B.22-(j)	3.086508	90.00%	100.00%
T22-r10	B.22-(k)	3.086568	100.00%	99.99%
T22-rXX	B.22-(1)	3.086476	∞	100.00%

TABLA B.22: Información de Figura B.22

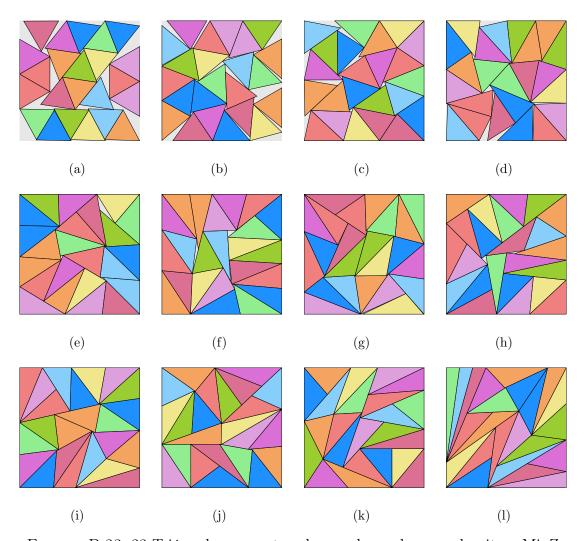


FIGURA B.23: 23 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T23-r00	B.23-(a)	3.438179	0.00%	84.25%
T23-r01	B.23-(b)	3.316223	10.00%	90.56%
T23-r02	B.23-(c)	3.226006	20.00%	95.70%
T23-r03	B.23-(d)	3.205501	30.00%	96.93%
T23-r04	B.23-(e)	3.168268	40.00%	99.22%
T23-r05	B.23-(f)	3.168128	50.00%	99.23%
T23-r06	B.23-(g)	3.160193	60.00%	99.72%
T23-r07	B.23-(h)	3.160194	70.00%	99.72%
T23-r08	B.23-(i)	3.156075	80.00%	99.98%
T23-r09	B.23-(j)	3.156071	90.00%	99.99%
T23-r10	B.23-(k)	3.155835	100.00%	100.00%
T23-rXX	B.23-(1)	3.155835	∞	100.00%

TABLA B.23: Información de Figura B.23

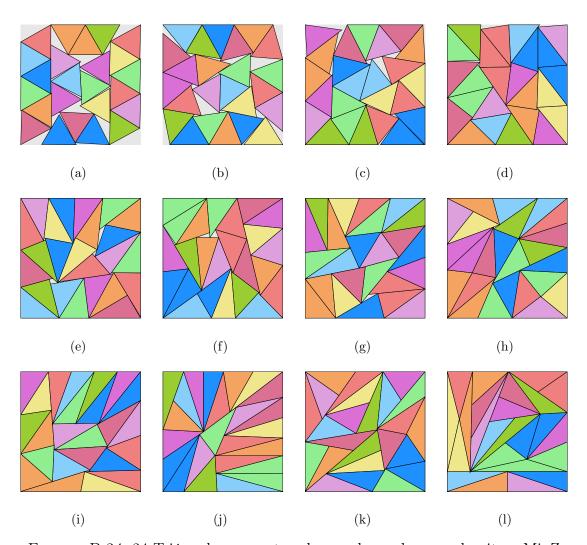


FIGURA B.24: 24 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T24-r00	B.24-(a)	3.475544	0.00%	86.03%
T24-r01	B.24-(b)	3.385068	10.00%	90.69%
T24-r02	B.24-(c)	3.294095	20.00%	95.77%
T24-r03	B.24-(d)	3.239451	30.00%	99.03%
T24-r04	B.24-(e)	3.237930	40.00%	99.12%
T24-r05	B.24-(f)	3.233728	50.00%	99.38%
T24-r06	B.24-(g)	3.228117	60.00%	99.73%
T24-r07	B.24-(h)	3.224565	70.00%	99.95%
T24-r08	B.24-(i)	3.224448	80.00%	99.95%
T24-r09	B.24-(j)	3.223805	90.00%	99.99%
T24-r10	B.24-(k)	3.223805	100.00%	99.99%
T24-rXX	B.24-(1)	3.223710	∞	100.00%

Tabla B.24: Información de Figura B.24

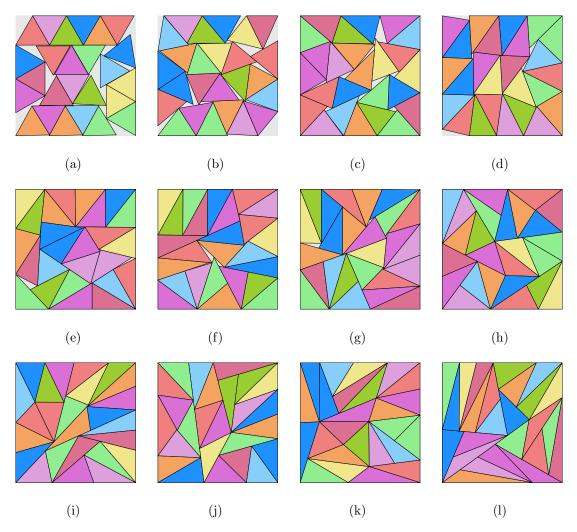


FIGURA B.25: 25 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T25-r00	B.25-(a)	3.544891	0.00%	86.15%
T25-r01	B.25-(b)	3.449059	10.00%	91.00%
T25-r02	B.25-(c)	3.349620	20.00%	96.48%
T25-r03	B.25-(d)	3.315578	30.00%	98.47%
T25-r04	B.25-(e)	3.304502	40.00%	99.14%
T25-r05	B.25-(f)	3.302464	50.00%	99.26%
T25-r06	B.25-(g)	3.300749	60.00%	99.36%
T25-r07	B.25-(h)	3.290186	70.00%	100.00%
T25-r08	B.25-(i)	3.290187	80.00%	100.00%
T25-r09	B.25-(j)	3.290187	90.00%	100.00%
T25-r10	B.25-(k)	3.290187	100.00%	100.00%
T25-rXX	B.25-(1)	3.290185	∞	100.00%

Tabla B.25: Información de Figura B.25

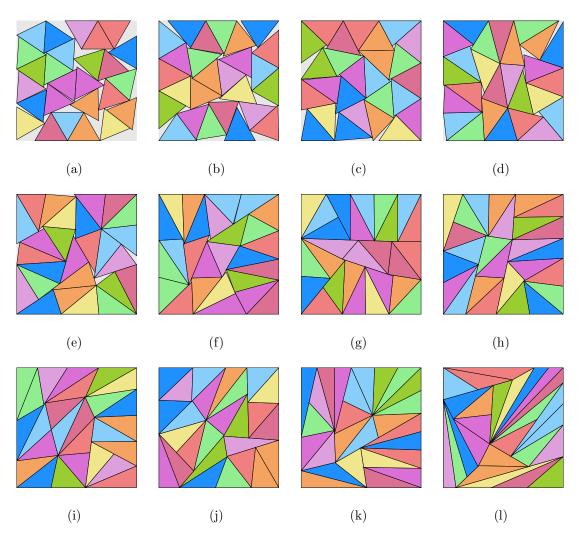


FIGURA B.26: 26 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T26-r00	B.26-(a)	3.677648	0.00%	83.24%
T26-r01	B.26-(b)	3.488063	10.00%	92.53%
T26-r02	B.26-(c)	3.414504	20.00%	96.56%
T26-r03	B.26-(d)	3.394212	30.00%	97.72%
T26-r04	B.26-(e)	3.388084	40.00%	98.08%
T26-r05	B.26-(f)	3.360974	50.00%	99.67%
T26-r06	B.26-(g)	3.355748	60.00%	99.98%
T26-r07	B.26-(h)	3.355450	70.00%	99.99%
T26-r08	B.26-(i)	3.355380	80.00%	100.00%
T26-r09	B.26-(j)	3.355358	90.00%	100.00%
T26-r10	B.26-(k)	3.355378	100.00%	100.00%
T26-rXX	B.26-(1)	3.355362	∞	100.00%

TABLA B.26: Información de Figura B.26

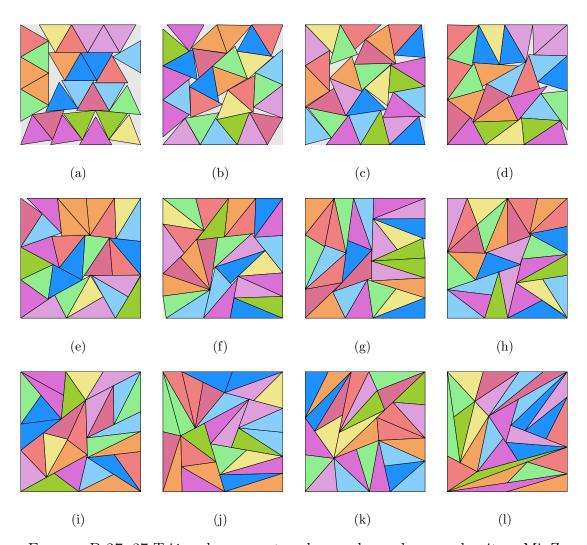


FIGURA B.27: 27 Triángulos en contenedor cuadrangular con algoritmo ${
m MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T27-r00	B.27-(a)	3.724055	0.00%	84.30 %
T27-r01	B.27-(b)	3.573188	10.00%	91.57%
T27-r02	B.27-(c)	3.524951	20.00%	94.09%
T27-r03	B.27-(d)	3.464474	30.00%	97.41%
T27-r04	B.27-(e)	3.431676	40.00%	99.28%
T27-r05	B.27-(f)	3.430220	50.00%	99.36%
T27-r06	B.27-(g)	3.423408	60.00%	99.76%
T27-r07	B.27-(h)	3.421619	70.00%	99.86%
T27-r08	B.27-(i)	3.419362	80.00%	99.99%
T27-r09	B.27-(j)	3.419262	90.00%	100.00%
T27-r10	B.27-(k)	3.419261	100.00%	100.00%
T27-rXX	B.27-(1)	3.419261	∞	100.00%

Tabla B.27: Información de Figura B.27

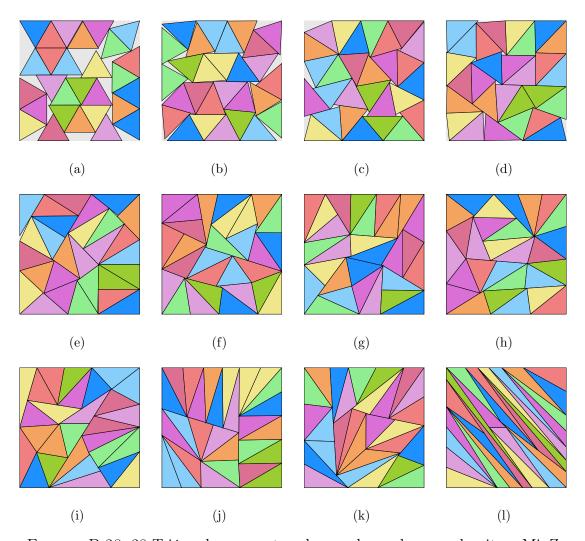


FIGURA B.28: 28 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T28-r00	B.28-(a)	3.833410	0.00%	82.51%
T28-r01	B.28-(b)	3.606384	10.00%	93.22%
T28-r02	B.28-(c)	3.539887	20.00%	96.76%
T28-r03	B.28-(d)	3.512137	30.00%	98.29%
T28-r04	B.28-(e)	3.488341	40.00%	99.64%
T28-r05	B.28-(f)	3.483713	50.00%	99.90%
T28-r06	B.28-(g)	3.482297	60.00%	99.98%
T28-r07	B.28-(h)	3.482076	70.00%	100.00%
T28-r08	B.28-(i)	3.482130	80.00%	99.99%
T28-r09	B.28-(j)	3.482108	90.00%	99.99%
T28-r10	B.28-(k)	3.482184	100.00%	99.99%
T28-rXX	B.28-(1)	3.482005	∞	100.00%

Tabla B.28: Información de Figura B.28

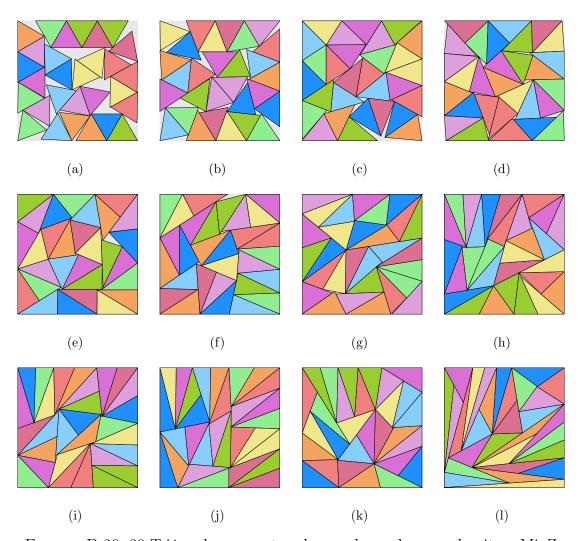


FIGURA B.29: 29 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T29-r00	B.29-(a)	3.882128	0.00%	83.32%
T29-r01	B.29-(b)	3.712966	10.00%	91.09%
T29-r02	B.29-(c)	3.607856	20.00%	96.47%
T29-r03	B.29-(d)	3.587139	30.00%	97.59%
T29-r04	B.29-(e)	3.560957	40.00%	99.03%
T29-r05	B.29-(f)	3.555205	50.00%	99.35%
T29-r06	B.29-(g)	3.548194	60.00%	99.74%
T29-r07	B.29-(h)	3.548195	70.00%	99.74%
T29-r08	B.29-(i)	3.545268	80.00%	99.91%
T29-r09	B.29-(j)	3.543771	90.00%	99.99%
T29-r10	B.29-(k)	3.543749	100.00%	99.99%
T29-rXX	B.29-(1)	3.543641	∞	100.00%

Tabla B.29: Información de Figura B.29



FIGURA B.30: 30 Triángulos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T30-r00	B.30-(a)	3.941169	0.00%	83.63%
T30-r01	B.30-(b)	3.732364	10.00%	93.25%
T30-r02	B.30-(c)	3.713745	20.00%	94.19%
T30-r03	B.30-(d)	3.641583	30.00%	97.96%
T30-r04	B.30-(e)	3.622406	40.00%	99.00%
T30-r05	B.30-(f)	3.613516	50.00%	99.49%
T30-r06	B.30-(g)	3.617701	60.00%	99.26%
T30-r07	B.30-(h)	3.609955	70.00%	99.68%
T30-r08	B.30-(i)	3.612359	80.00%	99.55%
T30-r09	B.30-(j)	3.607788	90.00%	99.80%
T30-r10	B.30-(k)	3.608566	100.00%	99.76%
T30-rXX	B.30-(1)	3.604222	∞	100.00%

TABLA B.30: Información de Figura B.30

APÉNDICE C

Triángulos en Cuadrados Suavidad Mínima

C.1 RESULTADOS DEL ALGORITMO DE MÍNIMA SUAVIDAD EN EL CONTENEDOR CUADRADO

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínima Suavidad en un contenedor cuadrado. El objetivo es empaquetar triángulos considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 30 triángulos dentro del contenedor cuadrado.

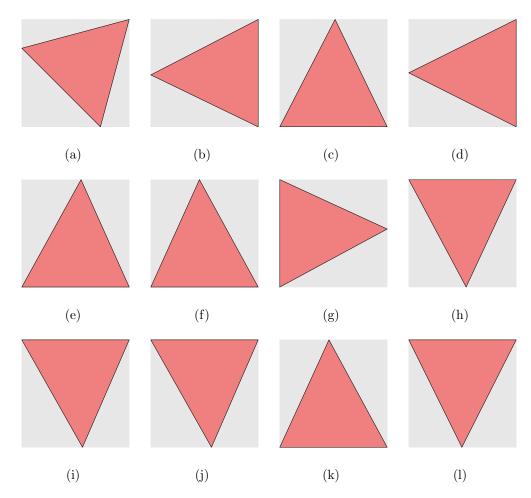


FIGURA C.1: 1 Triángulo en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T1-r00	C.1-(a)	0.965925	0.00%	46.41%
T1-r01	C.1-(b)	0.930604	6.94%	50.00%
T1-r02	C.1-(c)	0.930603	6.94%	50.00%
T1-r03	C.1-(d)	0.930603	6.94%	50.00%
T1-r04	C.1-(e)	0.930603	6.94%	50.00%
T1-r05	C.1-(f)	0.930603	6.94%	50.00%
T1-r06	C.1-(g)	0.930603	6.94%	50.00%
T1-r07	C.1-(h)	0.930603	6.94%	50.00%
T1-r08	C.1-(i)	0.930603	6.94%	50.00%
T1-r09	C.1-(j)	0.930603	6.94%	50.00%
T1-r10	C.1-(k)	0.930603	6.94%	50.00%
T1-rXX	C.1-(1)	0.930603	6.94%	50.00%

Tabla C.1: Información de Figura C.1

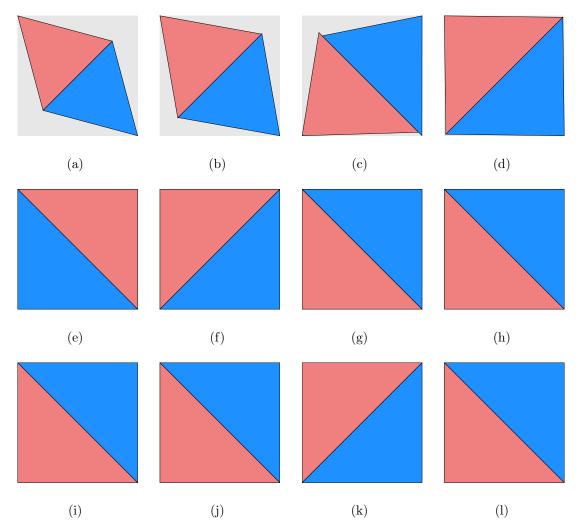


FIGURA C.2: 2 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T2-r00	C.2-(a)	1.224744	0.00%	57.74%
T2-r01	C.2-(b)	1.113402	10.00%	69.86%
T2-r02	C.2-(c)	1.020618	20.00%	83.14%
T2-r03	C.2-(d)	0.942109	30.00%	97.57%
T2-r04	C.2-(e)	0.930604	31.61%	100.00%
T2-r05	C.2-(f)	0.930604	31.61%	100.00%
T2-r06	C.2-(g)	0.930604	31.61%	100.00%
T2-r07	C.2-(h)	0.930604	31.61%	100.00%
T2-r08	C.2-(i)	0.930604	31.61%	100.00%
T2-r09	C.2-(j)	0.930604	31.61%	100.00%
T2-r10	C.2-(k)	0.930604	31.61%	100.00%
T2-rXX	C.2-(1)	0.930604	31.61%	100.00%

TABLA C.2: Información de Figura C.2

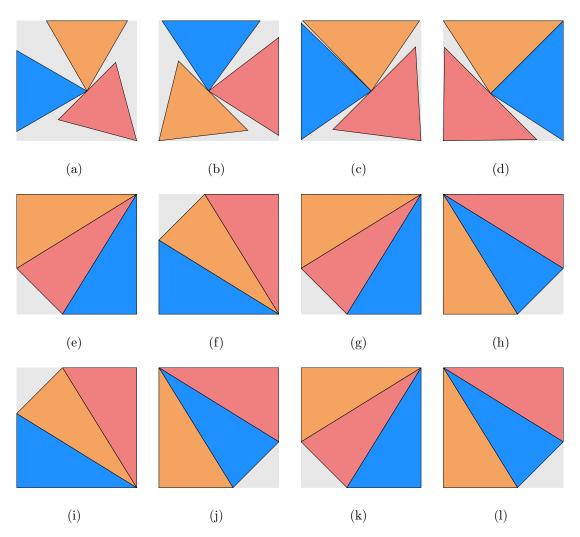


FIGURA C.3: 3 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T3-r00	C.3-(a)	1.478398	0.00%	59.43%
T3-r01	C.3-(b)	1.343998	10.00%	71.92%
T3-r02	C.3-(c)	1.231998	20.00%	85.59%
T3-r03	C.3-(d)	1.195475	30.00%	90.90%
T3-r04	C.3-(e)	1.183748	39.16%	92.71%
T3-r05	C.3-(f)	1.183748	39.16%	92.71%
T3-r06	C.3-(g)	1.183748	39.16%	92.71%
T3-r07	C.3-(h)	1.183748	39.16%	92.71%
T3-r08	C.3-(i)	1.183748	39.16%	92.71%
T3-r09	C.3-(j)	1.183748	39.16%	92.71%
T3-r10	C.3-(k)	1.183748	39.16%	92.71%
T3-rXX	C.3-(1)	1.183748	39.16%	92.71%

TABLA C.3: Información de Figura C.3

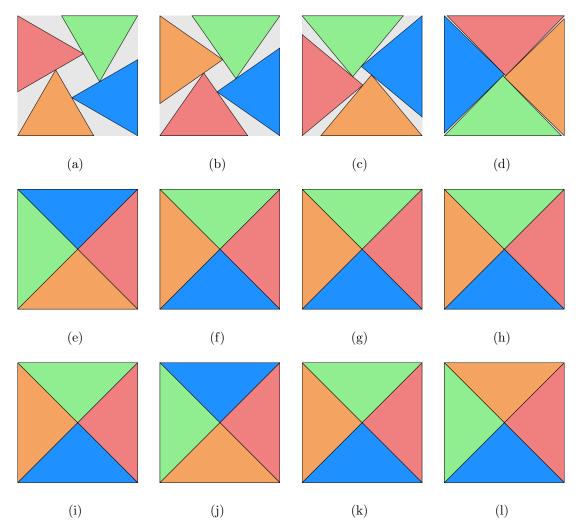


FIGURA C.4: 4 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T4-r00	C.4-(a)	1.577350	0.00%	69.62%
T4-r01	C.4-(b)	1.503069	10.00%	76.67%
T4-r02	C.4-(c)	1.422857	20.00%	85.55%
T4-r03	C.4-(d)	1.331961	30.00%	97.63%
T4-r04	C.4-(e)	1.316074	31.61%	100.00%
T4-r05	C.4-(f)	1.316074	31.61%	100.00%
T4-r06	C.4-(g)	1.316074	31.61%	100.00%
T4-r07	C.4-(h)	1.316074	31.61%	100.00%
T4-r08	C.4-(i)	1.316074	31.61%	100.00%
T4-r09	C.4-(j)	1.316074	31.61%	100.00%
T4-r10	C.4-(k)	1.316074	31.61%	100.00%
T4-rXX	C.4-(1)	1.316074	31.61%	100.00%

Tabla C.4: Información de Figura C.4

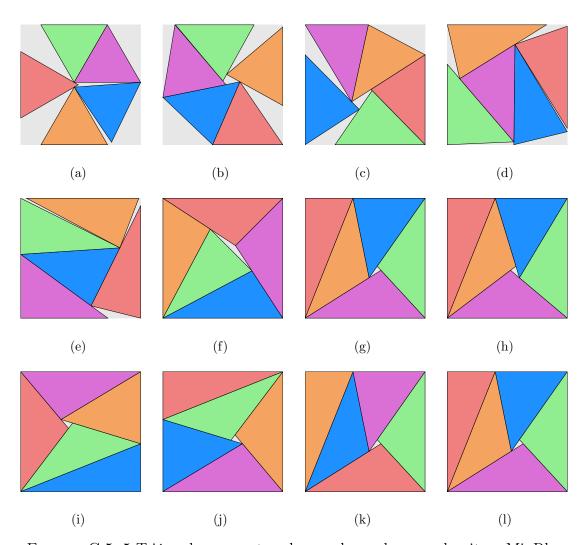


FIGURA C.5: 5 Triángulos en contenedor cuadrangular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T5-r00	C.5-(a)	1.803167	0.00%	66.59%
T5-r01	C.5-(b)	1.678430	10.00%	76.85%
T5-r02	C.5-(c)	1.599738	20.00%	84.60%
T5-r03	C.5-(d)	1.526322	30.00%	92.93%
T5-r04	C.5-(e)	1.496234	40.00%	96.71%
T5-r05	C.5-(f)	1.480803	48.08%	98.74%
T5-r06	C.5-(g)	1.473382	58.63%	99.73%
T5-r07	C.5-(h)	1.473382	58.63%	99.73%
T5-r08	C.5-(i)	1.473382	58.63%	99.73%
T5-r09	C.5-(j)	1.473382	58.63%	99.73%
T5-r10	C.5-(k)	1.473382	58.63%	99.73%
T5-rXX	C.5-(1)	1.473382	58.63%	99.73%

TABLA C.5: Información de Figura C.5

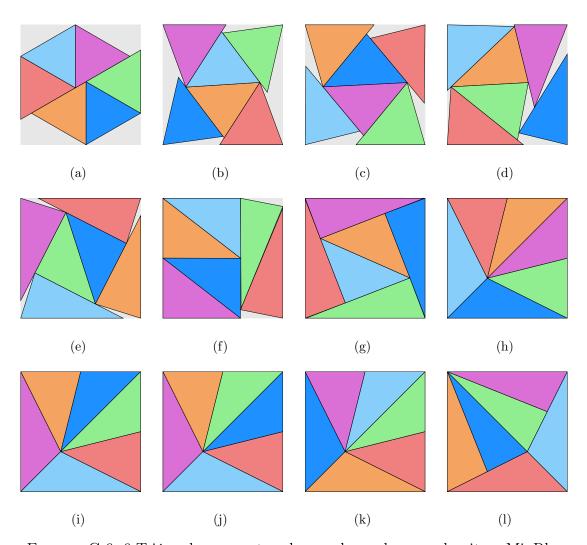


FIGURA C.6: 6 Triángulos en contenedor cuadrangular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T6-r00	C.6-(a)	1.901924	0.00%	71.82%
T6-r01	C.6-(b)	1.779807	10.00%	82.02%
T6-r02	C.6-(c)	1.705927	20.00%	89.28%
T6-r03	C.6-(d)	1.682972	30.00%	91.73%
T6-r04	C.6-(e)	1.640538	40.00%	96.53%
T6-r05	C.6-(f)	1.634989	50.00%	97.19%
T6-r06	C.6-(g)	1.613578	60.00%	99.79%
T6-r07	C.6-(h)	1.611854	61.19%	100.00%
T6-r08	C.6-(i)	1.611854	61.19%	100.00%
T6-r09	C.6-(j)	1.611854	61.19%	100.00%
T6-r10	C.6-(k)	1.611854	61.19%	100.00%
T6-rXX	C.6-(1)	1.611854	61.19%	100.00%

Tabla C.6: Información de Figura C.6

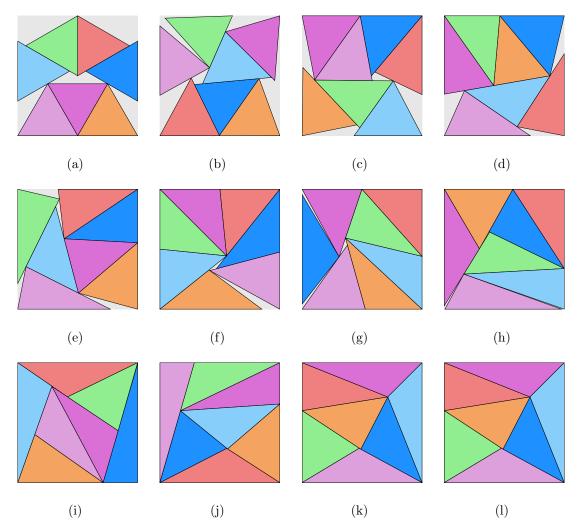


FIGURA C.7: 7 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T7-r00	C.7-(a)	1.999999	0.00%	75.78%
T7-r01	C.7-(b)	1.901219	10.00%	83.86%
T7-r02	C.7-(c)	1.828463	20.00%	90.66%
T7-r03	C.7-(d)	1.794247	30.00%	94.15%
T7-r04	C.7-(e)	1.779477	40.00%	95.72%
T7-r05	C.7-(f)	1.765206	50.00%	97.28%
T7-r06	C.7-(g)	1.755548	60.00%	98.35%
T7-r07	C.7-(h)	1.747196	69.69%	99.29%
T7-r08	C.7-(i)	1.741760	79.79%	99.91%
T7-r09	C.7-(j)	1.741318	80.45%	99.96%
T7-r10	C.7-(k)	1.741011	74.10%	100.00%
T7-rXX	C.7-(1)	1.741011	74.10%	100.00%

TABLA C.7: Información de Figura C.7

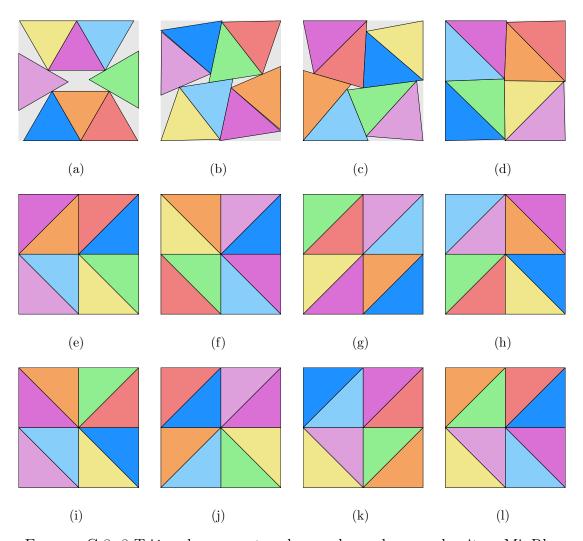


FIGURA C.8: 8 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T8-r00	C.8-(a)	2.098077	0.00%	78.70%
T8-r01	C.8-(b)	1.993902	9.88%	87.13%
T8-r02	C.8-(c)	1.924036	20.00%	93.58%
T8-r03	C.8-(d)	1.869717	30.00%	99.09%
T8-r04	C.8-(e)	1.861210	31.61%	100.00%
T8-r05	C.8-(f)	1.861210	31.61%	100.00%
T8-r06	C.8-(g)	1.861210	31.61%	100.00%
T8-r07	C.8-(h)	1.861210	31.61%	100.00%
T8-r08	C.8-(i)	1.861210	31.61%	100.00%
T8-r09	C.8-(j)	1.861210	31.61%	100.00%
T8-r10	C.8-(k)	1.861210	31.61%	100.00%
T8-rXX	C.8-(1)	1.861209	31.61%	100.00%

TABLA C.8: Información de Figura C.8

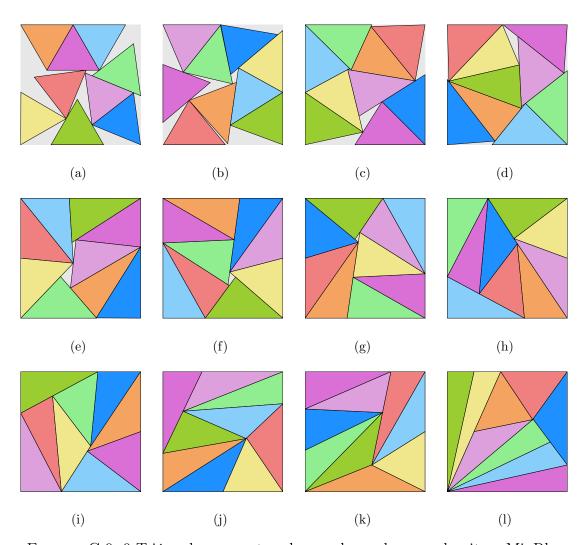


FIGURA C.9: 9 Triángulos en contenedor cuadrangular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T9-r00	C.9-(a)	2.287510	0.00%	74.48%
T9-r01	C.9-(b)	2.129741	10.00%	85.92%
T9-r02	C.9-(c)	2.033005	18.72%	94.29%
T9-r03	C.9-(d)	2.003269	29.92%	97.11%
T9-r04	C.9-(e)	1.987240	38.49%	98.68%
T9-r05	C.9-(f)	1.977460	50.00%	99.66%
T9-r06	C.9-(g)	1.975404	52.90%	99.87%
T9-r07	C.9-(h)	1.974135	58.04%	100.00%
T9-r08	C.9-(i)	1.974135	58.04%	100.00%
T9-r09	C.9-(j)	1.974116	76.65%	100.00%
T9-r10	C.9-(k)	1.974114	97.41%	100.00%
T9-rXX	C.9-(1)	1.974114	116.03%	100.00%

Tabla C.9: Información de Figura C.9

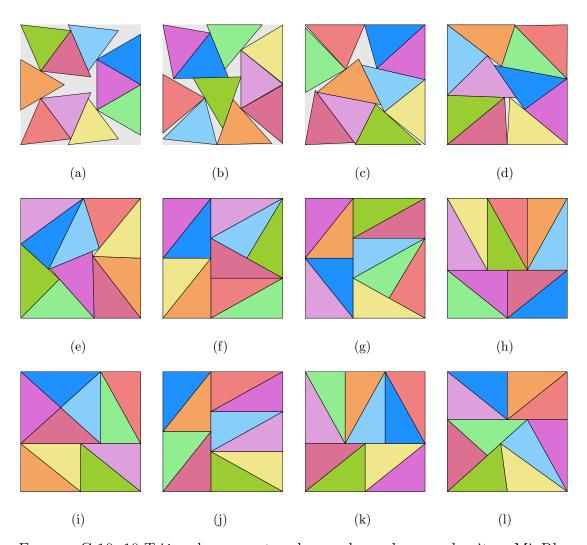


FIGURA C.10: 10 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T10-r00	C.10-(a)	2.377023	0.00%	76.64%
T10-r01	C.10-(b)	2.253724	10.00%	85.25%
T10-r02	C.10-(c)	2.169883	17.82%	91.97%
T10-r03	C.10-(d)	2.097280	30.00%	98.44%
T10-r04	C.10-(e)	2.082924	37.50%	99.81%
T10-r05	C.10-(f)	2.080894	42.83%	100.00%
T10-r06	C.10-(g)	2.080894	42.83%	100.00%
T10-r07	C.10-(h)	2.080895	42.83%	100.00%
T10-r08	C.10-(i)	2.080894	42.83%	100.00%
T10-r09	C.10-(j)	2.080894	42.83%	100.00%
T10-r10	C.10-(k)	2.080894	42.83%	100.00%
T10-rXX	C.10-(1)	2.080894	42.83%	100.00%

TABLA C.10: Información de Figura C.10

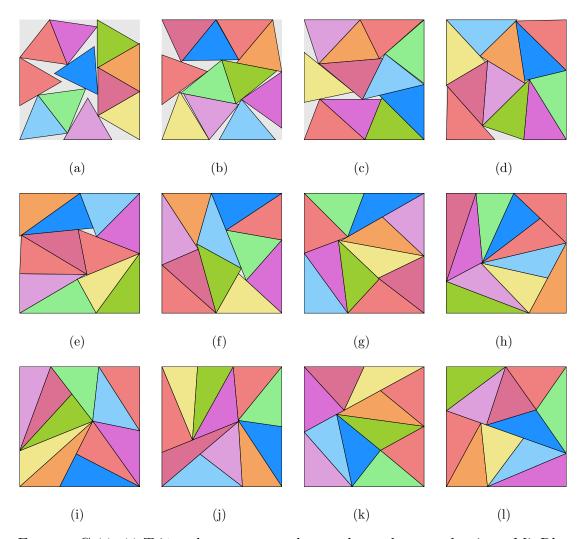


FIGURA C.11: 11 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T11-r00	C.11-(a)	2.490959	0.00%	76.76%
T11-r01	C.11-(b)	2.341937	10.00%	86.84%
T11-r02	C.11-(c)	2.245121	18.55%	94.50%
T11-r03	C.11-(d)	2.204739	29.99%	97.99%
T11-r04	C.11-(e)	2.190620	39.57%	99.26%
T11-r05	C.11-(f)	2.184958	47.50%	99.77%
T11-r06	C.11-(g)	2.182949	60.00%	99.96%
T11-r07	C.11-(h)	2.182471	69.46%	100.00%
T11-r08	C.11-(i)	2.182462	78.41%	100.00%
T11-r09	C.11-(j)	2.182462	82.54%	100.00%
T11-r10	C.11-(k)	2.182462	65.73%	100.00%
T11-rXX	C.11-(1)	2.182462	57.85%	100.00%

TABLA C.11: Información de Figura C.11

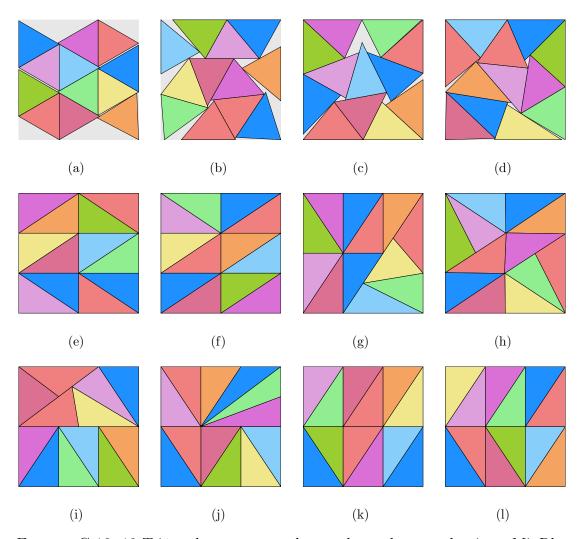


FIGURA C.12: 12 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T12-r00	C.12-(a)	2.562393	0.00%	79.14%
T12-r 01	C.12-(b)	2.435620	9.89%	87.59%
T12-r02	C.12-(c)	2.348981	17.52%	94.17%
T12-r03	C.12-(d)	2.300347	28.56%	98.20%
T12-r04	C.12-(e)	2.279507	36.98%	100.00%
T12-r05	C.12-(f)	2.279507	36.98%	100.00%
T12-r06	C.12-(g)	2.279507	51.97%	100.00%
T12-r07	C.12-(h)	2.279507	50.83%	100.00%
T12-r08	C.12-(i)	2.279507	51.95%	100.00%
T12-r09	C.12-(j)	2.279507	89.96%	100.00%
T12-r10	C.12-(k)	2.279507	36.98%	100.00%
T12-rXX	C.12-(1)	2.279507	36.98%	100.00%

TABLA C.12: Información de Figura C.12

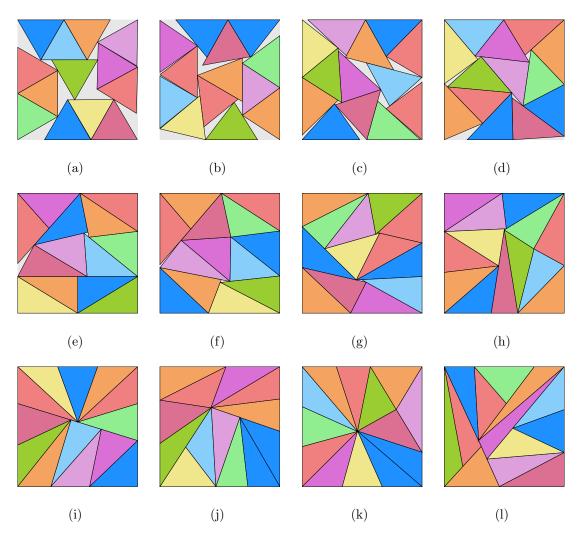


FIGURA C.13: 13 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T13-r00	C.13-(a)	2.595984	0.00%	83.53%
T13-r01	C.13-(b)	2.527491	9.63%	88.12%
T13-r02	C.13-(c)	2.452214	17.89%	93.61%
T13-r03	C.13-(d)	2.409329	30.00%	96.97%
T13-r04	C.13-(e)	2.382452	39.58%	99.17%
T13-r05	C.13-(f)	2.376369	41.55%	99.68%
T13-r06	C.13-(g)	2.373363	50.35%	99.93%
T13-r07	C.13-(h)	2.372673	66.71%	99.99%
T13-r08	C.13-(i)	2.372590	68.83%	100.00%
T13-r09	C.13-(j)	2.372590	85.84%	100.00%
T13-r10	C.13-(k)	2.372587	69.37%	100.00%
T13-rXX	C.13-(1)	2.372586	138.31%	100.00%

TABLA C.13: Información de Figura C.13

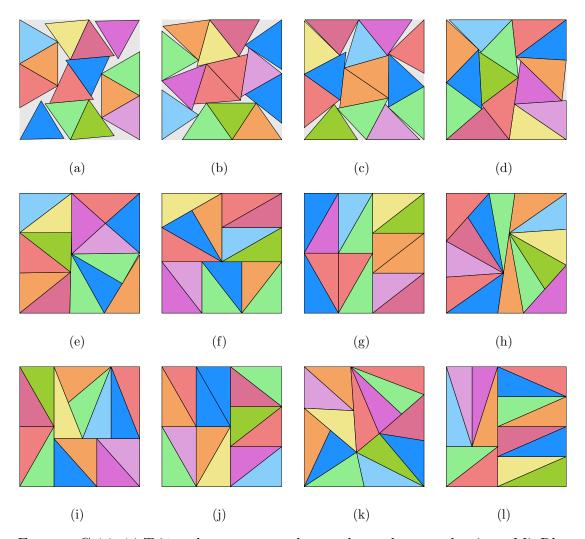


FIGURA C.14: 14 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T14-r00	C.14-(a)	2.726023	0.00%	81.58%
T14-r01	C.14-(b)	2.613743	8.40%	88.74%
T14-r02	C.14-(c)	2.558076	14.05%	92.64%
T14-r03	C.14-(d)	2.477646	29.92%	98.75%
T14-r04	C.14-(e)	2.464092	39.70%	99.84%
T14-r05	C.14-(f)	2.462149	41.79%	100.00%
T14-r06	C.14-(g)	2.462149	41.79%	100.00%
T14-r07	C.14-(h)	2.462149	66.74%	100.00%
T14-r08	C.14-(i)	2.462149	58.94%	100.00%
T14-r09	C.14-(j)	2.462149	41.79%	100.00%
T14-r10	C.14-(k)	2.462149	76.26%	100.00%
T14-rXX	C.14-(1)	2.462149	72.41%	100.00%

TABLA C.14: Información de Figura C.14

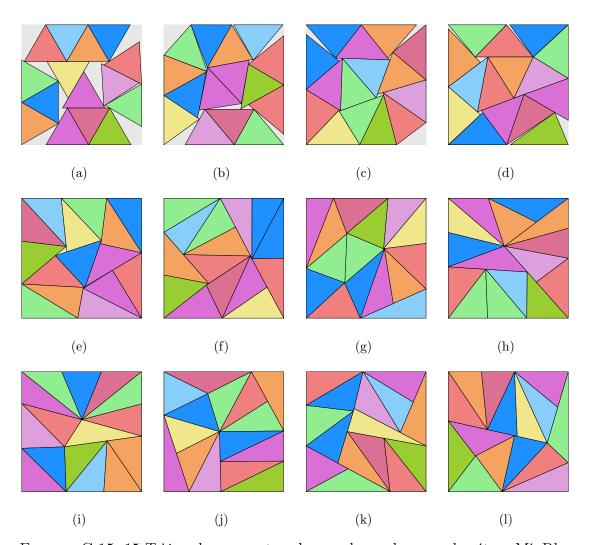


FIGURA C.15: 15 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T15-r00	C.15-(a)	2.830228	0.00%	81.09%
T15-r01	C.15-(b)	2.672097	9.73%	90.97%
T15-r02	C.15-(c)	2.607388	19.88%	95.54%
T15-r03	C.15-(d)	2.584891	24.83%	97.21%
T15-r04	C.15-(e)	2.552516	39.81%	99.69%
T15-r05	C.15-(f)	2.548630	45.09%	100.00%
T15-r06	C.15-(g)	2.548592	60.00%	100.00%
T15-r07	C.15-(h)	2.548566	69.89%	100.00%
T15-r08	C.15-(i)	2.548566	65.57%	100.00%
T15-r09	C.15-(j)	2.548566	86.09%	100.00%
T15-r10	C.15-(k)	2.548566	78.37%	100.00%
T15-rXX	C.15-(1)	2.548566	93.38%	100.00%

TABLA C.15: Información de Figura C.15

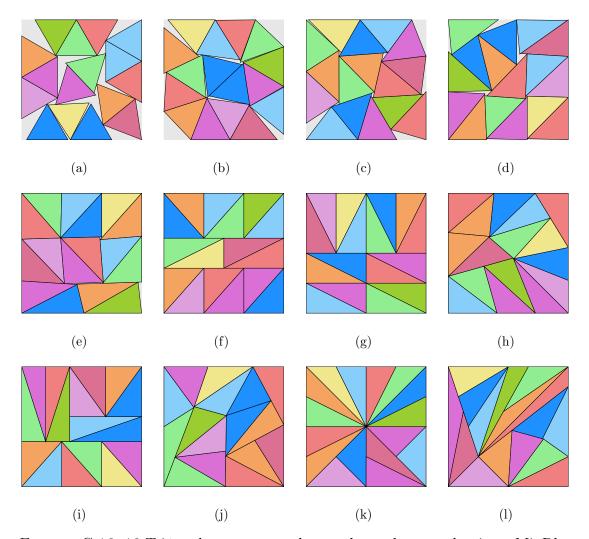


FIGURA C.16: 16 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T16-r00	C.16-(a)	2.900039	0.00%	82.38%
T16-r01	C.16-(b)	2.776700	9.36%	89.86%
T16-r02	C.16-(c)	2.707798	16.70%	94.49%
T16-r03	C.16-(d)	2.674170	30.00%	96.88%
T16-r04	C.16-(e)	2.640370	37.25%	99.38%
T16-r05	C.16-(f)	2.632149	47.14%	100.00%
T16-r06	C.16-(g)	2.632148	47.14%	100.00%
T16-r07	C.16-(h)	2.632148	70.00%	100.00%
T16-r08	C.16-(i)	2.632148	72.73%	100.00%
T16-r09	C.16-(j)	2.632148	85.66%	100.00%
T16-r10	C.16-(k)	2.632148	86.11%	100.00%
T16-rXX	C.16-(1)	2.632148	179.18%	100.00%

TABLA C.16: Información de Figura C.16

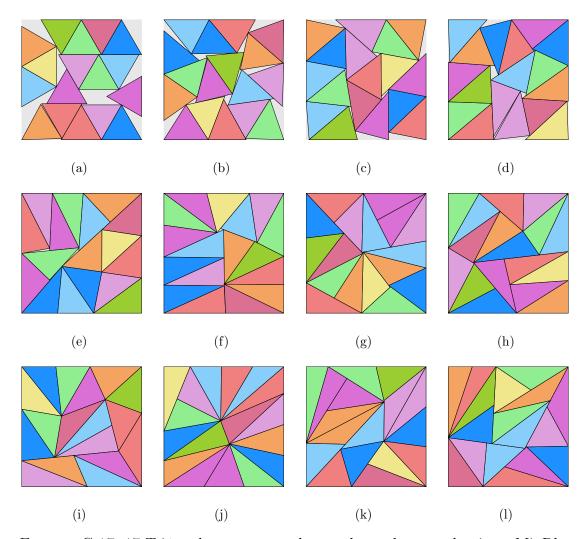


FIGURA C.17: 17 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T17-r00	C.17-(a)	2.982625	0.00%	82.75%
T17-r01	C.17-(b)	2.846256	9.86%	90.87%
T17-r02	C.17-(c)	2.777749	19.91%	95.40%
T17-r03	C.17-(d)	2.748619	29.95%	97.44%
T17-r04	C.17-(e)	2.719137	40.00%	99.56%
T17-r05	C.17-(f)	2.714325	49.83%	99.91%
T17-r06	C.17-(g)	2.713321	46.54%	99.99%
T17-r07	C.17-(h)	2.713176	54.23%	100.00%
T17-r08	C.17-(i)	2.713156	74.15%	100.00%
T17-r09	C.17-(j)	2.713156	88.36%	100.00%
T17-r10	C.17-(k)	2.713156	100.00%	100.00%
T17-rXX	C.17-(1)	2.713156	99.51%	100.00%

TABLA C.17: Información de Figura C.17

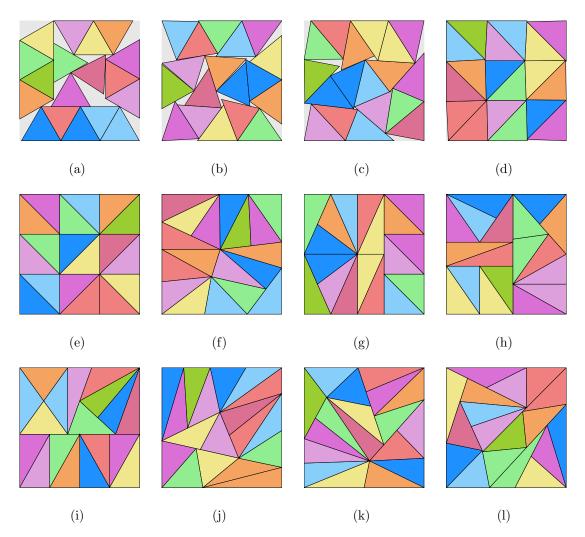


FIGURA C.18: 18 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T18-r00	C.18-(a)	3.051403	0.00%	83.71%
T18-r01	C.18-(b)	2.949590	9.04%	89.59%
T18-r02	C.18-(c)	2.869191	19.87%	94.68%
T18-r03	C.18-(d)	2.801201	29.99%	99.33%
T18-r04	C.18-(e)	2.791815	31.61%	100.00%
T18-r05	C.18-(f)	2.791815	49.89%	100.00%
T18-r06	C.18-(g)	2.791815	52.76%	100.00%
T18-r07	C.18-(h)	2.791815	64.85%	100.00%
T18-r08	C.18-(i)	2.791815	64.85%	100.00%
T18-r09	C.18-(j)	2.791815	89.88%	100.00%
T18-r10	C.18-(k)	2.791815	78.47%	100.00%
T18-rXX	C.18-(1)	2.791815	97.73%	100.00%

TABLA C.18: Información de Figura C.18

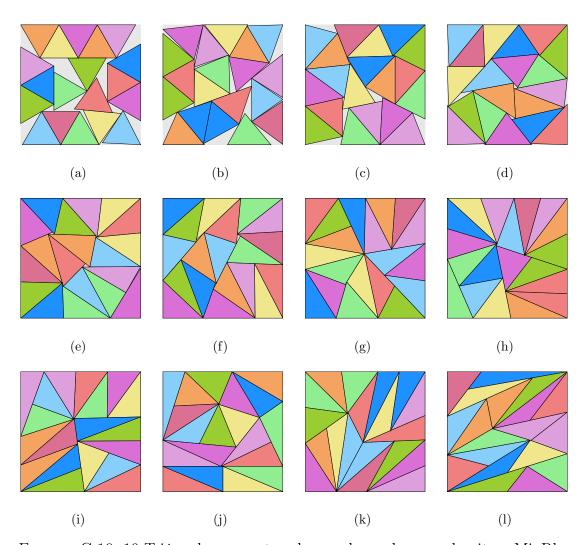


FIGURA C.19: 19 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T19-r00	C.19-(a)	3.129294	0.00 %	84.02%
T19-r01	C.19-(b)	3.034403	9.57%	89.35%
T19-r02	C.19-(c)	2.936497	18.05%	95.41%
T19-r03	C.19-(d)	2.893046	29.82%	98.30%
T19-r04	C.19-(e)	2.871728	39.62%	99.76%
T19-r05	C.19-(f)	2.870990	49.49%	99.81%
T19-r06	C.19-(g)	2.868427	57.51%	99.99%
T19-r07	C.19-(h)	2.868372	69.98%	100.00%
T19-r08	C.19-(i)	2.868318	77.70%	100.00%
T19-r09	C.19-(j)	2.868317	75.71%	100.00%
T19-r10	C.19-(k)	2.868317	90.45%	100.00%
T19-rXX	C.19-(1)	2.868317	141.40%	100.00%

TABLA C.19: Información de Figura C.19

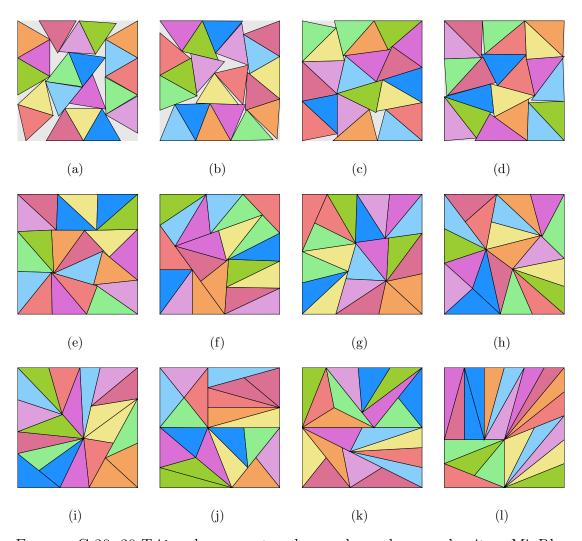


FIGURA C.20: 20 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T20-r00	C.20-(a)	3.230549	0.00%	82.98%
T20-r01	C.20-(b)	3.100441	9.85%	90.09%
T20-r02	C.20-(c)	2.992340	19.67%	96.72%
T20-r03	C.20-(d)	2.973208	29.47%	97.97%
T20-r04	C.20-(e)	2.943819	34.07%	99.93%
T20-r05	C.20-(f)	2.942879	49.80%	100.00%
T20-r06	C.20-(g)	2.942842	54.00%	100.00%
T20-r07	C.20-(h)	2.942834	69.65%	100.00%
T20-r08	C.20-(i)	2.942834	78.24%	100.00%
T20-r09	C.20-(j)	2.942831	83.13%	100.00%
T20-r10	C.20-(k)	2.942831	97.41%	100.00%
T20-rXX	C.20-(1)	2.942831	129.84%	100.00%

TABLA C.20: Información de Figura C.20

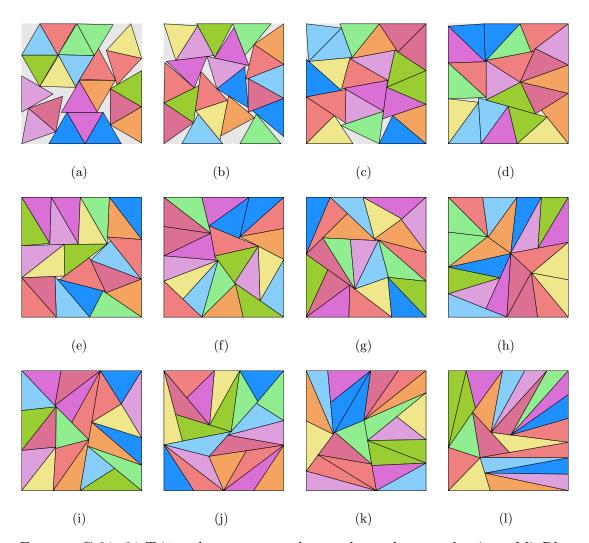


FIGURA C.21: 21 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T21-r00	C.21-(a)	3.318623	0.00%	82.57%
T21-r01	C.21-(b)	3.209386	9.35%	88.28%
T21-r02	C.21-(c)	3.071461	19.98%	96.39%
T21-r03	C.21-(d)	3.032053	29.50%	98.91%
T21-r04	C.21-(e)	3.025751	36.26%	99.32%
T21-r05	C.21-(f)	3.018173	48.47%	99.82%
T21-r06	C.21-(g)	3.015903	58.43%	99.97%
T21-r07	C.21-(h)	3.015512	60.83%	100.00%
T21-r08	C.21-(i)	3.015513	75.98%	100.00%
T21-r09	C.21-(j)	3.015513	90.00%	100.00%
T21-r10	C.21-(k)	3.015509	99.03%	100.00%
T21-rXX	C.21-(1)	3.015504	125.25%	100.00%

TABLA C.21: Información de Figura C.21

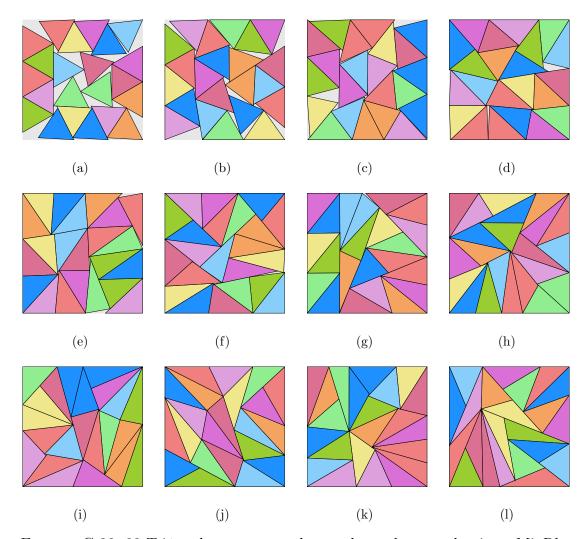


FIGURA C.22: 22 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T22-r00	C.22-(a)	3.378529	0.00%	83.46%
T22-r01	C.22-(b)	3.224122	9.80%	91.64%
T22-r02	C.22-(c)	3.154985	16.60%	95.70%
T22-r03	C.22-(d)	3.110185	29.38%	98.48%
T22-r04	C.22-(e)	3.099773	38.88%	99.14%
T22-r05	C.22-(f)	3.093650	46.63%	99.54%
T22-r06	C.22-(g)	3.090317	58.30%	99.75%
T22-r07	C.22-(h)	3.087058	63.19%	99.96%
T22-r08	C.22-(i)	3.086666	69.01%	99.99%
T22-r09	C.22-(j)	3.086508	79.77%	100.00%
T22-r10	C.22-(k)	3.086568	74.34%	99.99%
T22-rXX	C.22-(1)	3.086476	120.42%	100.00%

TABLA C.22: Información de Figura C.22

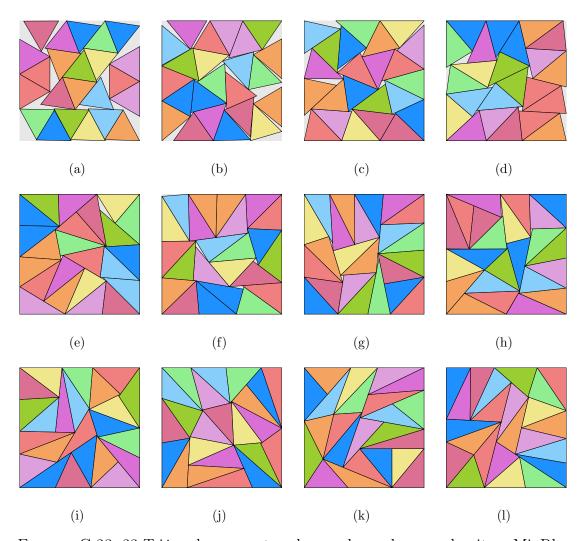


FIGURA C.23: 23 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T23-r00	C.23-(a)	3.438179	0.00%	84.25%
T23-r01	C.23-(b)	3.316223	10.00%	90.56%
T23-r02	C.23-(c)	3.226006	18.54%	95.70%
T23-r03	C.23-(d)	3.205501	24.41%	96.93%
T23-r04	C.23-(e)	3.168268	40.00%	99.22%
T23-r05	C.23-(f)	3.168128	38.83%	99.23%
T23-r06	C.23-(g)	3.160193	49.09%	99.72%
T23-r07	C.23-(h)	3.160194	57.35%	99.72%
T23-r08	C.23-(i)	3.156075	74.15%	99.98%
T23-r09	C.23-(j)	3.156071	71.40%	99.99%
T23-r10	C.23-(k)	3.155835	96.29%	100.00%
T23-rXX	C.23-(1)	3.155835	77.96%	100.00%

Tabla C.23: Información de Figura C.23

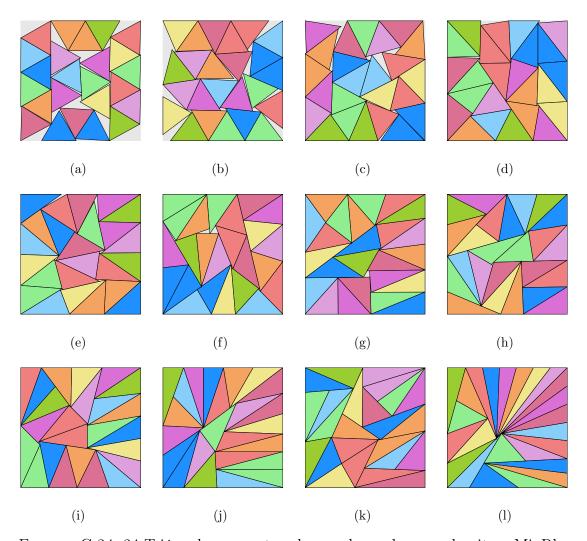


FIGURA C.24: 24 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T24-r00	C.24-(a)	3.475544	0.00%	86.03%
T24-r01	C.24-(b)	3.385068	7.07%	90.69%
T24-r02	C.24-(c)	3.294095	20.00%	95.77%
T24-r03	C.24-(d)	3.239451	30.00%	99.03%
T24-r04	C.24-(e)	3.237930	35.23%	99.12%
T24-r05	C.24-(f)	3.233728	50.00%	99.38%
T24-r06	C.24-(g)	3.228117	57.18%	99.73%
T24-r07	C.24-(h)	3.224565	61.57%	99.95%
T24-r08	C.24-(i)	3.224448	66.83%	99.95%
T24-r09	C.24-(j)	3.223805	88.96%	99.99%
T24-r10	C.24-(k)	3.223805	93.87%	99.99%
T24-rXX	C.24-(1)	3.223710	168.58%	100.00%

Tabla C.24: Información de Figura C.24

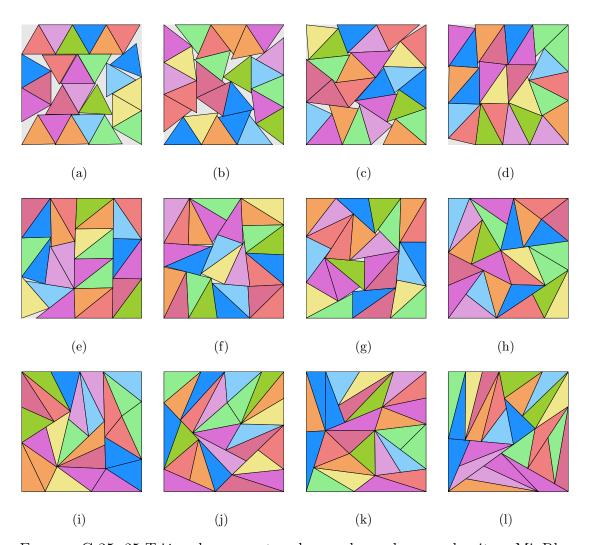


FIGURA C.25: 25 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T25-r00	C.25-(a)	3.544891	0.00%	86.15%
T25-r01	C.25-(b)	3.449059	7.90%	91.00%
T25-r02	C.25-(c)	3.349620	19.96%	96.48%
T25-r03	C.25-(d)	3.315578	29.93%	98.47%
T25-r04	C.25-(e)	3.304502	35.99%	99.14%
T25-r05	C.25-(f)	3.302464	41.72%	99.26%
T25-r06	C.25-(g)	3.300749	44.84%	99.36%
T25-r07	C.25-(h)	3.290186	66.54%	100.00%
T25-r08	C.25-(i)	3.290187	80.00%	100.00%
T25-r09	C.25-(j)	3.290187	89.80%	100.00%
T25-r10	C.25-(k)	3.290187	97.13%	100.00%
T25-rXX	C.25-(1)	3.290185	146.76%	100.00%

Tabla C.25: Información de Figura C.25

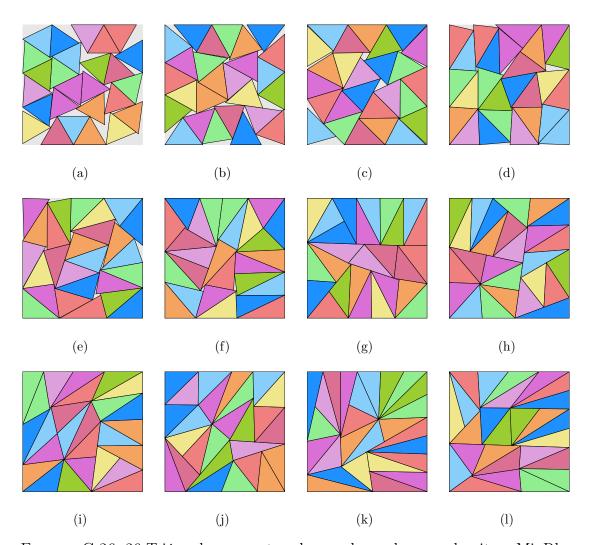


FIGURA C.26: 26 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T26-r00	C.26-(a)	3.677648	0.00%	83.24%
T26-r01	C.26-(b)	3.488063	10.00%	92.53%
T26-r02	C.26-(c)	3.414504	15.89%	96.56%
T26-r03	C.26-(d)	3.394212	29.69%	97.72%
T26-r04	C.26-(e)	3.388084	33.03%	98.08%
T26-r05	C.26-(f)	3.360974	49.01%	99.67%
T26-r06	C.26-(g)	3.355748	60.00%	99.98%
T26-r07	C.26-(h)	3.355450	62.12%	99.99%
T26-r08	C.26-(i)	3.355380	79.72%	100.00%
T26-r09	C.26-(j)	3.355358	89.53%	100.00%
T26-r10	C.26-(k)	3.355378	100.00%	100.00%
T26-rXX	C.26-(1)	3.355362	100.88%	100.00%

Tabla C.26: Información de Figura C.26

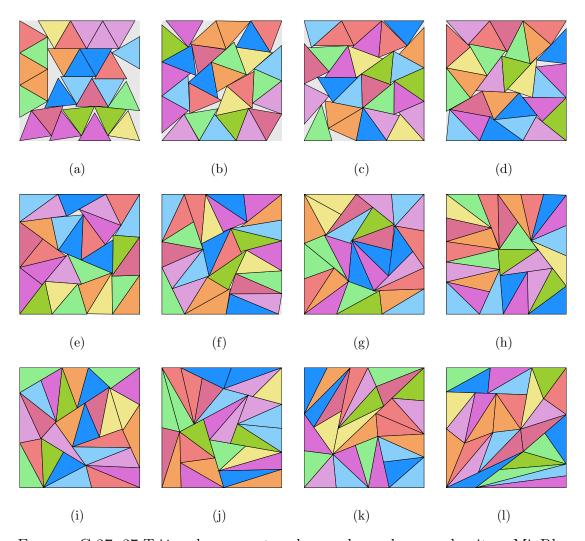


FIGURA C.27: 27 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T27-r00	C.27-(a)	3.724055	0.00%	84.30%
T27-r01	C.27-(b)	3.573188	10.00%	91.57%
T27-r02	C.27-(e)	3.524951	18.40%	94.09%
T27-r03	C.27-(d)	3.464474	25.21%	97.41%
T27-r04	C.27-(e)	3.431676	36.94%	99.28%
T27-r05	C.27-(f)	3.430220	49.92%	99.36%
T27-r06	C.27-(g)	3.423408	57.27%	99.76%
T27-r07	C.27-(h)	3.421619	63.86%	99.86%
T27-r08	C.27-(i)	3.419362	79.86%	99.99%
T27-r09	C.27-(j)	3.419262	89.91%	100.00%
T27-r10	C.27-(k)	3.419261	99.82%	100.00%
T27-rXX	C.27-(1)	3.419261	166.04%	100.00%

Tabla C.27: Información de Figura C.27

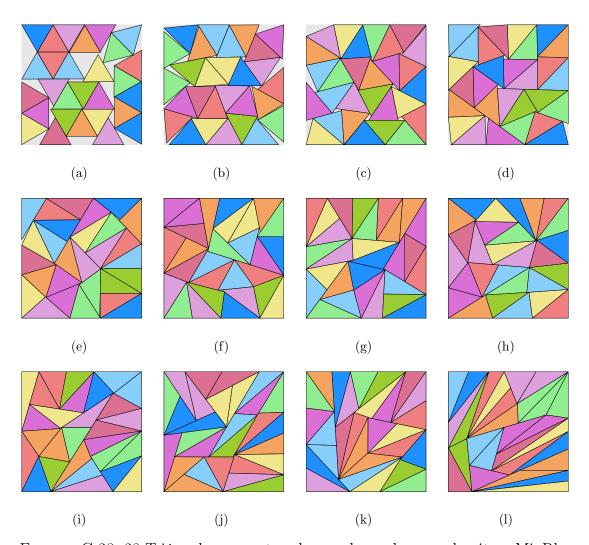


FIGURA C.28: 28 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T28-r00	C.28-(a)	3.833410	0.00%	82.51%
T28-r01	C.28-(b)	3.606384	20.00%	93.22%
T28-r02	C.28-(c)	3.539887	30.00%	96.76%
T28-r03	C.28-(d)	3.512137	40.00%	98.29%
T28-r04	C.28-(e)	3.488341	50.00%	99.64%
T28-r05	C.28-(f)	3.483713	60.00%	99.90%
T28-r06	C.28-(g)	3.482297	70.00%	99.98%
T28-r07	C.28-(h)	3.482076	79.95%	100.00%
T28-r08	C.28-(i)	3.482130	88.82%	99.99%
T28-r09	C.28-(j)	3.482108	100.00%	99.99%
T28-r10	C.28-(k)	3.482184	186.72%	99.99%
T28-rXX	C.28-(1)	3.482005	0.00%	100.00%

Tabla C.28: Información de Figura C.28

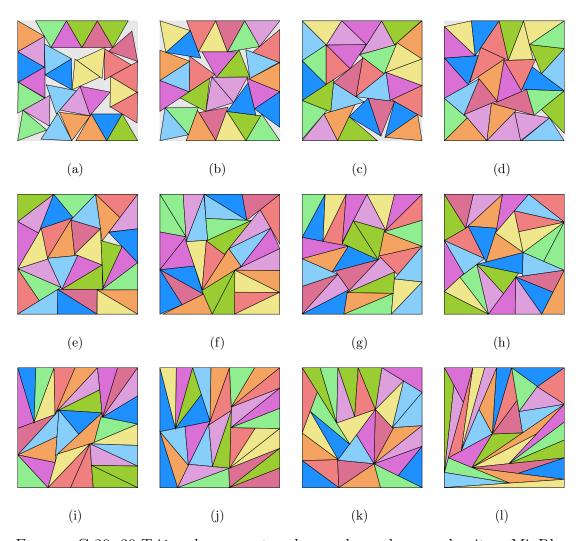


FIGURA C.29: 29 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T29-r00	C.29-(a)	3.882128	0.00%	83.32%
T29-r01	C.29-(b)	3.712966	9.99%	91.09%
T29-r02	C.29-(c)	3.607856	20.00%	96.47%
T29-r03	C.29-(d)	3.587139	26.76%	97.59%
T29-r04	C.29-(e)	3.560957	39.89%	99.03%
T29-r05	C.29-(f)	3.555205	47.90%	99.35%
T29-r06	C.29-(g)	3.548194	58.15%	99.74%
T29-r07	C.29-(h)	3.548195	51.28%	99.74%
T29-r08	C.29-(i)	3.545268	79.35%	99.91%
T29-r09	C.29-(j)	3.543771	88.98%	99.99%
T29-r10	C.29-(k)	3.543749	92.90%	99.99%
T29-rXX	C.29-(1)	3.543641	255.20%	100.00%

Tabla C.29: Información de Figura C.29

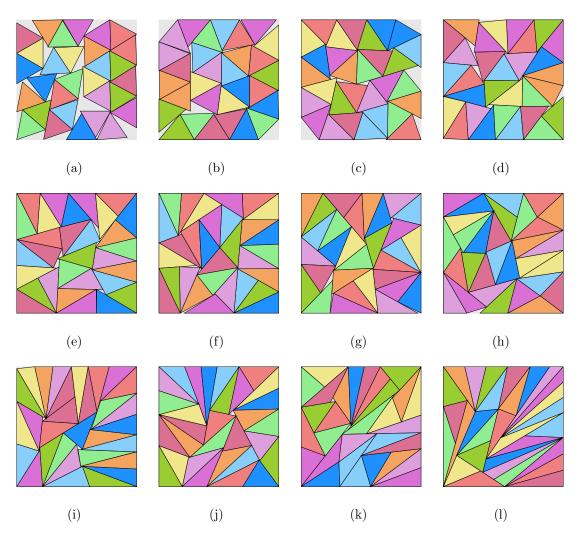


FIGURA C.30: 30 Triángulos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T30-r00	C.30-(a)	3.941169	0.00%	83.63%
T30-r01	C.30-(b)	3.732364	10.00%	93.25%
T30-r02	C.30-(e)	3.713745	15.40%	94.19%
T30-r03	C.30-(d)	3.641583	29.99%	97.96%
T30-r04	C.30-(e)	3.622406	40.00%	99.00%
T30-r05	C.30-(f)	3.613516	49.52%	99.49%
T30-r06	C.30-(g)	3.617701	47.15%	99.26%
T30-r07	C.30-(h)	3.609955	66.81%	99.68%
T30-r08	C.30-(i)	3.612359	74.21%	99.55%
T30-r09	C.30-(j)	3.607788	86.65%	99.80%
T30-r10	C.30-(k)	3.608566	100.00%	99.76%
T30-rXX	C.30-(1)	3.604222	184.64%	100.00%

TABLA C.30: Información de Figura C.30

APÉNDICE D

Triángulos en Círculos Contenedor Mínimo

D.1 RESULTADOS DEL ALGORITMO DE MÍNIMO CONTENEDOR EN EL CONTENEDOR CIRCULAR

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínimo Contenedor en un contenedor circular. El objetivo es empaquetar triángulos considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 30 triángulos dentro del contenedor circular.

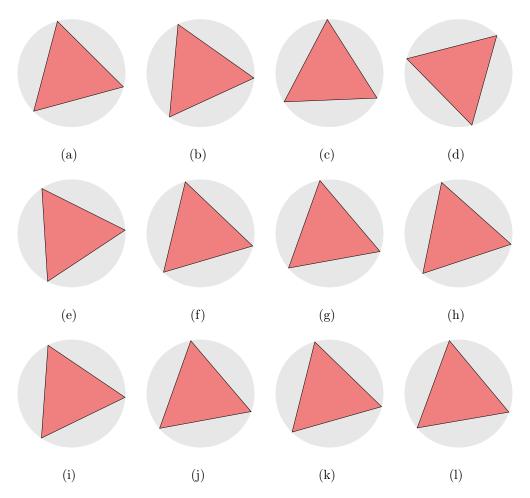


FIGURA D.1: 1 Triángulo en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T1-r00	D.1-(a)	0.577350	0.00%	41.35%
T1-r01	D.1-(b)	0.577350	10.00%	41.35%
T1-r02	D.1-(c)	0.577350	20.00%	41.35%
T1-r03	D.1-(d)	0.577350	30.00%	41.35%
T1-r04	D.1-(e)	0.577339	40.00%	41.35%
T1-r05	D.1-(f)	0.577337	50.00%	41.35%
T1-r06	D.1-(g)	0.577350	60.00%	41.35%
T1-r07	D.1-(h)	0.577339	70.00%	41.35%
T1-r08	D.1-(i)	0.577350	80.00%	41.35%
T1-r09	D.1-(j)	0.577350	90.00%	41.35%
T1-r10	D.1-(k)	0.577350	100.00%	41.35%
T1-rXX	D.1-(1)	0.577350	∞	41.35%

TABLA D.1: Información de Figura D.1

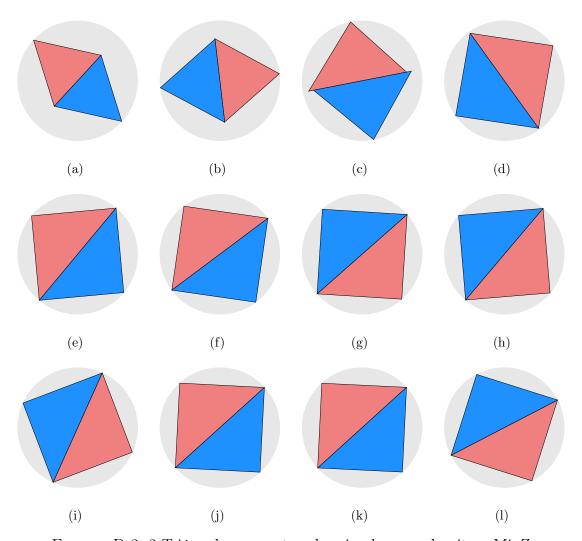


FIGURA D.2: 2 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T2-r00	D.2-(a)	0.866025	0.00%	36.76%
T2-r01	D.2-(b)	0.787296	10.00%	44.47%
T2-r02	D.2-(c)	0.721688	20.00%	52.93%
T2-r03	D.2-(d)	0.666163	30.00%	62.12%
T2-r04	D.2-(e)	0.658037	40.00%	63.66%
T2-r05	D.2-(f)	0.658037	50.00%	63.66%
T2-r06	D.2-(g)	0.658037	60.00%	63.66%
T2-r07	D.2-(h)	0.658037	70.00%	63.66%
T2-r08	D.2-(i)	0.658037	80.00%	63.66%
T2-r09	D.2-(j)	0.658037	90.00%	63.66%
T2-r10	D.2-(k)	0.658038	100.00%	63.66%
T2-rXX	D.2-(1)	0.658037	∞	63.66%

TABLA D.2: Información de Figura D.2

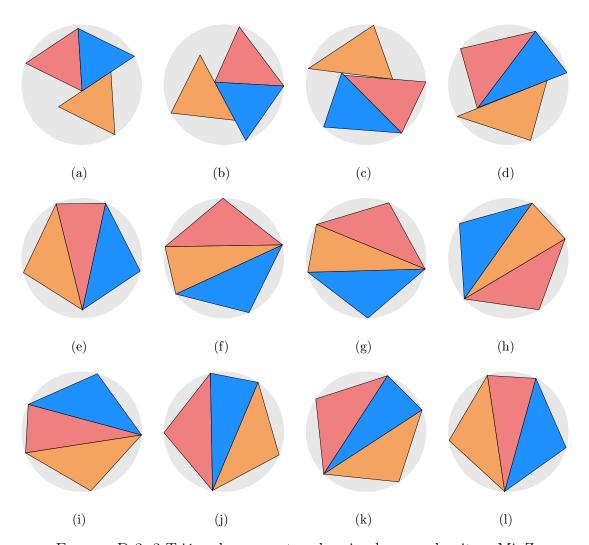


FIGURA D.3: 3 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T3-r00	D.3-(a)	0.953512	0.00%	45.48%
T3-r01	D.3-(b)	0.890623	10.00%	52.13%
T3-r02	D.3-(c)	0.846529	20.00%	57.70%
T3-r03	D.3-(d)	0.807002	30.00%	63.49%
T3-r04	D.3-(e)	0.769012	40.00%	69.92%
T3-r05	D.3-(f)	0.747142	50.00%	74.07%
T3-r06	D.3-(g)	0.747142	60.00%	74.07%
T3-r07	D.3-(h)	0.747142	70.00%	74.07%
T3-r08	D.3-(i)	0.747142	80.00%	74.07%
T3-r09	D.3-(j)	0.747142	90.00%	74.07%
T3-r10	D.3-(k)	0.747142	100.00%	74.07%
T3-rXX	D.3-(1)	0.747142	∞	74.07%

Tabla D.3: Información de Figura D.3

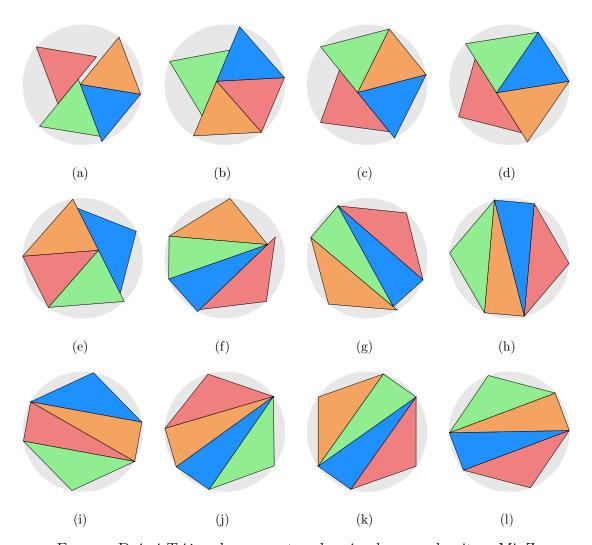


FIGURA D.4: 4 Triángulos en contenedor circular con algoritmo MinZ

${f Instancia}$	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T4-r00	D.4-(a)	0.980598	0.00%	57.34%
T4-r01	D.4-(b)	0.926812	10.00%	64.18%
T4-r02	D.4-(c)	0.906700	20.00%	67.06%
T4-r03	D.4-(d)	0.890957	30.00%	69.45%
T4-r04	D.4-(e)	0.878594	40.00%	71.42%
T4-r05	D.4-(f)	0.858933	50.00%	74.73%
T4-r06	D.4-(g)	0.834019	60.00%	79.26%
T4-r07	D.4-(h)	0.830011	70.00%	80.03%
T4-r08	D.4-(i)	0.830011	80.00%	80.03%
T4-r09	D.4-(j)	0.830011	90.00%	80.03%
T4-r10	D.4-(k)	0.830011	100.00%	80.03%
T4-rXX	D.4-(1)	0.830011	∞	80.03%

Tabla D.4: Información de Figura D.4

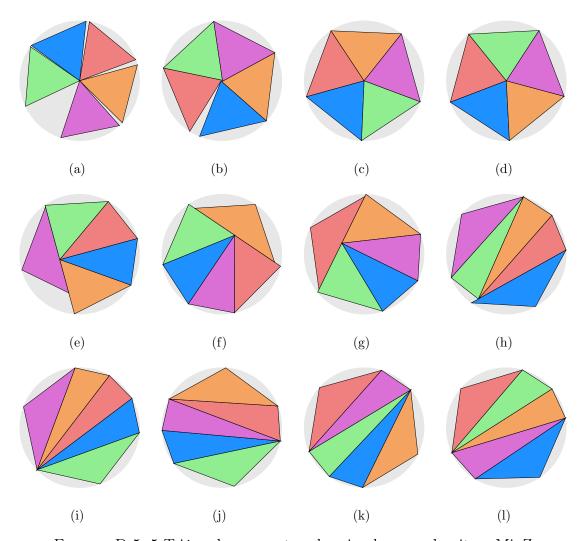


FIGURA D.5: 5 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T5-r00	D.5-(a)	1.000000	0.00%	68.92%
T5-r01	D.5-(b)	0.960273	10.00%	74.74%
T5-r02	D.5-(c)	0.954250	20.00%	75.68%
T5-r03	D.5-(d)	0.954250	30.00%	75.68%
T5-r04	D.5-(e)	0.943869	40.00%	77.36%
T5-r05	D.5-(f)	0.933276	50.00%	79.12%
T5-r06	D.5-(g)	0.924745	60.00%	80.59%
T5-r07	D.5-(h)	0.912038	70.00%	82.85%
T5-r08	D.5-(i)	0.906639	80.00%	83.84%
T5-r09	D.5-(j)	0.906639	90.00%	83.84%
T5-r10	D.5-(k)	0.906639	100.00%	83.84%
T5-rXX	D.5-(1)	0.906639	∞	83.84%

Tabla D.5: Información de Figura D.5

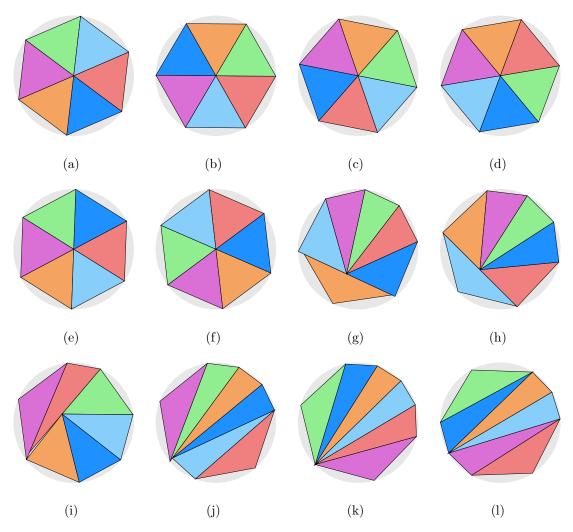


FIGURA D.6: 6 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T6-r00	D.6-(a)	1.000000	0.00%	82.70%
T6-r01	D.6-(b)	1.000000	10.00%	82.70%
T6-r02	D.6-(c)	1.000000	20.00%	82.70%
T6-r03	D.6-(d)	1.000000	30.00%	82.70%
T6-r04	D.6-(e)	1.000000	40.00%	82.70%
T6-r05	D.6-(f)	1.000000	50.00%	82.70%
T6-r06	D.6-(g)	0.992393	60.00%	83.97%
T6-r07	D.6-(h)	0.985105	70.00%	85.22%
T6-r08	D.6-(i)	0.983789	80.00%	85.45%
T6-r09	D.6-(j)	0.980567	90.00%	86.01%
T6-r10	D.6-(k)	0.977938	100.00%	86.47%
T6-rXX	D.6-(1)	0.977938	∞	86.47%

Tabla D.6: Información de Figura D.6

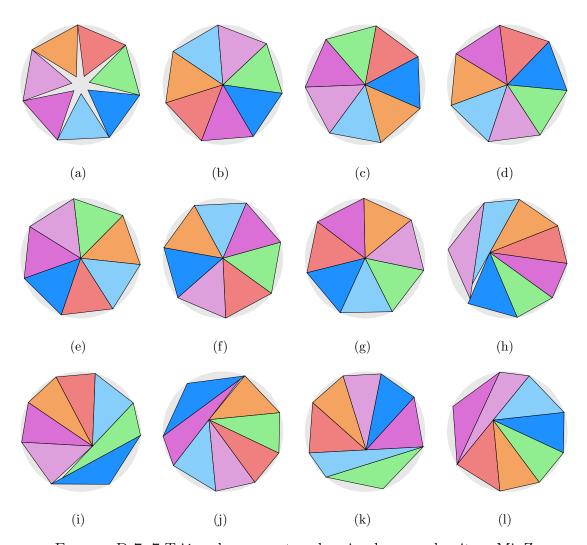


FIGURA D.7: 7 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T7-r00	D.7-(a)	1.152382	0.00%	72.65%
T7-r01	D.7-(b)	1.052468	10.00%	87.10%
T7-r02	D.7-(c)	1.052468	20.00%	87.10%
T7-r03	D.7-(d)	1.052468	30.00%	87.10%
T7-r04	D.7-(e)	1.052468	40.00%	87.10%
T7-r05	D.7-(f)	1.052468	50.00%	87.10%
T7-r06	D.7-(g)	1.052468	60.00%	87.10%
T7-r07	D.7-(h)	1.052275	70.00%	87.13%
T7-r08	D.7-(i)	1.046464	80.00%	88.10%
T7-r09	D.7-(j)	1.044551	90.00%	88.43%
T7-r10	D.7-(k)	1.042906	100.00%	88.71%
T7-rXX	D.7-(1)	1.042901	∞	88.71%

TABLA D.7: Información de Figura D.7

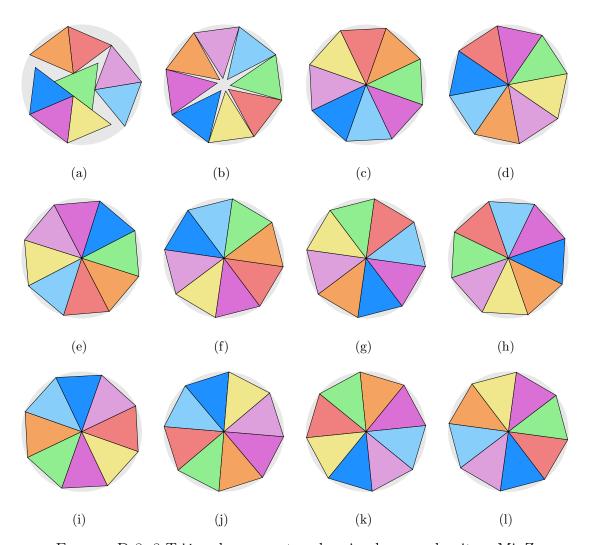


FIGURA D.8: 8 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T8-r00	D.8-(a)	1.263371	0.00%	69.08%
T8-r01	D.8-(b)	1.175907	10.00%	79.74%
T8-r02	D.8-(c)	1.106684	20.00%	90.03%
T8-r03	D.8-(d)	1.106682	30.00%	90.03%
T8-r04	D.8-(e)	1.106682	40.00%	90.03%
T8-r05	D.8-(f)	1.106682	50.00%	90.03%
T8-r06	D.8-(g)	1.106682	60.00%	90.03%
T8-r07	D.8-(h)	1.106682	70.00%	90.03%
T8-r08	D.8-(i)	1.106682	80.00%	90.03%
T8-r09	D.8-(j)	1.106682	90.00%	90.03%
T8-r10	D.8-(k)	1.106682	100.00%	90.03%
T8-rXX	D.8-(1)	1.106682	∞	90.03%

Tabla D.8: Información de Figura D.8

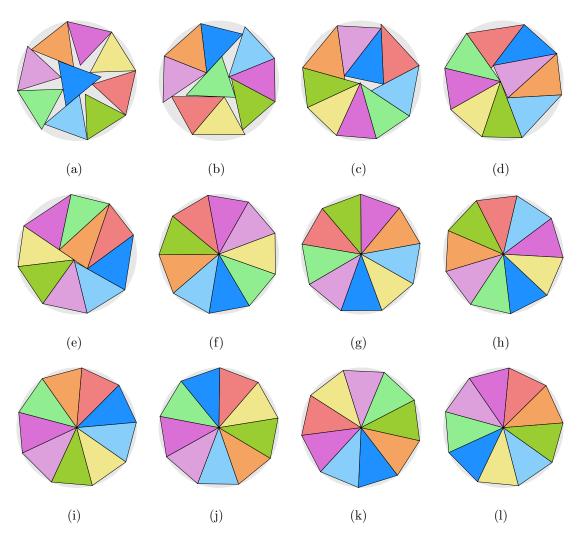


FIGURA D.9: 9 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T9-r00	D.9-(a)	1.314753	0.00%	71.76%
T9-r01	D.9-(b)	1.250029	10.00%	79.39%
T9-r02	D.9-(c)	1.194824	20.00%	86.89%
T9-r03	D.9-(d)	1.181564	30.00%	88.85%
T9-r04	D.9-(e)	1.178439	40.00%	89.33%
T9-r05	D.9-(f)	1.160731	50.00%	92.07%
T9-r06	D.9-(g)	1.160731	60.00%	92.07%
T9-r07	D.9-(h)	1.160731	70.00%	92.07%
T9-r08	D.9-(i)	1.160731	80.00%	92.07%
T9-r09	D.9-(j)	1.160731	90.00%	92.07%
T9-r10	D.9-(k)	1.160731	100.00%	92.07%
T9-rXX	D.9-(1)	1.160731	∞	92.07%

Tabla D.9: Información de Figura D.9

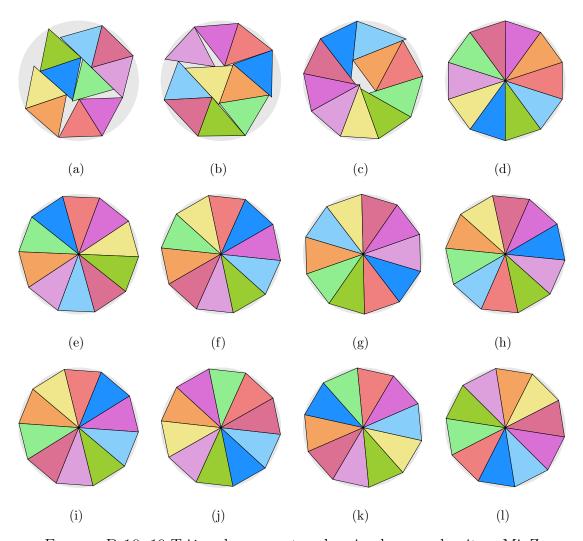


FIGURA D.10: 10 Triángulos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T10-r00	D.10-(a)	1.384693	0.00 %	71.89%
T10-r01	D.10-(b)	1.305507	10.00%	80.87%
T10-r02	D.10-(c)	1.249530	20.00%	88.28%
T10-r03	D.10-(d)	1.213833	30.00%	93.55%
T10-r04	D.10-(e)	1.213833	40.00%	93.55%
T10-r05	D.10-(f)	1.213828	50.00%	93.55%
T10-r06	D.10-(g)	1.213825	60.00%	93.55%
T10-r07	D.10-(h)	1.213825	70.00%	93.55%
T10-r08	D.10-(i)	1.213825	80.00%	93.55%
T10-r09	D.10-(j)	1.213825	90.00%	93.55%
T10-r10	D.10-(k)	1.213825	100.00%	93.55%
T10-rXX	D.10-(1)	1.213825	∞	93.55%

Tabla D.10: Información de Figura D.10

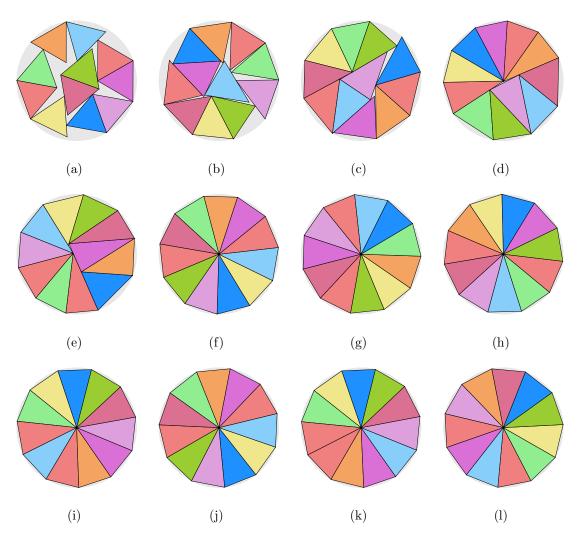


FIGURA D.11: 11 Triángulos en contenedor circular con algoritmo ${
m MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T11-r00	D.11-(a)	1.466988	0.00%	70.45%
T11-r01	D.11-(b)	1.368544	10.00%	80.95%
T11-r02	D.11-(c)	1.308899	20.00%	88.50%
T11-r03	D.11-(d)	1.278204	30.00%	92.80%
T11-r04	D.11-(e)	1.275904	40.00%	93.13%
T11-r05	D.11-(f)	1.265648	50.00%	94.65%
T11-r06	D.11-(g)	1.265642	60.00%	94.65%
T11-r07	D.11-(h)	1.265642	70.00%	94.65%
T11-r08	D.11-(i)	1.265642	80.00%	94.65%
T11-r09	D.11-(j)	1.265642	90.00%	94.65%
T11-r10	D.11-(k)	1.265642	100.00%	94.65%
T11-rXX	D.11-(1)	1.265642	∞	94.65%

TABLA D.11: Información de Figura D.11

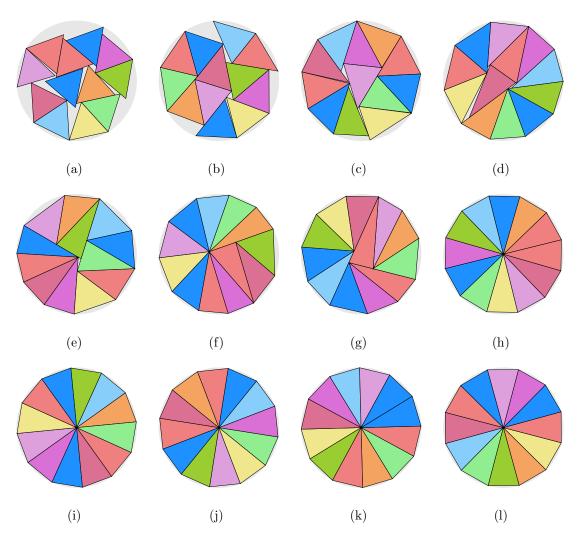


FIGURA D.12: 12 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T12-r00	D.12-(a)	1.507145	0.00%	72.82%
T12-r01	D.12-(b)	1.409991	10.00%	83.20%
T12-r02	D.12-(c)	1.357127	20.00%	89.80%
T12-r03	D.12-(d)	1.340722	30.00%	92.01%
T12-r04	D.12-(e)	1.336330	40.00%	92.62%
T12-r05	D.12-(f)	1.324898	50.00%	94.23%
T12-r06	D.12-(g)	1.323433	60.00%	94.43%
T12-r07	D.12-(h)	1.316074	70.00%	95.49%
T12-r08	D.12-(i)	1.316074	80.00%	95.49%
T12-r09	D.12-(j)	1.316074	90.00%	95.49%
T12-r10	D.12-(k)	1.316074	100.00%	95.49%
T12-rXX	D.12-(1)	1.316074	∞	95.49%

Tabla D.12: Información de Figura D.12

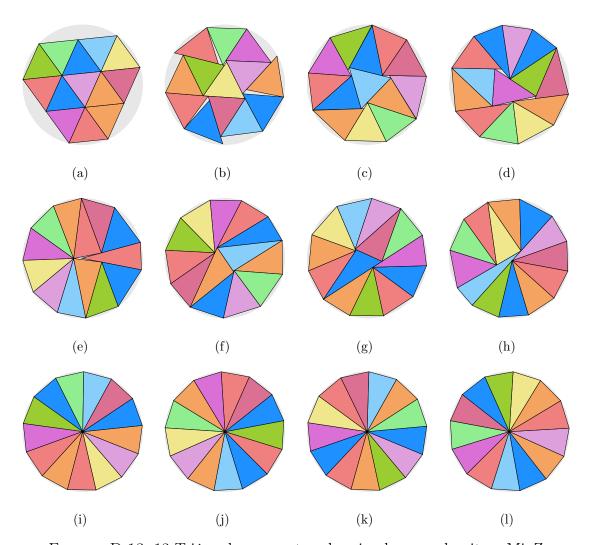


FIGURA D.13: 13 Triángulos en contenedor circular con algoritmo MinZ

${f Instancia}$	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T13-r00	D.13-(a)	1.527525	0.00%	76.79%
T13-r01	D.13-(b)	1.453850	10.00%	84.77%
T13-r02	D.13-(c)	1.399321	20.00%	91.51%
T13-r03	D.13-(d)	1.392516	30.00%	92.40%
T13-r04	D.13-(e)	1.381113	40.00%	93.94%
T13-r05	D.13-(f)	1.377139	50.00%	94.48%
T13-r06	D.13-(g)	1.376510	60.00%	94.57%
T13-r07	D.13-(h)	1.371337	70.00%	95.28%
T13-r08	D.13-(i)	1.365117	80.00%	96.15%
T13-r09	D.13-(j)	1.365112	90.00%	96.15%
T13-r10	D.13-(k)	1.365112	100.00%	96.15%
T13-rXX	D.13-(1)	1.365112	∞	96.15%

Tabla D.13: Información de Figura D.13

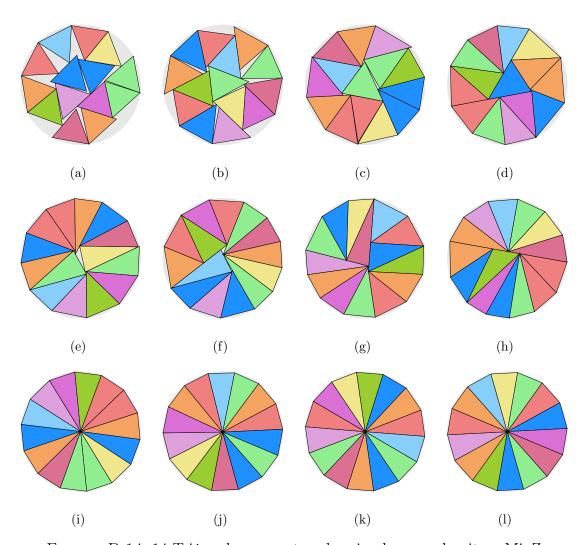


FIGURA D.14: 14 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T14-r00	D.14-(a)	1.609126	0.00%	74.52%
T14-r01	D.14-(b)	1.511158	10.00%	84.50%
T14-r02	D.14-(c)	1.448605	20.00%	91.96%
T14-r03	D.14-(d)	1.439589	30.00%	93.11%
T14-r04	D.14-(e)	1.428786	40.00%	94.52%
T14-r05	D.14-(f)	1.426442	50.00%	94.84%
T14-r06	D.14-(g)	1.423557	60.00%	95.22%
T14-r07	D.14-(h)	1.417845	70.00%	95.99%
T14-r08	D.14-(i)	1.412799	80.00%	96.68%
T14-r09	D.14-(j)	1.412797	90.00%	96.68%
T14-r10	D.14-(k)	1.412797	100.00%	96.68%
T14-rXX	D.14-(1)	1.412797	∞	96.68%

Tabla D.14: Información de Figura D.14

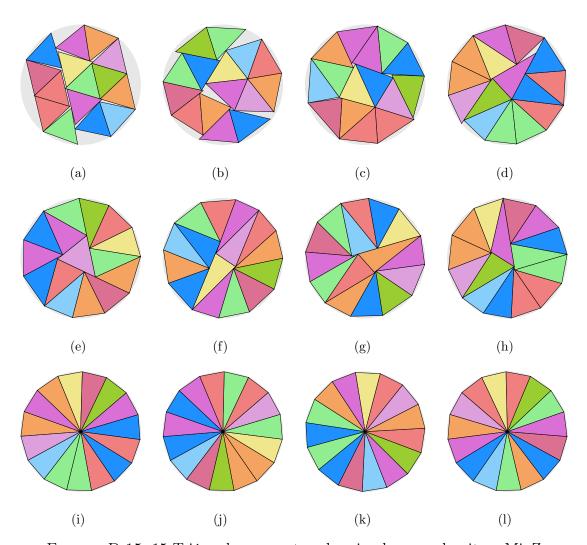


FIGURA D.15: 15 Triángulos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T15-r00	D.15-(a)	1.636721	0.00%	77.18%
T15-r01	D.15-(b)	1.565127	10.00%	84.40%
T15-r02	D.15-(c)	1.507250	20.00%	91.01%
T15-r03	D.15-(d)	1.490737	30.00%	93.03%
T15-r04	D.15-(e)	1.479141	40.00%	94.50%
T15-r05	D.15-(f)	1.472827	50.00%	95.31%
T15-r06	D.15-(g)	1.472482	60.00%	95.35%
T15-r07	D.15-(h)	1.472426	70.00%	95.36%
T15-r08	D.15-(i)	1.459183	80.00%	97.10%
T15-r09	D.15-(j)	1.459179	90.00%	97.10%
T15-r10	D.15-(k)	1.459179	100.00%	97.10%
T15-rXX	D.15-(1)	1.459179	∞	97.10%

Tabla D.15: Información de Figura D.15

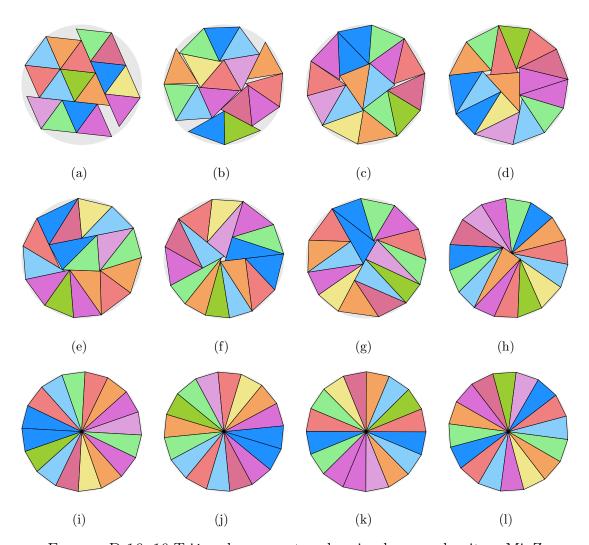


FIGURA D.16: 16 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T16-r00	D.16-(a)	1.687469	0.00 %	77.45%
T16-r01	D.16-(b)	1.605867	10.00%	85.52%
T16-r02	D.16-(c)	1.545176	20.00%	92.37%
T16-r03	D.16-(d)	1.532488	30.00%	93.90%
T16-r04	D.16-(e)	1.531091	40.00%	94.07%
T16-r05	D.16-(f)	1.525128	50.00%	94.81%
T16-r06	D.16-(g)	1.523279	60.00%	95.04%
T16-r07	D.16-(h)	1.507385	70.00%	97.06%
T16-r08	D.16-(i)	1.504338	80.00%	97.45%
T16-r09	D.16-(j)	1.504338	90.00%	97.45%
T16-r10	D.16-(k)	1.504338	100.00%	97.45%
T16-rXX	D.16-(1)	1.504338	∞	97.45%

Tabla D.16: Información de Figura D.16

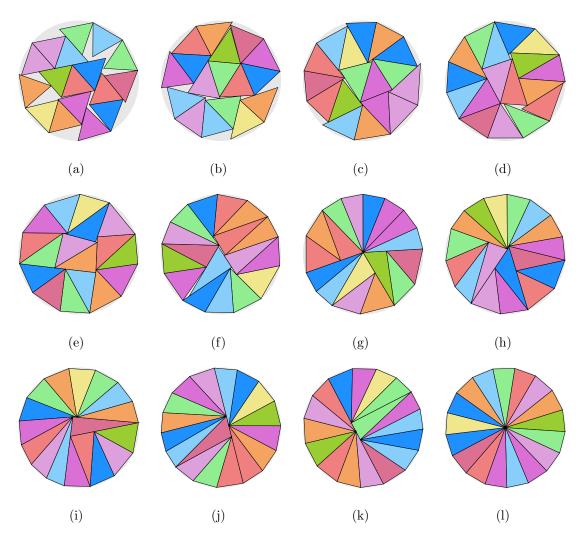


FIGURA D.17: 17 Triángulos en contenedor circular con algoritmo ${
m MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T17-r00	D.17-(a)	1.755611	0.00 %	76.02%
T17-r01	D.17-(b)	1.649032	10.00%	86.17%
T17-r02	D.17-(c)	1.595433	20.00%	92.05%
T17-r03	D.17-(d)	1.589426	30.00%	92.75%
T17-r04	D.17-(e)	1.575259	40.00%	94.43%
T17-r05	D.17-(f)	1.569424	50.00%	95.13%
T17-r06	D.17-(g)	1.561001	60.00%	96.16%
T17-r07	D.17-(h)	1.558595	70.00%	96.46%
T17-r08	D.17-(i)	1.554491	80.00%	96.97%
T17-r09	D.17-(j)	1.551271	90.00%	97.37%
T17-r10	D.17-(k)	1.551118	100.00%	97.39%
T17-rXX	D.17-(1)	1.548340	∞	97.74%

Tabla D.17: Información de Figura D.17

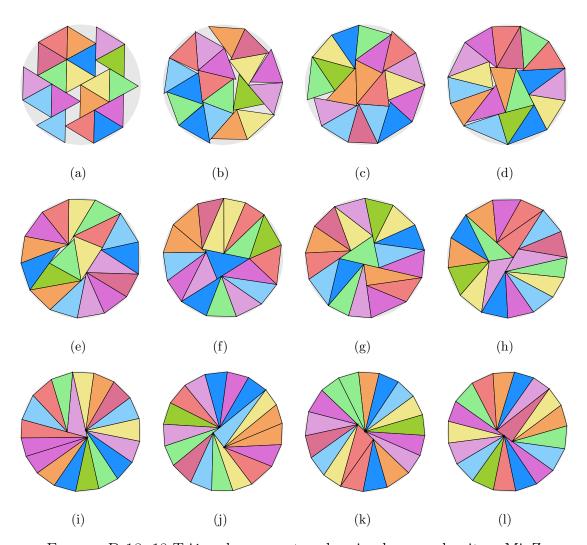


FIGURA D.18: 18 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T18-r00	D.18-(a)	1.802776	0.00%	76.34%
T18-r01	D.18-(b)	1.697984	10.00%	86.05%
T18-r02	D.18-(c)	1.641433	20.00%	92.08%
T18-r03	D.18-(d)	1.633038	30.00%	93.03%
T18-r04	D.18-(e)	1.611499	40.00%	95.54%
T18-r05	D.18-(f)	1.609442	50.00%	95.78%
T18-r06	D.18-(g)	1.608223	60.00%	95.92%
T18-r07	D.18-(h)	1.603001	70.00%	96.55%
T18-r08	D.18-(i)	1.593612	80.00%	97.69%
T18-r09	D.18-(j)	1.593619	90.00%	97.69%
T18-r10	D.18-(k)	1.593619	100.00%	97.69%
T18-rXX	D.18-(1)	1.593464	∞	97.71%

Tabla D.18: Información de Figura D.18

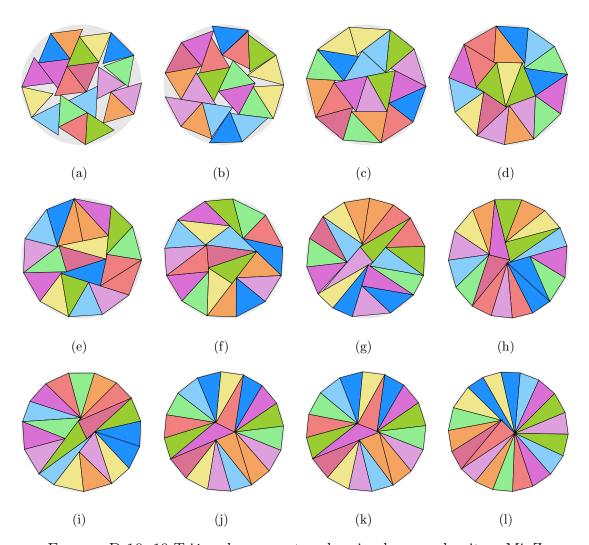


FIGURA D.19: 19 Triángulos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T19-r00	D.19-(a)	1.870948	0.00 %	74.81%
T19-r01	D.19-(b)	1.754937	10.00%	85.03%
T19-r02	D.19-(c)	1.678039	20.00%	93.00%
T19-r03	D.19-(d)	1.666182	30.00%	94.33%
T19-r04	D.19-(e)	1.664636	40.00%	94.51%
T19-r05	D.19-(f)	1.657267	50.00%	95.35%
T19-r06	D.19-(g)	1.651710	60.00%	95.99%
T19-r07	D.19-(h)	1.644111	70.00%	96.88%
T19-r08	D.19-(i)	1.643786	80.00%	96.92%
T19-r09	D.19-(j)	1.639465	90.00%	97.43%
T19-r10	D.19-(k)	1.639423	100.00%	97.44%
T19-rXX	D.19-(1)	1.635222	∞	97.94%

Tabla D.19: Información de Figura D.19

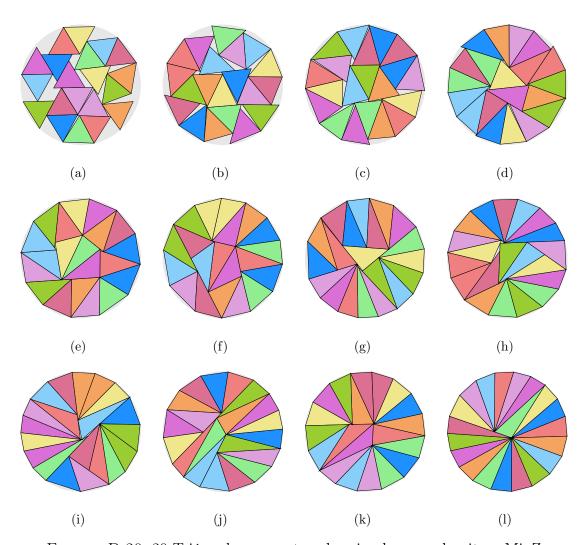


FIGURA D.20: 20 Triángulos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T20-r00	D.20-(a)	1.919804	0.00%	74.79%
T20-r01	D.20-(b)	1.797537	10.00%	85.31%
T20-r02	D.20-(c)	1.738805	20.00%	91.18%
T20-r03	D.20-(d)	1.702065	30.00%	95.15%
T20-r04	D.20-(e)	1.700147	40.00%	95.37%
T20-r05	D.20-(f)	1.694995	50.00%	95.95%
T20-r06	D.20-(g)	1.689444	60.00%	96.58%
T20-r07	D.20-(h)	1.689097	70.00%	96.62%
T20-r08	D.20-(i)	1.687734	80.00%	96.78%
T20-r09	D.20-(j)	1.683904	90.00%	97.22%
T20-r10	D.20-(k)	1.682142	100.00%	97.42%
T20-rXX	D.20-(1)	1.675939	∞	98.14%

TABLA D.20: Información de Figura D.20

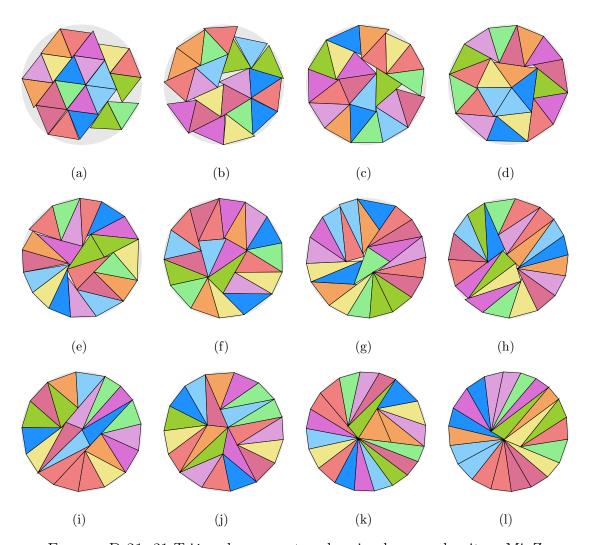


FIGURA D.21: 21 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T21-r00	D.21-(a)	1.919965	0.00 %	78.52%
T21-r01	D.21-(b)	1.823411	10.00%	87.06%
T21-r02	D.21-(c)	1.763909	20.00%	93.03%
T21-r03	D.21-(d)	1.754156	30.00%	94.07%
T21-r04	D.21-(e)	1.747889	40.00%	94.74%
T21-r05	D.21-(f)	1.736169	50.00%	96.03%
T21-r06	D.21-(g)	1.735717	60.00%	96.08%
T21-r07	D.21-(h)	1.729995	70.00%	96.71%
T21-r08	D.21-(i)	1.728334	80.00%	96.90%
T21-r09	D.21-(j)	1.727401	90.00%	97.00%
T21-r10	D.21-(k)	1.720274	100.00%	97.81%
T21-rXX	D.21-(1)	1.717722	∞	98.10%

Tabla D.21: Información de Figura D.21

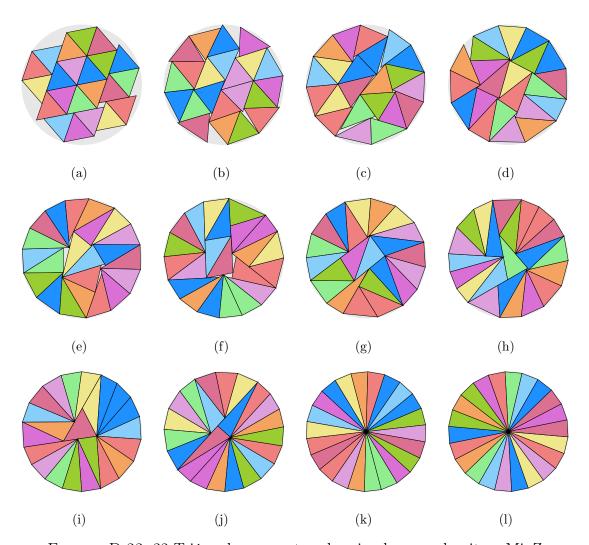


FIGURA D.22: 22 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T22-r00	D.22-(a)	1.943989	0.00%	80.24%
T22-r01	D.22-(b)	1.851459	10.00%	88.46%
T22-r02	D.22-(c)	1.809711	20.00%	92.59%
T22-r03	D.22-(d)	1.789847	30.00%	94.65%
T22-r04	D.22-(e)	1.778525	40.00%	95.86%
T22-r05	D.22-(f)	1.777874	50.00%	95.93%
T22-r06	D.22-(g)	1.769122	60.00%	96.89%
T22-r07	D.22-(h)	1.767189	70.00%	97.10%
T22-r08	D.22-(i)	1.759585	80.00%	97.94%
T22-r09	D.22-(j)	1.757712	90.00%	98.15%
T22-r10	D.22-(k)	1.753262	100.00%	98.65%
T22-rXX	D.22-(1)	1.753262	∞	98.65%

Tabla D.22: Información de Figura D.22

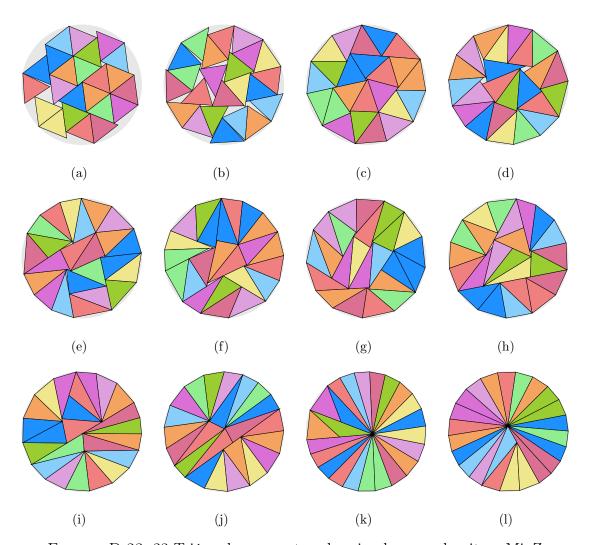


FIGURA D.23: 23 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T23-r00	D.23-(a)	1.985282	0.00 %	80.43%
T23-r01	D.23-(b)	1.914705	10.00%	86.47%
T23-r02	D.23-(c)	1.830858	20.00%	94.57%
T23-r03	D.23-(d)	1.830276	30.00%	94.63%
T23-r04	D.23-(e)	1.825134	40.00%	95.17%
T23-r05	D.23-(f)	1.821195	50.00%	95.58%
T23-r06	D.23-(g)	1.817982	60.00%	95.92%
T23-r07	D.23-(h)	1.813376	70.00%	96.41%
T23-r08	D.23-(i)	1.802230	80.00%	97.60%
T23-r09	D.23-(j)	1.799564	90.00%	97.89%
T23-r10	D.23-(k)	1.796372	100.00%	98.24%
T23-rXX	D.23-(1)	1.792977	∞	98.61%

Tabla D.23: Información de Figura D.23

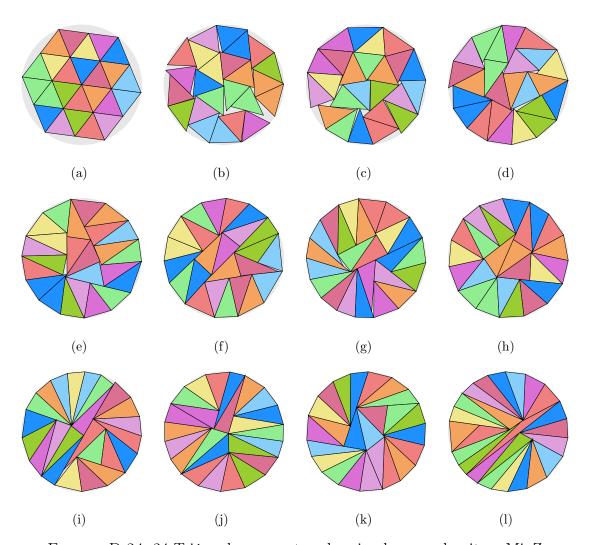


FIGURA D.24: 24 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T24-r00	D.24-(a)	2.000000	0.00 %	82.70 %
T24-r01	D.24-(b)	1.942851	10.00%	87.64%
T24-r02	D.24-(c)	1.901043	20.00%	91.53%
T24-r03	D.24-(d)	1.874071	30.00%	94.19%
T24-r04	D.24-(e)	1.856692	40.00%	95.96%
T24-r05	D.24-(f)	1.856289	50.00%	96.00%
T24-r06	D.24-(g)	1.849932	60.00%	96.66%
T24-r07	D.24-(h)	1.846138	70.00%	97.06%
T24-r08	D.24-(i)	1.845800	80.00%	97.09%
T24-r09	D.24-(j)	1.838458	90.00%	97.87%
T24-r10	D.24-(k)	1.838035	100.00%	97.92%
T24-rXX	D.24-(1)	1.836714	∞	98.06%

Tabla D.24: Información de Figura D.24

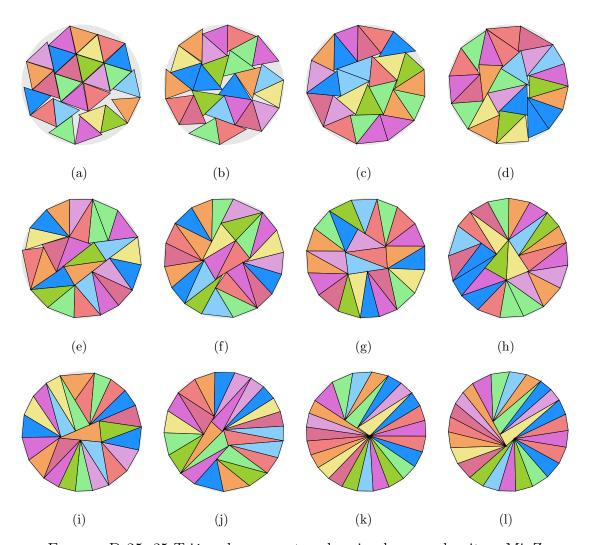


FIGURA D.25: 25 Triángulos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T25-r00	D.25-(a)	2.099844	0.00 %	78.15%
T25-r01	D.25-(b)	2.004013	10.00%	85.80%
T25-r02	D.25-(c)	1.916952	20.00%	93.77%
T25-r03	D.25-(d)	1.908672	30.00%	94.59%
T25-r04	D.25-(e)	1.899100	40.00%	95.54%
T25-r05	D.25-(f)	1.884654	50.00%	97.01%
T25-r06	D.25-(g)	1.880958	60.00%	97.39%
T25-r07	D.25-(h)	1.879343	70.00%	97.56%
T25-r08	D.25-(i)	1.878169	80.00%	97.68%
T25-r09	D.25-(j)	1.875883	90.00%	97.92%
T25-r10	D.25-(k)	1.869864	100.00%	98.55%
T25-rXX	D.25-(1)	1.868385	∞	98.71%

Tabla D.25: Información de Figura D.25

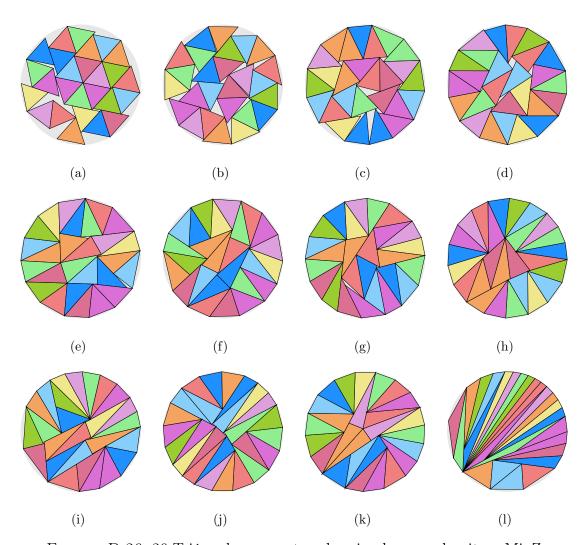


FIGURA D.26: 26 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T26-r00	D.26-(a)	2.106881	0.00 %	80.73 %
T26-r01	D.26-(b)	2.027607	10.00%	87.17%
T26-r02	D.26-(c)	1.972195	20.00%	92.13%
T26-r03	D.26-(d)	1.939885	30.00%	95.23%
T26-r04	D.26-(e)	1.932646	40.00%	95.94%
T26-r05	D.26-(f)	1.930436	50.00%	96.16%
T26-r06	D.26-(g)	1.923695	60.00%	96.84%
T26-r07	D.26-(h)	1.913111	70.00%	97.91%
T26-r08	D.26-(i)	1.930922	80.00%	96.12%
T26-r09	D.26-(j)	1.913794	90.00%	97.84%
T26-r10	D.26-(k)	1.913306	100.00%	97.89%
T26-rXX	D.26-(1)	1.925050	∞	96.70%

Tabla D.26: Información de Figura D.26

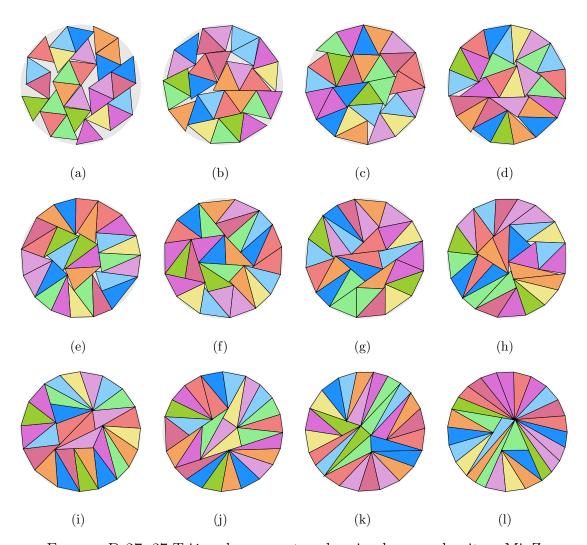


FIGURA D.27: 27 Triángulos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T27-r00	D.27-(a)	2.194258	0.00 %	77.29%
T27-r01	D.27-(b)	2.068499	10.00%	86.98%
T27-r02	D.27-(c)	1.993750	20.00%	93.62%
T27-r03	D.27-(d)	1.977996	30.00%	95.12%
T27-r04	D.27-(e)	1.974461	40.00%	95.46%
T27-r05	D.27-(f)	1.966569	50.00%	96.23%
T27-r06	D.27-(g)	1.966194	60.00%	96.26%
T27-r07	D.27-(h)	1.961413	70.00%	96.73%
T27-r08	D.27-(i)	1.952580	80.00%	97.61%
T27-r09	D.27-(j)	1.949473	90.00%	97.92%
T27-r10	D.27-(k)	1.946354	100.00%	98.24%
T27-rXX	D.27-(1)	1.942038	∞	98.67%

Tabla D.27: Información de Figura D.27

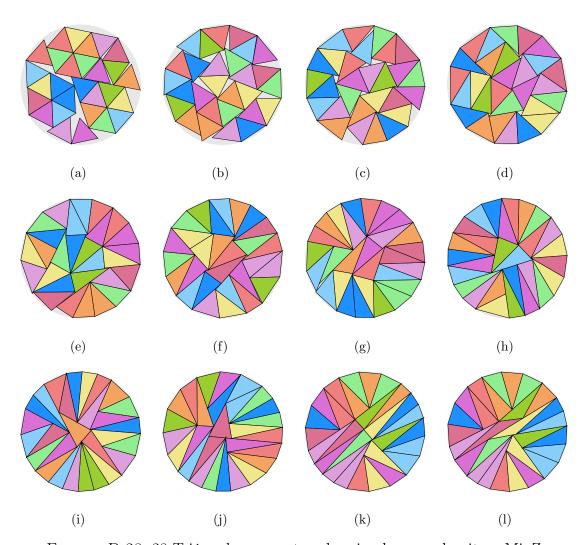


FIGURA D.28: 28 Triángulos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T28-r00	D.28-(a)	2.199291	0.00%	79.79%
T28-r01	D.28-(b)	2.107077	10.00%	86.93%
T28-r02	D.28-(c)	2.045732	20.00%	92.22%
T28-r03	D.28-(d)	2.014900	30.00%	95.06%
T28-r04	D.28-(e)	2.005278	40.00%	95.98%
T28-r05	D.28-(f)	1.994686	50.00%	97.00%
T28-r06	D.28-(g)	1.990090	60.00%	97.45%
T28-r07	D.28-(h)	1.985494	70.00%	97.90%
T28-r08	D.28-(i)	1.983295	80.00%	98.11%
T28-r09	D.28-(j)	1.983434	90.00%	98.10%
T28-r10	D.28-(k)	1.982817	100.00%	98.16%
T28-rXX	D.28-(1)	1.981994	∞	98.24%

Tabla D.28: Información de Figura D.28

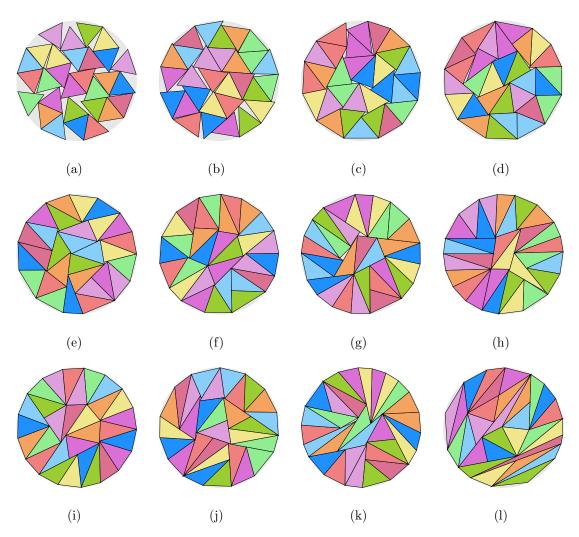


FIGURA D.29: 29 Triángulos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T29-r00	D.29-(a)	2.261068	0.00%	78.18%
T29-r01	D.29-(b)	2.140426	10.00%	87.25%
T29-r02	D.29-(c)	2.062031	20.00%	94.01%
T29-r03	D.29-(d)	2.057570	30.00%	94.41%
T29-r04	D.29-(e)	2.036991	40.00%	96.33%
T29-r05	D.29-(f)	2.033240	50.00%	96.69%
T29-r06	D.29-(g)	2.033240	60.00%	96.69%
T29-r07	D.29-(h)	2.024054	70.00%	97.57%
T29-r08	D.29-(i)	2.022465	80.00%	97.72%
T29-r09	D.29-(j)	2.032152	90.00%	96.79%
T29-r10	D.29-(k)	2.023194	100.00%	97.65%
T29-rXX	D.29-(1)	2.036380	∞	96.39%

Tabla D.29: Información de Figura D.29

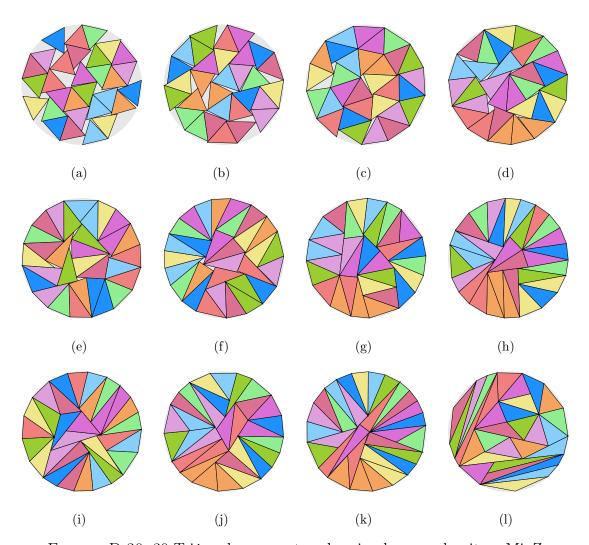


FIGURA D.30: 30 Triángulos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
T30-r00	D.30-(a)	2.296747	0.00 %	78.39%
T30-r01	D.30-(b)	2.188977	10.00%	86.30%
T30-r02	D.30-(c)	2.112785	20.00%	92.63%
T30-r03	D.30-(d)	2.092716	30.00%	94.42%
T30-r04	D.30-(e)	2.071574	40.00%	96.35%
T30-r05	D.30-(f)	2.064077	50.00%	97.06%
T30-r06	D.30-(g)	2.063935	60.00%	97.07%
T30-r07	D.30-(h)	2.055085	70.00%	97.91%
T30-r08	D.30-(i)	2.055085	80.00%	97.91%
T30-r09	D.30-(j)	2.058639	90.00%	97.57%
T30-r10	D.30-(k)	2.053854	100.00%	98.02%
T30-rXX	D.30-(1)	2.073876	∞	96.14%

Tabla D.30: Información de Figura D.30

Apéndice E

Triangulos en Círculos Suavidad Mínima

E.1 RESULTADOS DEL ALGORITMO DE MÍNIMA SUAVIDAD EN EL CONTENEDOR CIRCULAR

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínima Suavidad en un contenedor circular. El objetivo es empaquetar triangulos considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 30 triángulos dentro del contenedor circular.

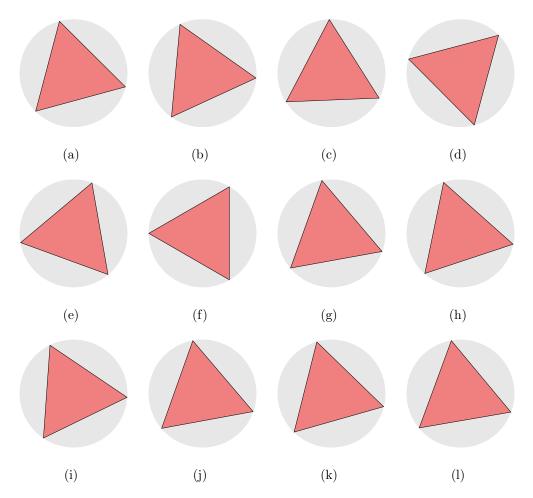


FIGURA E.1: 1 Triángulo en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{P}}$
T1-r00	E.1-(a)	0.577350	0.00%	41.35%
T1-r01	E.1-(b)	0.577350	0.00%	41.35%
T1-r02	E.1-(c)	0.577350	0.00%	41.35%
T1-r03	E.1-(d)	0.577350	0.00%	41.35%
T1-r04	E.1-(e)	0.577353	0.00%	41.35%
T1-r05	E.1-(f)	0.577350	0.00%	41.35%
T1-r06	E.1-(g)	0.577350	0.00%	41.35%
T1-r07	E.1-(h)	0.577339	0.00%	41.35%
T1-r08	E.1-(i)	0.577350	0.00%	41.35%
T1-r09	E.1-(j)	0.577350	0.00%	41.35%
T1-r10	E.1-(k)	0.577350	0.00%	41.35%
T1-rXX	E.1-(1)	0.577350	0.00%	41.35%

Tabla E.1: Información de Figura E.1

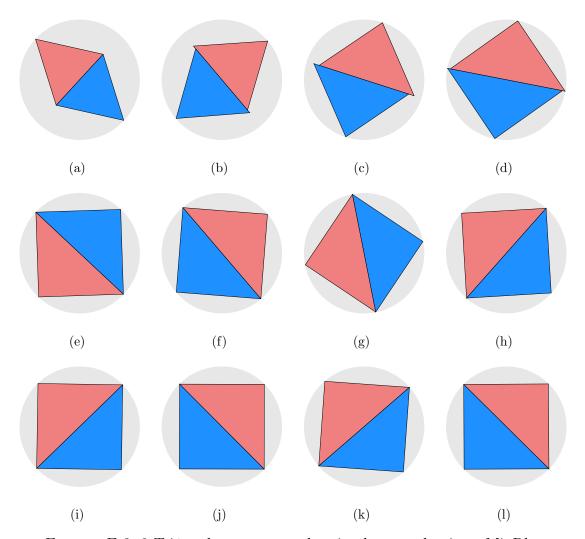


FIGURA E.2: 2 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T2-r00	E.2-(a)	0.866025	0.00%	36.76%
T2-r01	E.2-(b)	0.787296	10.00%	44.47%
T2-r02	E.2-(c)	0.721688	20.00%	52.93%
T2-r03	E.2-(d)	0.666163	30.00%	62.12%
T2-r04	E.2-(e)	0.658037	31.61%	63.66%
T2-r05	E.2-(f)	0.658037	31.61%	63.66%
T2-r06	E.2-(g)	0.658037	31.60%	63.66%
T2-r07	E.2-(h)	0.658037	31.61%	63.66%
T2-r08	E.2-(i)	0.658037	31.61%	63.66%
T2-r09	E.2-(j)	0.658037	31.61%	63.66%
T2-r10	E.2-(k)	0.658038	31.61%	63.66%
T2-rXX	E.2-(1)	0.658037	31.60%	63.66%

TABLA E.2: Información de Figura E.2

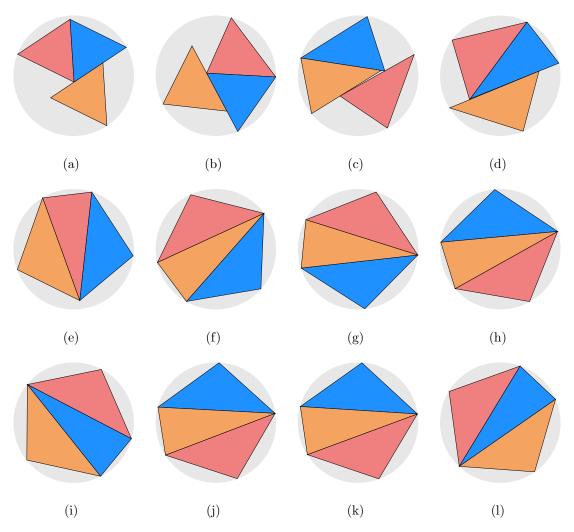


FIGURA E.3: 3 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T3-r00	E.3-(a)	0.953512	0.00%	45.48%
T3-r01	E.3-(b)	0.890623	10.00%	52.13%
T3-r02	E.3-(c)	0.846529	20.00%	57.70%
T3-r03	E.3-(d)	0.807002	30.00%	63.49%
T3-r04	E.3-(e)	0.769012	40.00%	69.92%
T3-r05	E.3-(f)	0.747142	46.19%	74.07%
T3-r06	E.3-(g)	0.747142	46.19%	74.07%
T3-r07	E.3-(h)	0.747142	46.19%	74.07%
T3-r08	E.3-(i)	0.747142	46.19%	74.07%
T3-r09	E.3-(j)	0.747142	46.19%	74.07%
T3-r10	E.3-(k)	0.747142	46.19%	74.07%
T3-rXX	E.3-(1)	0.747142	46.19%	74.07%

TABLA E.3: Información de Figura E.3

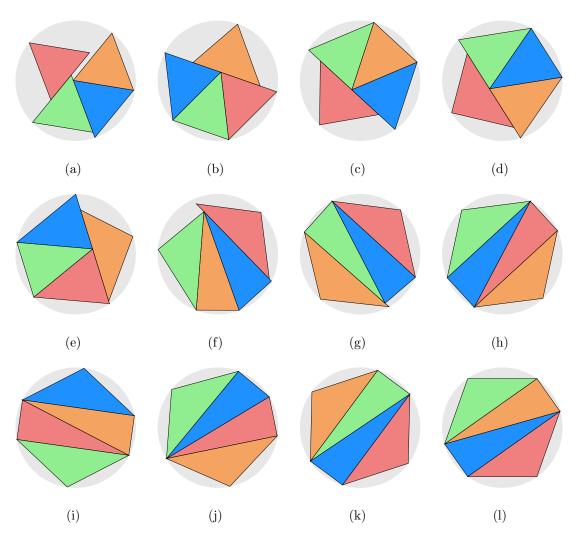


FIGURA E.4: 4 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T4-r00	E.4-(a)	0.980598	0.00%	57.34%
T4-r01	E.4-(b)	0.926812	10.00%	64.18%
T4-r02	E.4-(c)	0.906700	20.00%	67.06%
T4-r03	E.4-(d)	0.890957	30.00%	69.45%
T4-r04	E.4-(e)	0.878594	40.00%	71.42%
T4-r05	E.4-(f)	0.858933	50.00%	74.73%
T4-r06	E.4-(g)	0.834019	60.00%	79.26%
T4-r07	E.4-(h)	0.830011	66.00%	80.03%
T4-r08	E.4-(i)	0.830011	66.00%	80.03%
T4-r09	E.4-(j)	0.830011	66.00%	80.03%
T4-r10	E.4-(k)	0.830011	66.00%	80.03%
T4-rXX	E.4-(1)	0.830011	66.00%	80.03%

Tabla E.4: Información de Figura E.4

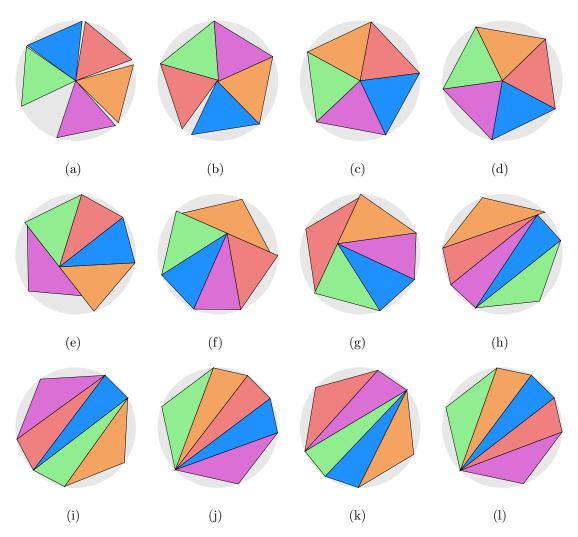


FIGURA E.5: 5 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T5-r00	E.5-(a)	1.000000	0.00%	68.92%
T5-r01	E.5-(b)	0.960273	10.00%	74.74%
T5-r02	E.5-(c)	0.954250	12.18%	75.68%
T5-r03	E.5-(d)	0.954250	12.18%	75.68%
T5-r04	E.5-(e)	0.943869	40.00%	77.36%
T5-r05	E.5-(f)	0.933276	50.00%	79.12%
T5-r06	E.5-(g)	0.924745	59.99%	80.59%
T5-r07	E.5-(h)	0.912038	70.00%	82.85%
T5-r08	E.5-(i)	0.906639	79.66%	83.84%
T5-r09	E.5-(j)	0.906639	79.66%	83.84%
T5-r10	E.5-(k)	0.906639	79.66%	83.84%
T5-rXX	E.5-(1)	0.906639	79.66%	83.84%

TABLA E.5: Información de Figura E.5

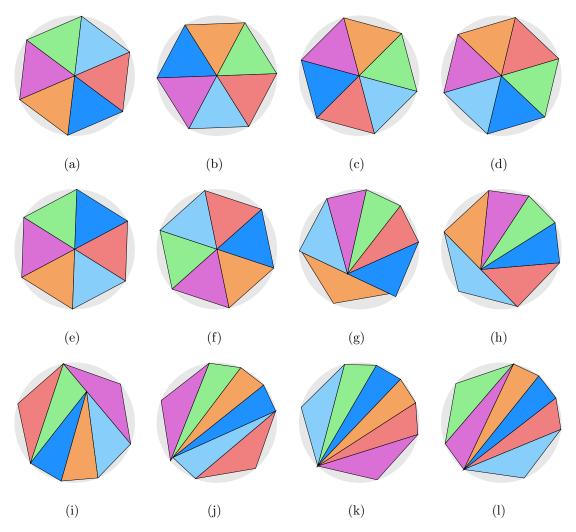


FIGURA E.6: 6 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T6-r00	E.6-(a)	1.000000	0.00%	82.70%
T6-r01	E.6-(b)	1.000000	0.00%	82.70%
T6-r02	E.6-(c)	1.000000	0.00%	82.70%
T6-r03	E.6-(d)	1.000000	0.00%	82.70%
T6-r04	E.6-(e)	1.000000	0.00%	82.70%
T6-r05	E.6-(f)	1.000000	59.99%	82.70%
T6-r06	E.6-(g)	0.992393	70.00%	83.97%
T6-r07	E.6-(h)	0.985105	71.79%	85.22%
T6-r08	E.6-(i)	0.983814	90.00%	85.44%
T6-r09	E.6-(j)	0.980567	95.59%	86.01%
T6-r10	E.6-(k)	0.977938	95.59%	86.47%
T6-rXX	E.6-(1)	0.977938	0.00%	86.47%

TABLA E.6: Información de Figura E.6

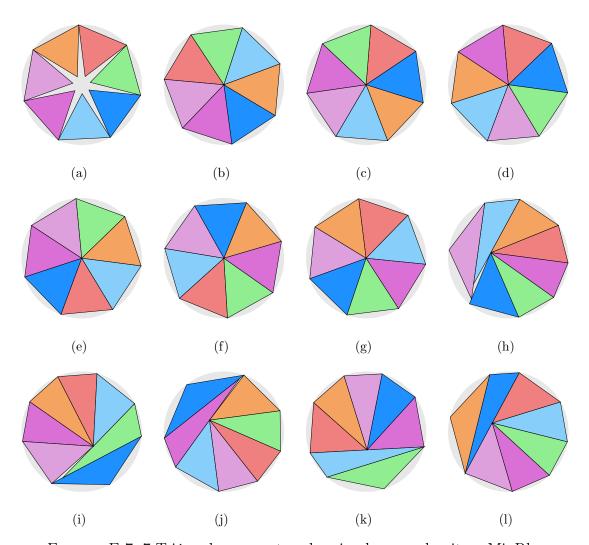


FIGURA E.7: 7 Triángulos en contenedor circular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T7-r00	E.7-(a)	1.152382	0.00%	72.65%
T7-r01	E.7-(b)	1.052468	8.67%	87.10%
T7-r02	E.7-(c)	1.052468	8.67%	87.10%
T7-r03	E.7-(d)	1.052468	8.67%	87.10%
T7-r04	E.7-(e)	1.052468	8.67%	87.10%
T7-r05	E.7-(f)	1.052468	8.67%	87.10%
T7-r06	E.7-(g)	1.052468	8.67%	87.10%
T7-r07	E.7-(h)	1.052275	70.00%	87.13%
T7-r08	E.7-(i)	1.046464	79.97%	88.10%
T7-r09	E.7-(j)	1.044551	90.00%	88.43%
T7-r10	E.7-(k)	1.042906	98.62%	88.71%
T7-rXX	E.7-(1)	1.042901	98.64%	88.71%

TABLA E.7: Información de Figura E.7

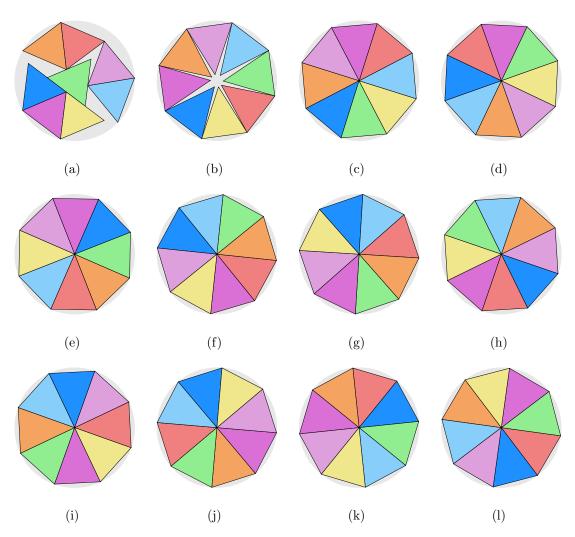


FIGURA E.8: 8 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T8-r00	E.8-(a)	1.263371	0.00%	69.08%
T8-r01	E.8-(b)	1.175907	10.00%	79.74%
T8-r02	E.8-(c)	1.106684	15.30%	90.03%
T8-r03	E.8-(d)	1.106682	15.30%	90.03%
T8-r04	E.8-(e)	1.106682	15.30%	90.03%
T8-r05	E.8-(f)	1.106682	15.30%	90.03%
T8-r06	E.8-(g)	1.106682	15.30%	90.03%
T8-r07	E.8-(h)	1.106682	15.30%	90.03%
T8-r08	E.8-(i)	1.106682	15.30%	90.03%
T8-r09	E.8-(j)	1.106682	15.30%	90.03%
T8-r10	E.8-(k)	1.106682	15.30%	90.03%
T8-rXX	E.8-(1)	1.106682	15.30%	90.03%

TABLA E.8: Información de Figura E.8

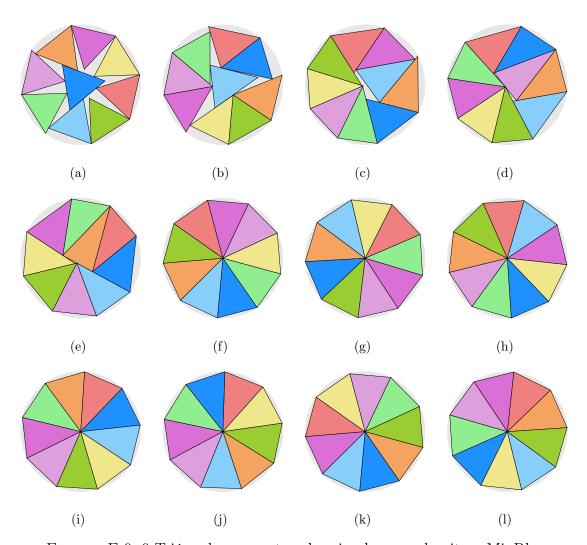


FIGURA E.9: 9 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T9-r00	E.9-(a)	1.314753	0.00%	71.76%
T9-r01	E.9-(b)	1.250029	10.00%	79.39%
T9-r02	E.9-(c)	1.194825	20.00%	86.89%
T9-r03	E.9-(d)	1.181564	30.00%	88.85%
T9-r04	E.9-(e)	1.178439	34.65%	89.33%
T9-r05	E.9-(f)	1.160731	20.60%	92.07%
T9-r06	E.9-(g)	1.160731	20.60%	92.07%
T9-r07	E.9-(h)	1.160731	20.60%	92.07%
T9-r08	E.9-(i)	1.160731	20.60%	92.07%
T9-r09	E.9-(j)	1.160731	20.60%	92.07%
T9-r10	E.9-(k)	1.160731	20.60%	92.07%
T9-rXX	E.9-(1)	1.160731	20.60%	92.07%

TABLA E.9: Información de Figura E.9

FIGURA E.10: 10 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T10-r00	E.10-(a)	1.384693	0.00%	71.89%
T10-r01	E.10-(b)	1.305507	9.85%	80.87%
T10-r02	E.10-(c)	1.249530	20.00%	88.28%
T10-r03	E.10-(d)	1.213833	24.98%	93.55%
T10-r04	E.10-(e)	1.213833	24.98%	93.55%
T10-r05	E.10-(f)	1.213828	24.98%	93.55%
T10-r06	E.10-(g)	1.213825	24.98%	93.55%
T10-r07	E.10-(h)	1.213825	24.98%	93.55%
T10-r08	E.10-(i)	1.213825	24.98%	93.55%
T10-r09	E.10-(j)	1.213825	24.98%	93.55%
T10-r10	E.10-(k)	1.213825	24.98%	93.55%
T10-rXX	E.10-(1)	1.213825	24.98%	93.55%

TABLA E.10: Información de Figura E.10

FIGURA E.11: 11 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T11-r00	E.11-(a)	1.466988	0.00%	70.45%
T11-r01	E.11-(b)	1.368544	10.00%	80.95%
T11-r02	E.11-(c)	1.308899	20.00%	88.50%
T11-r03	E.11-(d)	1.278204	29.99%	92.80%
T11-r04	E.11-(e)	1.275904	40.00%	93.13%
T11-r05	E.11-(f)	1.265648	28.69%	94.65%
T11-r06	E.11-(g)	1.265642	28.69%	94.65%
T11-r07	E.11-(h)	1.265642	28.69%	94.65%
T11-r08	E.11-(i)	1.265642	28.69%	94.65%
T11-r09	E.11-(j)	1.265642	28.69%	94.65%
T11-r10	E.11-(k)	1.265642	28.69%	94.65%
T11-rXX	E.11-(1)	1.265642	28.69%	94.65%

TABLA E.11: Información de Figura E.11

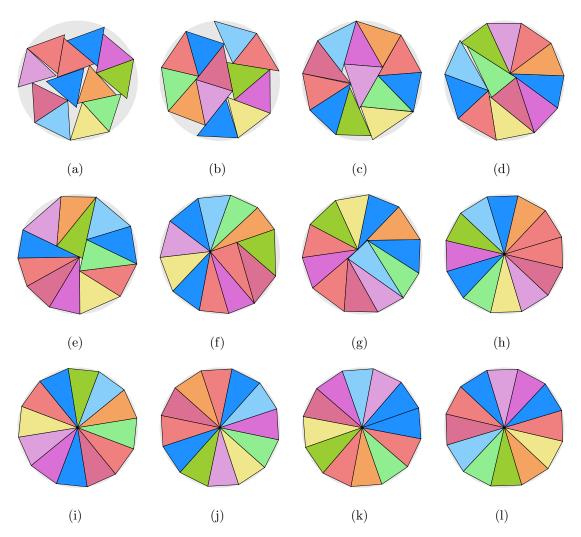


FIGURA E.12: 12 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T12-r00	E.12-(a)	1.507145	0.00%	72.82%
T12-r01	E.12-(b)	1.409991	10.00%	83.20%
T12-r02	E.12-(c)	1.357127	20.00%	89.80%
T12-r03	E.12-(d)	1.340722	29.76%	92.01%
T12-r04	E.12-(e)	1.336330	40.00%	92.62%
T12-r05	E.12-(f)	1.324898	50.00%	94.23%
T12-r06	E.12-(g)	1.323433	49.32%	94.43%
T12-r07	E.12-(h)	1.316074	31.88%	95.49%
T12-r08	E.12-(i)	1.316074	31.88%	95.49%
T12-r09	E.12-(j)	1.316074	31.88%	95.49%
T12-r10	E.12-(k)	1.316074	31.87%	95.49%
T12-rXX	E.12-(1)	1.316074	31.87%	95.49%

TABLA E.12: Información de Figura E.12

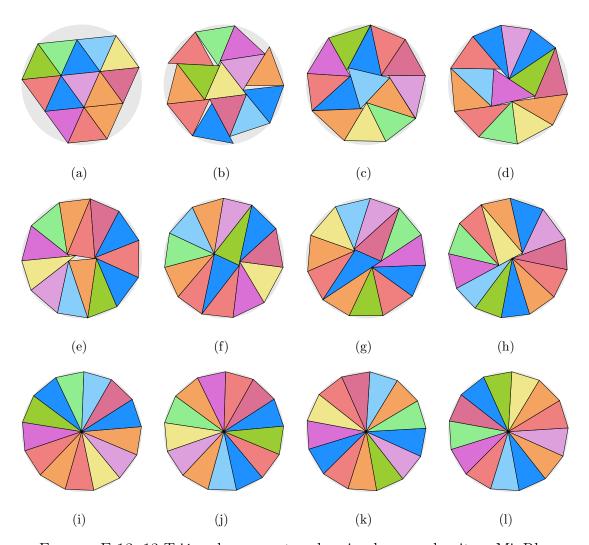


FIGURA E.13: 13 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T13-r00	E.13-(a)	1.527525	0.00%	76.79%
T13-r01	E.13-(b)	1.453850	10.00%	84.77%
T13-r02	E.13-(c)	1.399321	20.00%	91.51%
T13-r03	E.13-(d)	1.392516	30.00%	92.40%
T13-r04	E.13-(e)	1.381113	38.16%	93.94%
T13-r05	E.13-(f)	1.377139	41.15%	94.48%
T13-r06	E.13-(g)	1.376510	59.99%	94.57%
T13-r07	E.13-(h)	1.371337	44.88%	95.28%
T13-r08	E.13-(i)	1.365117	36.51%	96.15%
T13-r09	E.13-(j)	1.365112	36.51%	96.15%
T13-r10	E.13-(k)	1.365112	36.51%	96.15%
T13-rXX	E.13-(1)	1.365112	36.51%	96.15%

TABLA E.13: Información de Figura E.13

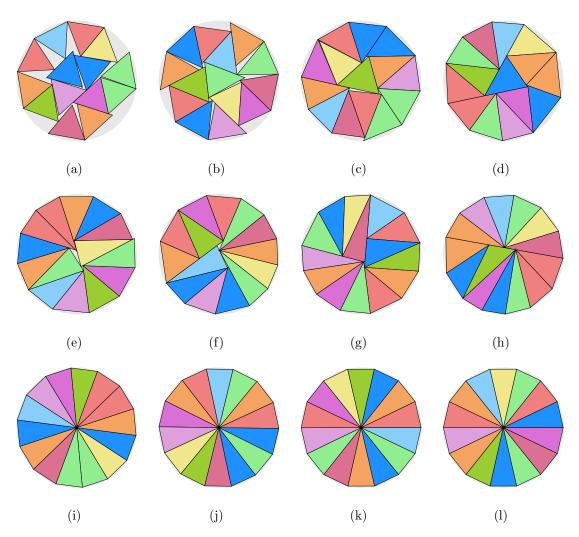


FIGURA E.14: 14 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T14-r00	E.14-(a)	1.609126	0.00%	74.52%
T14-r01	E.14-(b)	1.511158	10.00%	84.50%
T14-r02	E.14-(c)	1.448605	19.99%	91.96%
T14-r03	E.14-(d)	1.439589	30.00%	93.11%
T14-r04	E.14-(e)	1.428786	39.06%	94.52%
T14-r05	E.14-(f)	1.426442	49.97%	94.84%
T14-r06	E.14-(g)	1.423557	59.81%	95.22%
T14-r07	E.14-(h)	1.417845	69.96%	95.99%
T14-r08	E.14-(i)	1.412799	41.28%	96.68%
T14-r09	E.14-(j)	1.412797	41.28%	96.68%
T14-r10	E.14-(k)	1.412797	41.28%	96.68%
T14-rXX	E.14-(1)	1.412797	41.28%	96.68%

Tabla E.14: Información de Figura E.14

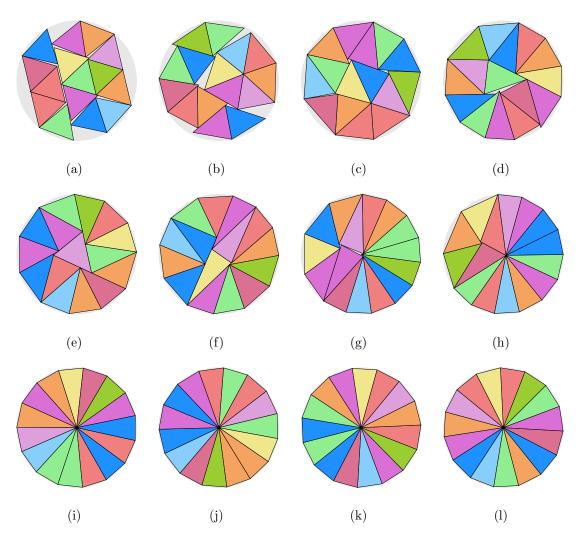


FIGURA E.15: 15 Triángulos en contenedor circular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T15-r00	E.15-(a)	1.636721	0.00%	77.18%
T15-r01	E.15-(b)	1.565127	10.00%	84.40%
T15-r02	E.15-(c)	1.507250	20.00%	91.01%
T15-r03	E.15-(d)	1.490737	26.49%	93.03%
T15-r04	E.15-(e)	1.479141	29.50%	94.50%
T15-r05	E.15-(f)	1.472827	50.00%	95.31%
T15-r06	E.15-(g)	1.472482	46.04%	95.35%
T15-r07	E.15-(h)	1.472426	50.87%	95.36%
T15-r08	E.15-(i)	1.459183	45.92%	97.10%
T15-r09	E.15-(j)	1.459179	45.92%	97.10%
T15-r10	E.15-(k)	1.459179	45.92%	97.10%
T15-rXX	E.15-(1)	1.459179	45.92%	97.10%

TABLA E.15: Información de Figura E.15

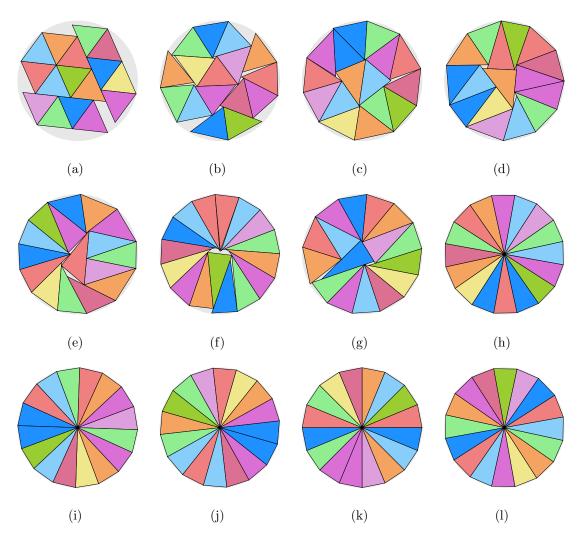


FIGURA E.16: 16 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T16-r00	E.16-(a)	1.687469	0.00%	77.45%
T16-r01	E.16-(b)	1.605867	10.00%	85.52%
T16-r02	E.16-(c)	1.545176	20.00%	92.37%
T16-r03	E.16-(d)	1.532488	29.90%	93.90%
T16-r04	E.16-(e)	1.531091	38.52%	94.07%
T16-r05	E.16-(f)	1.525128	43.72%	94.81%
T16-r06	E.16-(g)	1.523279	41.37%	95.04%
T16-r07	E.16-(h)	1.507385	50.15%	97.06%
T16-r08	E.16-(i)	1.504338	50.44%	97.45%
T16-r09	E.16-(j)	1.504338	50.43%	97.45%
T16-r10	E.16-(k)	1.504338	50.43%	97.45%
T16-rXX	E.16-(1)	1.504338	50.43%	97.45%

TABLA E.16: Información de Figura E.16

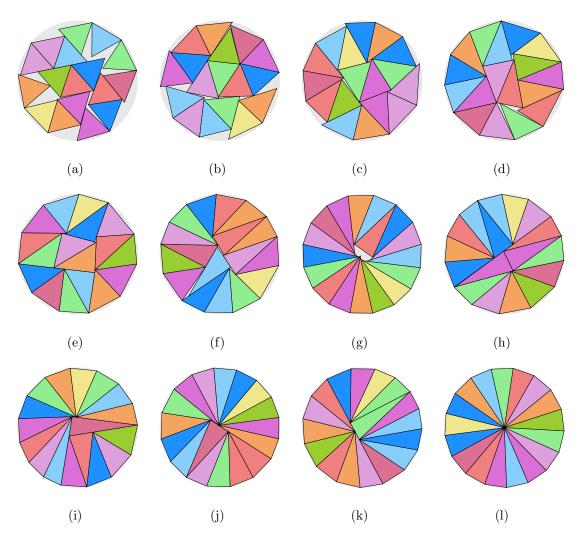


FIGURA E.17: 17 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T17-r00	E.17-(a)	1.755611	0.00%	76.02%
T17-r01	E.17-(b)	1.649032	10.00%	86.17%
T17-r02	E.17-(c)	1.595433	20.00%	92.05%
T17-r03	E.17-(d)	1.589426	30.00%	92.75%
T17-r04	E.17-(e)	1.575259	39.97%	94.43%
T17-r05	E.17-(f)	1.569424	50.00%	95.13%
T17-r06	E.17-(g)	1.561001	49.61%	96.16%
T17-r07	E.17-(h)	1.558595	55.55%	96.46%
T17-r08	E.17-(i)	1.554491	80.00%	96.97%
T17-r09	E.17-(j)	1.551271	60.80%	97.37%
T17-r10	E.17-(k)	1.551118	80.81%	97.39%
T17-rXX	E.17-(1)	1.548340	54.83%	97.74%

TABLA E.17: Información de Figura E.17

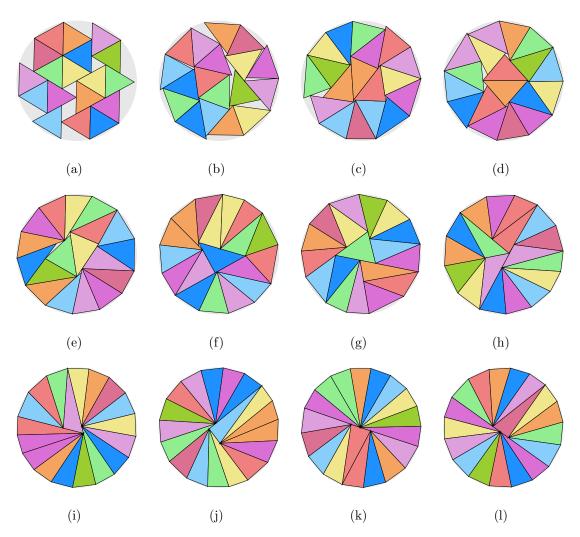


FIGURA E.18: 18 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T18-r00	E.18-(a)	1.802776	0.00%	76.34%
T18-r01	E.18-(b)	1.697984	10.00%	86.05%
T18-r02	E.18-(c)	1.641433	20.00%	92.08%
T18-r03	E.18-(d)	1.633038	22.91%	93.03%
T18-r04	E.18-(e)	1.611499	40.00%	95.54%
T18-r05	E.18-(f)	1.609442	48.47%	95.78%
T18-r06	E.18-(g)	1.608223	59.83%	95.92%
T18-r07	E.18-(h)	1.603001	70.00%	96.55%
T18-r08	E.18-(i)	1.593612	80.00%	97.69%
T18-r09	E.18-(j)	1.593619	61.39%	97.69%
T18-r10	E.18-(k)	1.593619	78.10%	97.69%
T18-rXX	E.18-(1)	1.593464	0.00%	97.71%

TABLA E.18: Información de Figura E.18

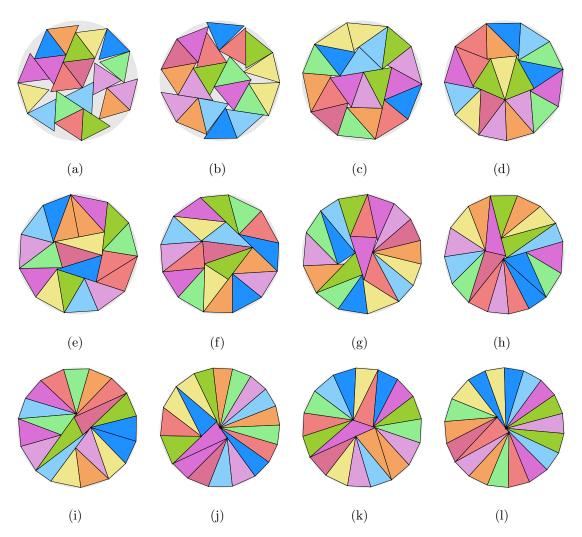


FIGURA E.19: 19 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T19-r00	E.19-(a)	1.870948	0.00%	74.81%
T19-r01	E.19-(b)	1.754937	9.99%	85.03%
T19-r02	E.19-(c)	1.678039	20.00%	93.00%
T19-r03	E.19-(d)	1.666182	26.86%	94.33%
T19-r04	E.19-(e)	1.664636	39.89%	94.51%
T19-r05	E.19-(f)	1.657267	47.29%	95.35%
T19-r06	E.19-(g)	1.651710	54.46%	95.99%
T19-r07	E.19-(h)	1.644111	69.79%	96.88%
T19-r08	E.19-(i)	1.643786	80.00%	96.92%
T19-r09	E.19-(j)	1.639465	63.76%	97.43%
T19-r10	E.19-(k)	1.639423	95.87%	97.44%
T19-rXX	E.19-(1)	1.635222	67.62%	97.94%

Tabla E.19: Información de Figura E.19

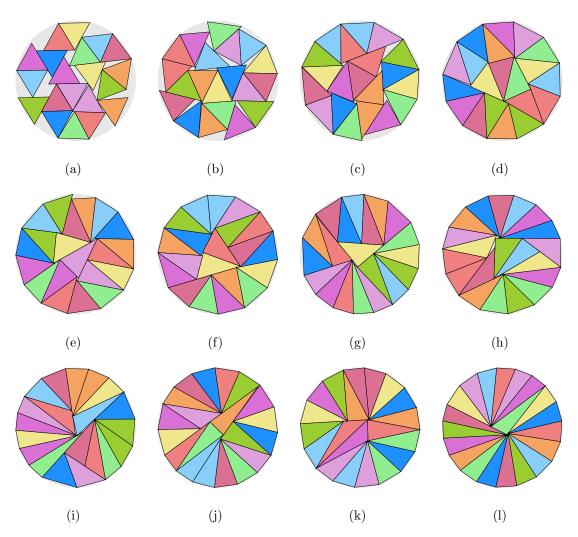


FIGURA E.20: 20 Triángulos en contenedor circular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T20-r00	E.20-(a)	1.919804	0.00%	74.79%
T20-r01	E.20-(b)	1.797537	10.00%	85.31%
T20-r02	E.20-(c)	1.738805	19.34%	91.18%
T20-r03	E.20-(d)	1.702065	29.77%	95.15%
T20-r04	E.20-(e)	1.700147	34.47%	95.37%
T20-r05	E.20-(f)	1.694995	36.34%	95.95%
T20-r06	E.20-(g)	1.689444	60.00%	96.58%
T20-r07	E.20-(h)	1.689097	69.88%	96.62%
T20-r08	E.20-(i)	1.687734	80.00%	96.78%
T20-r09	E.20-(j)	1.683904	66.94%	97.22%
T20-r10	E.20-(k)	1.682142	98.71%	97.42%
T20-rXX	E.20-(1)	1.675939	90.32%	98.14%

TABLA E.20: Información de Figura E.20

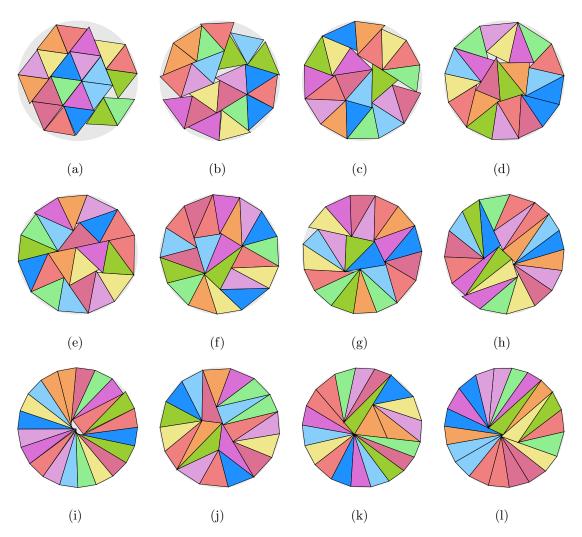


FIGURA E.21: 21 Triángulos en contenedor circular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T21-r00	E.21-(a)	1.919965	0.00 %	78.52%
T21-r01	E.21-(b)	1.823411	10.00%	87.06%
T21-r02	E.21-(c)	1.763909	20.00%	93.03%
T21-r03	E.21-(d)	1.754156	26.72%	94.07%
T21-r04	E.21-(e)	1.747889	25.65%	94.74%
T21-r05	E.21-(f)	1.736169	49.75%	96.03%
T21-r06	E.21-(g)	1.735717	45.01%	96.08%
T21-r07	E.21-(h)	1.729995	69.99%	96.71%
T21-r08	E.21-(i)	1.728334	64.70%	96.90%
T21-r09	E.21-(j)	1.727401	86.40%	97.00%
T21-r10	E.21-(k)	1.720274	99.99%	97.81%
T21-rXX	E.21-(1)	1.717722	103.47%	98.10%

Tabla E.21: Información de Figura E.21

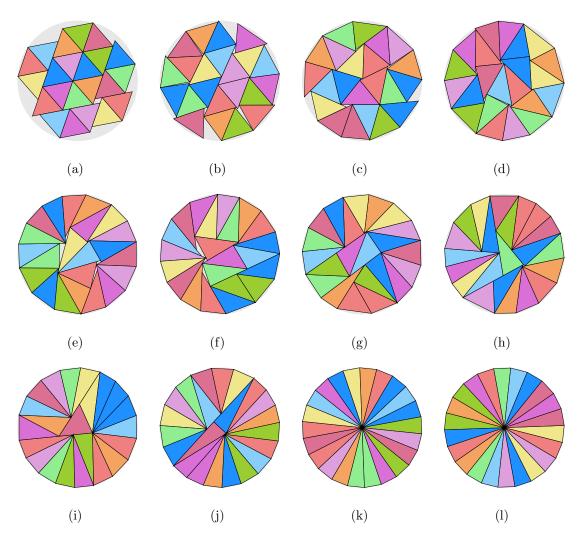


FIGURA E.22: 22 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T22-r00	E.22-(a)	1.943989	0.00%	80.24%
T22-r01	E.22-(b)	1.851459	9.99%	88.46%
T22-r02	E.22-(c)	1.809711	17.77%	92.59%
T22-r03	E.22-(d)	1.789847	28.04%	94.65%
T22-r04	E.22-(e)	1.778525	40.00%	95.86%
T22-r05	E.22-(f)	1.777874	42.17%	95.93%
T22-r06	E.22-(g)	1.769122	60.00%	96.89%
T22-r07	E.22-(h)	1.767189	70.00%	97.10%
T22-r08	E.22-(i)	1.759585	79.99%	97.94%
T22-r09	E.22-(j)	1.757712	80.96%	98.15%
T22-r10	E.22-(k)	1.753262	75.33%	98.65%
T22-rXX	E.22-(1)	1.753262	75.33%	98.65%

TABLA E.22: Información de Figura E.22

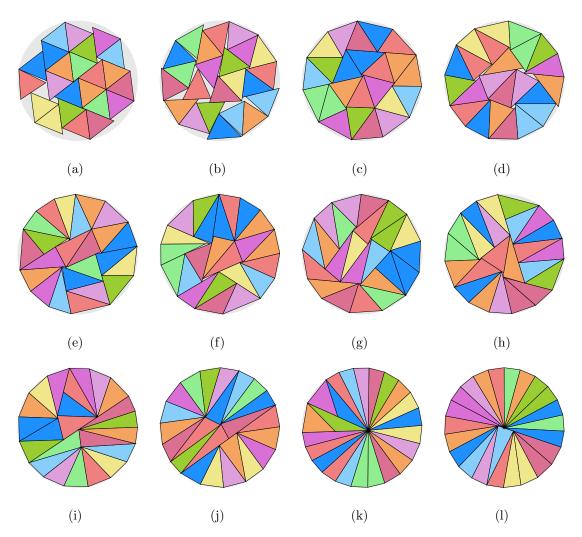


FIGURA E.23: 23 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T23-r00	E.23-(a)	1.985282	0.00%	80.43%
T23-r01	E.23-(b)	1.914705	9.97%	86.47%
T23-r02	E.23-(c)	1.830858	20.00%	94.57%
T23-r03	E.23-(d)	1.830276	25.47%	94.63%
T23-r04	E.23-(e)	1.825134	39.87%	95.17%
T23-r05	E.23-(f)	1.821195	50.00%	95.58%
T23-r06	E.23-(g)	1.817982	60.00%	95.92%
T23-r07	E.23-(h)	1.813376	51.21%	96.41%
T23-r08	E.23-(i)	1.802230	80.00%	97.60%
T23-r09	E.23-(j)	1.799564	90.00%	97.89%
T23-r10	E.23-(k)	1.796372	99.94%	98.24%
T23-rXX	E.23-(1)	1.792977	79.85%	98.61%

Tabla E.23: Información de Figura E.23

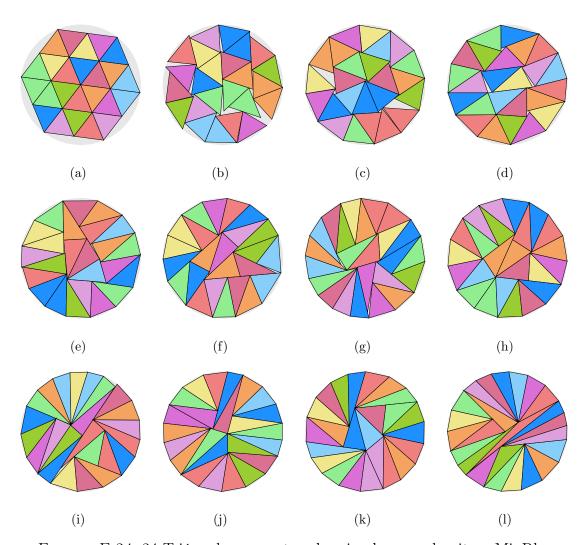


FIGURA E.24: 24 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T24-r00	E.24-(a)	2.000000	0.00 %	82.70%
T24-r01	E.24-(b)	1.942851	10.00%	87.64%
T24-r02	E.24-(c)	1.901043	15.28%	91.53%
T24-r03	E.24-(d)	1.874071	27.13%	94.19%
T24-r04	E.24-(e)	1.856692	38.40%	95.96%
T24-r05	E.24-(f)	1.856289	49.76%	96.00%
T24-r06	E.24-(g)	1.849932	58.26%	96.66%
T24-r07	E.24-(h)	1.846138	52.82%	97.06%
T24-r08	E.24-(i)	1.845800	80.00%	97.09%
T24-r09	E.24-(j)	1.838458	89.59%	97.87%
T24-r10	E.24-(k)	1.838035	92.16%	97.92%
T24-rXX	E.24-(1)	1.836714	247.16%	98.06%

Tabla E.24: Información de Figura E.24

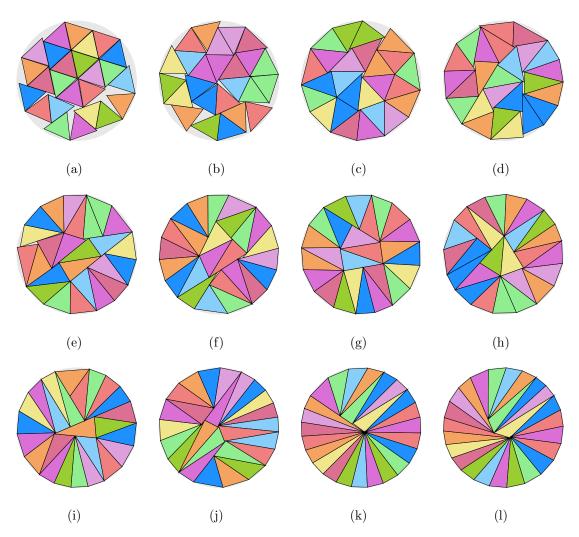


FIGURA E.25: 25 Triángulos en contenedor circular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T25-r00	E.25-(a)	2.099844	0.00%	78.15%
T25-r01	E.25-(b)	2.004013	7.51%	85.80%
T25-r02	E.25-(c)	1.916952	19.89%	93.77%
T25-r03	E.25-(d)	1.908672	29.92%	94.59%
T25-r04	E.25-(e)	1.899100	40.00%	95.54%
T25-r05	E.25-(f)	1.884654	47.58%	97.01%
T25-r06	E.25-(g)	1.880958	50.53%	97.39%
T25-r07	E.25-(h)	1.879343	69.99%	97.56%
T25-r08	E.25-(i)	1.878169	79.54%	97.68%
T25-r09	E.25-(j)	1.875883	89.58%	97.92%
T25-r10	E.25-(k)	1.869864	100.00%	98.55%
T25-rXX	E.25-(1)	1.868385	120.52%	98.71%

TABLA E.25: Información de Figura E.25

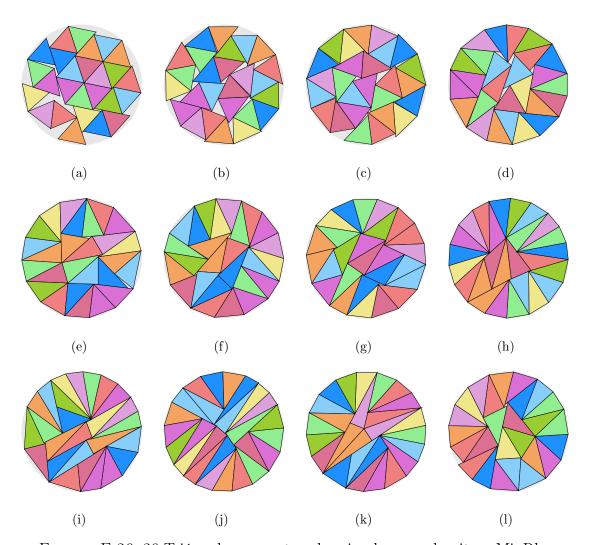


FIGURA E.26: 26 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T26-r00	E.26-(a)	2.106881	0.00 %	80.73%
T26-r01	E.26-(b)	2.027607	10.00%	87.17%
T26-r02	E.26-(c)	1.972195	14.78%	92.13%
T26-r03	E.26-(d)	1.939885	29.36%	95.23%
T26-r04	E.26-(e)	1.932646	39.94%	95.94%
T26-r05	E.26-(f)	1.930436	47.06%	96.16%
T26-r06	E.26-(g)	1.923695	47.39%	96.84%
T26-r07	E.26-(h)	1.913111	80.00%	97.91%
T26-r08	E.26-(i)	1.930922	89.80%	96.12%
T26-r09	E.26-(j)	1.913794	100.00%	97.84%
T26-r10	E.26-(k)	1.913306	39.51%	97.89%
T26-rXX	E.26-(1)	1.925050	0.00%	96.70%

Tabla E.26: Información de Figura E.26

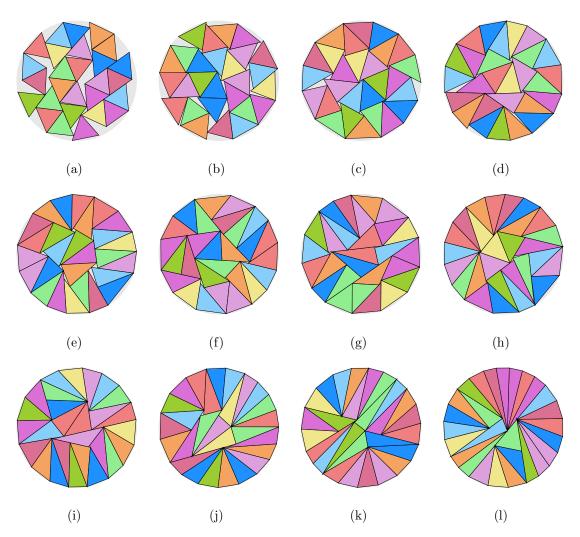


FIGURA E.27: 27 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T27-r00	E.27-(a)	2.194258	0.00%	77.29%
T27-r01	E.27-(b)	2.068499	8.47%	86.98%
T27-r02	E.27-(c)	1.993750	19.34%	93.62%
T27-r03	E.27-(d)	1.977996	30.00%	95.12%
T27-r04	E.27-(e)	1.974461	40.00%	95.46%
T27-r05	E.27-(f)	1.966569	50.00%	96.23%
T27-r06	E.27-(g)	1.966194	59.88%	96.26%
T27-r07	E.27-(h)	1.961413	62.79%	96.73%
T27-r08	E.27-(i)	1.952580	67.92%	97.61%
T27-r09	E.27-(j)	1.949473	78.90%	97.92%
T27-r10	E.27-(k)	1.946354	95.73%	98.24%
T27-rXX	E.27-(1)	1.942038	107.98%	98.67%

Tabla E.27: Información de Figura E.27

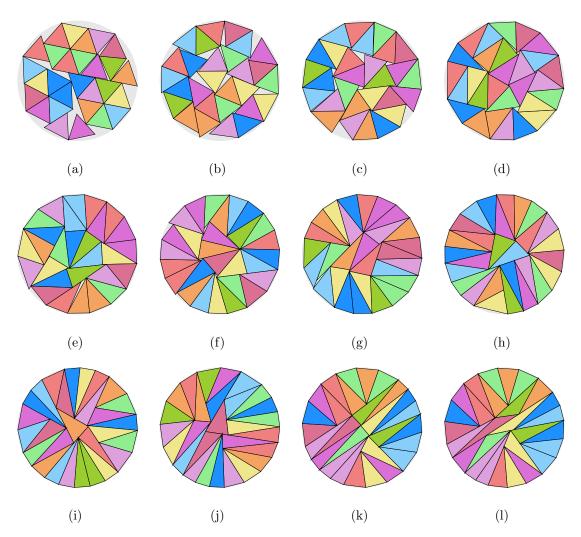


FIGURA E.28: 28 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T28-r00	E.28-(a)	2.199291	0.00%	79.79%
T28-r01	E.28-(b)	2.107077	9.89%	86.93%
T28-r02	E.28-(c)	2.045732	19.51%	92.22%
T28-r03	E.28-(d)	2.014900	29.99%	95.06%
T28-r04	E.28-(e)	2.005278	39.57%	95.98%
T28-r05	E.28-(f)	1.994686	43.24%	97.00%
T28-r06	E.28-(g)	1.990090	59.99%	97.45%
T28-r07	E.28-(h)	1.985494	69.81%	97.90%
T28-r08	E.28-(i)	1.983295	80.00%	98.11%
T28-r09	E.28-(j)	1.983434	89.98%	98.10%
T28-r10	E.28-(k)	1.982817	100.00%	98.16%
T28-rXX	E.28-(1)	1.981994	161.61%	98.24%

Tabla E.28: Información de Figura E.28

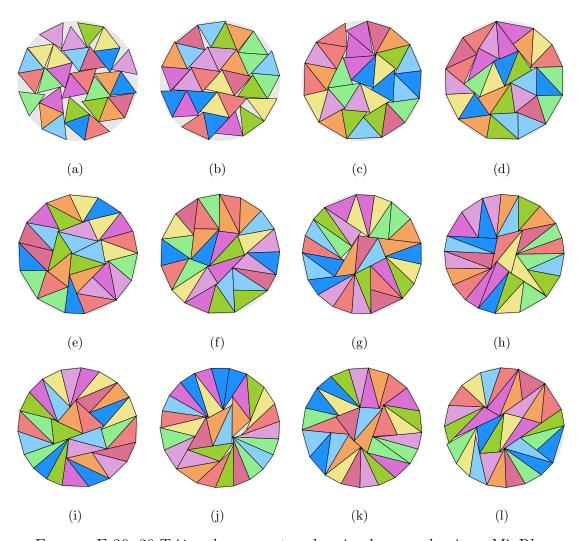


FIGURA E.29: 29 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T29-r00	E.29-(a)	2.261068	0.00%	78.18%
T29-r01	E.29-(b)	2.140426	7.75%	87.25%
T29-r02	E.29-(c)	2.062031	19.86%	94.01%
T29-r03	E.29-(d)	2.057570	30.00%	94.41%
T29-r04	E.29-(e)	2.036991	39.94%	96.33%
T29-r05	E.29-(f)	2.033240	49.77%	96.69%
T29-r06	E.29-(g)	2.033240	59.97%	96.69%
T29-r07	E.29-(h)	2.024054	69.18%	97.57%
T29-r08	E.29-(i)	2.022465	59.40%	97.72%
T29-r09	E.29-(j)	2.032152	57.39%	96.79%
T29-r10	E.29-(k)	2.023194	58.70%	97.65%
T29-rXX	E.29-(1)	2.036380	71.22%	96.39%

Tabla E.29: Información de Figura E.29

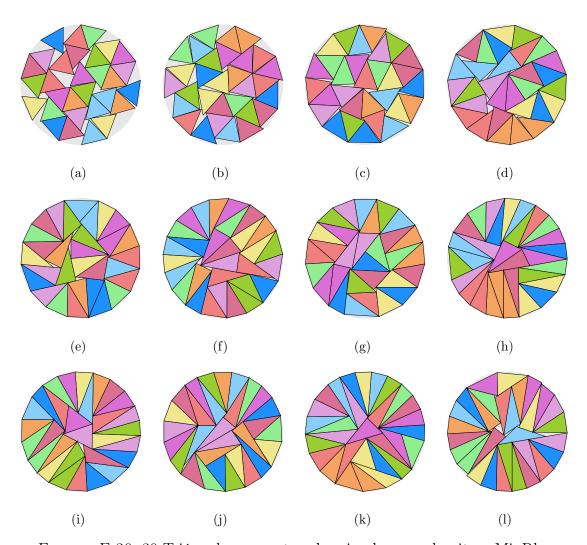


FIGURA E.30: 30 Triángulos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
T30-r00	E.30-(a)	2.296747	0.00%	78.39%
T30-r01	E.30-(b)	2.188977	8.64%	86.30%
T30-r02	E.30-(c)	2.112785	14.47%	92.63%
T30-r03	E.30-(d)	2.092716	30.00%	94.42%
T30-r04	E.30-(e)	2.071574	39.87%	96.35%
T30-r05	E.30-(f)	2.064077	48.52%	97.06%
T30-r06	E.30-(g)	2.063935	51.96%	97.07%
T30-r07	E.30-(h)	2.055085	69.03%	97.91%
T30-r08	E.30-(i)	2.055085	74.58%	97.91%
T30-r09	E.30-(j)	2.058639	77.68%	97.57%
T30-r10	E.30-(k)	2.053854	88.59%	98.02%
T30-rXX	E.30-(1)	2.073876	69.89%	96.14%

Tabla E.30: Información de Figura E.30

Apéndice F

CUADRADOS EN CUADRADOS CONTENEDOR MÍNIMO

F.1 RESULTADOS DEL ALGORITMO DE MÍNIMO CONTENEDOR EN EL CONTENEDOR CUADRADO

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínimo Contenedor en un contenedor cuadrado. El objetivo es empaquetar cuadrados considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 15 cuadrados dentro del contenedor cuadrado.

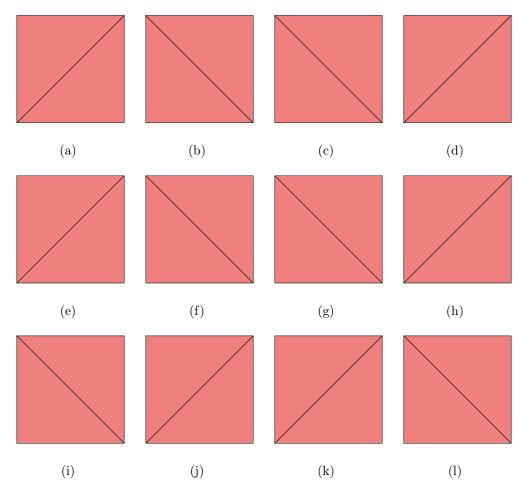


FIGURA F.1: 1 Cuadrado en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C1-r00	F.1-(a)	1.000004	0.00 %	100.00 %
C1-r01	F.1-(b)	1.000000	10.00%	100.00%
C1-r02	F.1-(c)	1.000000	20.00%	100.00%
C1-r03	F.1-(d)	1.000000	30.00%	100.00%
C1-r04	F.1-(e)	1.000000	40.00%	100.00%
C1-r05	F.1-(f)	1.000000	50.00%	100.00%
C1-r06	F.1-(g)	1.000000	60.00%	100.00%
C1-r07	F.1-(h)	1.000000	70.00%	100.00%
C1-r08	F.1-(i)	1.000000	80.00%	100.00%
C1-r09	F.1-(j)	1.000000	90.00%	100.00%
C1-r10	F.1-(k)	1.000000	100.00%	100.00%
C1-rXX	F.1-(1)	1.000000	∞	100.00%

TABLA F.1: Información de Figura F.1

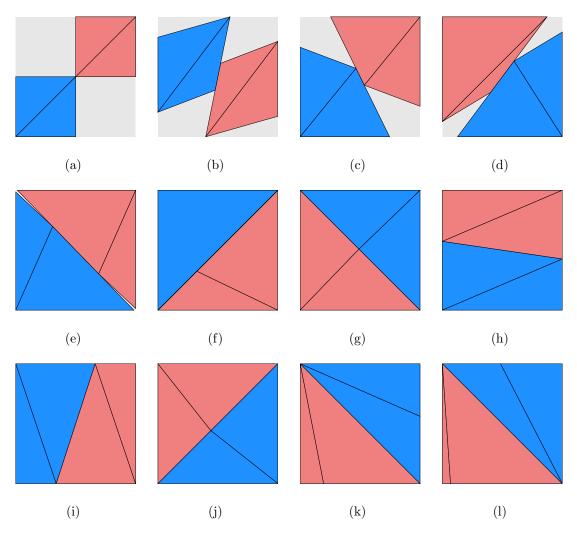


FIGURA F.2: 2 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C2-r00	F.2-(a)	2.000000	0.00 %	50.00%
C2-r01	F.2-(b)	1.760724	10.00%	64.51%
C2-r02	F.2-(c)	1.608951	20.00%	77.26%
C2-r03	F.2-(d)	1.489119	30.00%	90.19%
C2-r04	F.2-(e)	1.420502	40.00%	99.12%
C2-r05	F.2-(f)	1.414212	50.00%	100.00%
C2-r06	F.2-(g)	1.414214	60.00%	100.00%
C2-r07	F.2-(h)	1.414214	70.00%	100.00%
C2-r08	F.2-(i)	1.414214	80.00%	100.00%
C2-r09	F.2-(j)	1.414214	90.00%	100.00%
C2-r10	F.2-(k)	1.414214	100.00%	100.00%
C2-rXX	F.2-(1)	1.414214	∞	100.00%

TABLA F.2: Información de Figura F.2

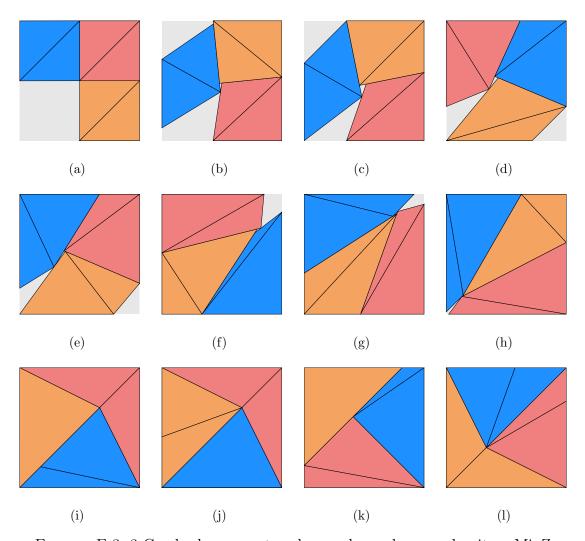


FIGURA F.3: 3 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C3-r00	F.3-(a)	1.999998	0.00%	75.00%
C3-r01	F.3-(b)	1.921947	10.00%	81.22%
C3-r02	F.3-(c)	1.857164	20.00%	86.98%
C3-r03	F.3-(d)	1.819004	30.00%	90.67%
C3-r04	F.3-(e)	1.786064	40.00%	94.04%
C3-r05	F.3-(f)	1.762684	50.00%	96.55%
C3-r06	F.3-(g)	1.745595	60.00%	98.45%
C3-r07	F.3-(h)	1.734452	70.00%	99.72%
C3-r08	F.3-(i)	1.732049	80.00%	100.00%
C3-r09	F.3-(j)	1.732049	90.00%	100.00%
C3-r10	F.3-(k)	1.732052	100.00%	100.00%
C3-rXX	F.3-(1)	1.732056	∞	100.00%

Tabla F.3: Información de Figura F.3

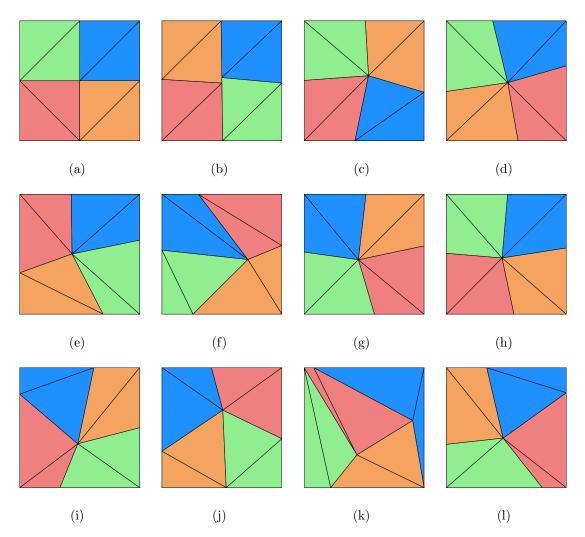


FIGURA F.4: 4 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C4-r00	F.4-(a)	2.000000	0.00 %	100.00 %
C4-r01	F.4-(b)	2.000000	10.00%	100.00%
C4-r02	F.4-(c)	2.000000	20.00%	100.00%
C4-r03	F.4-(d)	2.000000	30.00%	100.00%
C4-r04	F.4-(e)	2.000000	40.00%	100.00%
C4-r05	F.4-(f)	2.000000	50.00%	100.00%
C4-r06	F.4-(g)	2.000000	60.00%	100.00%
C4-r07	F.4-(h)	2.000000	70.00%	100.00%
C4-r08	F.4-(i)	2.000000	80.00%	100.00%
C4-r09	F.4-(j)	2.000000	90.00%	100.00%
C4-r10	F.4-(k)	2.000000	100.00%	100.00%
C4-rXX	F.4-(1)	2.000000	∞	100.00%

TABLA F.4: Información de Figura F.4

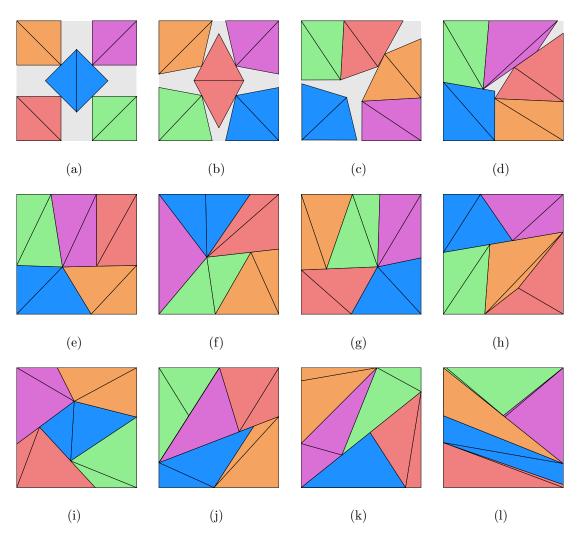


FIGURA F.5: 5 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C5-r00	F.5-(a)	2.707107	0.00 %	68.23%
C5-r01	F.5-(b)	2.475694	10.00%	81.58%
C5-r02	F.5-(c)	2.431817	20.00%	84.55%
C5-r03	F.5-(d)	2.274477	30.00%	96.65%
C5-r04	F.5-(e)	2.236066	40.00%	100.00%
C5-r05	F.5-(f)	2.236066	50.00%	100.00%
C5-r06	F.5-(g)	2.236075	60.00%	100.00%
C5-r07	F.5-(h)	2.236068	70.00%	100.00%
C5-r08	F.5-(i)	2.236068	80.00%	100.00%
C5-r09	F.5-(j)	2.236068	90.00%	100.00%
C5-r10	F.5-(k)	2.236066	100.00%	100.00%
C5-rXX	F.5-(1)	2.236068	∞	100.00%

TABLA F.5: Información de Figura F.5

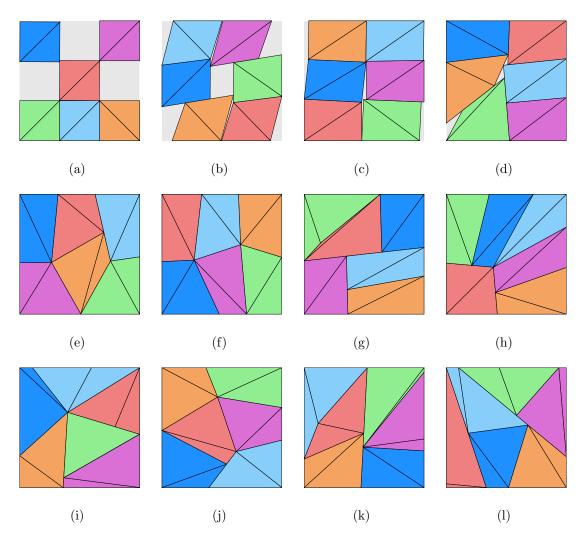


FIGURA F.6: 6 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C6-r00	F.6-(a)	3.000000	0.00%	66.67%
C6-r01	F.6-(b)	2.701216	10.00%	82.23%
C6-r02	F.6-(c)	2.497541	20.00%	96.19%
C6-r03	F.6-(d)	2.469327	30.00%	98.40%
C6-r04	F.6-(e)	2.449490	40.00%	100.00%
C6-r05	F.6-(f)	2.449490	50.00%	100.00%
C6-r06	F.6-(g)	2.449493	60.00%	100.00%
C6-r07	F.6-(h)	2.449490	70.00%	100.00%
C6-r08	F.6-(i)	2.449492	80.00%	100.00%
C6-r09	F.6-(j)	2.449490	90.00%	100.00%
C6-r10	F.6-(k)	2.449490	100.00%	100.00%
C6-rXX	F.6-(1)	2.449487	∞	100.00%

Tabla F.6: Información de Figura F.6

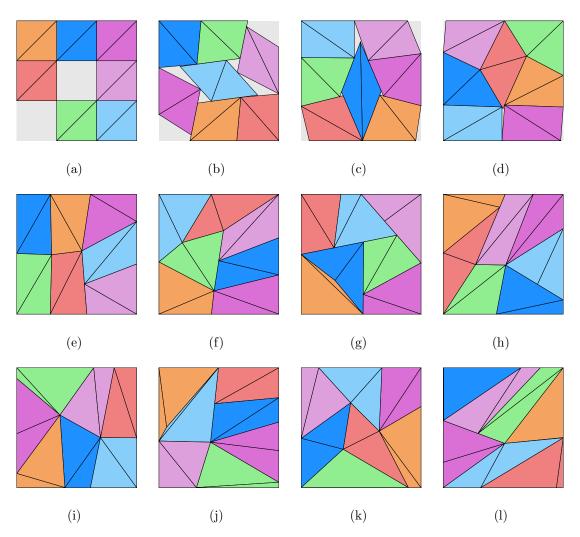


FIGURA F.7: 7 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C7-r00	F.7-(a)	3.000000	0.00 %	77.78%
C7-r01	F.7-(b)	2.823662	10.00%	87.80%
C7-r02	F.7-(c)	2.703848	20.00%	95.75%
C7-r03	F.7-(d)	2.657421	30.00%	99.12%
C7-r04	F.7-(e)	2.645751	40.00%	100.00%
C7-r05	F.7-(f)	2.645762	50.00%	100.00%
C7-r06	F.7-(g)	2.645753	60.00%	100.00%
C7-r07	F.7-(h)	2.645752	70.00%	100.00%
C7-r08	F.7-(i)	2.645751	80.00%	100.00%
C7-r09	F.7-(j)	2.645749	90.00%	100.00%
C7-r10	F.7-(k)	2.645749	100.00%	100.00%
C7-rXX	F.7-(1)	2.645749	∞	100.00%

TABLA F.7: Información de Figura F.7

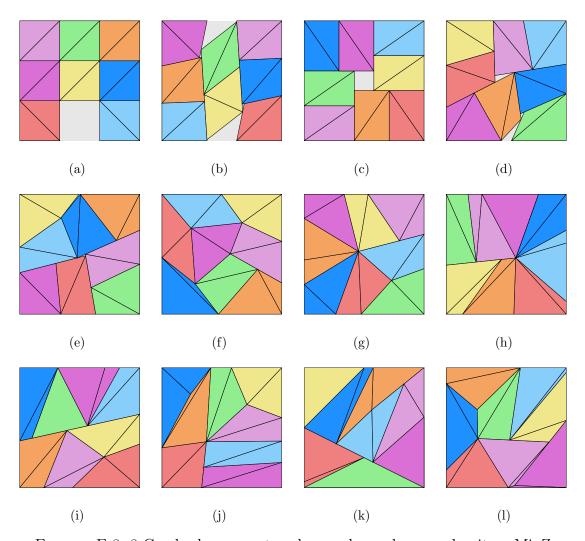


FIGURA F.8: 8 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C8-r00	F.8-(a)	3.000000	0.00%	88.89 %
C8-r01	F.8-(b)	2.922333	10.00%	93.68%
C8-r02	F.8-(c)	2.866667	20.00%	97.35%
C8-r03	F.8-(d)	2.847403	30.00%	98.67%
C8-r04	F.8-(e)	2.830551	40.00%	99.85%
C8-r05	F.8-(f)	2.828441	50.00%	100.00%
C8-r06	F.8-(g)	2.828427	60.00%	100.00%
C8-r07	F.8-(h)	2.828425	70.00%	100.00%
C8-r08	F.8-(i)	2.828431	80.00%	100.00%
C8-r09	F.8-(j)	2.828424	90.00%	100.00%
C8-r10	F.8-(k)	2.828424	100.00%	100.00%
C8-rXX	F.8-(1)	2.828424	∞	100.00%

TABLA F.8: Información de Figura F.8

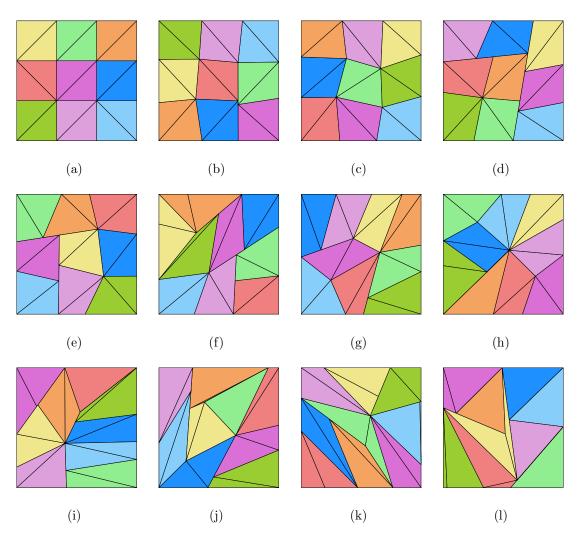


FIGURA F.9: 9 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C9-r00	F.9-(a)	3.000000	0.00 %	100.00 %
C9-r01	F.9-(b)	3.000000	10.00%	100.00%
C9-r02	F.9-(c)	3.000000	20.00%	100.00%
C9-r03	F.9-(d)	3.000000	30.00%	100.00%
C9-r04	F.9-(e)	3.000000	40.00%	100.00%
C9-r05	F.9-(f)	3.000000	50.00%	100.00%
C9-r06	F.9-(g)	3.000000	60.00%	100.00%
C9-r07	F.9-(h)	3.000000	70.00%	100.00%
C9-r08	F.9-(i)	2.999999	80.00%	100.00%
C9-r09	F.9-(j)	3.000000	90.00%	100.00%
C9-r10	F.9-(k)	3.000000	100.00%	100.00%
C9-rXX	F.9-(1)	3.000000	∞	100.00%

TABLA F.9: Información de Figura F.9

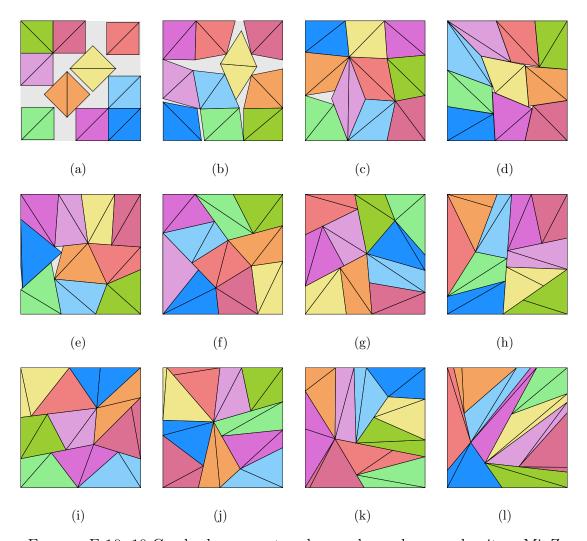


FIGURA F.10: 10 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C10-r00	F.10-(a)	3.707107	0.00%	72.77%
C10-r01	F.10-(b)	3.368894	10.00%	88.11%
C10-r02	F.10-(c)	3.182873	20.00%	98.71%
C10-r03	F.10-(d)	3.182574	30.00%	98.73%
C10-r04	F.10-(e)	3.180010	40.00%	98.89%
C10-r05	F.10-(f)	3.162275	50.00%	100.00%
C10-r06	F.10-(g)	3.162278	60.00%	100.00%
C10-r07	F.10-(h)	3.162275	70.00%	100.00%
C10-r08	F.10-(i)	3.162275	80.00%	100.00%
C10-r09	F.10-(j)	3.162278	90.00%	100.00%
C10-r10	F.10-(k)	3.162298	100.00%	100.00%
C10-rXX	F.10-(1)	3.162274	∞	100.00%

TABLA F.10: Información de Figura F.10

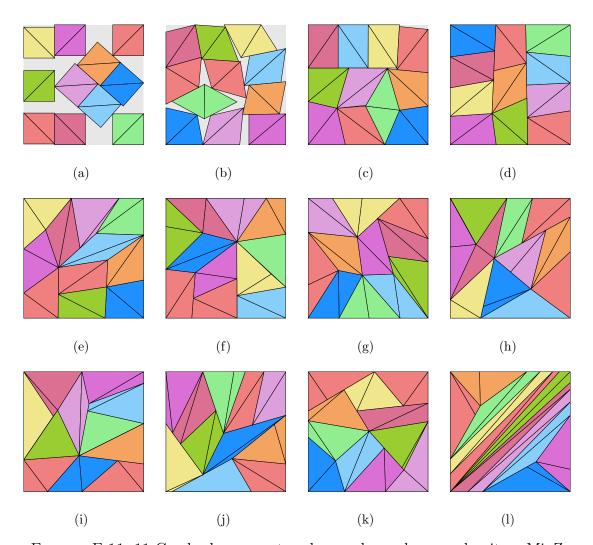


FIGURA F.11: 11 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C11-r00	F.11-(a)	3.886000	0.00%	72.84%
C11-r01	F.11-(b)	3.574300	10.00%	86.10%
C11-r02	F.11-(c)	3.329614	20.00%	99.22%
C11-r03	F.11-(d)	3.316625	30.00%	100.00%
C11-r04	F.11-(e)	3.316642	40.00%	100.00%
C11-r05	F.11-(f)	3.316633	50.00%	100.00%
C11-r06	F.11-(g)	3.316625	60.00%	100.00%
C11-r07	F.11-(h)	3.316621	70.00%	100.00%
C11-r08	F.11-(i)	3.316622	80.00%	100.00%
C11-r09	F.11-(j)	3.316621	90.00%	100.00%
C11-r10	F.11-(k)	3.316622	100.00%	100.00%
C11-rXX	F.11-(1)	3.316626	∞	100.00%

Tabla F.11: Información de Figura F.11

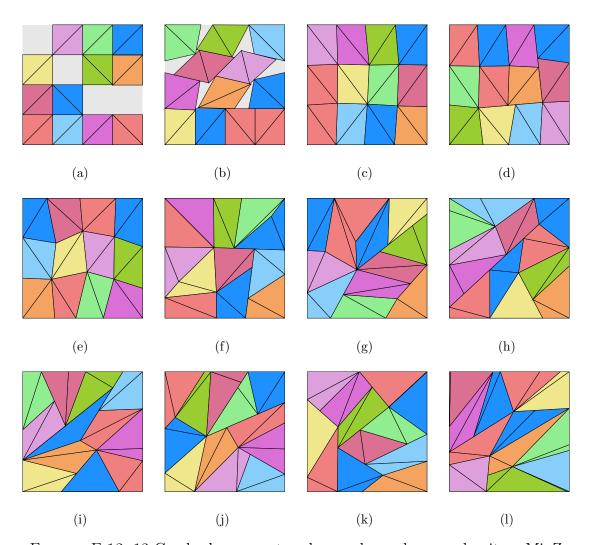


FIGURA F.12: 12 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C12-r00	F.12-(a)	4.000000	0.00%	75.00%
C12-r01	F.12-(b)	3.655074	10.00%	89.82%
C12-r02	F.12-(c)	3.464102	20.00%	100.00%
C12-r03	F.12-(d)	3.464106	30.00%	100.00%
C12-r04	F.12-(e)	3.464102	40.00%	100.00%
C12-r05	F.12-(f)	3.464099	50.00%	100.00%
C12-r06	F.12-(g)	3.464098	60.00%	100.00%
C12-r07	F.12-(h)	3.464107	70.00%	100.00%
C12-r08	F.12-(i)	3.464098	80.00%	100.00%
C12-r09	F.12-(j)	3.464100	90.00%	100.00%
C12-r10	F.12-(k)	3.464098	100.00%	100.00%
C12-rXX	F.12-(1)	3.464102	∞	100.00%

TABLA F.12: Información de Figura F.12

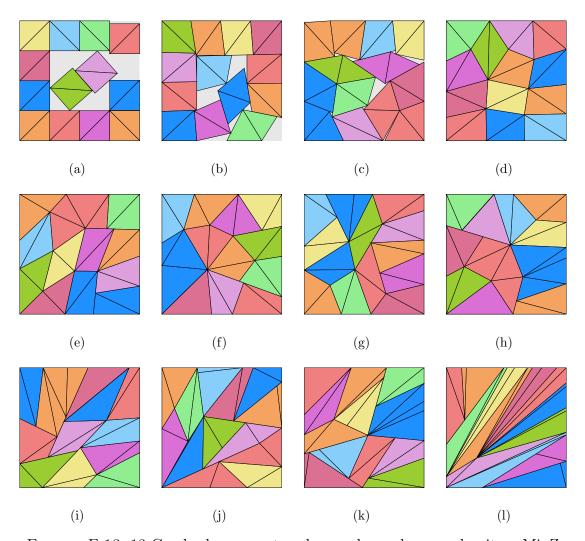


FIGURA F.13: 13 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C13-r00	F.13-(a)	4.000000	0.00%	81.25%
C13-r01	F.13-(b)	3.782097	10.00%	90.88%
C13-r02	F.13-(c)	3.656048	20.00%	97.26%
C13-r03	F.13-(d)	3.605551	30.00%	100.00%
C13-r04	F.13-(e)	3.605558	40.00%	100.00%
C13-r05	F.13-(f)	3.605557	50.00%	100.00%
C13-r06	F.13-(g)	3.605579	60.00%	100.00%
C13-r07	F.13-(h)	3.605548	70.00%	100.00%
C13-r08	F.13-(i)	3.605548	80.00%	100.00%
C13-r09	F.13-(j)	3.605551	90.00%	100.00%
C13-r10	F.13-(k)	3.605563	100.00%	100.00%
C13-rXX	F.13-(1)	3.605548	∞	100.00%

TABLA F.13: Información de Figura F.13

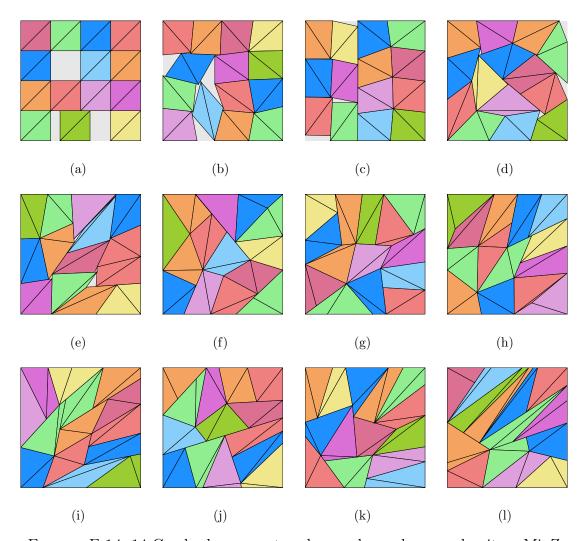


FIGURA F.14: 14 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C14-r00	F.14-(a)	4.000001	0.00%	87.50 %
C14-r01	F.14-(b)	3.862881	10.00%	93.82%
C14-r02	F.14-(c)	3.778650	20.00%	98.05%
C14-r03	F.14-(d)	3.771890	30.00%	98.40%
C14-r04	F.14-(e)	3.756756	40.00%	99.20%
C14-r05	F.14-(f)	3.741654	50.00%	100.00%
C14-r06	F.14-(g)	3.741669	60.00%	100.00%
C14-r07	F.14-(h)	3.741660	70.00%	100.00%
C14-r08	F.14-(i)	3.741658	80.00%	100.00%
C14-r09	F.14-(j)	3.741654	90.00%	100.00%
C14-r10	F.14-(k)	3.741654	100.00%	100.00%
C14-rXX	F.14-(1)	3.741654	∞	100.00%

TABLA F.14: Información de Figura F.14

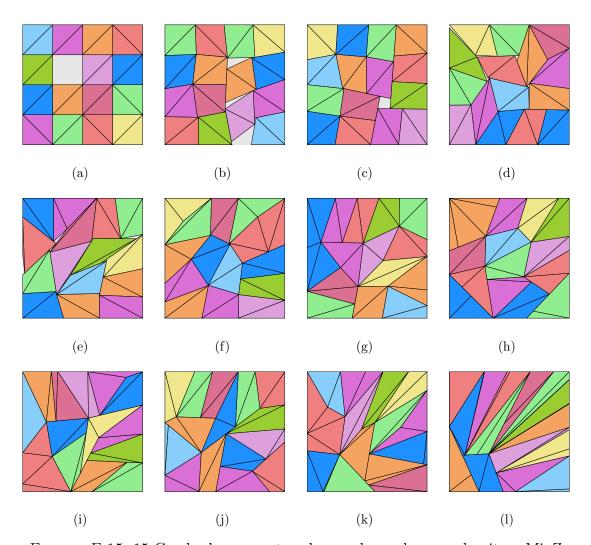


FIGURA F.15: 15 Cuadrados en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C15-r00	F.15-(a)	4.000000	0.00%	93.75%
C15-r01	F.15-(b)	3.937269	10.00%	96.76%
C15-r02	F.15-(c)	3.890534	20.00%	99.10%
C15-r03	F.15-(d)	3.889107	30.00%	99.17%
C15-r04	F.15-(e)	3.886572	40.00%	99.30%
C15-r05	F.15-(f)	3.873050	50.00%	100.00%
C15-r06	F.15-(g)	3.872983	60.00%	100.00%
C15-r07	F.15-(h)	3.872980	70.00%	100.00%
C15-r08	F.15-(i)	3.872980	80.00%	100.00%
C15-r09	F.15-(j)	3.872983	90.00%	100.00%
C15-r10	F.15-(k)	3.872983	100.00%	100.00%
C15-rXX	F.15-(l)	3.872990	∞	100.00%

TABLA F.15: Información de Figura F.15

APÉNDICE G

CUADRADOS EN CUADRADOS SUAVIDAD MÍNIMA

G.1 RESULTADOS DEL ALGORITMO DE MÍNIMA SUAVIDAD EN EL CONTENEDOR CUADRADO

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínima Suavidad en un contenedor cuadrado. El objetivo es empaquetar cuadrados considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 15 cuadrados dentro del contenedor cuadrado.

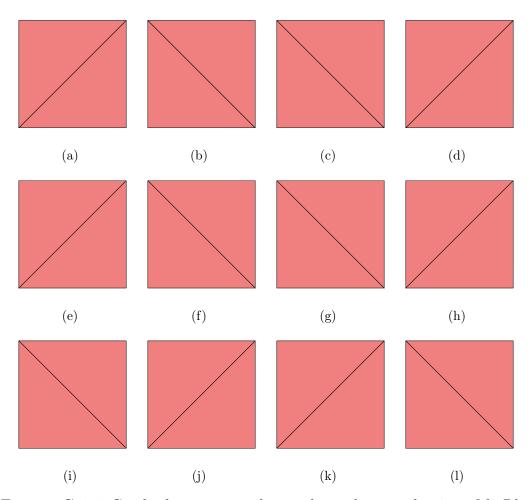


FIGURA G.1: 1 Cuadrado en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{P}}$	$ ho_{min_{ ho}}$	$\delta_{min_{P}}$
C1-r00	G.1-(a)	1.000004	0.00%	100.00 %
C1-r01	G.1-(b)	1.000000	0.00%	100.00%
C1-r02	G.1-(c)	1.000000	0.00%	100.00%
C1-r03	G.1-(d)	1.000000	0.00%	100.00%
C1-r04	G.1-(e)	1.000000	0.00%	100.00%
C1-r05	G.1- (f)	1.000000	0.00%	100.00%
C1-r06	G.1-(g)	1.000000	0.00%	100.00%
C1-r07	G.1-(h)	1.000000	0.00%	100.00%
C1-r08	G.1-(i)	1.000000	0.00%	100.00%
C1-r09	G.1-(j)	1.000000	0.00%	100.00%
C1-r10	G.1-(k)	1.000000	0.00%	100.00%
C1-rXX	G.1-(1)	1.000000	0.00%	100.00%

TABLA G.1: Información de Figura G.1

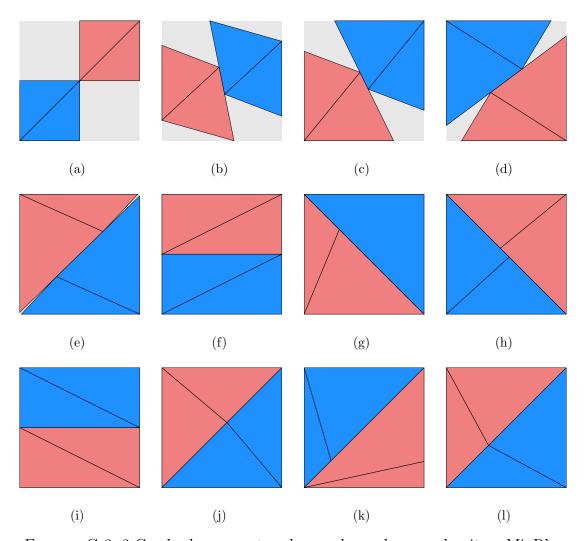


FIGURA G.2: 2 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C2-r00	G.2-(a)	2.000000	0.00 %	50.00 %
C2-r01	G.2-(b)	1.760724	10.00%	64.51%
C2-r02	G.2-(c)	1.608951	20.00%	77.26%
C2-r03	G.2-(d)	1.489119	30.00%	90.19%
C2-r04	G.2-(e)	1.420502	40.02%	99.12%
C2-r05	G.2-(f)	1.414213	41.42%	100.00%
C2-r06	G.2-(g)	1.414214	41.42%	100.00%
C2-r07	G.2-(h)	1.414214	41.42%	100.00%
C2-r08	G.2-(i)	1.414214	41.42%	100.00%
C2-r09	G.2-(j)	1.414214	41.42%	100.00%
C2-r10	G.2-(k)	1.414214	100.00%	100.00%
C2-r XX	G.2-(1)	1.414214	41.42%	100.00%

TABLA G.2: Información de Figura G.2

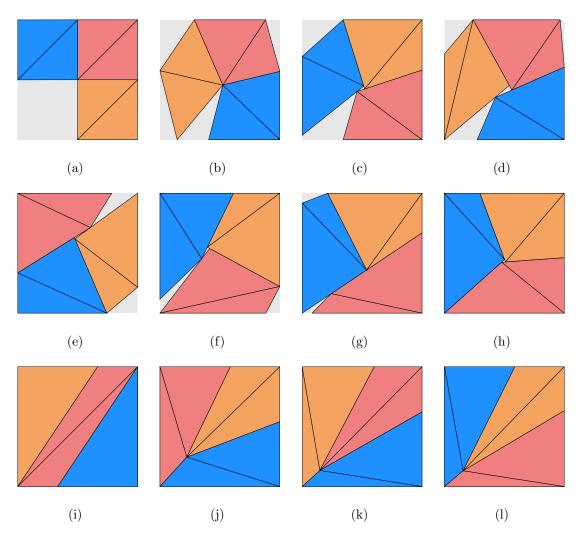


FIGURA G.3: 3 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C3-r00	G.3-(a)	1.999998	0.00 %	75.00%
C3-r01	G.3-(b)	1.921947	0.00%	81.22%
C3-r02	G.3-(c)	1.857164	14.09%	86.98%
C3-r03	G.3-(d)	1.819003	22.22%	90.67%
C3-r04	G.3-(e)	1.786064	32.11%	94.04%
C3-r05	G.3-(f)	1.762684	40.00%	96.55%
C3-r06	G.3-(g)	1.745595	55.74%	98.45%
C3-r07	G.3-(h)	1.734452	60.18%	99.72%
C3-r08	G.3-(i)	1.732049	73.76%	100.00%
C3-r09	G.3-(j)	1.732049	108.17%	100.00%
C3-r10	G.3-(k)	1.732052	73.20%	100.00%
C3-rXX	G.3-(1)	1.732056	73.20%	100.00%

Tabla G.3: Información de Figura G.3

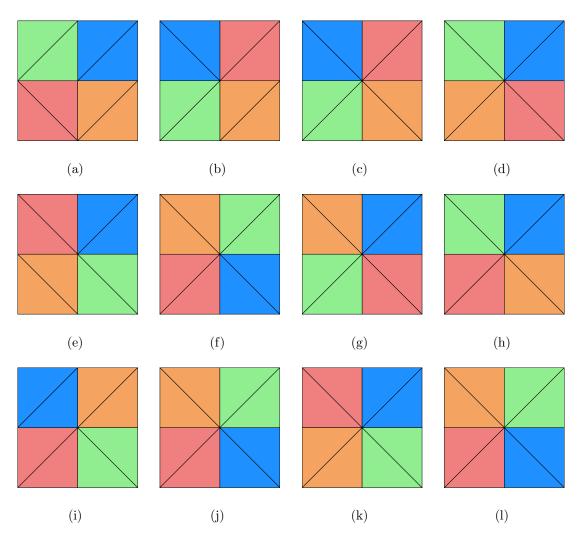


FIGURA G.4: 4 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C4-r00	G.4-(a)	2.000000	0.00%	100.00 %
C4-r01	G.4-(b)	2.000000	0.00%	100.00%
C4-r02	G.4-(c)	2.000000	0.00%	100.00%
C4-r03	G.4-(d)	2.000000	-0.00%	100.00%
C4-r04	G.4-(e)	2.000000	0.00%	100.00%
C4-r05	G.4-(f)	2.000000	0.00%	100.00%
C4-r06	G.4-(g)	2.000000	0.00%	100.00%
C4-r07	G.4-(h)	2.000000	0.00%	100.00%
C4-r08	G.4-(i)	2.000000	0.00%	100.00%
C4-r09	G.4-(j)	2.000000	0.00%	100.00%
C4-r10	G.4-(k)	2.000000	0.00%	100.00%
C4-r XX	G.4-(1)	2.000000	0.00%	100.00%

Tabla G.4: Información de Figura G.4

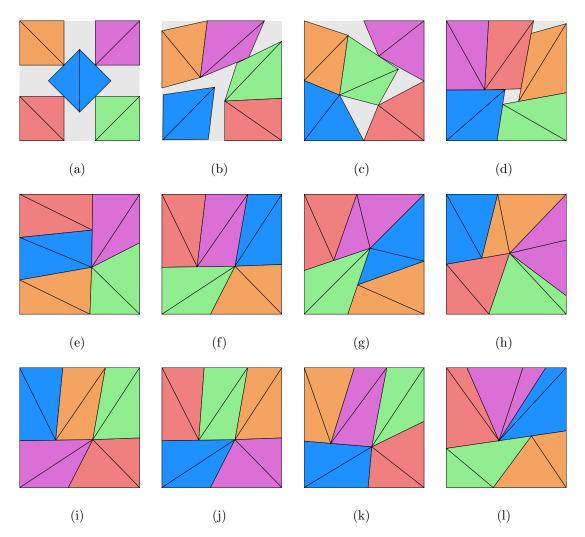


FIGURA G.5: 5 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C5-r00	G.5-(a)	2.707107	0.00%	68.23%
C5-r01	G.5-(b)	2.475694	17.92%	81.58%
C5-r02	G.5-(c)	2.431817	22.26%	84.55%
C5-r03	G.5-(d)	2.274477	31.15%	96.65%
C5-r04	G.5-(e)	2.236066	36.23%	100.00%
C5-r05	G.5-(f)	2.236066	36.23%	100.00%
C5-r06	G.5-(g)	2.236075	42.29%	100.00%
C5-r07	G.5-(h)	2.236068	67.51%	100.00%
C5-r08	G.5-(i)	2.236068	36.23%	100.00%
C5-r09	G.5-(j)	2.236068	36.23%	100.00%
C5-r10	G.5-(k)	2.236066	50.23%	100.00%
C5-rXX	G.5-(1)	2.236068	61.64%	100.00%

Tabla G.5: Información de Figura G.5

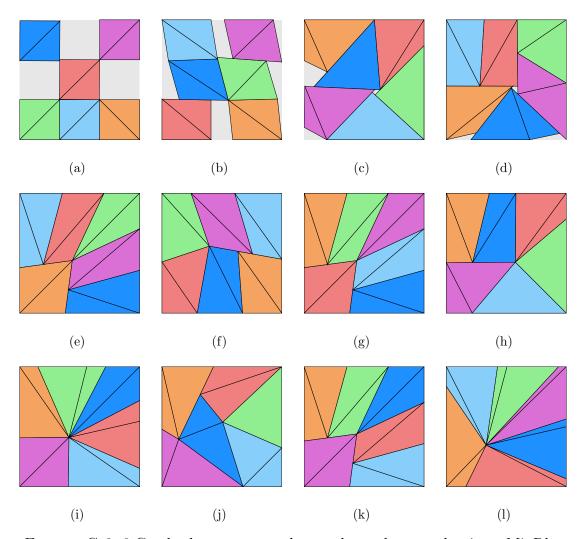


FIGURA G.6: 6 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C6-r00	G.6-(a)	3.000000	0.00%	66.67%
C6-r01	G.6-(b)	2.701216	10.60%	82.23%
C6-r02	G.6-(c)	2.497541	46.25%	96.19%
C6-r03	G.6-(d)	2.469326	36.75%	98.40%
C6-r04	G.6-(e)	2.449490	51.92%	100.00%
C6-r05	G.6-(f)	2.449490	40.41%	100.00%
C6-r06	G.6-(g)	2.449493	51.92%	100.00%
C6-r07	G.6-(h)	2.449490	47.20%	100.00%
C6-r08	G.6-(i)	2.449492	62.80%	100.00%
C6-r09	G.6-(j)	2.449490	65.80%	100.00%
C6-r10	G.6-(k)	2.449490	51.92%	100.00%
C6-rXX	G.6-(1)	2.449487	118.16%	100.00%

Tabla G.6: Información de Figura G.6

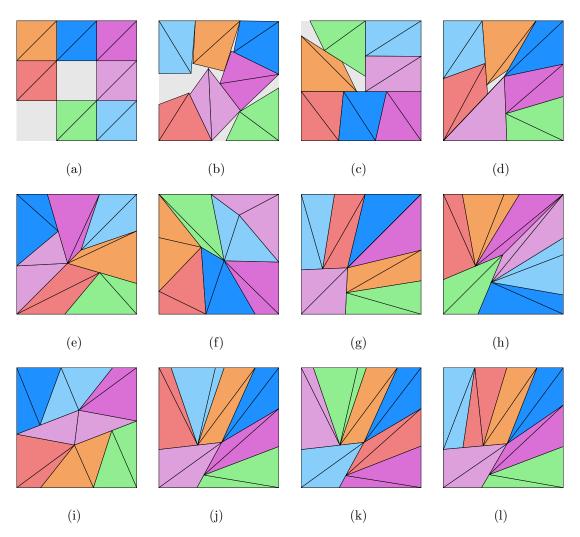


FIGURA G.7: 7 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C7-r00	G.7-(a)	3.000000	0.00%	77.78%
C7-r01	G.7-(b)	2.823661	24.43%	87.80%
C7-r02	G.7-(c)	2.703848	25.34%	95.75%
C7-r03	G.7-(d)	2.657421	42.32%	99.12%
C7-r04	G.7-(e)	2.645751	58.73%	100.00%
C7-r05	G.7-(f)	2.645762	49.65%	100.00%
C7-r06	G.7-(g)	2.645753	66.85%	100.00%
C7-r07	G.7-(h)	2.645752	88.43%	100.00%
C7-r08	G.7-(i)	2.645751	46.89%	100.00%
C7-r09	G.7-(j)	2.645749	80.61%	100.00%
C7-r10	G.7-(k)	2.645749	80.62%	100.00%
C7-rXX	G.7-(1)	2.645749	80.31%	100.00%

Tabla G.7: Información de Figura G.7

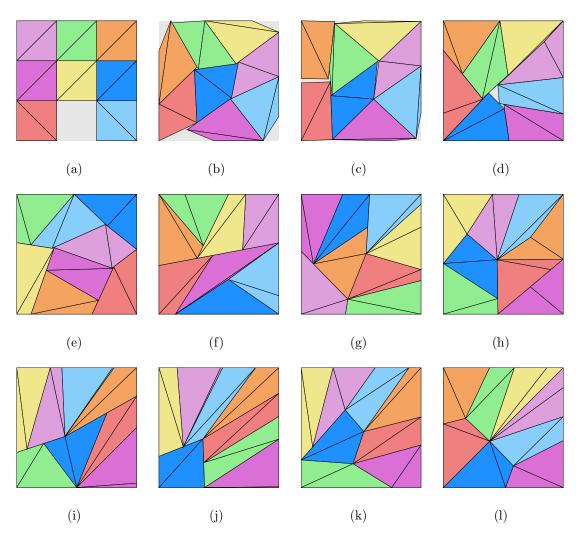


FIGURA G.8: 8 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C8-r00	G.8-(a)	3.000000	0.00 %	88.89 %
C8-r01	G.8-(b)	2.922333	29.57%	93.68%
C8-r02	G.8-(c)	2.866667	38.20%	97.35%
C8-r03	G.8-(d)	2.847403	55.80%	98.67%
C8-r04	G.8-(e)	2.830551	68.52%	99.85%
C8-r05	G.8-(f)	2.828441	68.11%	100.00%
C8-r06	G.8-(g)	2.828427	78.27%	100.00%
C8-r07	G.8-(h)	2.828425	63.47%	100.00%
C8-r08	G.8-(i)	2.828431	100.00%	100.00%
C8-r09	G.8-(j)	2.828424	109.11%	100.00%
C8-r10	G.8-(k)	2.828424	117.70%	100.00%
C8-rXX	G.8-(1)	2.828424	145.23%	100.00%

Tabla G.8: Información de Figura G.8

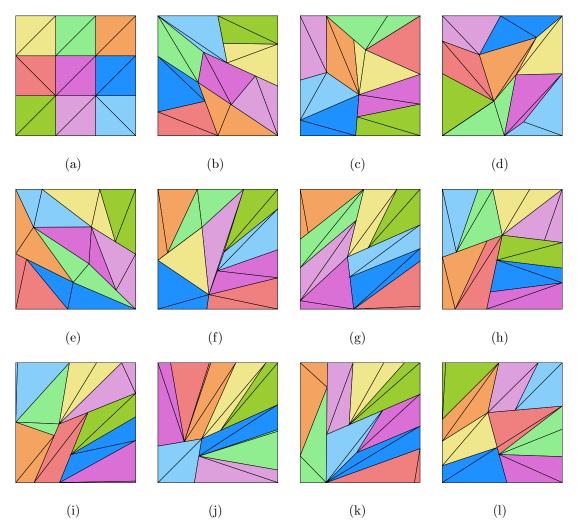


FIGURA G.9: 9 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C9-r00	G.9-(a)	3.000000	0.00 %	100.00 %
C9-r01	G.9-(b)	3.000000	50.00%	100.00%
C9-r02	G.9-(c)	3.000000	61.05%	100.00%
C9-r03	G.9-(d)	3.000000	55.23%	100.00%
C9-r04	G.9-(e)	3.000000	69.92%	100.00%
C9-r05	G.9-(f)	3.000000	77.76%	100.00%
C9-r06	G.9-(g)	3.000000	105.16%	100.00%
C9-r07	G.9-(h)	3.000000	89.07%	100.00%
C9-r08	G.9-(i)	2.999999	118.80%	100.00%
C9-r09	G.9-(j)	3.000000	108.72%	100.00%
C9-r10	G.9-(k)	3.000000	149.89%	100.00%
C9-rXX	G.9-(1)	3.000000	100.00%	100.00%

Tabla G.9: Información de Figura G.9

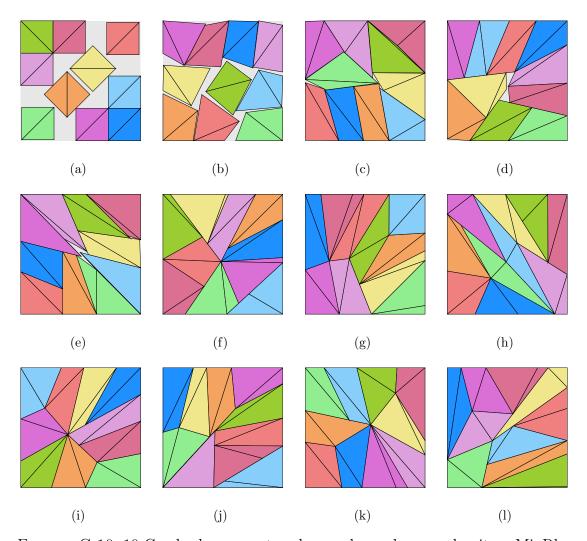


FIGURA G.10: 10 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C10-r00	G.10-(a)	3.707107	0.00%	72.77%
C10-r01	G.10-(b)	3.368894	31.44%	88.11%
C10-r02	G.10-(c)	3.182873	53.01%	98.71%
C10-r03	G.10-(d)	3.182574	56.77%	98.73%
C10-r04	G.10-(e)	3.180010	65.46%	98.89%
C10-r05	G.10-(f)	3.162275	99.69%	100.00%
C10-r06	G.10-(g)	3.162278	100.00%	100.00%
C10-r07	G.10-(h)	3.162275	118.48%	100.00%
C10-r08	G.10-(i)	3.162275	119.14%	100.00%
C10-r09	G.10-(j)	3.162278	82.23%	100.00%
C10-r10	G.10-(k)	3.162298	92.39%	100.00%
C10-rXX	G.10-(1)	3.162274	142.30%	100.00%

TABLA G.10: Información de Figura G.10

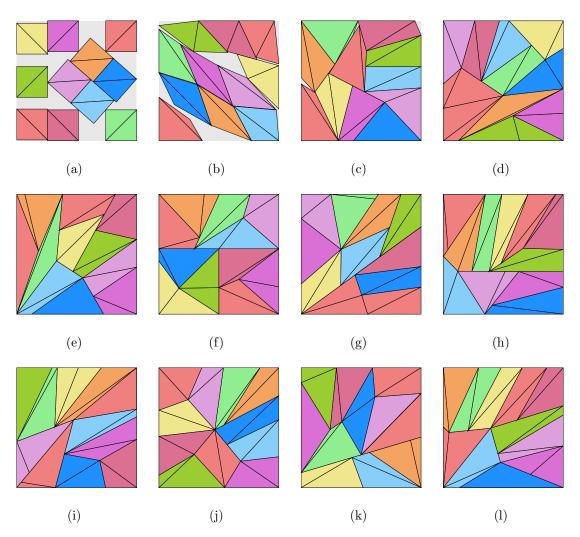


FIGURA G.11: 11 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C11-r00	G.11-(a)	3.886000	0.00%	72.84%
C11-r01	G.11-(b)	3.574300	0.00%	86.10%
C11-r02	G.11-(c)	3.329614	29.04%	99.22%
C11-r03	G.11-(d)	3.316625	57.82%	100.00%
C11-r04	G.11-(e)	3.316642	74.70%	100.00%
C11-r05	G.11-(f)	3.316633	84.80%	100.00%
C11-r06	G.11-(g)	3.316625	65.83%	100.00%
C11-r07	G.11-(h)	3.316621	84.19%	100.00%
C11-r08	G.11-(i)	3.316622	117.48%	100.00%
C11-r09	G.11-(j)	3.316621	126.53%	100.00%
C11-r10	G.11-(k)	3.316622	100.71%	100.00%
C11-rXX	G.11-(1)	3.316626	73.01%	100.00%

TABLA G.11: Información de Figura G.11

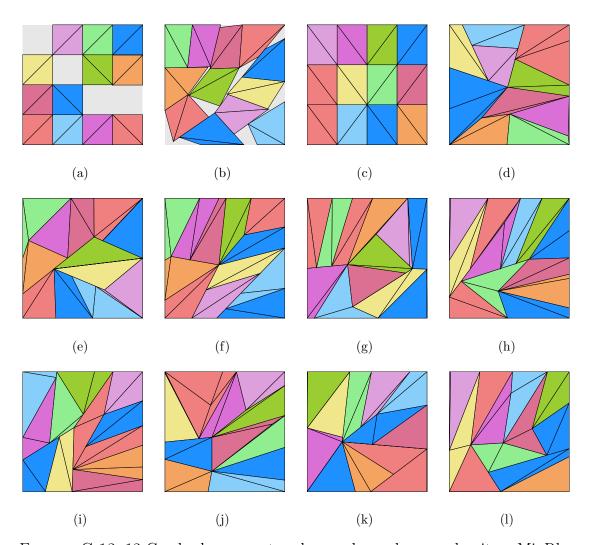


FIGURA G.12: 12 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C12-r00	G.12-(a)	4.000000	0.00 %	75.00%
C12-r01	G.12-(b)	3.655074	31.11%	89.82%
C12-r02	G.12-(c)	3.464102	15.47%	100.00%
C12-r03	G.12-(d)	3.464106	79.95%	100.00%
C12-r04	G.12-(e)	3.464102	73.20%	100.00%
C12-r05	G.12-(f)	3.464099	97.12%	100.00%
C12-r06	G.12-(g)	3.464098	105.07%	100.00%
C12-r07	G.12-(h)	3.464107	111.00%	100.00%
C12-r08	G.12-(i)	3.464098	113.34%	100.00%
C12-r09	G.12-(j)	3.464100	121.78%	100.00%
C12-r10	G.12-(k)	3.464098	103.82%	100.00%
C12-rXX	G.12-(1)	3.464102	143.61%	100.00%

TABLA G.12: Información de Figura G.12

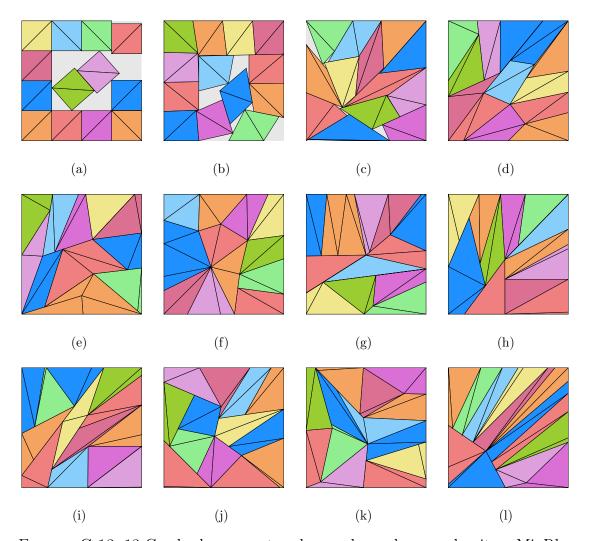


FIGURA G.13: 13 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C13-r00	G.13-(a)	4.000000	0.00%	81.25%
C13-r01	G.13-(b)	3.782097	46.54%	90.88%
C13-r02	G.13-(c)	3.656048	79.98%	97.26%
C13-r03	G.13-(d)	3.605551	88.60%	100.00%
C13-r04	G.13-(e)	3.605558	58.11%	100.00%
C13-r05	G.13-(f)	3.605557	86.01%	100.00%
C13-r06	G.13-(g)	3.605579	117.58%	100.00%
C13-r07	G.13-(h)	3.605548	103.68%	100.00%
C13-r08	G.13-(i)	3.605548	100.00%	100.00%
C13-r09	G.13-(j)	3.605551	88.56%	100.00%
C13-r10	G.13-(k)	3.605563	225.56%	100.00%
C13-rXX	G.13-(1)	3.605548	0.00%	100.00%

TABLA G.13: Información de Figura G.13

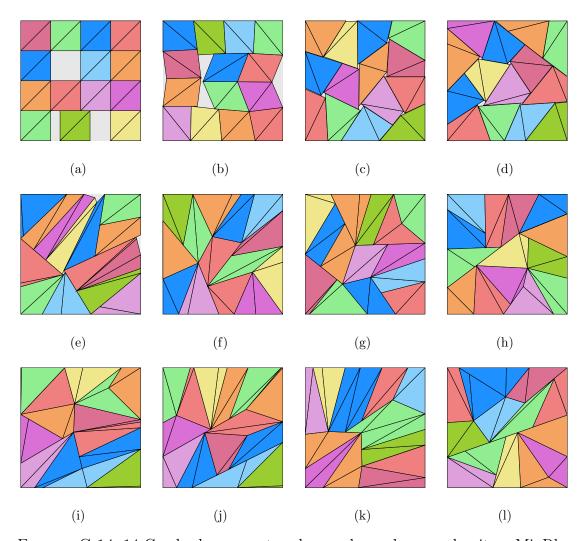


FIGURA G.14: 14 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C14-r00	G.14-(a)	4.000001	0.00 %	87.50 %
C14-r01	G.14-(b)	3.862881	10.94%	93.82%
C14-r02	G.14-(c)	3.778650	62.61%	98.05%
C14-r03	G.14-(d)	3.771890	79.57%	98.40%
C14-r04	G.14-(e)	3.756756	148.73%	99.20%
C14-r05	G.14-(f)	3.741654	72.07%	100.00%
C14-r06	G.14-(g)	3.741669	87.02%	100.00%
C14-r07	G.14-(h)	3.741660	66.76%	100.00%
C14-r08	G.14-(i)	3.741658	111.47%	100.00%
C14-r09	G.14-(j)	3.741654	100.00%	100.00%
C14-r10	G.14-(k)	3.741654	107.74%	100.00%
C14-rXX	G.14-(1)	3.741654	71.94%	100.00%

Tabla G.14: Información de Figura G.14

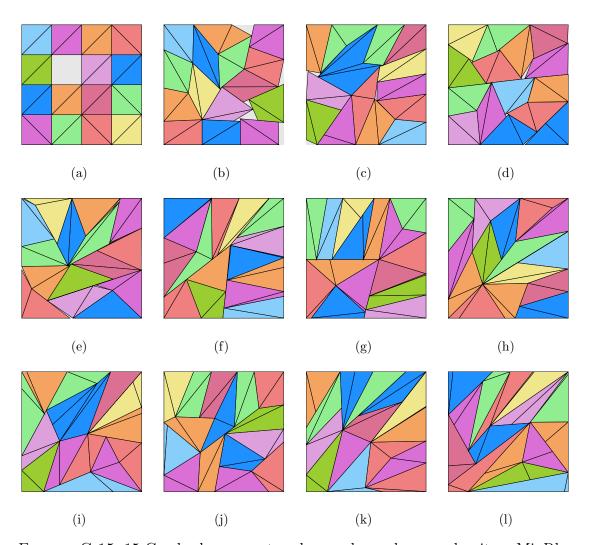


FIGURA G.15: 15 Cuadrados en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{\rho}}$
C15-r00	G.15-(a)	4.000000	0.00%	93.75%
C15-r01	G.15-(b)	3.937269	25.58%	96.76%
C15-r02	G.15-(c)	3.890534	60.79%	99.10%
C15-r03	G.15-(d)	3.889107	39.83%	99.17%
C15-r04	G.15-(e)	3.886572	56.48%	99.30%
C15-r05	G.15-(f)	3.873050	97.23%	100.00%
C15-r06	G.15-(g)	3.872983	100.70%	100.00%
C15-r07	G.15-(h)	3.872980	74.36%	100.00%
C15-r08	G.15-(i)	3.872980	129.40%	100.00%
C15-r09	G.15-(j)	3.872983	112.59%	100.00%
C15-r10	G.15-(k)	3.872983	229.15%	100.00%
C15-rXX	G.15-(1)	3.872990	0.00%	100.00%

TABLA G.15: Información de Figura G.15

APÉNDICE H

CUADRADOS EN CÍRCULOS CONTENEDOR MÍNIMO

H.1 RESULTADOS DEL ALGORITMO DE MÍNIMO CONTENEDOR EN EL CONTENEDOR CIRCULAR

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínimo Contenedor en un contenedor circular. El objetivo es empaquetar cuadrados considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 15 cuadrados dentro del contenedor circular.

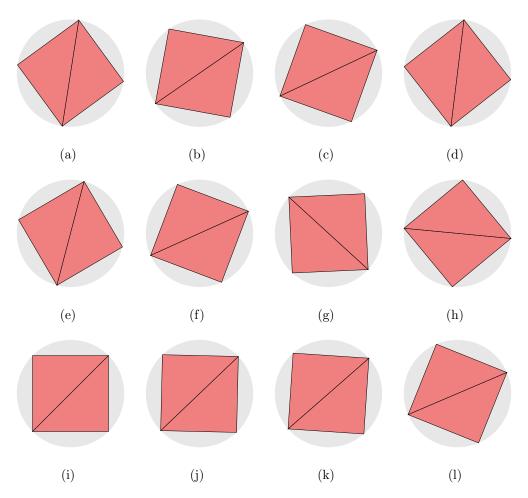


FIGURA H.1: 1 Cuadrado en contenedor circular con algoritmo MinZ

T	T2:	7	_	2
Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C1-r00	H.1-(a)	0.707107	0.00%	63.66%
C1-r01	H.1-(b)	0.707107	10.00%	63.66%
C1-r02	H.1-(c)	0.707107	20.00%	63.66%
C1-r03	H.1-(d)	0.707107	30.00%	63.66%
C1-r04	H.1-(e)	0.707107	40.00%	63.66%
C1-r05	H.1-(f)	0.707107	50.00%	63.66%
C1-r06	H.1-(g)	0.707107	60.00%	63.66%
C1-r07	H.1-(h)	0.707107	70.00%	63.66%
C1-r08	H.1-(i)	0.707107	80.00%	63.66%
C1-r09	H.1-(j)	0.707107	90.00%	63.66%
C1-r10	H.1-(k)	0.707107	100.00%	63.66%
C1-rXX	H.1-(1)	0.707107	∞	63.66%

TABLA H.1: Información de Figura H.1

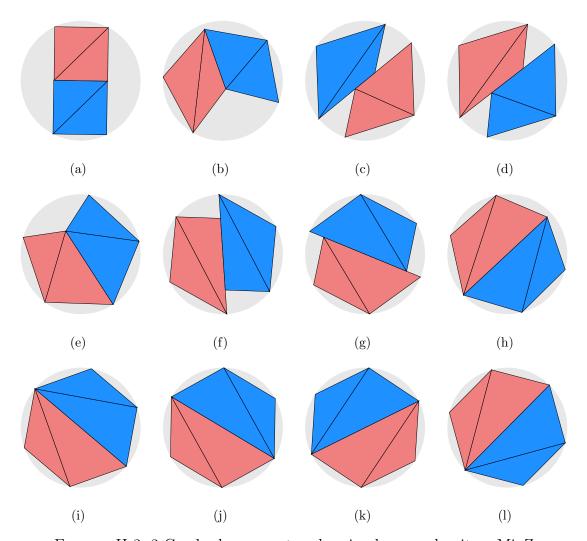


FIGURA H.2: 2 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C2-r00	H.2-(a)	1.118031	0.00%	50.93%
C2-r01	H.2-(b)	1.040877	10.00%	58.76%
C2-r02	H.2-(c)	0.991175	20.00%	64.80%
C2-r03	H.2-(d)	0.976309	30.00%	66.79%
C2-r04	H.2-(e)	0.958894	40.00%	69.24%
C2-r05	H.2-(f)	0.938222	50.00%	72.32%
C2-r06	H.2-(g)	0.915295	60.00%	75.99%
C2-r07	H.2-(h)	0.891009	70.00%	80.19%
C2-r08	H.2-(i)	0.877383	80.00%	82.70%
C2-r09	H.2-(j)	0.877383	90.00%	82.70%
C2-r10	H.2-(k)	0.877383	100.00%	82.70%
C2-r XX	H.2-(1)	0.877383	∞	82.70%

TABLA H.2: Información de Figura H.2

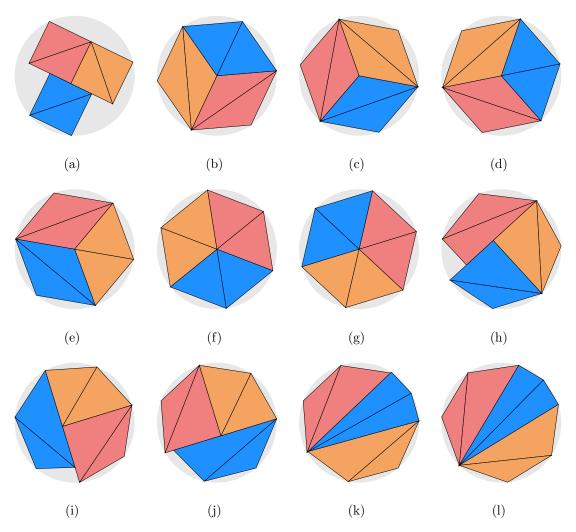


FIGURA H.3: 3 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C3-r00	H.3-(a)	1.288366	0.00%	57.53%
C3-r01	H.3-(b)	1.074570	10.00%	82.70%
C3-r02	H.3-(c)	1.074570	20.00%	82.70%
C3-r03	H.3-(d)	1.074570	30.00%	82.70%
C3-r04	H.3-(e)	1.074570	40.00%	82.70%
C3-r05	H.3-(f)	1.074570	50.00%	82.70%
C3-r06	H.3-(g)	1.074570	60.00%	82.70%
C3-r07	H.3-(h)	1.071342	70.00%	83.20%
C3-r08	H.3-(i)	1.063989	80.00%	84.35%
C3-r09	H.3-(j)	1.056530	90.00%	85.55%
C3-r10	H.3-(k)	1.039756	100.00%	88.33%
C3-rXX	H.3-(1)	1.037222	∞	88.76%

TABLA H.3: Información de Figura H.3

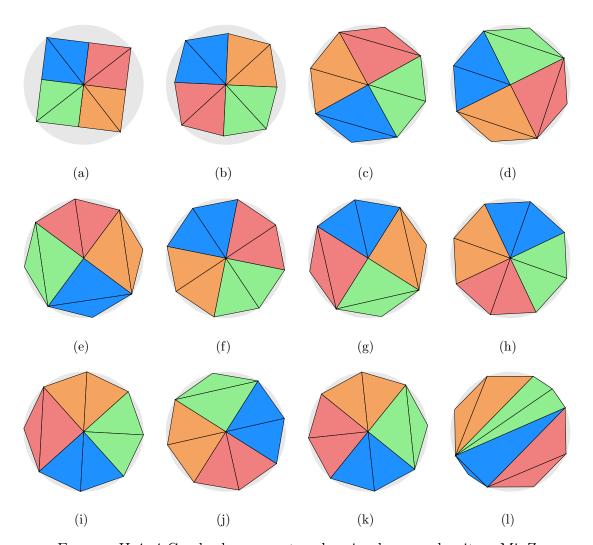


FIGURA H.4: 4 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C4-r00	H.4-(a)	1.414213	0.00%	63.66%
C4-r01	H.4-(b)	1.285659	10.00%	77.03%
C4-r02	H.4-(c)	1.189216	20.00%	90.03%
C4-r03	H.4-(d)	1.189207	30.00%	90.03%
C4-r04	H.4-(e)	1.189207	40.00%	90.03%
C4-r05	H.4-(f)	1.189207	50.00%	90.03%
C4-r06	H.4-(g)	1.189207	60.00%	90.03%
C4-r07	H.4-(h)	1.189207	70.00%	90.03%
C4-r08	H.4-(i)	1.189207	80.00%	90.03%
C4-r09	H.4-(j)	1.189207	90.00%	90.03%
C4-r10	H.4-(k)	1.189207	100.00%	90.03%
C4-rXX	H.4-(1)	1.178004	∞	91.75%

Tabla H.4: Información de Figura H.4

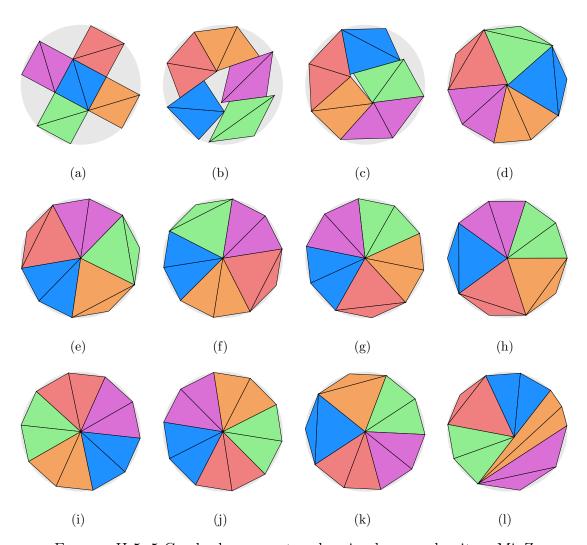


FIGURA H.5: 5 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C5-r00	H.5-(a)	1.581139	0.00%	63.66%
C5-r01	H.5-(b)	1.454392	10.00%	75.24%
C5-r02	H.5-(c)	1.378445	20.00%	83.76%
C5-r03	H.5-(d)	1.308693	30.00%	92.93%
C5-r04	H.5-(e)	1.304339	40.00%	93.55%
C5-r05	H.5-(f)	1.304340	50.00%	93.55%
C5-r06	H.5-(g)	1.304340	60.00%	93.55%
C5-r07	H.5-(h)	1.304340	70.00%	93.55%
C5-r08	H.5-(i)	1.304340	80.00%	93.55%
C5-r09	H.5-(j)	1.304340	90.00%	93.55%
C5-r10	H.5-(k)	1.304340	100.00%	93.55%
C5-rXX	H.5-(1)	1.302154	∞	93.86%

TABLA H.5: Información de Figura H.5

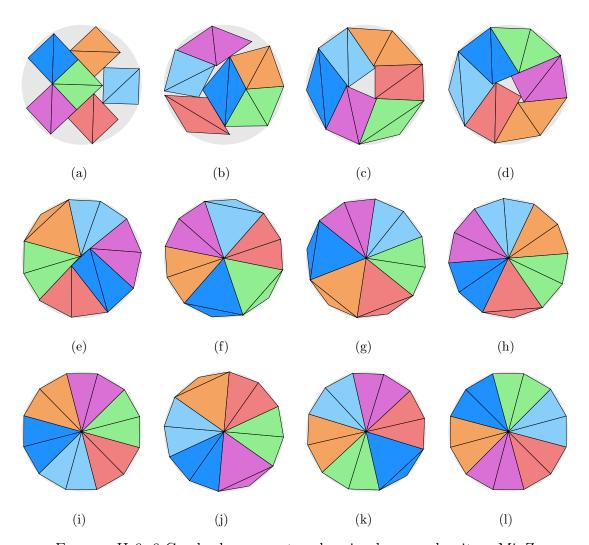


FIGURA H.6: 6 Cuadrados en contenedor circular con algoritmo MinZ

${f Instancia}$	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C6-r00	H.6-(a)	1.688906	0.00%	66.96%
C6-r01	H.6-(b)	1.541770	10.00%	80.35%
C6-r02	H.6-(c)	1.470895	20.00%	88.28%
C6-r03	H.6-(d)	1.456271	30.00%	90.06%
C6-r04	H.6-(e)	1.422986	40.00%	94.32%
C6-r05	H.6-(f)	1.414220	50.00%	95.49%
C6-r06	H.6-(g)	1.414214	60.00%	95.49%
C6-r07	H.6-(h)	1.414214	70.00%	95.49%
C6-r08	H.6-(i)	1.414214	80.00%	95.49%
C6-r09	H.6-(j)	1.414214	90.00%	95.49%
C6-r10	H.6-(k)	1.414214	100.00%	95.49%
C6-rXX	H.6-(1)	1.414210	∞	95.49%

Tabla H.6: Información de Figura H.6

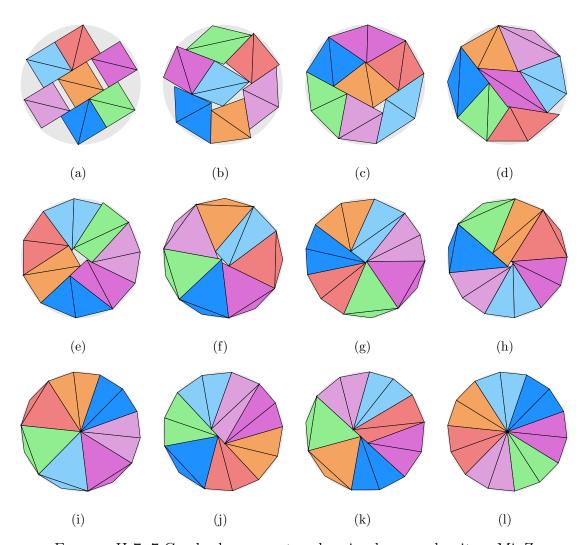


FIGURA H.7: 7 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C7-r00	H.7-(a)	1.802776	0.00%	68.56%
C7-r01	H.7-(b)	1.629322	10.00%	83.93%
C7-r02	H.7-(c)	1.562406	20.00%	91.28%
C7-r03	H.7-(d)	1.556587	30.00%	91.96%
C7-r04	H.7-(e)	1.546247	40.00%	93.19%
C7-r05	H.7-(f)	1.524562	50.00%	95.86%
C7-r06	H.7-(g)	1.523196	60.00%	96.04%
C7-r07	H.7-(h)	1.528114	70.00%	95.42%
C7-r08	H.7-(i)	1.518145	80.00%	96.68%
C7-r09	H.7-(j)	1.522639	90.00%	96.11%
C7-r10	H.7-(k)	1.522639	100.00%	96.11%
C7-rXX	H.7-(1)	1.518145	∞	96.68%

TABLA H.7: Información de Figura H.7

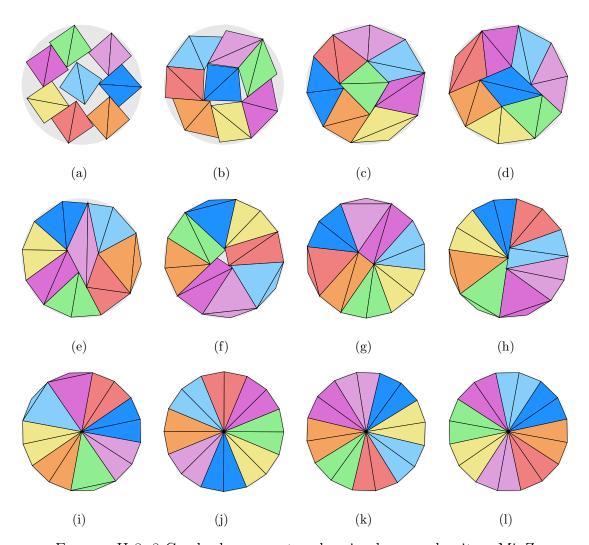


FIGURA H.8: 8 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C8-r00	H.8-(a)	1.978845	0.00%	65.03%
C8-r01	H.8-(b)	1.753918	10.00%	82.78%
C8-r02	H.8-(c)	1.653139	20.00%	93.18%
C8-r03	H.8-(d)	1.649874	30.00%	93.55%
C8-r04	H.8-(e)	1.643392	40.00%	94.29%
C8-r05	H.8-(f)	1.633970	50.00%	95.38%
C8-r06	H.8-(g)	1.623058	60.00%	96.67%
C8-r07	H.8-(h)	1.619898	70.00%	97.04%
C8-r08	H.8-(i)	1.616516	80.00%	97.45%
C8-r09	H.8-(j)	1.616516	90.00%	97.45%
C8-r10	H.8-(k)	1.616517	100.00%	97.45%
C8-rXX	H.8-(1)	1.616516	∞	97.45%

TABLA H.8: Información de Figura H.8

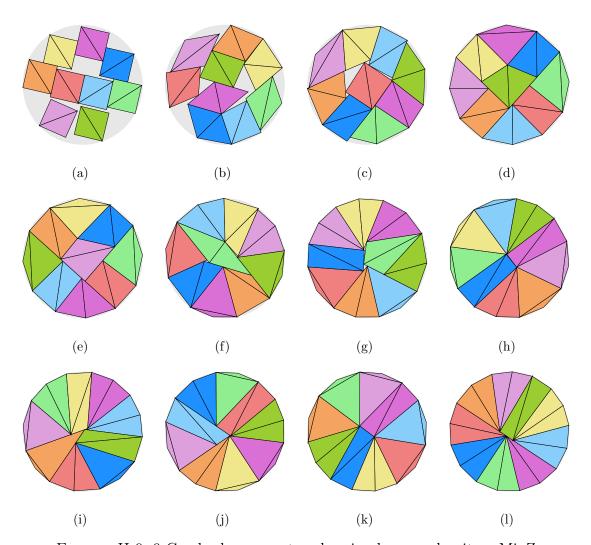


FIGURA H.9: 9 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C9-r00	H.9-(a)	2.077594	0.00%	66.37%
C9-r01	H.9-(b)	1.885377	10.00%	80.59%
C9-r02	H.9-(c)	1.775580	20.00%	90.87%
C9-r03	H.9-(d)	1.732085	30.00%	95.49%
C9-r04	H.9-(e)	1.732051	40.00%	95.49%
C9-r05	H.9-(f)	1.731908	50.00%	95.51%
C9-r06	H.9-(g)	1.720705	60.00%	96.76%
C9-r07	H.9-(h)	1.715228	70.00%	97.38%
C9-r08	H.9-(i)	1.715197	80.00%	97.38%
C9-r09	H.9-(j)	1.714877	90.00%	97.42%
C9-r10	H.9-(k)	1.714669	100.00%	97.44%
C9-rXX	H.9-(1)	1.712148	∞	97.73%

TABLA H.9: Información de Figura H.9

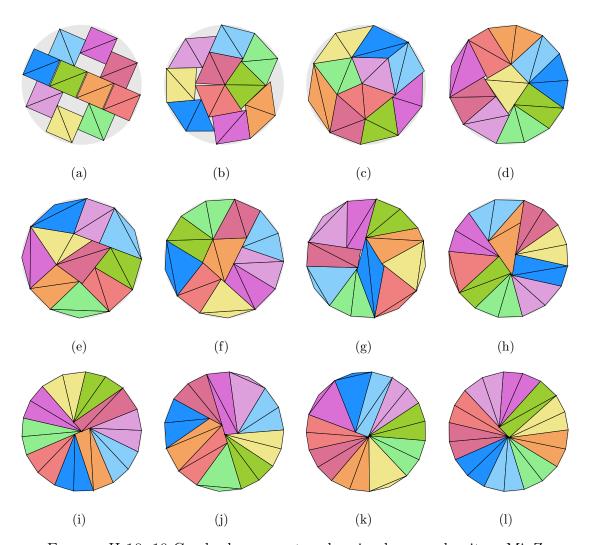


FIGURA H.10: 10 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C10-r00	H.10-(a)	2.121320	0.00%	70.74%
C10-r01	H.10-(b)	1.927855	10.00%	85.64%
C10-r02	H.10-(c)	1.859740	20.00%	92.03%
C10-r03	H.10-(d)	1.823953	30.00%	95.68%
C10-r04	H.10-(e)	1.826021	40.00%	95.46%
C10-r05	H.10-(f)	1.819488	50.00%	96.15%
C10-r06	H.10-(g)	1.813616	60.00%	96.77%
C10-r07	H.10-(h)	1.808332	70.00%	97.34%
C10-r08	H.10-(i)	1.802872	80.00%	97.93%
C10-r09	H.10-(j)	1.805299	90.00%	97.67%
C10-r10	H.10-(k)	1.800689	100.00%	98.17%
C10-rXX	H.10-(1)	1.800681	∞	98.17%

Tabla H.10: Información de Figura H.10

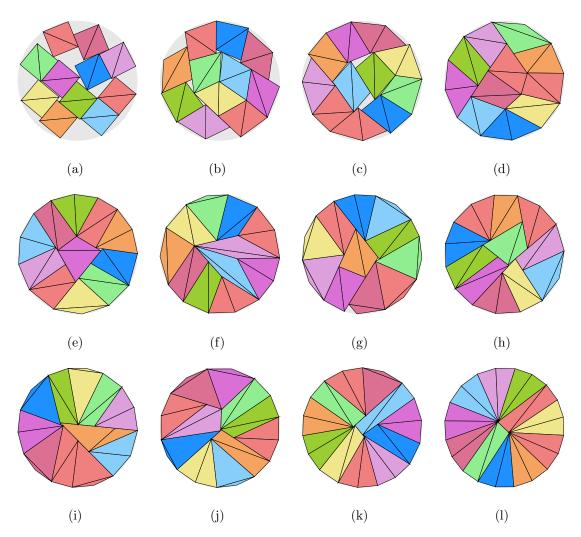


FIGURA H.11: 11 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C11-r00	H.11-(a)	2.213863	0.00%	71.44%
C11-r01	H.11-(b)	1.992399	10.00%	88.20%
C11-r02	H.11-(c)	1.956541	20.00%	91.47%
C11-r03	H.11-(d)	1.915141	30.00%	95.46%
C11-r04	H.11-(e)	1.905360	40.00%	96.45%
C11-r05	H.11-(f)	1.904485	50.00%	96.54%
C11-r06	H.11-(g)	1.898661	60.00%	97.13%
C11-r07	H.11-(h)	1.899749	70.00%	97.02%
C11-r08	H.11-(i)	1.893678	80.00%	97.64%
C11-r09	H.11-(j)	1.893438	90.00%	97.67%
C11-r10	H.11-(k)	1.890729	100.00%	97.95%
C11-rXX	H.11-(1)	1.886814	∞	98.35%

Tabla H.11: Información de Figura H.11

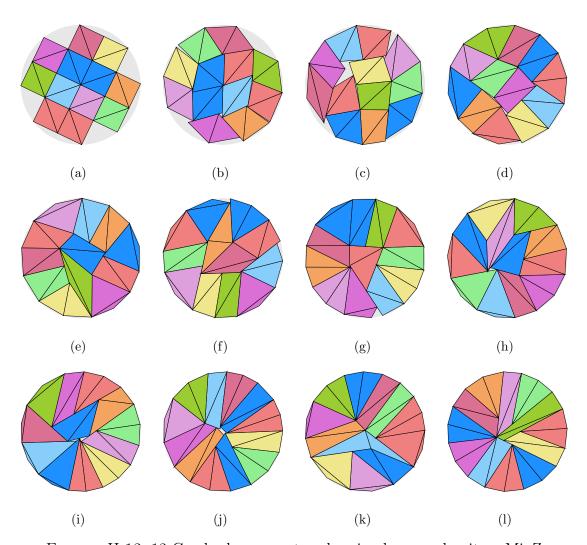


FIGURA H.12: 12 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C12-r00	H.12-(a)	2.236068	0.00%	76.39%
C12-r01	H.12-(b)	2.078928	10.00%	88.38%
C12-r 02	H.12-(c)	2.055010	20.00%	90.45%
C12-r03	H.12-(d)	1.996088	30.00%	95.87%
C12-r 04	H.12-(e)	1.988646	40.00%	96.59%
C12-r05	H.12-(f)	1.988645	50.00%	96.59%
C12-r06	H.12-(g)	1.983057	60.00%	97.13%
C12-r07	H.12-(h)	1.981825	70.00%	97.25%
C12-r08	H.12-(i)	1.975783	80.00%	97.85%
C12-r09	H.12-(j)	1.977954	90.00%	97.63%
C12-r10	H.12-(k)	1.975470	100.00%	97.88%
C12-rXX	H.12-(1)	1.972509	∞	98.17%

Tabla H.12: Información de Figura H.12

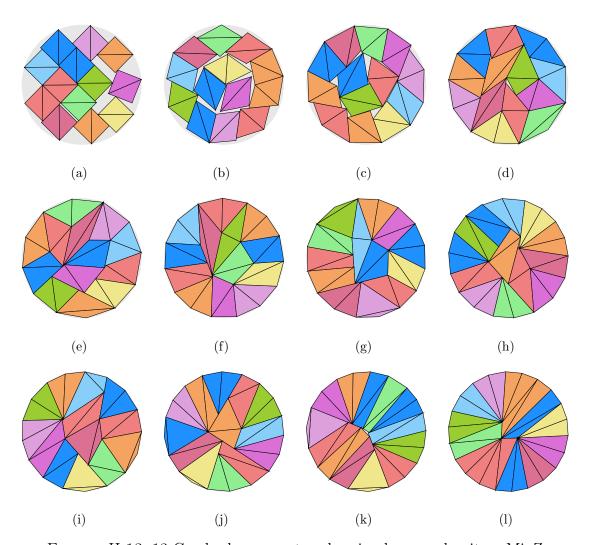


FIGURA H.13: 13 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C13-r00	H.13-(a)	2.360790	0.00%	74.25%
C13-r01	H.13-(b)	2.237415	10.00%	82.66%
C13-r02	H.13-(c)	2.129262	20.00%	91.27%
C13-r03	H.13-(d)	2.087334	30.00%	94.98%
C13-r04	H.13-(e)	2.082064	40.00%	95.46%
C13-r05	H.13-(f)	2.064644	50.00%	97.07%
C13-r06	H.13-(g)	2.060835	60.00%	97.43%
C13-r07	H.13-(h)	2.057183	70.00%	97.78%
C13-r08	H.13-(i)	2.057802	80.00%	97.72%
C13-r09	H.13-(j)	2.053238	90.00%	98.16%
C13-r10	H.13-(k)	2.053310	100.00%	98.15%
C13-rXX	H.13-(1)	2.048166	∞	98.64%

Tabla H.13: Información de Figura H.13

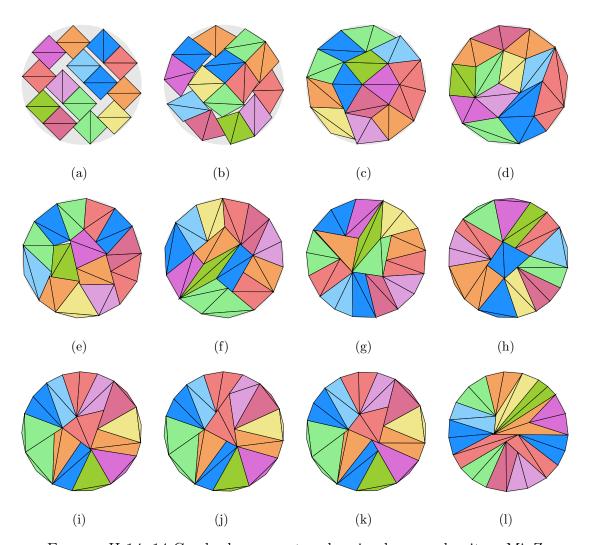


FIGURA H.14: 14 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C14-r00	H.14-(a)	2.505549	0.00%	70.99%
C14-r01	H.14-(b)	2.269636	10.00%	86.51%
C14-r02	H.14-(c)	2.171084	20.00%	94.54%
C14-r03	H.14-(d)	2.160272	30.00%	95.49%
C14-r04	H.14-(e)	2.151633	40.00%	96.26%
C14-r05	H.14-(f)	2.147054	50.00%	96.67%
C14-r06	H.14-(g)	2.139688	60.00%	97.34%
C14-r07	H.14-(h)	2.128937	70.00%	98.32%
C14-r08	H.14-(i)	2.128914	80.00%	98.32%
C14-r09	H.14-(j)	2.128913	90.00%	98.32%
C14-r10	H.14-(k)	2.128845	100.00%	98.33%
C14-rXX	H.14-(1)	2.128842	∞	98.33%

Tabla H.14: Información de Figura H.14

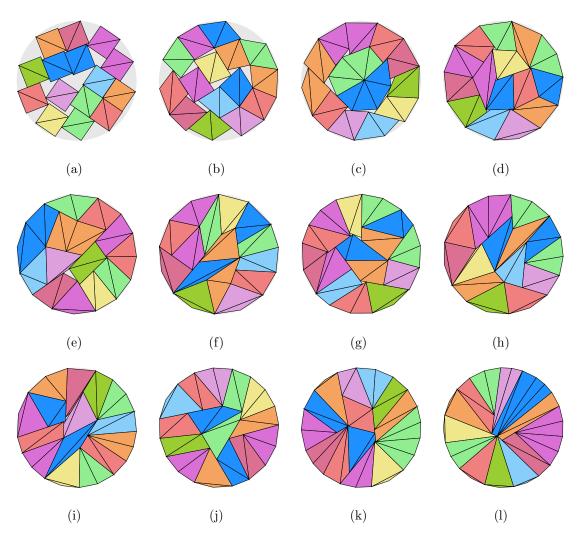


FIGURA H.15: 15 Cuadrados en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
C15-r00	H.15-(a)	2.533445	0.00%	74.39%
C15-r01	H.15-(b)	2.352871	10.00%	86.25%
C15-r02	H.15-(c)	2.262863	20.00%	93.24%
C15-r03	H.15-(d)	2.231800	30.00%	95.86%
C15-r04	H.15-(e)	2.223535	40.00%	96.57%
C15-r05	H.15-(f)	2.223533	50.00%	96.57%
C15-r06	H.15-(g)	2.214906	60.00%	97.33%
C15-r07	H.15-(h)	2.210407	70.00%	97.72%
C15-r08	H.15-(i)	2.207983	80.00%	97.94%
C15-r09	H.15-(j)	2.205312	90.00%	98.18%
C15-r10	H.15-(k)	2.202293	100.00%	98.44%
C15-rXX	H.15-(1)	2.196222	∞	98.99%

TABLA H.15: Información de Figura H.15

Apéndice I

CUADRADOS EN CÍRCULOS SUAVIDAD MÍNIMA

I.1 RESULTADOS DEL ALGORITMO DE MÍNIMA SUAVIDAD EN EL CONTENEDOR CIRCULAR

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínima Suavidad en un contenedor circular. El objetivo es empaquetar cuadrados considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 15 cuadrados dentro del contenedor circular.

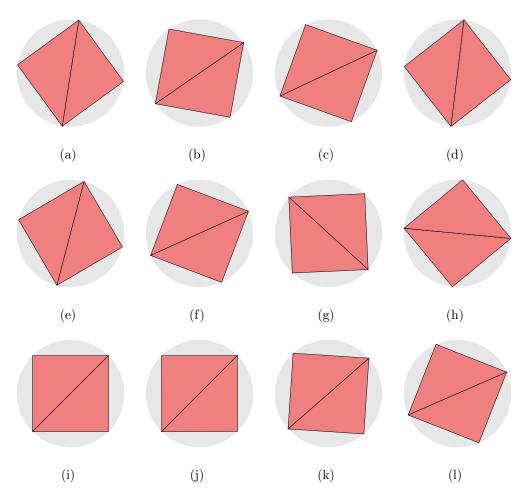


FIGURA I.1: 1 Cuadrado en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C1-r00	I.1-(a)	0.707107	0.00%	63.66%
C1-r01	I.1-(b)	0.707107	0.00%	63.66%
C1-r02	I.1-(c)	0.707107	0.00%	63.66%
C1-r03	I.1-(d)	0.707107	0.00%	63.66%
C1-r04	I.1-(e)	0.707107	0.00%	63.66%
C1-r05	I.1-(f)	0.707107	0.00%	63.66%
C1-r06	I.1-(g)	0.707107	0.00%	63.66%
C1-r07	I.1-(h)	0.707107	0.00%	63.66%
C1-r08	I.1-(i)	0.707107	0.00%	63.66%
C1-r09	I.1-(j)	0.707107	0.00%	63.66%
C1-r10	I.1-(k)	0.707107	0.00%	63.66%
C1-rXX	I.1-(1)	0.707107	0.00%	63.66%

TABLA I.1: Información de Figura I.1

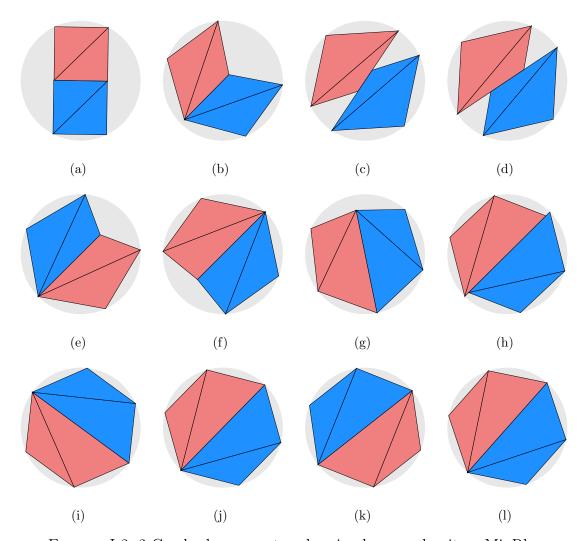


FIGURA I.2: 2 Cuadrados en contenedor circular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C2-r00	I.2-(a)	1.118031	0.00%	50.93%
C2-r01	I.2-(b)	1.040877	0.00%	58.76%
C2-r02	I.2-(c)	0.991175	10.00%	64.80%
C2-r03	I.2-(d)	0.976309	20.00%	66.79%
C2-r04	I.2-(e)	0.958894	30.00%	69.24%
C2-r05	I.2-(f)	0.938222	40.00%	72.32%
C2-r06	I.2-(g)	0.915295	50.00%	75.99%
C2-r07	I.2-(h)	0.891009	60.00%	80.19%
C2-r08	I.2-(i)	0.877383	70.00%	82.70%
C2-r09	I.2-(j)	0.877383	75.48%	82.70%
C2-r10	I.2-(k)	0.877383	75.48%	82.70%
C2-r XX	I.2-(1)	0.877383	75.48%	82.70%

Tabla I.2: Información de Figura I.2

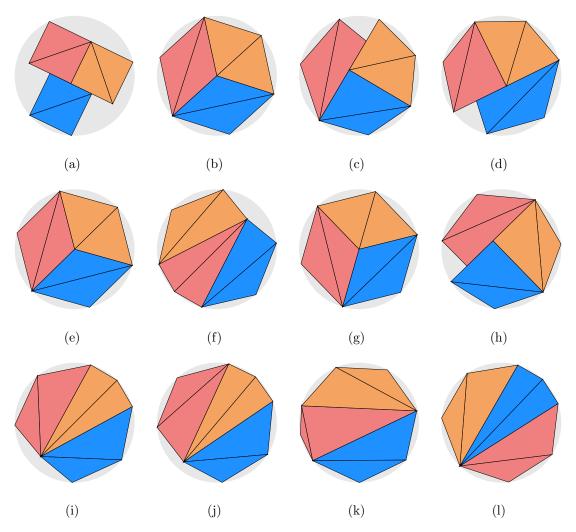


FIGURA I.3: 3 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C3-r00	I.3-(a)	1.288366	0.00%	57.53%
C3-r01	I.3-(b)	1.074570	7.46%	82.70%
C3-r02	I.3-(c)	1.074570	65.47%	82.70%
C3-r03	I.3-(d)	1.074570	65.47%	82.70%
C3-r04	I.3-(e)	1.074570	7.46%	82.70%
C3-r05	I.3-(f)	1.074570	77.67%	82.70%
C3-r06	I.3-(g)	1.074570	7.46%	82.70%
C3-r07	I.3-(h)	1.071342	70.00%	83.20%
C3-r08	I.3-(i)	1.063989	85.26%	84.35%
C3-r09	I.3-(j)	1.056530	90.09%	85.55%
C3-r10	I.3-(k)	1.039756	100.00%	88.33%
C3-rXX	I.3-(1)	1.037222	101.42%	88.76%

Tabla I.3: Información de Figura I.3

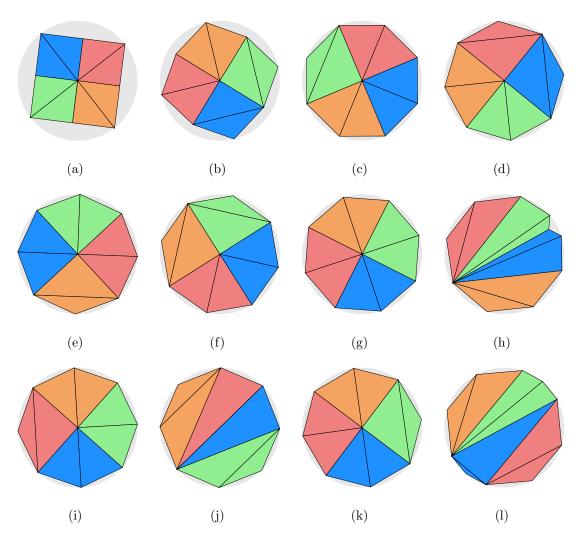


FIGURA I.4: 4 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C4-r00	I.4-(a)	1.414213	0.00%	63.66%
C4-r01	I.4-(b)	1.285659	10.00%	77.03%
C4-r02	I.4-(c)	1.189216	18.92%	90.03%
C4-r03	I.4-(d)	1.189207	18.92%	90.03%
C4-r04	I.4-(e)	1.189207	18.92%	90.03%
C4-r05	I.4-(f)	1.189207	18.92%	90.03%
C4-r06	I.4-(g)	1.189207	18.92%	90.03%
C4-r07	I.4-(h)	1.189207	117.52%	90.03%
C4-r08	I.4-(i)	1.189207	18.92%	90.03%
C4-r09	I.4-(j)	1.189207	119.74%	90.03%
C4-r10	I.4-(k)	1.189207	18.92%	90.03%
C4-r XX	I.4-(1)	1.178004	135.60%	91.75%

Tabla I.4: Información de Figura I.4

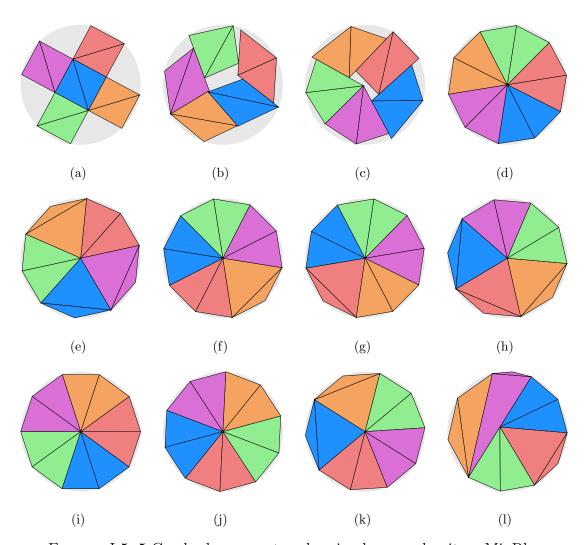


FIGURA I.5: 5 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C5-r00	I.5-(a)	1.581139	0.00%	63.66%
C5-r01	I.5-(b)	1.454391	10.10%	75.24%
C5-r02	I.5-(c)	1.378445	24.21%	83.76%
C5-r03	I.5-(d)	1.308693	30.00%	92.93%
C5-r04	I.5-(e)	1.304339	30.43%	93.55%
C5-r05	I.5-(f)	1.304340	30.43%	93.55%
C5-r06	I.5-(g)	1.304340	30.43%	93.55%
C5-r07	I.5-(h)	1.304340	30.43%	93.55%
C5-r08	I.5-(i)	1.304340	30.43%	93.55%
C5-r09	I.5-(j)	1.304340	30.43%	93.55%
C5-r10	I.5-(k)	1.304340	30.43%	93.55%
C5-rXX	I.5-(1)	1.302154	157.64%	93.86%

Tabla I.5: Información de Figura I.5

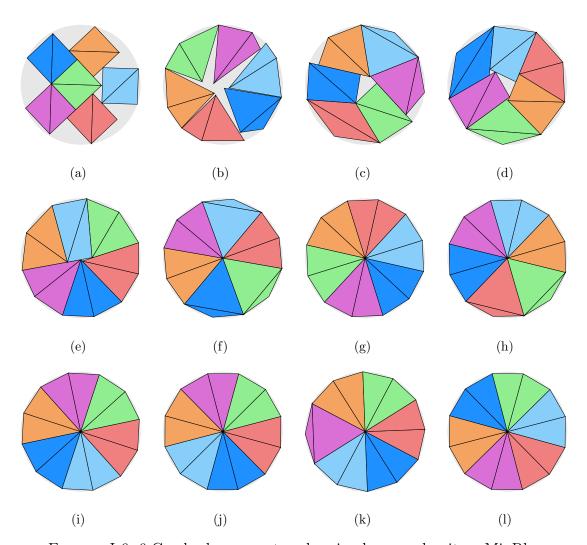


FIGURA I.6: 6 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C6-r00	I.6-(a)	1.688906	0.00%	66.96%
C6-r01	I.6-(b)	1.541770	53.35%	80.35%
C6-r02	I.6-(c)	1.470895	28.56%	88.28%
C6-r03	I.6-(d)	1.456271	29.99%	90.06%
C6-r04	I.6-(e)	1.422986	40.64%	94.32%
C6-r05	I.6-(f)	1.414220	41.42%	95.49%
C6-r06	I.6-(g)	1.414214	41.42%	95.49%
C6-r07	I.6-(h)	1.414214	41.42%	95.49%
C6-r08	I.6-(i)	1.414214	41.43%	95.49%
C6-r09	I.6-(j)	1.414214	41.42%	95.49%
C6-r10	I.6-(k)	1.414214	41.42%	95.49%
C6-rXX	I.6-(1)	1.414213	41.42%	95.49%

Tabla I.6: Información de Figura I.6

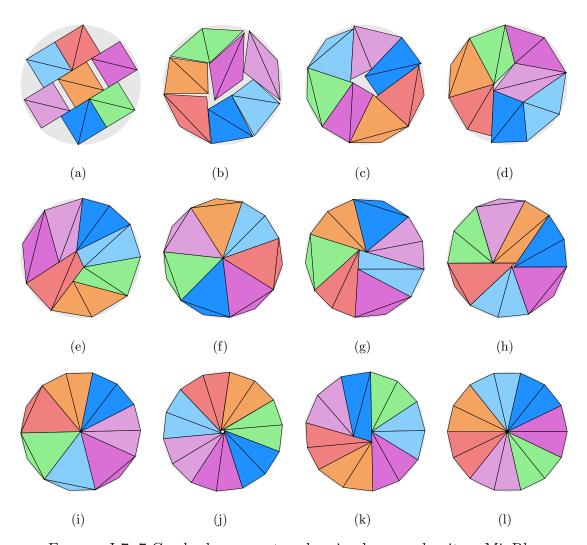


FIGURA I.7: 7 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C7-r00	I.7-(a)	1.802776	0.00%	68.56%
C7-r01	I.7-(b)	1.629322	26.42%	83.93%
C7-r02	I.7-(c)	1.562406	39.56%	91.28%
C7-r03	I.7-(d)	1.556587	35.02%	91.96%
C7-r04	I.7-(e)	1.546247	54.33%	93.19%
C7-r05	I.7-(f)	1.524562	51.18%	95.86%
C7-r06	I.7-(g)	1.523177	71.59%	96.04%
C7-r07	I.7-(h)	1.528079	116.87%	95.42%
C7-r08	I.7-(i)	1.518145	51.81%	96.68%
C7-r09	I.7-(j)	1.522393	62.13%	96.14%
C7-r10	I.7-(k)	1.522639	76.91%	96.11%
C7-rXX	I.7-(1)	1.518145	51.81%	96.68%

Tabla I.7: Información de Figura I.7

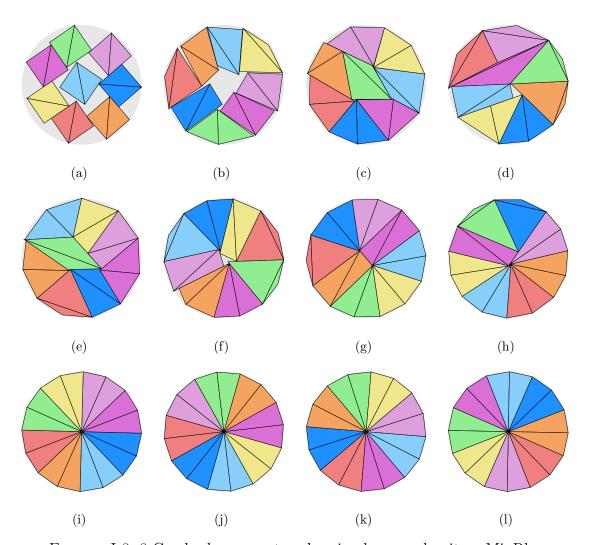


FIGURA I.8: 8 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C8-r00	I.8-(a)	1.978845	0.00%	65.03%
C8-r01	I.8-(b)	1.753918	32.15%	82.78%
C8-r02	I.8-(c)	1.653138	42.35%	93.18%
C8-r03	I.8-(d)	1.649874	60.71%	93.55%
C8-r04	I.8-(e)	1.643392	43.79%	94.29%
C8-r05	I.8-(f)	1.633970	52.65%	95.38%
C8-r06	I.8-(g)	1.623058	58.54%	96.67%
C8-r07	I.8-(h)	1.619897	112.49%	97.04%
C8-r08	I.8-(i)	1.616517	61.65%	97.45%
C8-r09	I.8-(j)	1.616516	61.65%	97.45%
C8-r10	I.8-(k)	1.616517	61.65%	97.45%
C8-rXX	I.8-(1)	1.616517	61.65%	97.45%

Tabla I.8: Información de Figura I.8

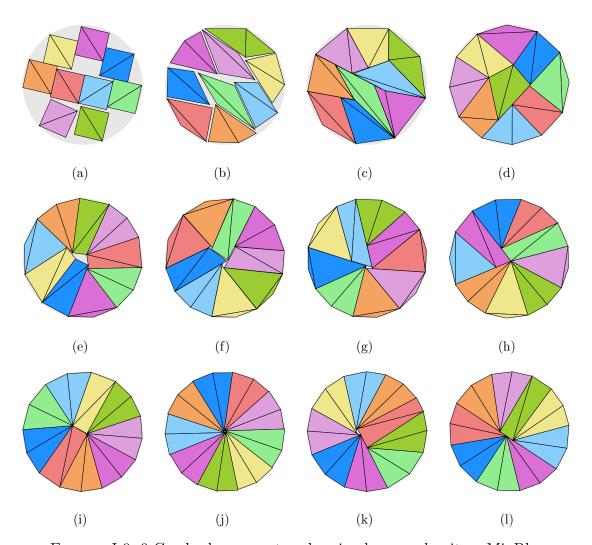


FIGURA I.9: 9 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C9-r00	I.9-(a)	2.077594	0.00%	66.37%
C9-r01	I.9-(b)	1.884963	59.43%	80.63%
C9-r02	I.9-(c)	1.775535	66.70%	90.87%
C9-r03	I.9-(d)	1.732084	43.04%	95.49%
C9-r04	I.9-(e)	1.732051	58.65%	95.49%
C9-r05	I.9-(f)	1.731767	73.56%	95.52%
C9-r06	I.9-(g)	1.720682	99.77%	96.76%
C9-r07	I.9-(h)	1.715228	81.13%	97.38%
C9-r08	I.9-(i)	1.715197	70.05%	97.38%
C9-r09	I.9-(j)	1.714877	70.51%	97.42%
C9-r10	I.9-(k)	1.714669	90.99%	97.44%
C9-rXX	I.9-(1)	1.712149	83.17%	97.73%

Tabla I.9: Información de Figura I.9

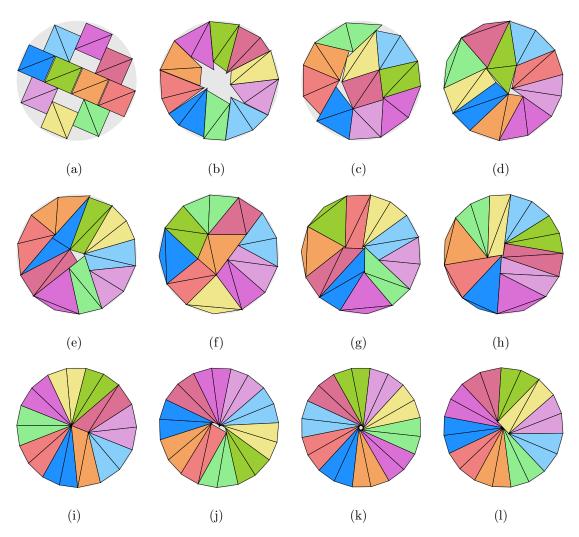


FIGURA I.10: 10 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C10-r00	I.10-(a)	2.121320	0.00 %	70.74%
C10-r01	I.10-(b)	1.927855	55.91%	85.64%
C10-r02	I.10-(c)	1.859740	22.19%	92.03%
C10-r03	I.10-(d)	1.823953	61.30%	95.68%
C10-r04	I.10-(e)	1.826021	69.11%	95.46%
C10-r05	I.10-(f)	1.819488	52.56%	96.15%
C10-r06	I.10-(g)	1.813603	103.42%	96.78%
C10-r07	I.10-(h)	1.808306	86.93%	97.34%
C10-r08	I.10-(i)	1.802872	87.46%	97.93%
C10-r09	I.10-(j)	1.805299	76.47%	97.67%
C10-r10	I.10-(k)	1.800684	85.08%	98.17%
C10-rXX	I.10-(1)	1.800691	80.07%	98.17%

TABLA I.10: Información de Figura I.10

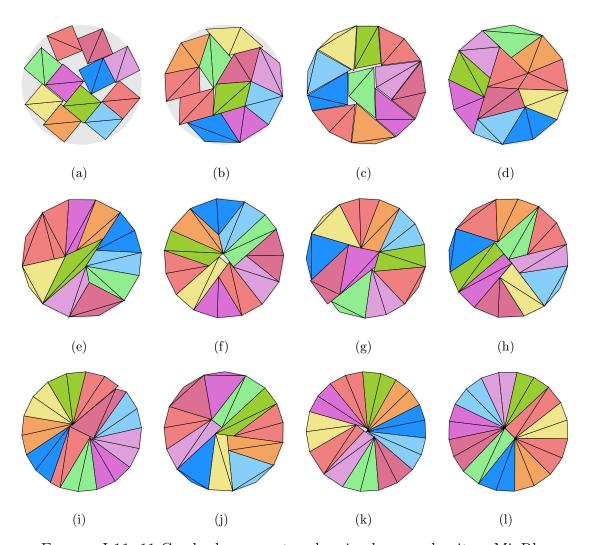


FIGURA I.11: 11 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C11-r00	I.11-(a)	2.213863	0.00 %	71.44%
C11-r01	I.11-(b)	1.992399	16.13%	88.20%
C11-r02	I.11-(c)	1.956348	69.02%	91.49%
C11-r03	I.11-(d)	1.915140	59.48%	95.46%
C11-r04	I.11-(e)	1.905354	81.13%	96.45%
C11-r05	I.11-(f)	1.904485	81.36%	96.54%
C11-r06	I.11-(g)	1.898661	63.83%	97.13%
C11-r07	I.11-(h)	1.899733	88.48%	97.02%
C11-r08	I.11-(i)	1.893678	87.61%	97.64%
C11-r09	I.11-(j)	1.893435	138.60%	97.67%
C11-r10	I.11-(k)	1.890729	85.91%	97.95%
C11-rXX	I.11-(1)	1.886814	88.45%	98.35%

Tabla I.11: Información de Figura I.11

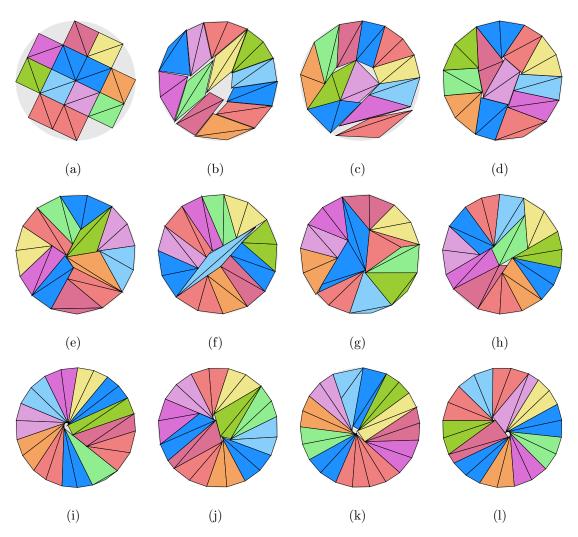


FIGURA I.12: 12 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C12-r00	I.12-(a)	2.236068	0.00%	76.39%
C12-r01	I.12-(b)	2.078717	59.85%	88.40%
C12-r 02	I.12-(c)	2.055010	47.68%	90.45%
C12-r03	I.12-(d)	1.996000	66.04%	95.88%
C12-r04	I.12-(e)	1.988629	81.45%	96.59%
C12-r05	I.12-(f)	1.988645	79.83%	96.59%
C12-r06	I.12-(g)	1.983057	71.42%	97.13%
C12-r07	I.12-(h)	1.981825	73.41%	97.25%
C12-r 08	I.12-(i)	1.975766	129.22%	97.85%
C12-r09	I.12-(j)	1.977932	107.08%	97.64%
C12-r10	I.12-(k)	1.975470	111.18%	97.88%
C12-rXX	I.12-(1)	1.972500	105.55%	98.17%

TABLA I.12: Información de Figura I.12

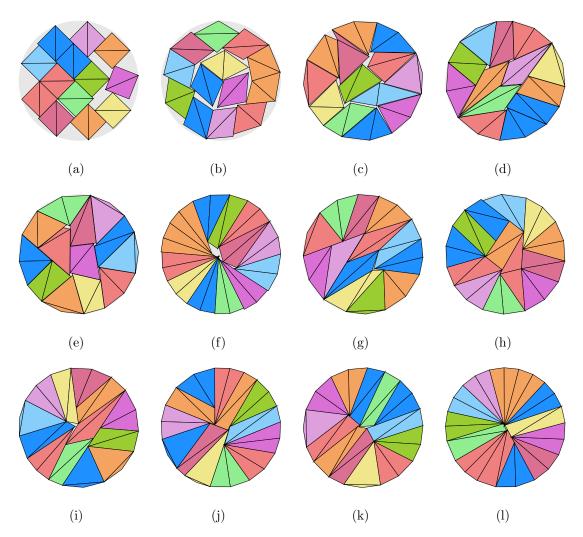


FIGURA I.13: 13 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C13-r00	I.13-(a)	2.360790	0.00%	74.25%
C13-r01	I.13-(b)	2.237415	64.11%	82.66%
C13-r02	I.13-(c)	2.128955	79.70%	91.30%
C13-r03	I.13-(d)	2.087259	75.47%	94.98%
C13-r04	I.13-(e)	2.082002	95.15%	95.46%
C13-r05	I.13-(f)	2.064644	93.24%	97.07%
C13-r06	I.13-(g)	2.060835	77.45%	97.43%
C13-r07	I.13-(h)	2.057183	98.32%	97.78%
C13-r08	I.13-(i)	2.057802	137.51%	97.72%
C13-r09	I.13-(j)	2.053206	110.94%	98.16%
C13-r10	I.13-(k)	2.053310	102.89%	98.15%
C13-rXX	I.13-(1)	2.048166	0.00%	98.64%

TABLA I.13: Información de Figura I.13

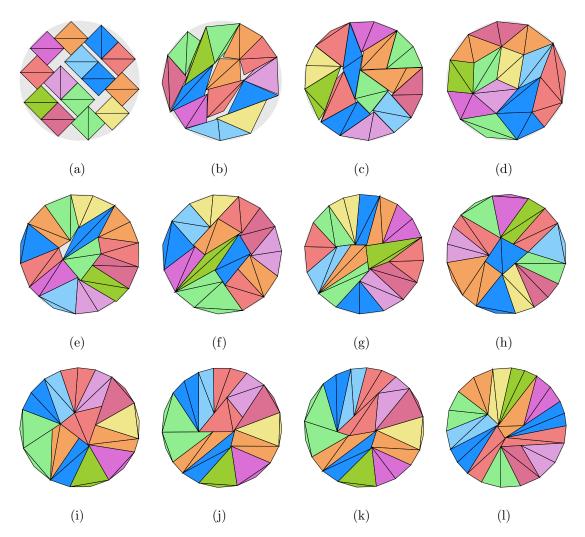


FIGURA I.14: 14 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C14-r00	I.14-(a)	2.505549	0.00 %	70.99%
C14-r01	I.14-(b)	2.269636	41.47%	86.51%
C14-r02	I.14-(c)	2.171009	67.34%	94.55%
C14-r03	I.14-(d)	2.160272	55.32%	95.49%
C14-r04	I.14-(e)	2.151633	73.63%	96.26%
C14-r05	I.14-(f)	2.147040	109.17%	96.67%
C14-r06	I.14-(g)	2.139677	138.22%	97.34%
C14-r07	I.14-(h)	2.128937	149.05%	98.32%
C14-r08	I.14-(i)	2.128914	991.20%	98.32%
C14-r09	I.14-(j)	2.128909	0.00%	98.33%
C14-r10	I.14-(k)	2.128840	0.00%	98.33%
C14-rXX	I.14-(1)	2.128841	0.00%	98.33%

Tabla I.14: Información de Figura I.14

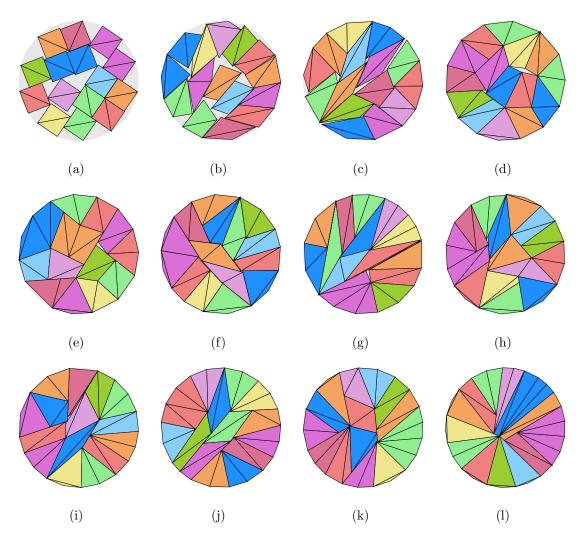


FIGURA I.15: 15 Cuadrados en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
C15-r00	I.15-(a)	2.533445	0.00 %	74.39%
C15-r01	I.15-(b)	2.352871	40.40%	86.25%
C15-r02	I.15-(c)	2.262455	63.67%	93.28%
C15-r03	I.15-(d)	2.231800	46.31%	95.86%
C15-r04	I.15-(e)	2.223535	42.53%	96.57%
C15-r05	I.15-(f)	2.223500	98.11%	96.58%
C15-r06	I.15-(g)	2.214906	94.88%	97.33%
C15-r07	I.15-(h)	2.210407	77.34%	97.72%
C15-r08	I.15-(i)	2.207983	123.14%	97.94%
C15-r09	I.15-(j)	2.205300	0.00%	98.18%
C15-r10	I.15-(k)	2.202293	0.00%	98.44%
C15-rXX	I.15-(1)	2.196222	0.00%	98.99%

TABLA I.15: Información de Figura I.15

Apéndice J

PENTÁGONOS EN CUADRADOS CONTENEDOR MÍNIMO

J.1 RESULTADOS DEL ALGORITMO DE MÍNIMO CONTENEDOR EN EL CONTENEDOR CUADRADO

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínimo Contenedor en un contenedor cuadrado. El objetivo es empaquetar pentágonos considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 10 pentágonos dentro del contenedor cuadrado.

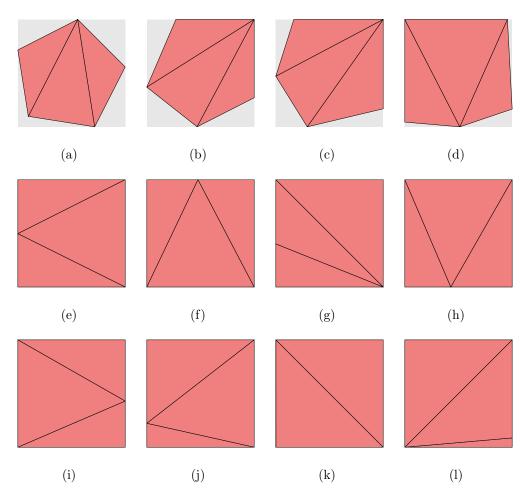


FIGURA J.1: 1 Pentágono en contenedor cuadrangular con algoritmo MinZ

-				
Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P1-r00	J.1-(a)	1.598015	0.00 %	67.37%
P1-r01	J.1-(b)	1.508444	10.00%	75.61%
P1-r02	J.1-(c)	1.442108	20.00%	82.73%
P1-r03	J.1-(d)	1.360243	30.00%	92.99%
P1-r04	J.1-(e)	1.311670	40.00%	100.00%
P1-r05	J.1-(f)	1.311672	50.00%	100.00%
P1-r06	J.1-(g)	1.311670	60.00%	100.00%
P1-r07	J.1-(h)	1.311670	70.00%	100.00%
P1-r08	J.1-(i)	1.311670	80.00%	100.00%
P1-r09	J.1-(j)	1.311670	90.00%	100.00%
P1-r10	J.1-(k)	1.311670	100.00%	100.00%
P1-rXX	J.1-(1)	1.311671	∞	100.00%

TABLA J.1: Información de Figura J.1

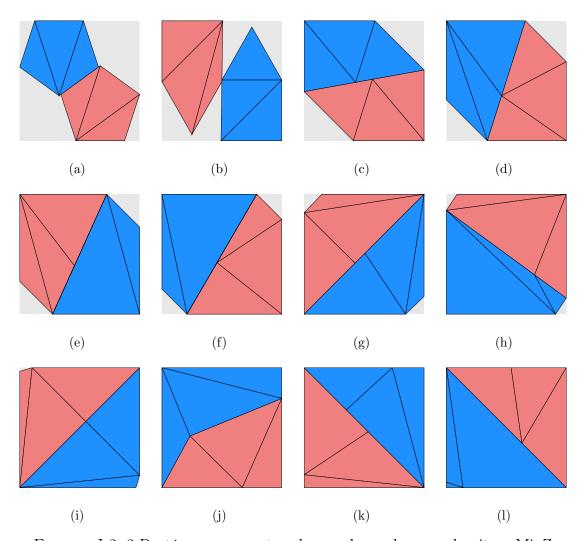


FIGURA J.2: 2 Pentágonos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P2-r00	J.2-(a)	2.463411	0.00%	56.70%
P2-r01	J.2-(b)	2.169658	10.00%	73.10%
P2-r02	J.2-(c)	2.033732	20.00%	83.19%
P2-r03	J.2-(d)	1.973444	30.00%	88.35%
P2-r04	J.2-(e)	1.928913	40.00%	92.48%
P2-r05	J.2-(f)	1.896986	50.00%	95.62%
P2-r06	J.2-(g)	1.876399	60.00%	97.73%
P2-r07	J.2-(h)	1.866138	70.00%	98.81%
P2-r08	J.2-(i)	1.857972	80.00%	99.68%
P2-r09	J.2-(j)	1.854982	90.00%	100.00%
P2-r10	J.2-(k)	1.854979	100.00%	100.00%
P2-rXX	J.2-(1)	1.854981	∞	100.00 %

TABLA J.2: Información de Figura J.2

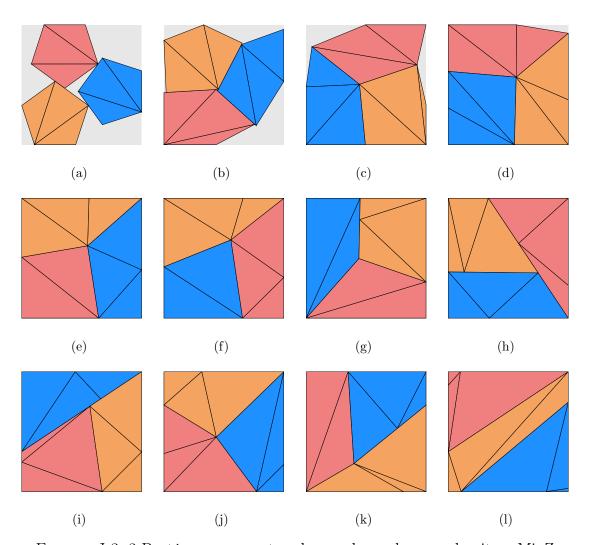


FIGURA J.3: 3 Pentágonos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P3-r00	J.3-(a)	2.908057	0.00 %	61.03%
P3-r01	J.3-(b)	2.529234	10.00%	80.68%
P3-r02	J.3-(c)	2.372192	20.00%	91.72%
P3-r03	J.3-(d)	2.289415	30.00%	98.47%
P3-r04	J.3-(e)	2.271879	40.00%	100.00%
P3-r05	J.3-(f)	2.271879	50.00%	100.00%
P3-r06	J.3-(g)	2.271880	60.00%	100.00%
P3-r07	J.3-(h)	2.271883	70.00%	100.00%
P3-r08	J.3-(i)	2.271881	80.00%	100.00%
P3-r09	J.3-(j)	2.271883	90.00%	100.00%
P3-r10	J.3-(k)	2.271876	100.00%	100.00%
P3-rXX	J.3-(1)	2.271879	∞	100.00%

Tabla J.3: Información de Figura J.3

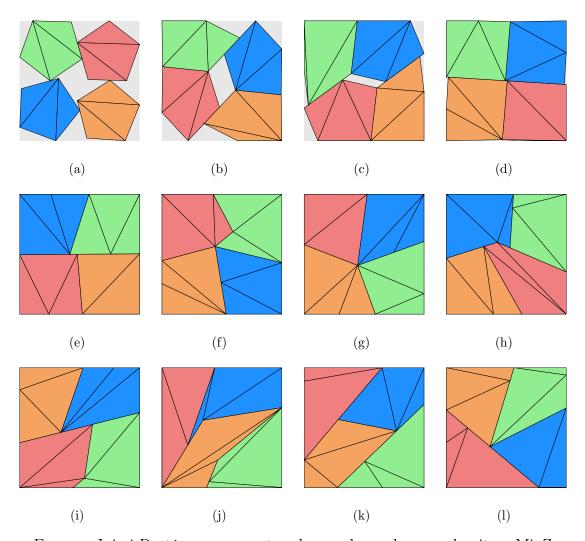


FIGURA J.4: 4 Pentágonos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P4-r00	J.4-(a)	3.109612	0.00%	71.17%
P4-r01	J.4-(b)	2.876000	10.00%	83.20%
P4-r02	J.4-(c)	2.708562	20.00%	93.81%
P4-r03	J.4-(d)	2.636889	30.00%	98.97%
P4-r04	J.4-(e)	2.623337	40.00%	100.00%
P4-r05	J.4-(f)	2.623339	50.00%	100.00%
P4-r06	J.4-(g)	2.623337	60.00%	100.00%
P4-r07	J.4-(h)	2.623339	70.00%	100.00%
P4-r08	J.4-(i)	2.623339	80.00%	100.00%
P4-r09	J.4-(j)	2.623337	90.00%	100.00%
P4-r10	J.4-(k)	2.623337	100.00%	100.00%
P4-rXX	J.4-(1)	2.623340	∞	100.00%

Tabla J.4: Información de Figura J.4

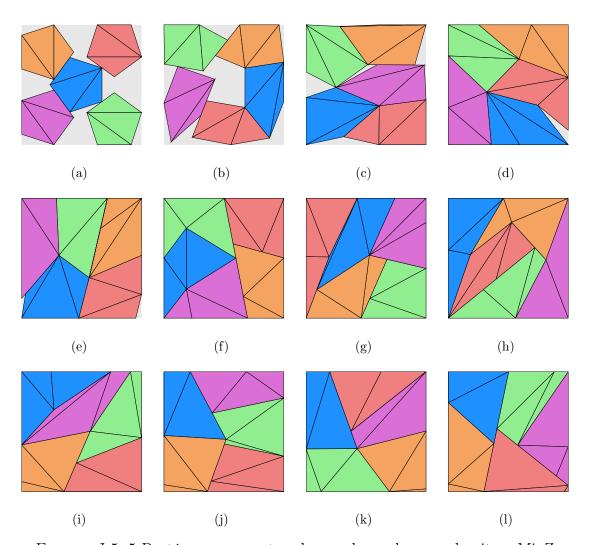


FIGURA J.5: 5 Pentágonos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P5-r00	J.5-(a)	3.549028	0.00 %	68.30%
P5-r01	J.5-(b)	3.354224	10.00%	76.46%
P5-r02	J.5-(c)	3.052141	20.00%	92.34%
P5-r03	J.5-(d)	2.956327	30.00%	98.43%
P5-r04	J.5-(e)	2.943947	40.00%	99.26%
P5-r05	J.5-(f)	2.932983	50.00%	100.00%
P5-r06	J.5-(g)	2.932983	60.00%	100.00%
P5-r07	J.5-(h)	2.932983	70.00%	100.00%
P5-r08	J.5-(i)	2.932983	80.00%	100.00%
P5-r09	J.5-(j)	2.932982	90.00%	100.00%
P5-r10	J.5-(k)	2.932980	100.00%	100.00%
P5-rXX	J.5-(1)	2.932983	∞	100.00%

Tabla J.5: Información de Figura J.5

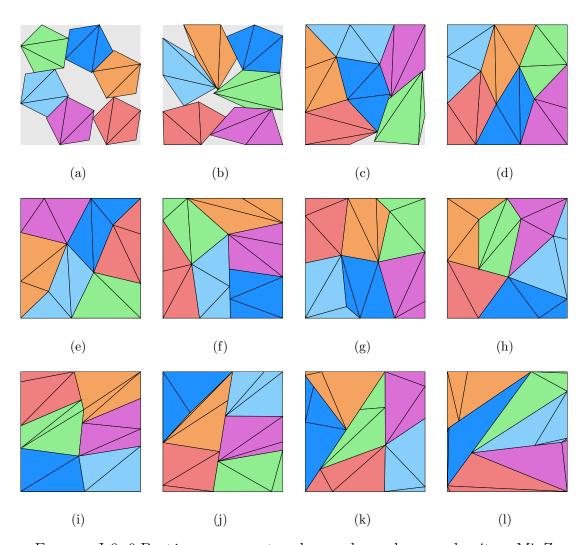


FIGURA J.6: 6 Pentágonos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P6-r00	J.6-(a)	4.012530	0.00 %	64.12%
P6-r01	J.6-(b)	3.554468	10.00%	81.71%
P6-r02	J.6-(c)	3.260430	20.00%	97.11%
P6-r03	J.6-(d)	3.212921	30.00%	100.00%
P6-r04	J.6-(e)	3.212922	40.00%	100.00%
P6-r05	J.6-(f)	3.212939	50.00%	100.00%
P6-r06	J.6-(g)	3.212921	60.00%	100.00%
P6-r07	J.6-(h)	3.212918	70.00%	100.00%
P6-r08	J.6-(i)	3.212928	80.00%	100.00%
P6-r09	J.6-(j)	3.212926	90.00%	100.00%
P6-r10	J.6-(k)	3.212921	100.00%	100.00%
P6-rXX	J.6-(1)	3.212922	∞	100.00%

Tabla J.6: Información de Figura J.6

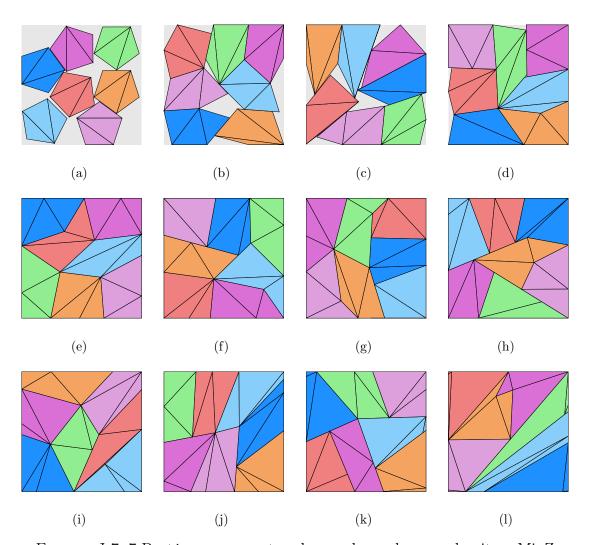


FIGURA J.7: 7 Pentágonos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P7-r00	J.7-(a)	4.293458	0.00 %	65.33%
P7-r01	J.7-(b)	3.751195	10.00%	85.59%
P7-r02	J.7-(c)	3.710388	20.00%	87.48%
P7-r03	J.7-(d)	3.505692	30.00%	97.99%
P7-r04	J.7-(e)	3.470352	40.00%	100.00%
P7-r05	J.7-(f)	3.470352	50.00%	100.00%
P7-r06	J.7-(g)	3.470351	60.00%	100.00%
P7-r07	J.7-(h)	3.470352	70.00%	100.00%
P7-r08	J.7-(i)	3.470365	80.00%	100.00%
P7-r09	J.7-(j)	3.470352	90.00%	100.00%
P7-r10	J.7-(k)	3.470348	100.00%	100.00%
P7-rXX	J.7-(1)	3.470348	∞	100.00%

Tabla J.7: Información de Figura J.7



FIGURA J.8: 8 Pentágonos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P8-r00	J.8-(a)	4.551096	0.00 %	66.45%
P8-r01	J.8-(b)	4.171803	10.00%	79.08%
P8-r02	J.8-(c)	3.898624	20.00%	90.56%
P8-r03	J.8-(d)	3.742423	30.00%	98.27%
P8-r04	J.8-(e)	3.710821	40.00%	99.95%
P8-r05	J.8-(f)	3.709962	50.00%	100.00%
P8-r06	J.8-(g)	3.709962	60.00%	100.00%
P8-r07	J.8-(h)	3.709962	70.00%	100.00%
P8-r08	J.8-(i)	3.709964	80.00%	100.00%
P8-r09	J.8-(j)	3.709962	90.00%	100.00%
P8-r10	J.8-(k)	3.709970	100.00%	100.00%
P8-rXX	J.8-(1)	3.709960	∞	100.00%

Tabla J.8: Información de Figura J.8

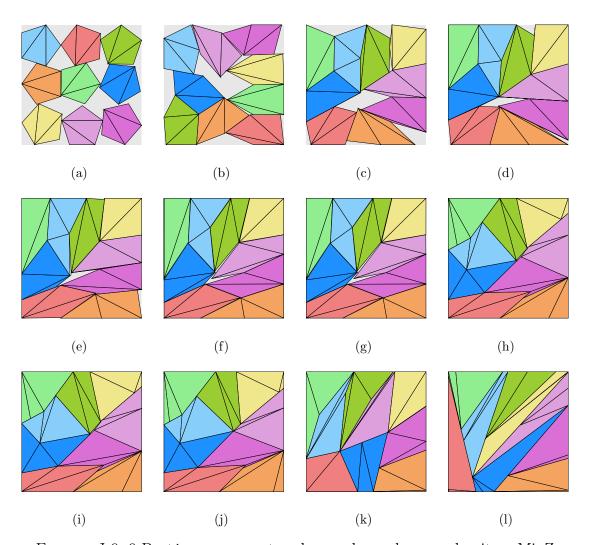


FIGURA J.9: 9 Pentágonos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P9-r00	J.9-(a)	4.720735	0.00 %	69.48%
P9-r01	J.9-(b)	4.345863	10.00%	81.99%
P9-r02	J.9-(c)	4.192658	20.00%	88.09%
P9-r03	J.9-(d)	3.998568	30.00%	96.85%
P9-r04	J.9-(e)	3.978457	40.00%	97.83%
P9-r05	J.9-(f)	3.978274	50.00%	97.84%
P9-r06	J.9-(g)	3.978273	60.00%	97.84%
P9-r07	J.9-(h)	3.936593	70.00%	99.92%
P9-r08	J.9-(i)	3.936591	80.00%	99.92%
P9-r09	J.9-(j)	3.935010	90.00%	100.00%
P9-r10	J.9-(k)	3.935013	100.00%	100.00%
P9-rXX	J.9-(1)	3.935009	∞	100.00%

Tabla J.9: Información de Figura J.9

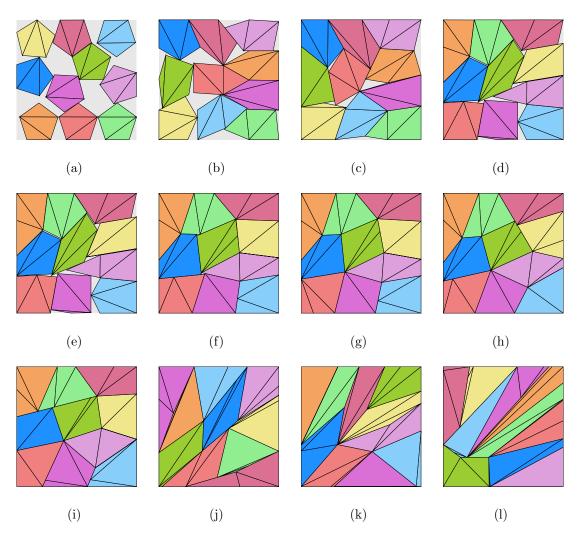


FIGURA J.10: 10 Pentágonos en contenedor cuadrangular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P10-r00	J.10-(a)	5.037122	0.00 %	67.81%
P10-r01	J.10-(b)	4.442996	10.00%	87.16%
P10-r02	J.10-(c)	4.238771	20.00%	95.76%
P10-r03	J.10-(d)	4.237588	30.00%	95.81%
P10-r04	J.10-(e)	4.237587	40.00%	95.81%
P10-r05	J.10-(f)	4.149483	50.00%	99.92%
P10-r06	J.10-(g)	4.147870	60.00%	100.00%
P10-r07	J.10-(h)	4.147867	70.00%	100.00%
P10-r08	J.10-(i)	4.147867	80.00%	100.00%
P10-r09	J.10-(j)	4.147870	90.00%	100.00%
P10-r10	J.10-(k)	4.147864	100.00%	100.00%
P10-rXX	J.10-(1)	4.147864	∞	100.00%

TABLA J.10: Información de Figura J.10

APÉNDICE K

PENTÁGONOS EN CUADRADOS SUAVIDAD MÍNIMA

K.1 RESULTADOS DEL ALGORITMO DE MÍNIMA SUAVIDAD EN EL CONTENEDOR CUADRADO

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínima Suavidad en un contenedor cuadrado. El objetivo es empaquetar pentágonos considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 10 pentágonos dentro del contenedor cuadrado.

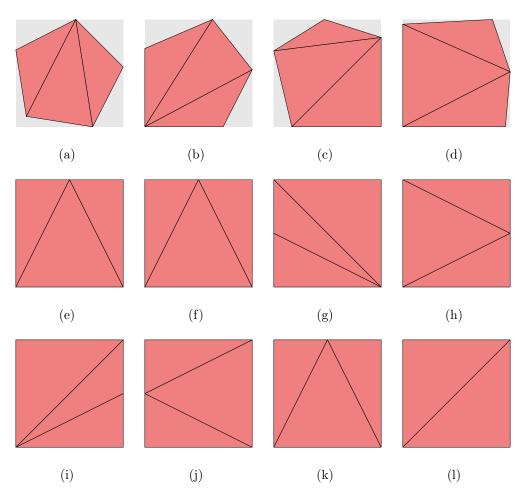


FIGURA K.1: 1 Pentágono en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P1-r00	K.1-(a)	1.598015	0.00%	67.37%
P1-r01	K.1-(b)	1.508444	10.00%	75.61%
P1-r02	K.1-(c)	1.442108	20.00%	82.73%
P1-r03	K.1-(d)	1.360243	30.00%	92.99%
P1-r04	K.1-(e)	1.311670	34.42%	100.00%
P1-r05	K.1-(f)	1.311672	34.42%	100.00%
P1-r06	K.1-(g)	1.311670	34.42%	100.00%
P1-r07	K.1-(h)	1.311670	34.42%	100.00%
P1-r08	K.1-(i)	1.311670	34.42%	100.00%
P1-r09	K.1-(j)	1.311670	34.42%	100.00%
P1-r10	K.1-(k)	1.311670	34.42%	100.00%
P1-rXX	K.1-(1)	1.311671	34.42%	100.00%

TABLA K.1: Información de Figura K.1

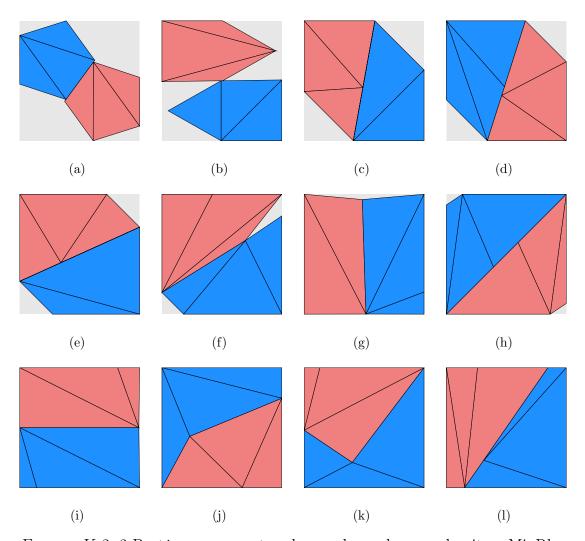


FIGURA K.2: 2 Pentágonos en contenedor cuadrangular con algoritmo Min Rho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P2-r00	K.2-(a)	2.463363	0.00%	56.71%
P2-r01	K.2-(b)	2.169658	0.00%	73.10%
P2-r02	K.2-(c)	2.033732	10.00%	83.19%
P2-r03	K.2-(d)	1.973444	20.00%	88.35%
P2-r04	K.2-(e)	1.928913	30.00%	92.48%
P2-r05	K.2-(f)	1.896986	40.00%	95.62%
P2-r06	K.2-(g)	1.876399	55.44%	97.73%
P2-r07	K.2-(h)	1.866138	79.21%	98.81%
P2-r08	K.2-(i)	1.857972	69.99%	99.68%
P2-r09	K.2-(j)	1.854982	84.60%	100.00%
P2-r10	K.2-(k)	1.854979	85.50%	100.00%
P2-rXX	K.2-(1)	1.854981	85.50%	100.00%

Tabla K.2: Información de Figura K.2

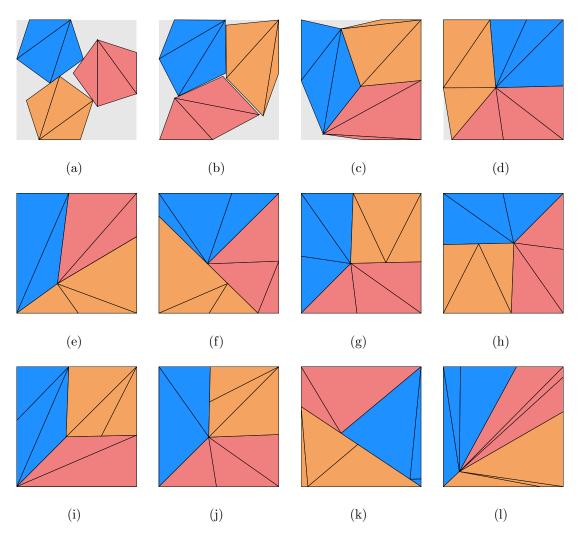


FIGURA K.3: 3 Pentágonos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P3-r00	K.3-(a)	2.908057	0.00 %	61.03%
P3-r01	K.3-(b)	2.529150	11.65%	80.69%
P3-r02	K.3-(c)	2.372192	20.00%	91.72%
P3-r03	K.3-(d)	2.289415	30.00%	98.47%
P3-r04	K.3-(e)	2.271879	74.76%	100.00%
P3-r05	K.3-(f)	2.271879	90.15%	100.00%
P3-r06	K.3-(g)	2.271880	33.22%	100.00%
P3-r07	K.3-(h)	2.271883	33.22%	100.00%
P3-r08	K.3-(i)	2.271881	33.22%	100.00%
P3-r09	K.3-(j)	2.271883	33.22%	100.00%
P3-r10	K.3-(k)	2.271876	127.19%	100.00%
P3-rXX	K.3-(1)	2.271879	127.19%	100.00%

Tabla K.3: Información de Figura K.3

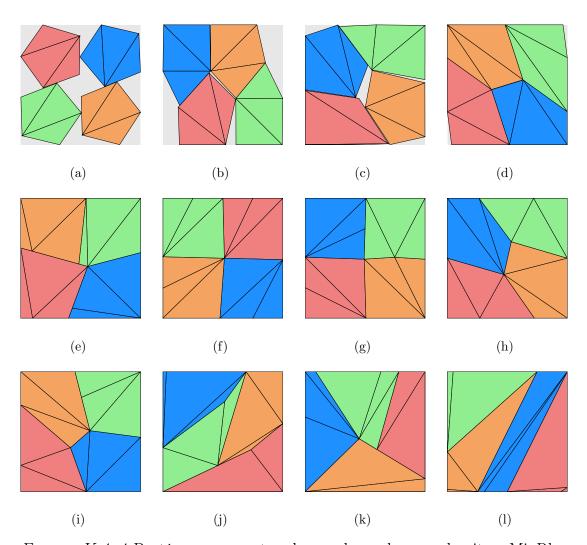


FIGURA K.4: 4 Pentágonos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P4-r00	K.4-(a)	3.109445	0.00 %	71.18%
P4-r01	K.4-(b)	2.876000	0.03%	83.20%
P4-r02	K.4-(c)	2.708562	10.87%	93.81%
P4-r03	K.4-(d)	2.636889	22.40%	98.97%
P4-r04	K.4-(e)	2.623337	27.17%	100.00%
P4-r05	K.4-(f)	2.623339	79.93%	100.00%
P4-r06	K.4-(g)	2.623337	34.42%	100.00%
P4-r07	K.4-(h)	2.623339	33.34%	100.00%
P4-r08	K.4-(i)	2.623339	31.17%	100.00%
P4-r09	K.4-(j)	2.623337	45.85%	100.00%
P4-r10	K.4-(k)	2.623337	114.60%	100.00%
P4-rXX	K.4-(1)	2.623340	76.85%	100.00%

Tabla K.4: Información de Figura K.4

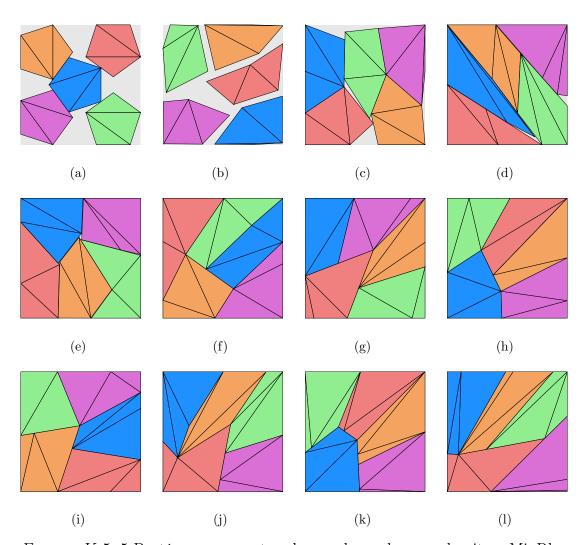


FIGURA K.5: 5 Pentágonos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P5-r00	K.5-(a)	3.549028	0.00 %	68.30 %
P5-r01	K.5-(b)	3.354224	30.74%	76.46%
P5-r02	K.5-(c)	3.052141	19.49%	92.34%
P5-r03	K.5-(d)	2.956327	75.01%	98.43%
P5-r04	K.5-(e)	2.943947	54.78%	99.26%
P5-r05	K.5-(f)	2.932983	66.26%	100.00%
P5-r06	K.5-(g)	2.932983	78.72%	100.00%
P5-r07	K.5-(h)	2.932983	81.44%	100.00%
P5-r08	K.5-(i)	2.932983	69.84%	100.00%
P5-r09	K.5-(j)	2.932982	73.65%	100.00%
P5-r10	K.5-(k)	2.932980	135.98%	100.00%
P5-rXX	K.5-(1)	2.932983	162.34%	100.00%

Tabla K.5: Información de Figura K.5

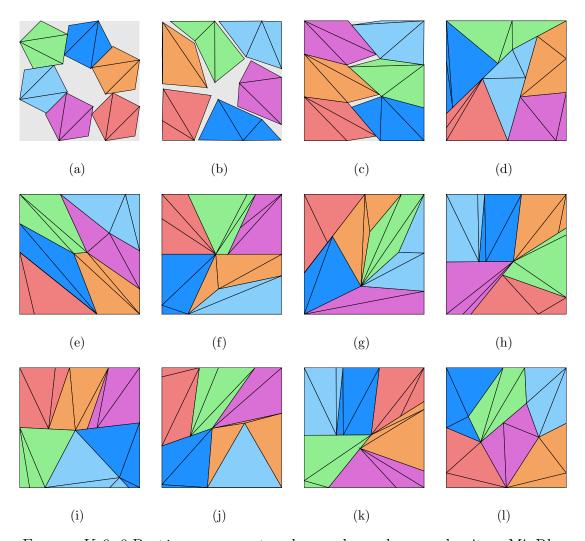


FIGURA K.6: 6 Pentágonos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{\rho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P6-r00	K.6-(a)	4.012530	0.00%	64.12%
P6-r01	K.6-(b)	3.554468	46.04%	81.71%
P6-r02	K.6-(c)	3.260430	19.51%	97.11%
P6-r03	K.6-(d)	3.212921	79.67%	100.00%
P6-r04	K.6-(e)	3.212922	74.26%	100.00%
P6-r05	K.6-(f)	3.212939	77.01%	100.00%
P6-r06	K.6-(g)	3.212921	69.60%	100.00%
P6-r07	K.6-(h)	3.212918	81.37%	100.00%
P6-r08	K.6-(i)	3.212928	73.56%	100.00%
P6-r09	K.6-(j)	3.212926	99.33%	100.00%
P6-r10	K.6-(k)	3.212921	81.49%	100.00%
P6-rXX	K.6-(1)	3.212922	60.65%	100.00%

Tabla K.6: Información de Figura K.6

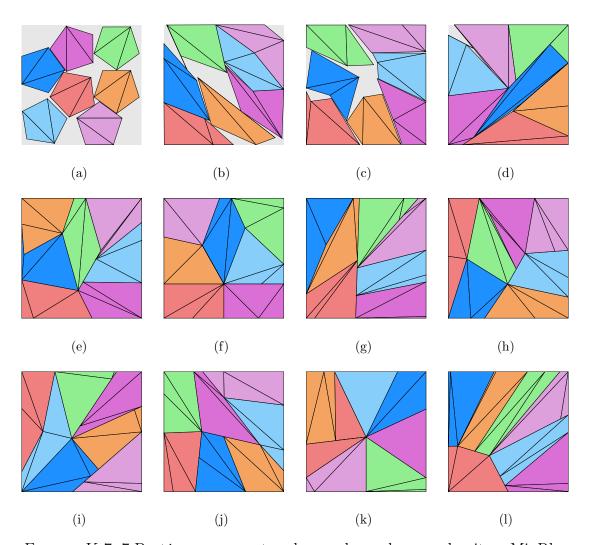


FIGURA K.7: 7 Pentágonos en contenedor cuadrangular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P7-r00	K.7-(a)	4.293458	0.00%	65.33%
P7-r01	K.7-(b)	3.751195	52.96%	85.59%
P7-r02	K.7-(c)	3.710388	68.15%	87.48%
P7-r03	K.7-(d)	3.505692	76.88%	97.99%
P7-r04	K.7-(e)	3.470352	71.91%	100.00%
P7-r05	K.7-(f)	3.470352	73.52%	100.00%
P7-r06	K.7-(g)	3.470351	105.65%	100.00%
P7-r07	K.7-(h)	3.470352	79.45%	100.00%
P7-r08	K.7-(i)	3.470365	122.64%	100.00%
P7-r09	K.7-(j)	3.470352	74.78%	100.00%
P7-r10	K.7-(k)	3.470348	109.75%	100.00%
P7-rXX	K.7-(1)	3.470348	217.39%	100.00%

Tabla K.7: Información de Figura K.7



FIGURA K.8: 8 Pentágonos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P8-r00	K.8-(a)	4.551096	0.00%	66.45%
P8-r01	K.8-(b)	4.171803	9.97%	79.08%
P8-r02	K.8-(c)	3.898624	24.44%	90.56%
P8-r03	K.8-(d)	3.742423	87.85%	98.27%
P8-r04	K.8-(e)	3.710821	44.20%	99.95%
P8-r05	K.8-(f)	3.709962	93.49%	100.00%
P8-r06	K.8-(g)	3.709962	68.96%	100.00%
P8-r07	K.8-(h)	3.709962	101.14%	100.00%
P8-r08	K.8-(i)	3.709964	44.32%	100.00%
P8-r09	K.8-(j)	3.709962	121.26%	100.00%
P8-r10	K.8-(k)	3.709970	120.11%	100.00%
P8-rXX	K.8-(1)	3.709960	0.00%	100.00%

TABLA K.8: Información de Figura K.8

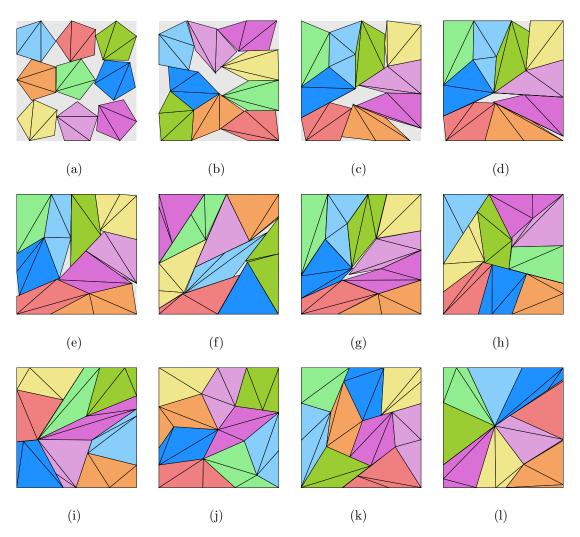


FIGURA K.9: 9 Pentágonos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P9-r00	K.9-(a)	4.720735	0.00 %	69.48%
P9-r01	K.9-(b)	4.345863	44.91%	81.99%
P9-r02	K.9-(c)	4.192658	99.96%	88.09%
P9-r03	K.9-(d)	3.998568	68.73%	96.85%
P9-r04	K.9-(e)	3.978457	77.76%	97.83%
P9-r05	K.9-(f)	3.978274	46.89%	97.84%
P9-r06	K.9-(g)	3.978273	58.11%	97.84%
P9-r07	K.9-(h)	3.936593	111.34%	99.92%
P9-r08	K.9-(i)	3.936591	0.00%	99.92%
P9-r09	K.9-(j)	3.935010	0.00%	100.00%
P9-r10	K.9-(k)	3.935013	0.00%	100.00%
P9-rXX	K.9-(1)	3.935009	0.00%	100.00%

Tabla K.9: Información de Figura K.9

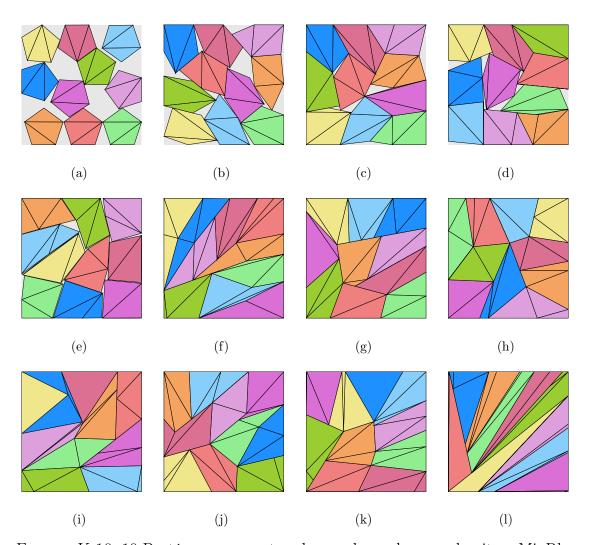


FIGURA K.10: 10 Pentágonos en contenedor cuadrangular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P10-r00	K.10-(a)	5.037122	0.00%	67.81 %
P10-r01	K.10-(b)	4.442996	9.99%	87.16%
P10-r02	K.10-(c)	4.238771	24.94%	95.76%
P10-r03	K.10-(d)	4.237588	39.92%	95.81%
P10-r04	K.10-(e)	4.237587	95.67%	95.81%
P10-r05	K.10-(f)	4.149483	56.87%	99.92%
P10-r06	K.10-(g)	4.147870	69.98%	100.00%
P10-r07	K.10-(h)	4.147867	114.10%	100.00%
P10-r08	K.10-(i)	4.147867	64.85%	100.00%
P10-r09	K.10-(j)	4.147870	100.00%	100.00%
P10-r10	K.10-(k)	4.147864	431.19%	100.00%
P10-rXX	K.10-(1)	4.147864	0.00%	100.00%

TABLA K.10: Información de Figura K.10

Apéndice L

PENTAGONOS EN CÍRCULOS CONTENEDOR MÍNIMO

L.1 RESULTADOS DEL ALGORITMO DE MÍNIMO CONTENEDOR EN EL CONTENEDOR CIRCULAR

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínimo Contenedor en un contenedor circular. El objetivo es empaquetar pentagonos considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 10 pentagonos dentro del contenedor circular.

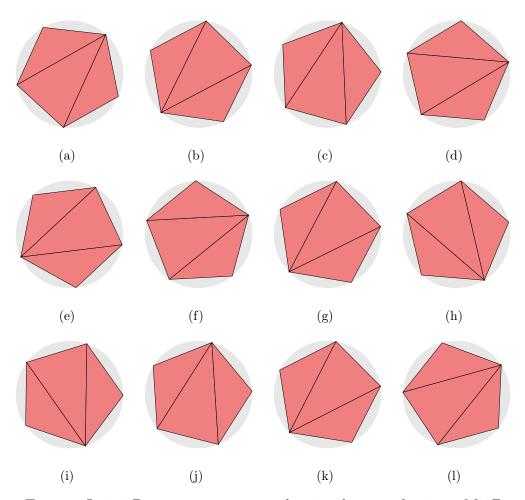


FIGURA L.1: 1 Pentágono en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	ρ_{min_Z}	δ_{min_Z}
P1-r00	L.1-(a)	0.850651	0.00%	75.68 %
P1-r01	L.1-(b)	0.850651	10.00%	75.68%
P1-r02	L.1-(c)	0.850651	20.00%	75.68%
P1-r03	L.1-(d)	0.850651	30.00%	75.68%
P1-r04	L.1-(e)	0.850651	40.00%	75.68%
P1-r05	L.1-(f)	0.850651	50.00%	75.68%
P1-r06	L.1-(g)	0.850651	60.00%	75.68%
P1-r07	L.1-(h)	0.850651	70.00%	75.68%
P1-r08	L.1-(i)	0.850651	80.00%	75.68%
P1-r09	L.1-(j)	0.850651	90.00%	75.68%
P1-r10	L.1-(k)	0.850651	100.00%	75.68%
P1-rXX	L.1-(1)	0.850651	∞	75.68%

TABLA L.1: Información de Figura L.1

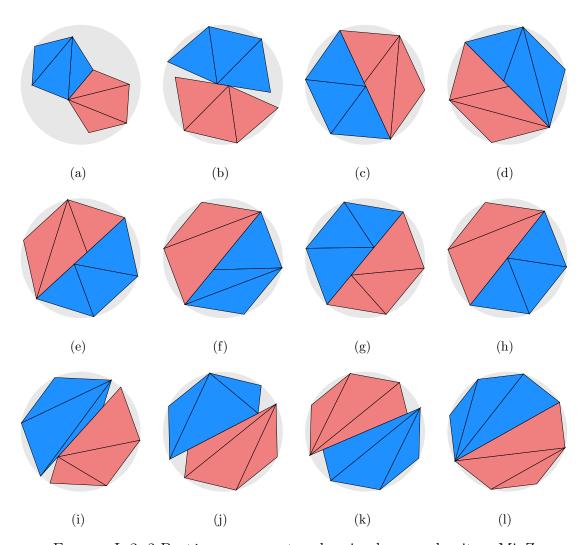


FIGURA L.2: 2 Pentágonos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P2-r00	L.2-(a)	1.538652	0.00%	46.26%
P2-r01	L.2-(b)	1.215931	10.00%	74.08%
P2-r02	L.2-(c)	1.150836	20.00%	82.70%
P2-r03	L.2-(d)	1.150836	30.00%	82.70%
P2-r04	L.2-(e)	1.150836	40.00%	82.70%
P2-r05	L.2-(f)	1.150836	50.00%	82.70%
P2-r06	L.2-(g)	1.150836	60.00%	82.70%
P2-r07	L.2-(h)	1.150836	70.00%	82.70%
P2-r08	L.2-(i)	1.149338	80.00%	82.92%
P2-r09	L.2-(j)	1.143075	90.00%	83.83%
P2-r10	L.2-(k)	1.132864	100.00%	85.34%
P2-rXX	L.2-(1)	1.102978	∞	90.03%

Tabla L.2: Información de Figura L.2

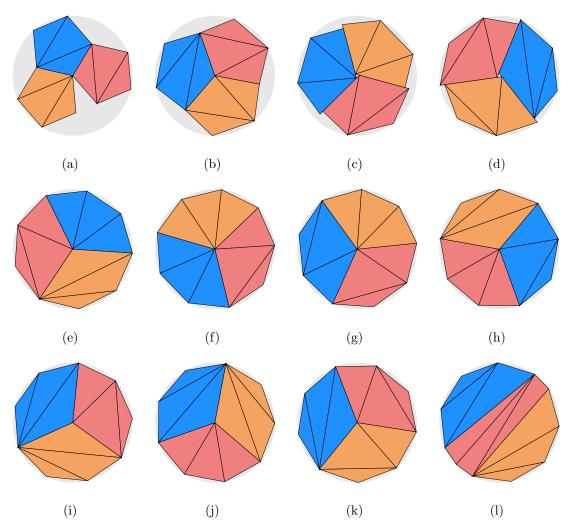


FIGURA L.3: 3 Pentágonos en contenedor circular con algoritmo MinZ

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P3-r00	L.3-(a)	1.618008	0.00%	62.76%
P3-r01	L.3-(b)	1.455292	10.00%	77.57%
P3-r02	L.3-(c)	1.402388	20.00%	83.54%
P3-r03	L.3-(d)	1.353410	30.00%	89.69%
P3-r04	L.3-(e)	1.335812	40.00%	92.07%
P3-r05	L.3-(f)	1.335811	50.00%	92.07%
P3-r06	L.3-(g)	1.335811	60.00%	92.07%
P3-r07	L.3-(h)	1.335811	70.00%	92.07%
P3-r08	L.3-(i)	1.335811	80.00%	92.07%
P3-r09	L.3-(j)	1.335811	90.00%	92.07%
P3-r10	L.3-(k)	1.335811	100.00%	92.07%
P3-rXX	L.3-(1)	1.323749	∞	93.76%

TABLA L.3: Información de Figura L.3

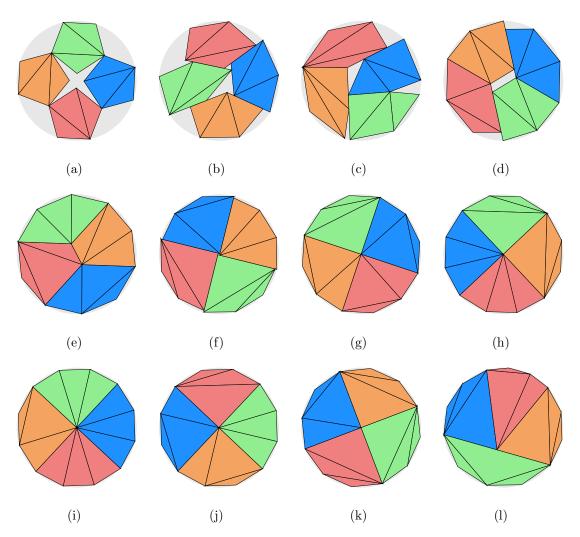


FIGURA L.4: 4 Pentágonos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P4-r00	L.4-(a)	1.829695	0.00%	65.43%
P4-r01	L.4-(b)	1.667164	10.00%	78.81%
P4-r02	L.4-(c)	1.613511	20.00%	84.14%
P4-r03	L.4-(d)	1.567073	30.00%	89.20%
P4-r04	L.4-(e)	1.530308	40.00%	93.54%
P4-r05	L.4-(f)	1.521781	50.00%	94.59%
P4-r06	L.4-(g)	1.514586	60.00%	95.49%
P4-r07	L.4-(h)	1.514586	70.00%	95.49%
P4-r08	L.4-(i)	1.514586	80.00%	95.49%
P4-r09	L.4-(j)	1.514586	90.00%	95.49%
P4-r10	L.4-(k)	1.514586	100.00%	95.49%
P4-rXX	L.4-(1)	1.511742	∞	95.85%

Tabla L.4: Información de Figura L.4

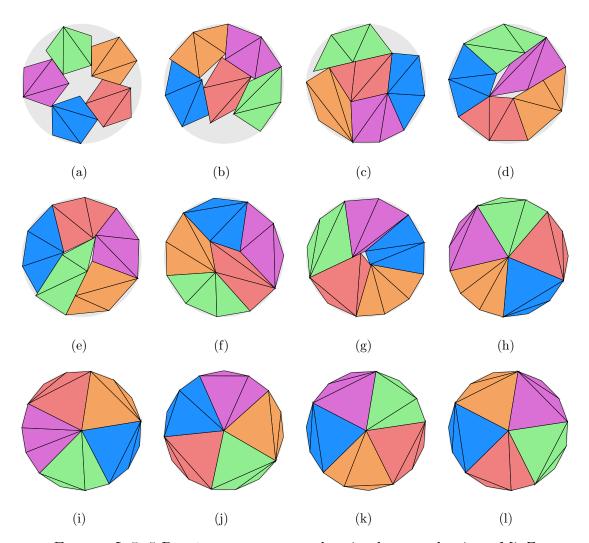


FIGURA L.5: 5 Pentágonos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P5-r00	L.5-(a)	2.032682	0.00%	66.27%
P5-r01	L.5-(b)	1.846754	10.00%	80.29%
P5-r02	L.5-(c)	1.779300	20.00%	86.49%
P5-r03	L.5-(d)	1.745798	30.00%	89.84%
P5-r04	L.5-(e)	1.721625	40.00%	92.38%
P5-r05	L.5-(f)	1.700880	50.00%	94.65%
P5-r06	L.5-(g)	1.696498	60.00%	95.14%
P5-r07	L.5-(h)	1.679276	70.00%	97.10%
P5-r08	L.5-(i)	1.679276	80.00%	97.10%
P5-r09	L.5-(j)	1.679276	90.00%	97.10%
P5-r10	L.5-(k)	1.679276	100.00%	97.10%
P5-rXX	L.5-(1)	1.679276	∞	97.10%

TABLA L.5: Información de Figura L.5

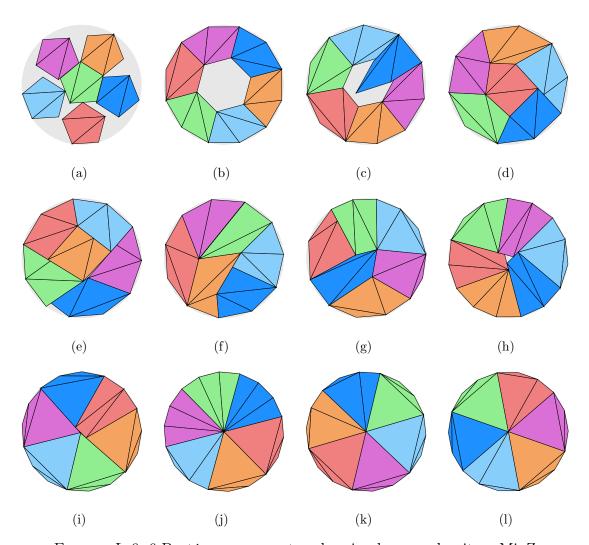


FIGURA L.6: 6 Pentágonos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P6-r00	L.6-(a)	2.258001	0.00%	64.45%
P6-r01	L.6-(b)	2.058162	10.00%	77.57%
P6-r02	L.6-(c)	1.963723	20.00%	85.21%
P6-r03	L.6-(d)	1.874156	30.00%	93.55%
P6-r04	L.6-(e)	1.872127	40.00%	93.75%
P6-r05	L.6-(f)	1.863340	50.00%	94.64%
P6-r06	L.6-(g)	1.852320	60.00%	95.77%
P6-r07	L.6-(h)	1.842613	70.00%	96.78%
P6-r08	L.6-(i)	1.835549	80.00%	97.53%
P6-r09	L.6-(j)	1.831273	90.00%	97.98%
P6-r10	L.6-(k)	1.831273	100.00%	97.98%
P6-rXX	L.6-(1)	1.831273	∞	97.98%

Tabla L.6: Información de Figura L.6

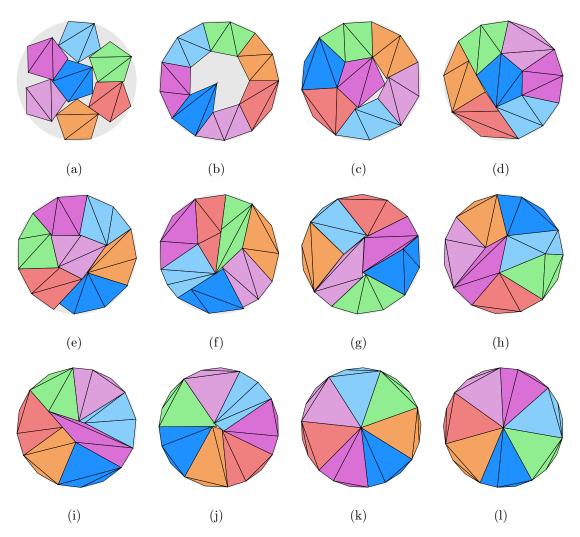


FIGURA L.7: 7 Pentágonos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P7-r00	L.7-(a)	2.294697	0.00%	72.80%
P7-r01	L.7-(b)	2.249797	10.00%	75.74%
P7-r02	L.7-(c)	2.020626	20.00%	93.89%
P7-r03	L.7-(d)	2.009049	30.00%	94.98%
P7-r04	L.7-(e)	2.008961	40.00%	94.98%
P7-r05	L.7-(f)	1.998231	50.00%	96.01%
P7-r06	L.7-(g)	1.998190	60.00%	96.01%
P7-r07	L.7-(h)	1.986979	70.00%	97.10%
P7-r08	L.7-(i)	1.984365	80.00%	97.35%
P7-r09	L.7-(j)	1.977230	90.00%	98.06%
P7-r10	L.7-(k)	1.972641	100.00%	98.51%
P7-rXX	L.7-(1)	1.972641	∞	98.51%

TABLA L.7: Información de Figura L.7

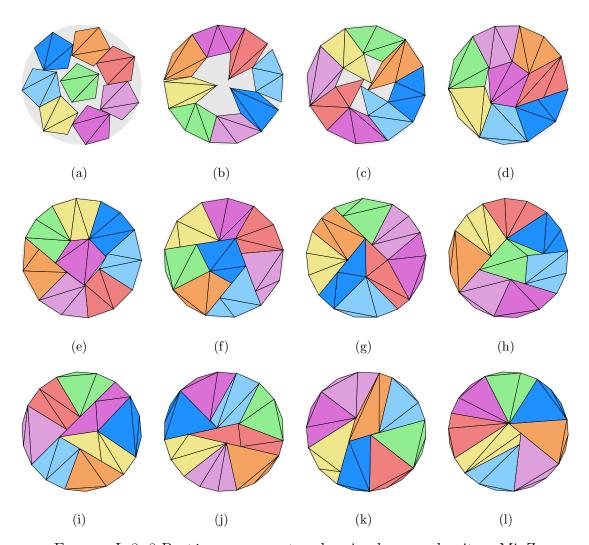


FIGURA L.8: 8 Pentágonos en contenedor circular con algoritmo ${
m MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P8-r00	L.8-(a)	2.481270	0.00%	71.16%
P8-r01	L.8-(b)	2.414916	10.00%	75.13%
P8-r02	L.8-(c)	2.255165	20.00%	86.15%
P8-r03	L.8-(d)	2.144853	30.00%	95.23%
P8-r04	L.8-(e)	2.135941	40.00%	96.03%
P8-r05	L.8-(f)	2.131130	50.00%	96.46%
P8-r06	L.8-(g)	2.119781	60.00%	97.50%
P8-r07	L.8-(h)	2.117395	70.00%	97.72%
P8-r08	L.8-(i)	2.114585	80.00%	97.98%
P8-r09	L.8-(j)	2.114186	90.00%	98.02%
P8-r10	L.8-(k)	2.114174	100.00%	98.02%
P8-rXX	L.8-(1)	2.107612	∞	98.63%

TABLA L.8: Información de Figura L.8

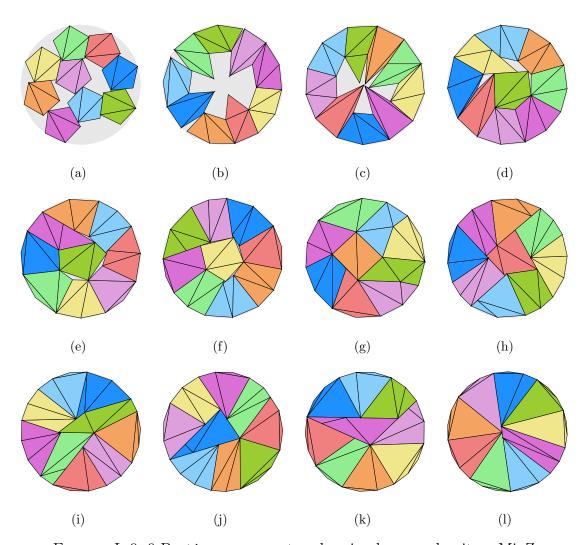


FIGURA L.9: 9 Pentágonos en contenedor circular con algoritmo ${\rm MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P9-r00	L.9-(a)	2.701567	0.00%	67.53%
P9-r01	L.9-(b)	2.595108	10.00%	73.19%
P9-r02	L.9-(c)	2.411526	20.00%	84.75%
P9-r03	L.9-(d)	2.288140	30.00%	94.14%
P9-r04	L.9-(e)	2.270286	40.00%	95.63%
P9-r05	L.9-(f)	2.258941	50.00%	96.59%
P9-r06	L.9-(g)	2.252986	60.00%	97.10%
P9-r07	L.9-(h)	2.245839	70.00%	97.72%
P9-r08	L.9-(i)	2.240051	80.00%	98.23%
P9-r09	L.9-(j)	2.239318	90.00%	98.29%
P9-r10	L.9-(k)	2.237092	100.00%	98.49%
P9-rXX	L.9-(1)	2.231036	∞	99.02%

TABLA L.9: Información de Figura L.9

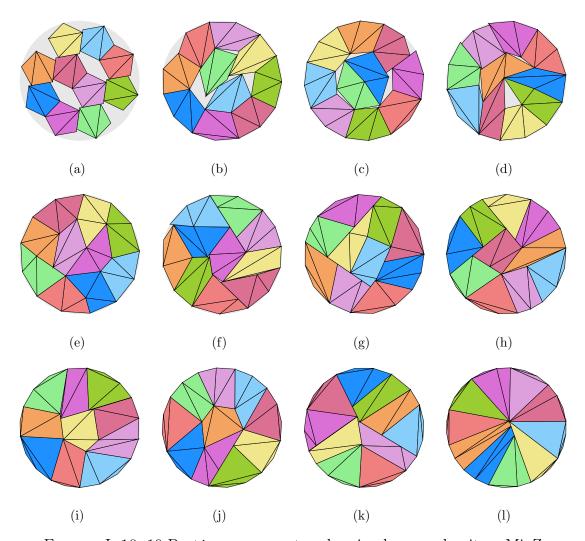


FIGURA L.10: 10 Pentágonos en contenedor circular con algoritmo ${
m MinZ}$

Instancia	Figura	Z_{min_Z}	$ ho_{min_Z}$	δ_{min_Z}
P10-r00	L.10-(a)	2.797663	0.00%	69.97%
P10-r01	L.10-(b)	2.469809	10.00%	89.78%
P10-r02	L.10-(c)	2.423159	20.00%	93.27%
P10-r03	L.10-(d)	2.419750	30.00%	93.53%
P10-r04	L.10-(e)	2.386551	40.00%	96.15%
P10-r05	L.10-(f)	2.386533	50.00%	96.15%
P10-r06	L.10-(g)	2.368904	60.00%	97.59%
P10-r07	L.10-(h)	2.361610	70.00%	98.19%
P10-r08	L.10-(i)	2.360336	80.00%	98.30%
P10-r09	L.10-(j)	2.359588	90.00%	98.36%
P10-r10	L.10-(k)	2.359227	100.00%	98.39%
P10-rXX	L.10-(1)	2.350191	∞	99.15%

TABLA L.10: Información de Figura L.10

Apéndice M

PENTAGONOS EN CÍRCULOS SUAVIDAD MÍNIMA

M.1 RESULTADOS DEL ALGORITMO DE MÍNIMA SUAVIDAD EN EL CONTENEDOR CIRCULAR

En este apéndice, se presentan los resultados obtenidos al ejecutar el algoritmo de Mínima Suavidad en un contenedor circular. El objetivo es empaquetar pentagonos considerando tres tipos de suavidad:

- Duro: Sin deformación permitida.
- Suavidad Limitada: Con una deformación controlada.
- Suavidad Ilimitada: Con máxima flexibilidad en la adaptación.

A continuación, se muestran los resultados del empaquetamiento para casos que van desde 1 hasta 10 pentagonos dentro del contenedor circular.

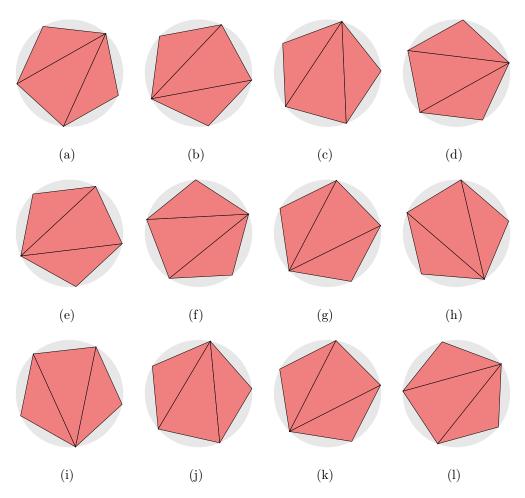


FIGURA M.1: 1 Pentágono en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{P}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P1-r00	M.1-(a)	0.850651	0.00%	75.68%
P1-r01	M.1-(b)	0.850651	0.00%	75.68%
P1-r02	M.1-(c)	0.850651	0.00%	75.68%
P1-r03	M.1-(d)	0.850651	0.00%	75.68%
P1-r04	M.1-(e)	0.850651	0.00%	75.68%
P1-r05	M.1-(f)	0.850651	0.00%	75.68%
P1-r06	M.1-(g)	0.850651	0.00%	75.68%
P1-r07	M.1-(h)	0.850651	0.00%	75.68%
P1-r08	M.1-(i)	0.850651	0.00%	75.68%
P1-r09	M.1-(j)	0.850651	0.00%	75.68%
P1-r10	M.1-(k)	0.850651	0.00%	75.68%
P1-rXX	M.1-(1)	0.850651	0.00%	75.68%

TABLA M.1: Información de Figura M.1

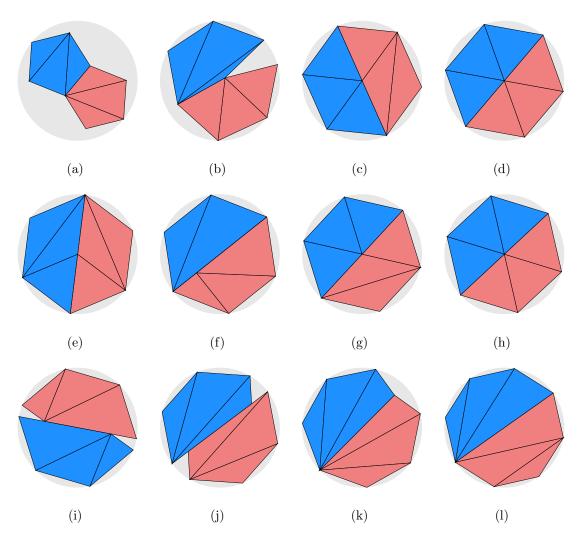


FIGURA M.2: 2 Pentágonos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P2-r00	M.2-(a)	1.538652	0.00%	46.26%
P2-r01	M.2-(b)	1.215931	10.00%	74.08%
P2-r02	M.2-(c)	1.150836	15.08%	82.70%
P2-r03	M.2-(d)	1.150836	15.08%	82.70%
P2-r04	M.2-(e)	1.150836	15.08%	82.70%
P2-r05	M.2-(f)	1.150836	72.62%	82.70%
P2-r06	M.2-(g)	1.150836	15.08%	82.70%
P2-r07	M.2-(h)	1.150836	15.08%	82.70%
P2-r08	M.2-(i)	1.149338	80.00%	82.92%
P2-r09	M.2-(j)	1.143075	90.00%	83.83%
P2-r10	M.2-(k)	1.132864	100.00%	85.34%
P2-rXX	M.2-(1)	1.102978	120.60%	90.03%

TABLA M.2: Información de Figura M.2

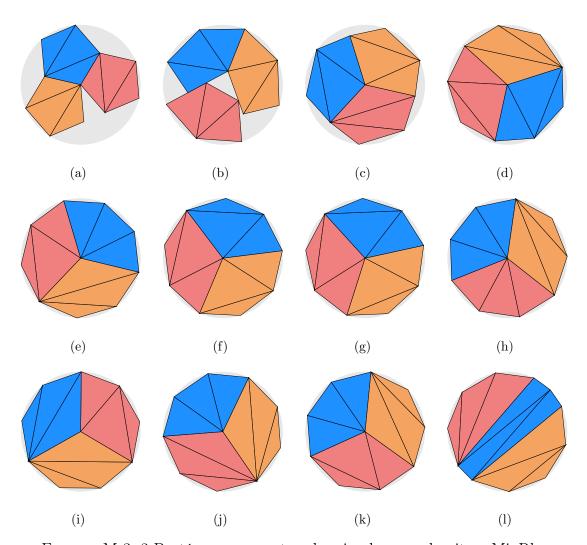


FIGURA M.3: 3 Pentágonos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P3-r00	M.3-(a)	1.618008	0.00 %	62.76%
P3-r01	M.3-(b)	1.455292	10.49%	77.57%
P3-r02	M.3-(c)	1.402388	20.03%	83.54%
P3-r03	M.3-(d)	1.353410	30.05%	89.69%
P3-r04	M.3-(e)	1.335812	33.58%	92.07%
P3-r05	M.3-(f)	1.335811	33.58%	92.07%
P3-r06	M.3-(g)	1.335811	33.58%	92.07%
P3-r07	M.3-(h)	1.335811	33.58%	92.07%
P3-r08	M.3-(i)	1.335811	33.58%	92.07%
P3-r09	M.3-(j)	1.335811	33.58%	92.07%
P3-r10	M.3-(k)	1.335811	33.58%	92.07%
P3-rXX	M.3-(1)	1.323749	156.31%	93.76%

TABLA M.3: Información de Figura M.3

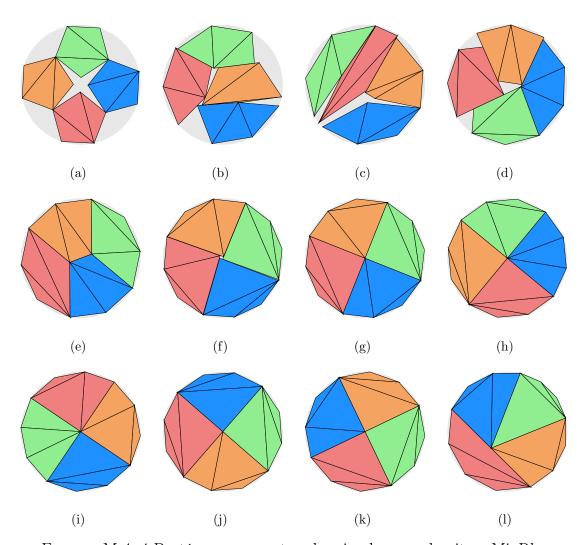


FIGURA M.4: 4 Pentágonos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P4-r00	M.4-(a)	1.829695	0.00 %	65.43%
P4-r01	M.4-(b)	1.667164	13.82%	78.81%
P4-r02	M.4-(c)	1.613511	69.58%	84.14%
P4-r03	M.4-(d)	1.567073	36.44%	89.20%
P4-r04	M.4-(e)	1.530308	40.00%	93.54%
P4-r05	M.4-(f)	1.521714	59.42%	94.60%
P4-r06	M.4-(g)	1.514586	51.46%	95.49%
P4-r07	M.4-(h)	1.514586	51.46%	95.49%
P4-r08	M.4-(i)	1.514586	51.46%	95.49%
P4-r09	M.4-(j)	1.514586	51.46%	95.49%
P4-r10	M.4-(k)	1.514586	51.46%	95.49%
P4-r XX	M.4-(1)	1.511742	178.97%	95.85%

TABLA M.4: Información de Figura M.4

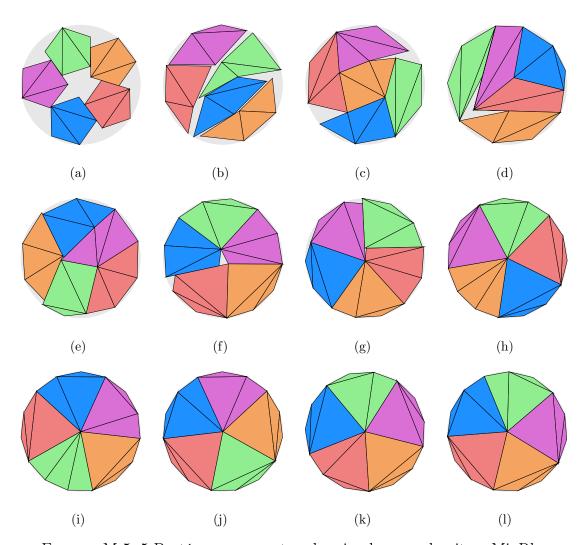


FIGURA M.5: 5 Pentágonos en contenedor circular con algoritmo MinRho

${f Instancia}$	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P5-r00	M.5-(a)	2.032682	0.00%	66.27%
P5-r01	M.5-(b)	1.846754	43.02%	80.29%
P5-r02	M.5-(c)	1.779300	20.58%	86.49%
P5-r03	M.5-(d)	1.745798	50.10%	89.84%
P5-r04	M.5-(e)	1.721625	38.25%	92.38%
P5-r05	M.5-(f)	1.700880	53.88%	94.65%
P5-r06	M.5-(g)	1.696498	63.12%	95.14%
P5-r07	M.5-(h)	1.679277	67.93%	97.10%
P5-r08	M.5-(i)	1.679276	67.93%	97.10%
P5-r09	M.5-(j)	1.679277	67.93%	97.10%
P5-r10	M.5-(k)	1.679276	67.93%	97.10%
P5-r XX	M.5-(1)	1.679277	67.93%	97.10%

Tabla M.5: Información de Figura M.5

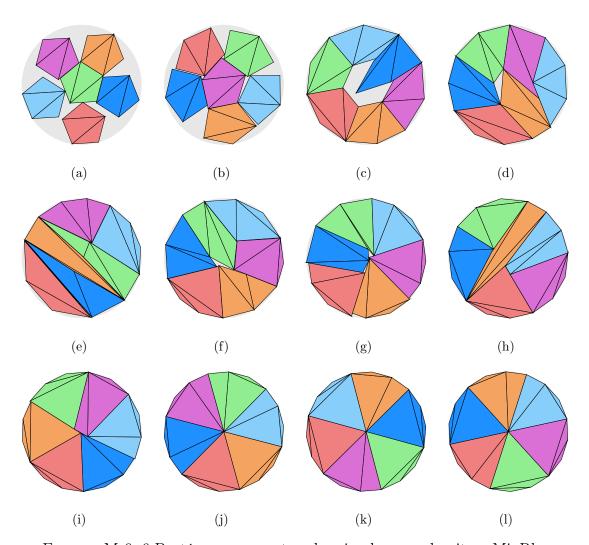


FIGURA M.6: 6 Pentágonos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P6-r00	M.6-(a)	2.258001	0.00 %	64.45%
P6-r01	M.6-(b)	2.058162	1.69%	77.57%
P6-r02	M.6-(c)	1.963723	45.85%	85.21%
P6-r03	M.6-(d)	1.874156	85.33%	93.55%
P6-r04	M.6-(e)	1.872067	64.07%	93.76%
P6-r05	M.6-(f)	1.863289	77.05%	94.64%
P6-r06	M.6-(g)	1.852320	118.71%	95.77%
P6-r07	M.6-(h)	1.842598	79.99%	96.78%
P6-r08	M.6-(i)	1.835549	83.13%	97.53%
P6-r09	M.6-(j)	1.831273	83.13%	97.98%
P6-r10	M.6-(k)	1.831273	83.13%	97.98%
P6-rXX	M.6-(1)	1.831273	0.00%	97.98%

TABLA M.6: Información de Figura M.6

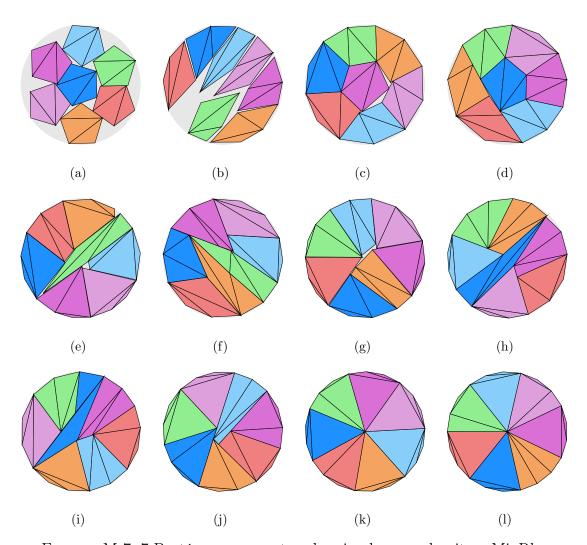


FIGURA M.7: 7 Pentágonos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P7-r00	M.7-(a)	2.294697	0.00%	72.80%
P7-r01	M.7-(b)	2.249797	55.50%	75.74%
P7-r02	M.7-(c)	2.020626	89.10%	93.89%
P7-r03	M.7-(d)	2.009049	94.68%	94.98%
P7-r04	M.7-(e)	2.008864	101.71%	94.99%
P7-r05	M.7-(f)	1.998200	93.93%	96.01%
P7-r06	M.7-(g)	1.998189	129.86%	96.01%
P7-r07	M.7-(h)	1.986979	138.71%	97.10%
P7-r08	M.7-(i)	1.984364	97.27%	97.35%
P7-r09	M.7-(j)	1.977224	97.26%	98.06%
P7-r10	M.7-(k)	1.972641	0.00%	98.51%
P7-rXX	M.7-(1)	1.972641	0.00%	98.51%

TABLA M.7: Información de Figura M.7

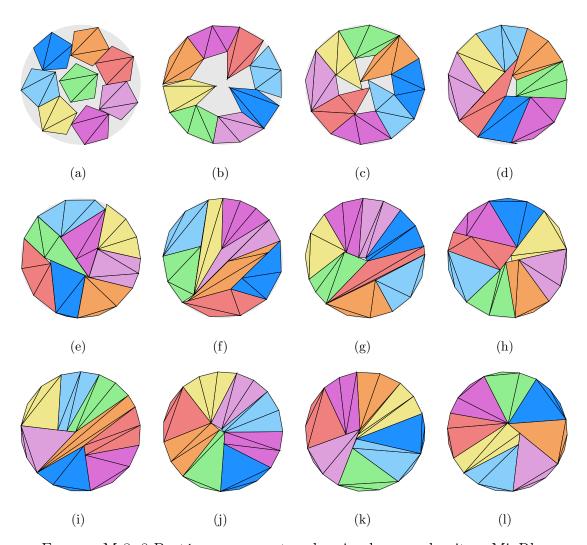


FIGURA M.8: 8 Pentágonos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P8-r00	M.8-(a)	2.481270	0.00 %	71.16%
P8-r01	M.8-(b)	2.414916	10.00%	75.13%
P8-r02	M.8-(c)	2.255165	19.95%	86.15%
P8-r03	M.8-(d)	2.144853	77.61%	95.23%
P8-r04	M.8-(e)	2.135909	89.67%	96.03%
P8-r05	M.8-(f)	2.131124	99.95%	96.47%
P8-r06	M.8-(g)	2.119771	109.96%	97.50%
P8-r07	M.8-(h)	2.117395	97.19%	97.72%
P8-r08	M.8-(i)	2.114580	129.82%	97.98%
P8-r09	M.8-(j)	2.114186	108.27%	98.02%
P8-r10	M.8-(k)	2.114169	148.81%	98.02%
P8-rXX	M.8-(1)	2.107612	0.00%	98.63%

TABLA M.8: Información de Figura M.8

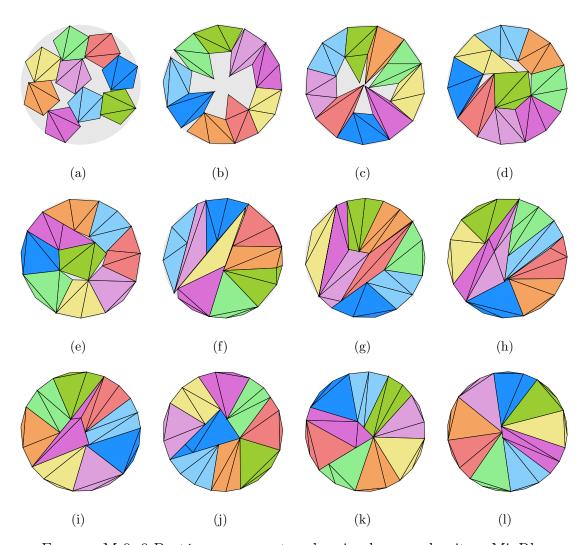


FIGURA M.9: 9 Pentágonos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P9-r00	M.9-(a)	2.701567	0.00 %	67.53%
P9-r01	M.9-(b)	2.595108	99.99%	73.19%
P9-r02	M.9-(c)	2.411526	110.00%	84.75%
P9-r03	M.9-(d)	2.288140	119.60%	94.14%
P9-r04	M.9-(e)	2.270286	129.18%	95.63%
P9-r05	M.9-(f)	2.258838	111.62%	96.60%
P9-r06	M.9-(g)	2.252986	0.00%	97.10%
P9-r07	M.9-(h)	2.245829	0.00%	97.72%
P9-r08	M.9-(i)	2.240040	0.00%	98.23%
P9-r09	M.9-(j)	2.239318	0.00%	98.29%
P9-r10	M.9-(k)	2.237092	0.00%	98.49%
P9-rXX	M.9-(1)	2.231036	0.00%	99.02%

TABLA M.9: Información de Figura M.9

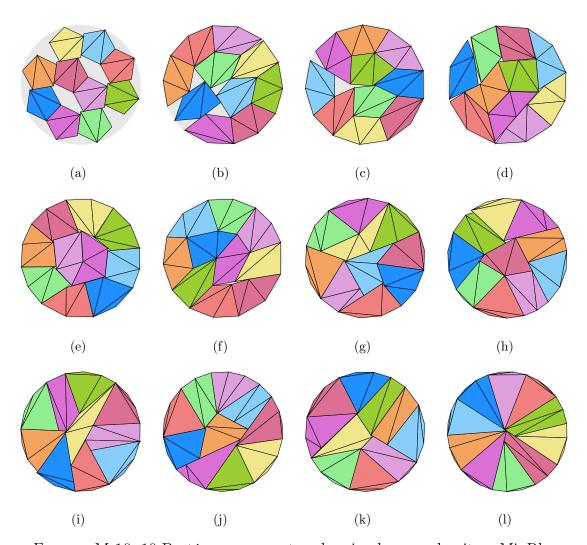


FIGURA M.10: 10 Pentágonos en contenedor circular con algoritmo MinRho

Instancia	Figura	$Z_{min_{ ho}}$	$ ho_{min_{ ho}}$	$\delta_{min_{ ho}}$
P10-r00	M.10-(a)	2.797663	0.00 %	69.97%
P10-r01	M.10-(b)	2.469809	7.96%	89.78%
P10-r02	M.10-(c)	2.423159	13.99%	93.27%
P10-r03	M.10-(d)	2.419712	29.95%	93.53%
P10-r04	M.10-(e)	2.386513	39.93%	96.15%
P10-r05	M.10-(f)	2.386533	28.87%	96.15%
P10-r06	M.10-(g)	2.368890	107.69%	97.59%
P10-r07	M.10-(h)	2.361610	75.31%	98.19%
P10-r08	M.10-(i)	2.360336	96.33%	98.30%
P10-r09	M.10-(j)	2.359426	137.09%	98.38%
P10-r10	M.10-(k)	2.359223	99.87%	98.39%
P10-rXX	M.10-(1)	2.350191	139.05%	99.15%

TABLA M.10: Información de Figura M.10

BIBLIOGRAFÍA

- [Akram, 2019] Akram, R. (2019). A Flexible Packing Optimization Approach to Improve Product A Flexible Packing Optimization Approach to Improve Product Quality and Worker Training Quality and Worker Training. The University of Tennessee Knoxville. https://trace.tennessee.edu/utk_graddiss/5642/
- [Araujo et al., 2019] Araujo, L. J., Ozcan, E., Atkin, J. A., & Baumers, M. (2019). Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset. *International Journal of Production Research*, 57(18), 5920–5934. https://doi.org/10.1080/00207543.2018.1534016
- [Archer et al., 2022] Archer, A. J., Dotera, T., & Rucklidge, A. M. (2022). Rectangle-triangle soft-matter quasicrystals with hexagonal symmetry. *Phys. Rev.* E, 106, 044602. https://doi.org/10.1103/PhysRevE.106.044602
- [Artiaco et al., 2022] Artiaco, C., Diaz Hernandez Rojas, R., Parisi, G., & Ricci-Tersenghi, F. (2022). Hard-sphere jamming through the lens of linear optimization. *Physical Review E*, 106(5), 055310-055310. https://doi.org/10.1103/PhysRevE.106.055310
- [Astrom & Karttunen, 2006] Astrom, J. A. & Karttunen, M. (2006). Cell aggregation: Packing soft grains. *Physical Review E Statistical, Nonlinear, and Soft Matter Physics*, 73(6). https://doi.org/10.1103/PhysRevE.73.062301
- [Baule & Makse, 2014] Baule, A. & Makse, H. A. (2014). Fundamental challenges in packing problems: From spherical to non-spherical particles. *Soft Matter*, 10(25),

4423-4429. https://doi.org/10.1039/c3sm52783b. Publisher: Royal Society of Chemistry

- [Bennell & Oliveira, 2009] Bennell, J. A. & Oliveira, J. F. (2009). A tutorial in irregular shape packing problems. *Journal of the Operational Research Society*, 60(sup1), S93–S105. https://doi.org/10.1057/jors.2008.169
- [Bouhid de Aguiar et al., 2018] Bouhid de Aguiar, I., Schroen, K., Meireles, M., & Bouchoux, A. (2018). Compressive resistance of granular-scale microgels: From loose to dense packing. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 553, 406–416. https://doi.org/10.1016/j.colsurfa.2018.05.064. Publisher: Elsevier B.V.
- [Brenner, 2018] Brenner, U. (2018). γ-Soft packings of rectangles. Computational Geometry: Theory and Applications, 70–71, 49–64. https://doi.org/10.1016/j.comgeo.2018.01.005. Publisher: Elsevier B.V.
- [Bui et al., 2019] Bui, Q. T., Vidal, T., & Ha, M. H. (2019). On three soft rectangle packing problems with guillotine constraints. *Journal of Global Optimization*, 74(1), 45–62. https://doi.org/10.1007/s10898-019-00741-w. Publisher: Springer New York LLC
- [Bynum et al., 2021] Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-P., & Woodruff, D. L. (2021). Pyomo-Optimization Modeling in Python (third ed.), volume 67. Springer Science & Business Media. https://doi.org/10.1007/978-3-030-68928-5
- [Byrd et al., 2006] Byrd, R. H., Nocedal, J., & Waltz, R. A. (2006). Knitro: An Integrated Package for Nonlinear Optimization. 35–59. https://doi.org/10. 1007/0-387-30065-1_4
- [Chazelle et al., 1989] Chazelle, B., Edelsbrunner, H., & Guibas, L. J. (1989). The complexity of cutting complexes. *Discrete & Computational Geometry*, 4(2), 139–181. https://doi.org/10.1007/BF02187720

[Chen et al., 2021] Chen, Y., Yuan, M., Wang, Z., Zhao, Y., Li, J., Hu, B., & Xia, C. (2021). Structural characterization and statistical properties of jammed soft ellipsoid packing. Soft Matter, 17(10), 2963–2972. https://doi.org/10.1039/d0sm01699c. Publisher: Royal Society of Chemistry

- [Coutinho et al., 2023] Coutinho, J. P., Reis, M. S., Neves, D. F. M. G., & Bernardo, F. P. (2023). Robust optimization and data-driven modeling of tissue paper packing considering cargo deformation. *Computers & Industrial Engineering*, 175, 108898–108898. https://doi.org/10.1016/j.cie.2022.108898
- [Czyzyk et al., 1998] Czyzyk, J., Mesnier, M., & More, J. (1998). The NEOS Server.
 IEEE Computational Science and Engineering, 5(3), 68–75. https://doi.org/10.1109/99.714603
- [Deng et al., 2021] Deng, W., Liu, L., Yuan, Y., & Li, S. (2021). Shape effects on mechanical properties of maximally random jammed packings of intersecting spherocylinders. *Powder Technology*, 383, 443–453. https://doi.org/10.1016/j.powtec.2021.01.062. Publisher: Elsevier B.V.
- [Dolan, 2001] Dolan, E. D. (2001). NEOS Server 4.0 Administrative Guide. http://arxiv.org/abs/cs/0107034. arXiv:cs/0107034
- [Dong et al., 2016] Dong, K., Wang, C., & Yu, A. (2016). Voronoi analysis of the packings of non-spherical particles. *Chemical Engineering Science*, 153, 330–343. https://doi.org/10.1016/j.ces.2016.07.013. Publisher: Elsevier Ltd
- [Dyckhoff, 1990] Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44(2), 145–159. https://doi.org/ 10.1016/0377-2217(90)90350-K
- [Ermis et al., 2021] Ermis, G., Alesiani, F., & Gkiotsalitis, K. (2021). Optimization of Collection and Consolidation Operations in Cross-Border Multi-modal Distribution Networks. 2021 IEEE International Intelligent Transportation Systems

Conference (ITSC), 1004-1010. https://doi.org/10.1109/ITSC48978.2021. 9564723

- [Fasano, 2014] Fasano, G. (2014). Solving Non-standard Packing Problems by Global Optimization and Heuristics. SpringerBriefs in Optimization. Springer International Publishing. https://doi.org/10.1007/978-3-319-05005-8
- [Fernandez et al., 2009] Fernandez, E., Lopez, F., Navarro, J., Vega, I., & Litvinchev, I. (2009). An integrated mathematical-computer approach for R&D project selection in large public organisations. *International Journal of Mathematics in Operational Research*, 1(3), 372. https://doi.org/10.1504/IJMOR.2009.024291
- [Fourer et al., 2003] Fourer, R., Gay, D. M., & Kernighan, B. W. (2003). *AMPL:*A Modeling Language for Mathematical Programming (2nd ed.). Thomson Brooks/Cole. 517 + xxi pages.
- [Friedman, 2009] Friedman, E. (2009). Packing Unit Squares in Squares: A Survey and New Results. *The Electronic Journal of Combinatorics*, 1000. https://doi.org/10.37236/28
- [Fugenschuh et al., 2014] Fugenschuh, A., Junosza-Szaniawski, K., & Lonc, Z. (2014). Exact and approximation algorithms for a soft rectangle packing problem. *Optimization*, 63(11), 1637–1663. https://doi.org/10.1080/02331934. 2012.728217. Publisher: Taylor and Francis Ltd.
- [Gensane & Ryckelynck, 2005] Gensane, T. & Ryckelynck, P. (2005). Improved Dense Packings of Congruent Squares in a Square. *Discrete & Computational Geometry*, 34(1), 97–109. https://doi.org/10.1007/s00454-004-1129-z
- [Giammona & Campas, 2021] Giammona, J. & Campas, O. (2021). Physical constraints on early blastomere packings. *PLoS computational biology*, 17(1), e1007994–e1007994. https://doi.org/10.1371/journal.pcbi.1007994. Publisher: Public Library of Science

[Goodson et al., 2022] Goodson, A. D., Rick, M. S., Troxler, J. E., Ashbaugh, H. S., & Albert, J. N. L. (2022). Blending Linear and Cyclic Block Copolymers to Manipulate Nanolithographic Feature Dimensions. ACS Applied Polymer Materials, 4(1), 327–337. https://doi.org/10.1021/acsapm.1c01313

- [Gropp & Moré, 1997] Gropp, W. & Moré, J. J. (1997). Optimization environments and the NEOS Server. *Approximation Theory and Optimization*, 167–182. Cambridge University Press. https://cambridge.org/9780521581905
- [Gutiérrez Rodríguez, 2019] Gutiérrez Rodríguez, L. Á. (2019). Problema generalizado del empaquetamiento de contenedores: una comparación entre diferentes métodos de solución. Universidad Autónoma de Nuevo León. https://eprints.uanl.mx/17851/
- [Hart et al., 2011] Hart, W. E., Watson, J.-P., & Woodruff, D. L. (2011). Pyomo: Modeling and solving mathematical programs in python. *Mathematical Programming Computation*, 3(3), 219–260. https://doi.org/10.1007/s12532-011-0026-8
- [Huang et al., 2023] Huang, Z., Deng, W., Zhang, S., & Li, S. (2023). Optimal shapes of disk assembly in saturated random packings. *Soft Matter*, 19(18), 3325–3336. https://doi.org/10.1039/d3sm00166k. Publisher: Royal Society of Chemistry
- [Ibaraki & Nakamura, 2006] Ibaraki, T. & Nakamura, K. (2006). Packing Problems with Soft Rectangles. Hybrid Metaheuristics, 13–27. Springer Berlin Heidelberg. https://doi.org/10.1007/11890584_2
- [Jammula et al., 2022] Jammula, A. K., Whiteley, J. R., Resetarits, M. R., & Cai, T. J. (2022). New Liquid Holdup Models in Both Preloading and Flooding Regions and a Flood Velocity Model to Identify Flooding for Sheet Metal Structured Packings. *Industrial & Engineering Chemistry Research*, 61(1), 694–705. https://doi.org/10.1021/acs.iecr.1c03651

[Jao et al., 2023] Jao, K., Promislow, K., & Sottile, S. (2023). Defects and frustration in the packing of soft balls. *Physica D: Nonlinear Phenomena*, 445, 133631. https://doi.org/https://doi.org/10.1016/j.physd.2022.133631

- [Ji et al., 2017] Ji, P., He, K., Jin, Y., Lan, H., & Li, C. (2017). An iterative merging algorithm for soft rectangle packing and its extension for application of fixed-outline floorplanning of soft modules. *Computers and Operations Research*, 86, 110–123. https://doi.org/10.1016/j.cor.2017.05.009. Publisher: Elsevier Ltd
- [Jiang et al., 2019] Jiang, J., Garikipati, K., & Rudraraju, S. (2019). A Diffuse Interface Framework for Modeling the Evolution of Multi-cell Aggregates as a Soft Packing Problem Driven by the Growth and Division of Cells. Bulletin of Mathematical Biology, 81(8), 3282–3300. https://doi.org/10.1007/s11538-019-00577-1. Publisher: Springer New York LLC
- [Kallrath, 2009] Kallrath, J. (2009). Cutting circles and polygons from areaminimizing rectangles. *Journal of Global Optimization*, 43(2-3), 299–328. https://doi.org/10.1007/s10898-007-9274-6
- [Khajavirad & Sahinidis, 2018] Khajavirad, A. & Sahinidis, N. V. (2018). A hybrid LP/NLP paradigm for global optimization relaxations. *Mathematical Programming Computation*, 10(3), 383–421. https://doi.org/10.1007/s12532-018-0138-5. Publisher: Springer Verlag
- [Kuang et al., 2022] Kuang, X., Guan, G., Wong, M.-K., Chan, L.-Y., Zhao, Z., Tang, C., & Zhang, L. (2022). Computable early Caenorhabditis elegans embryo with a phase field model. *PLoS computational biology*, 18(1), e1009755–e1009755. https://doi.org/10.1371/journal.pcbi.1009755. Publisher: Public Library of Science
- [Laghmach et al., 2022] Laghmach, R., Di Pierro, M., & Potoyan, D. (2022). A Liquid State Perspective on Dynamics of Chromatin Compartments. *Frontiers*

in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.781981. Publisher: Frontiers Media S.A.

- [Leao et al., 2020] Leao, A. A., Toledo, F. M., Oliveira, J. F., Carravilla, M. A., & Alvarez-Valdés, R. (2020). Irregular packing problems: A review of mathematical models. *European Journal of Operational Research*, 282(3), 803–822. https://doi.org/10.1016/j.ejor.2019.04.045
- [Li et al., 2022a] Li, Q., Moussallem, C., Castet, F., Muccioli, L., Dourges, M.-A., Toupance, T., & Nicolas, Y. (2022a). Direct Triple Annulations: A Way to Design Large Triazastarphenes with Intertwined Hexagonal Packing. *Organic Letters*, 24(1), 344–348. https://doi.org/10.1021/acs.orglett.1c04001
- [Li et al., 2022b] Li, Y., Chen, M., & Huo, J. (2022b). A hybrid adaptive large neighborhood search algorithm for the large-scale heterogeneous container loading problem. Expert Systems with Applications, 189, 115909–115909. https://doi.org/10.1016/j.eswa.2021.115909
- [Liang et al., 2015] Liang, R., Schruff, T., Jia, X., Schüttrumpf, H., & Frings, R. M. (2015). Validation of a stochastic digital packing algorithm for porosity prediction in fluvial gravel deposits. Sedimentary Geology, 329, 18–27. https://doi.org/10.1016/j.sedgeo.2015.09.002. Publisher: Elsevier
- [Litvinchev et al., 2024] Litvinchev, I., Infante, L., Romanova, T., Martinez-Noa, A., & Gutierrez, L. (2024). Optimized Packing Soft Convex Polygons. Computer Science and Engineering in Health Services, 89–97. Springer International Publishing. https://doi.org/10.1007/978-3-031-34750-4_7
- [Litvinchev et al., 2011] Litvinchev, I., López, F., Escalante, H. J., & Mata, M. (2011). A milp bi-objective model for static portfolio selection of R&D projects with synergies. *Journal of Computer and Systems Sciences International*, 50(6), 942–952. https://doi.org/10.1134/S1064230711060165

[Litvinchev & Ozuna, 2012] Litvinchev, I. & Ozuna, E. L. (2012). Lagrangian Bounds and a Heuristic for the Two-Stage Capacitated Facility Location Problem:. International Journal of Energy Optimization and Engineering, 1(1), 59–71. https://doi.org/10.4018/ijeoe.2012010104

- [Litvinchev et al., 2010] Litvinchev, I., Rangel, S., & Saucedo, J. (2010). A Lagrangian bound for many-to-many assignment problems. *Journal of Combinatorial Optimization*, 19(3), 241–257. https://doi.org/10.1007/s10878-008-9196-3
- [Litvinchev et al., 2014] Litvinchev, I., Rios, Y. A., Özdemir, D., & Hernández-Landa, L. G. (2014). Multiperiod and stochastic formulations for a closed loop supply chain with incentives. *Journal of Computer and Systems Sciences International*, 53(2), 201–211. https://doi.org/10.1134/S1064230714020129
- [Litvinchev et al., 2020] Litvinchev, I., Romanova, T., Corrales-Diaz, R., Esquerra-Arguelles, A., & Martinez-Noa, A. (2020). Lagrangian Approach to Modeling Placement Conditions in Optimized Packing Problems. *Mobile Networks and Applications*, 25(6), 2126–2133. https://doi.org/10.1007/s11036-020-01556-w
- [Litvinchev, 2007] Litvinchev, I. S. (2007). Refinement of Lagrangian bounds in optimization problems. *Computational Mathematics and Mathematical Physics*, 47(7), 1101–1107. https://doi.org/10.1134/S0965542507070032
- [Liu et al., 2020] Liu, S., Ban, X., Zeng, X., Zhao, F., Gao, Y., Wu, W., Zhang, H., Chen, F., Hall, T., Gao, X., & Xu, M. (2020). A unified framework for packing deformable and non-deformable subcellular structures in crowded cryo-electron tomogram simulation. *BMC Bioinformatics*, 21(1). https://doi.org/10.1186/s12859-020-03660-w. Publisher: BioMed Central Ltd
- [Liu et al., 2022] Liu, X., Gui, N., Cui, X., Yang, X., Tu, J., & Jiang, S. (2022).
 Discrete element-embedded finite element model for simulation of soft particle motion and deformation. *Particulogy*, 68, 88–100. https://doi.org/10.1016/j.partic.2021.10.008. Publisher: Elsevier

[Lu et al., 2019] Lu, F., Vo, T., Zhang, Y., Frenkel, A., Yager, K. G., Kumar, S., & Gang, O. (2019). Unusual packing of soft-shelled nanocubes. *Science advances*, 2399–2416. https://doi.org/10.1126/sciadv.aaw2399. Volume: 5

- [Ma et al., 2021] Ma, W., Zhang, B., Han, L., Huo, S., Wang, H., & Navarro-Alarcon, D. (2021). Action Planning for Packing Long Linear Elastic Objects into Compact Boxes with Bimanual Robotic Manipulation. *IEEE Transactions on Mechatronics*. https://doi.org/10.1109/TMECH.2022.3223990
- [Mazur et al., 2021] Mazur, P. G., Lee, N.-S., Schoder, D., & Janssen, T. (2021).
 Designing a Physical Packing Sequence Algorithm with Static Stability for Pallet Loading Problems in Air Cargo. Computational Logistics: 12th International Conference, ICCL 2021, Enschede, The Netherlands, September 27–29, 2021, Proceedings 12, 627–641. Springer International Publishing. https://doi.org/10.1007/978-3-030-87672-2_41
- [Miller & Cacciuto, 2011] Miller, W. L. & Cacciuto, A. (2011). Two-dimensional packing of soft particles and the soft generalized Thomson problem. *Soft Matter*, 7(16), 7552–7559. https://doi.org/10.1039/c1sm05731f
- [NAGAMOCHI, 2006] NAGAMOCHI, H. (2006). PACKING SOFT RECTAN-GLES. International Journal of Foundations of Computer Science, 17(05), 1165–1178. https://doi.org/10.1142/S0129054106004327
- [Neto & Wriggers, 2021] Neto, A. G. & Wriggers, P. (2021). Discrete element model for general polyhedra. Computational Particle Mechanics. https://doi.org/10. 1007/s40571-021-00415-z. Publisher: Springer International Publishing
- [Ng & Ge, 2020] Ng, T. T. & Ge, L. (2020). Packing void ratios of very dense ternary mixtures of similar ellipsoids. *Granular Matter*, 22(2). https://doi.org/10.1007/s10035-020-01021-1. Publisher: Springer

[Pankratov et al., 2015] Pankratov, A., Romanova, T., & Andrey M. Chugay (2015).

Optimal Packing of Convex Polytopes Using Quasi-Phi-Functions. *Mechanical Engineering Problems*. https://journals.uran.ua/jme/article/view/46687

- [Pankratov et al., 2019] Pankratov, A., Romanova, T., & Litvinchev, I. (2019). Packing ellipses in an optimized convex polygon. *Journal of Global Optimization*, 75(2), 495–522. https://doi.org/10.1007/s10898-019-00777-y
- [Paredes-Goyes et al., 2021] Paredes-Goyes, B., Jauffres, D., Missiaen, J. M., & Martin, C. L. (2021). Grain growth in sintering: A discrete element model on large packings. *Acta Materialia*, 218. https://doi.org/10.1016/j.actamat.2021.117182
- [Pedroso, 2020] Pedroso, J. P. (2020). Heuristics for packing semifluids. *European Journal of Operational Research*, 282(3), 823-834. https://doi.org/10.1016/j.ejor.2019.10.002. Publisher: Elsevier B.V.
- [Radovanović et al., 2022] Radovanović, L., Malenov, D. P., Rodić, M. V., Kremenović, A., & Rogan, J. (2022). Crystallographic, spectroscopic, thermal and computational studies of polymeric cobalt(II)-mellitate complex with 2,2'-bipyridine. Journal of Molecular Structure, 1252, 132202-132202. https://doi.org/10.1016/j.molstruc.2021.132202
- [Romanova et al., 2020] Romanova, T., Litvinchev, I., & Pankratov, A. (2020). Packing ellipsoids in an optimized cylinder. European Journal of Operational Research, 285(2), 429–443. https://doi.org/10.1016/j.ejor.2020.01.051
- [Romanova et al., 2021a] Romanova, T., Pankratov, A., Litvinchev, I., Plankovskyy, S., Tsegelnyk, Y., & Shypul, O. (2021a). Sparsest packing of two-dimensional objects. *International Journal of Production Research*, 59(13), 3900–3915. https://doi.org/10.1080/00207543.2020.1755471
- [Romanova et al., 2021b] Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Avramov, K., Chernobryvko, M., Yanchevskyi, I., Mozgova, I., & Bennell, J.

(2021b). Optimal layout of ellipses and its application for additive manufacturing. *International Journal of Production Research*, 59(2), 560–575. https://doi.org/10.1080/00207543.2019.1697836

- [Romanova et al., 2023] Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Kravchenko, O., Duryagina, Z., Melashenko, O., & Chugai, A. (2023). Optimized packing soft ellipses. *Human-Assisted Intelligent Computing*, 9–1. IOP Publishing. https://doi.org/10.1088/978-0-7503-4801-0ch9. Num Pages: 9-16
- [Romanova et al., 2021c] Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Plankovskyy, S., Tsegelnyk, Y., & Shypul, O. (2021c). Sparsest balanced packing of irregular 3D objects in a cylindrical container. *European Journal of Operational* Research, 291(1), 84–100. https://doi.org/10.1016/j.ejor.2020.09.021
- [Romanova et al., 2019] Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Yanchevsky, I., & Mozgova, I. (2019). Optimal Packing in Additive Manufacturing. IFAC-PapersOnLine, 52(13), 2758–2763. https://doi.org/10.1016/j.ifacol. 2019.11.625
- [Scheithauer, 2018] Scheithauer, G. (2018). Introduction to Cutting and Packing Optimization (isor ed.), volume 263. Springer International Publishing. https://doi.org/10.1007/978-3-319-64403-5
- [Stoyan et al., 2004] Stoyan, Y. G., Gil', N. I., Pankratov, A., & Scheithauer, G. (2004). Packing non-convex polytopes into a parallelepiped. Technical report, Technische Universität Dresden. https://citeseerx.ist.psu.edu/pdf/6584939e46a6254a08af06e5c2347fe424fd6cc0
- [Stoyan et al., 2005] Stoyan, Y. G., Gil, N. I., Scheithauer, G., Pankratov, A., & Magdalina, I. (2005). Packing of convex polytopes into a parallelepiped. *Optimization*, 54(2), 215–235. https://doi.org/10.1080/02331930500050681
- [Van Rossum & Drake, 2009] Van Rossum, G. & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.

[Vijayan et al., 2022] Vijayan, A., Banerjee, A., & Desu, R. K. (2022). Role of packing defects in force networks of hexagonally packed structures using discrete element method. *Granular Matter*, 24(1), 23–23. https://doi.org/10.1007/s10035-021-01185-4

- [Wang & Hauser, 2022] Wang, F. & Hauser, K. (2022). Dense Robotic Packing of Irregular and Novel 3D Objects. *IEEE Transactions on Robotics*, 38(2), 1160–1173. https://doi.org/10.1109/TRO.2021.3097261. Publisher: Institute of Electrical and Electronics Engineers Inc.
- [Wang et al., 2022] Wang, T., Hu, Q., & Lim, A. (2022). An exact algorithm for two-dimensional vector packing problem with volumetric weight and general costs. European Journal of Operational Research, 300(1), 20–34. https://doi.org/10.1016/j.ejor.2021.10.011
- [Winkelmann, 2016] Winkelmann, J. (2016). Structures of columnar packings with soft and hard spheres. Trinity College Dublin. http://www.tara.tcd.ie/handle/2262/91733. Place: Dublin
- [Winkelmann et al., 2017] Winkelmann, J., Haffner, B., Weaire, D., Mughal, A., & Hutzler, S. (2017). Simulation and observation of line-slip structures in columnar structures of soft spheres. *Physical Review E*, 96(1). https://doi.org/10.1103/PhysRevE.96.012610. Publisher: American Physical Society
- [Wäscher et al., 2007] Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183(3), 1109–1130. https://doi.org/10.1016/j.ejor.2005.12.047
- [Young et al., 2001] Young, F., Chu, C., Luk, W., & Wong, Y. (2001). Handling soft modules in general nonslicing floorplan using Lagrangian relaxation. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 20(5), 687–692. https://doi.org/10.1109/43.920707

[Yuan et al., 2019] Yuan, Q., Li, Z., Gao, Y., Wang, Y.-H., & Li, X. (2019). Local responses in 2D assemblies of elliptical rods when subjected to biaxial shearing. *Acta Geotechnica*, 14(6), 1685–1697. https://doi.org/10.1007/s11440-019-00844-4. Publisher: Springer Verlag

- [Zhao et al., 2017] Zhao, B., An, X., Wang, Y., Qian, Q., Yang, X., & Sun, X. (2017). DEM dynamic simulation of tetrahedral particle packing under 3D mechanical vibration. *Powder Technology*, 317, 171–180. https://doi.org/10.1016/j.powtec.2017.04.048
- [Zhao et al., 2020] Zhao, B., An, X., Zhao, H., Gou, D., Shen, L., & Sun, X. (2020).
 DEM simulation on random packings of binary tetrahedron-sphere mixtures. *Powder Technology*, 361, 160–170. https://doi.org/10.1016/j.powtec.2019.09.
 055
- [Zhao et al., 2021] Zhao, C., Gao, Q., Chen, Y., & Li, C. (2021). Application of parametric function in construction of particle shape and discrete element simulation. *Powder Technology*, 387, 481–493. https://doi.org/10.1016/j.powtec. 2021.04.054. Publisher: Elsevier B.V.
- [Zhao et al., 2015] Zhao, S., Zhou, X., Liu, W., & Lai, C. (2015). Random packing of tetrahedral particles using the polyhedral discrete element method. *Particuology*, 23, 109–117. https://doi.org/10.1016/j.partic.2015.02.007
- [Zhu et al., 2021] Zhu, Q., Li, X., Zhang, Z., Luo, Z., Tong, X., Yuan, M., & Zeng, J. (2021). Learning to Pack: A Data-Driven Tree Search Algorithm for Large-Scale 3D Bin Packing Problem. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 4393–4402. https://doi.org/10.1145/3459637.3481933
- [Zuo et al., 2022] Zuo, Q., Liu, X., Xu, L., Xiao, L., Xu, C., Liu, J., & Chan, W.
 K. V. (2022). The Three-dimensional Bin Packing Problem for Deformable Items.
 2022 IEEE International Conference on Industrial Engineering and Engineering

 $Management~(IEEM),~0911-0918.~ \verb|https://doi.org/10.1109/IEEM55944.2022.\\9989600$

RESUMEN AUTOBIOGRÁFICO

Luis Ángel Gutiérrez Rodríguez

Candidato para obtener el grado de Doctorado en Ingeniería de Sistemas

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica

Tesis:

EMPAQUETAMIENTO ÓPTIMO DE OBJETOS SUAVES IRREGULARES

Nací el 16 de marzo de 1993 en la ciudad de Monterrey, Nuevo León, México. Soy el hijo primogénito de Luis Carlos Gutiérrez Martínez y Luz María Rodríguez Valero, ambos abogados de profesión. Desde mis primeros años de vida, mi madre nos estimuló —a mi hermano Carlos Antonio y a mí— en el desarrollo del pensamiento lógico-matemático, enseñándonos a realizar operaciones básicas, leer y escribir antes de ingresar a la educación primaria. Por su parte, mi padre cultivó en nosotros el pensamiento analítico y crítico, al que llamábamos "lógica" o "sentido común", sin saber que serían las bases de una vocación científica.

En 2010, con 17 años, ingresé a la Licenciatura en Ciencias Computacionales en la Facultad de Ciencias Físico Matemáticas de la Universidad Autónoma de Nuevo León. Durante esta etapa participé en diversos foros de investigación, experiencias que sembraron mi interés por la ciencia. Me desempeñé como becario en

varios laboratorios: con el Dr. Romeo Selvas en Óptica, con el Dr. Francisco Hernández Cabrera en Experimentos, y con el Dr. Aurelio Ramírez Granados (†) en Telecomunicaciones y Bases de Datos. En este último, también colaboré como entrenador de competidores en torneos de robótica. Finalicé mis estudios de licenciatura en julio de 2016.

En 2017 ingresé a la Maestría en Ciencias con especialidad en Ingeniería de Sistemas, ofrecida por el Posgrado en Ingeniería de Sistemas de la Facultad de Ingeniería Mecánica y Eléctrica de la UANL, concluyendo mis estudios en septiembre de 2019.

En julio de 2018 contraje matrimonio con Claudia Estefanía Pacheco Aguirre, mi mayor apoyo desde entonces. En enero de 2020, recién casado y en medio del inicio de una pandemia mundial, comencé mis estudios de Doctorado en Ingeniería de Sistemas en la UANL, con la firme convicción de contribuir al avance del conocimiento.

Mi tesis doctoral, titulada Empaquetamiento óptimo de objetos suaves irregulares, bajo la dirección del Dr. Igor Semionovich Litvinchev y el codirector Dr. Luis Alfonso Infante Rivera, se centra en técnicas de empaquetamiento óptimo bidimensional de objetos convexos y no convexos mediante un proceso de triangulación que permite mantener constante el área de los polígonos, alcanzando densidades del 100%. Como resultado de esta investigación, publiqué artículos en revistas indexadas como Mobile Networks and Applications, y capítulos en editoriales internacionales como Springer. Además, presenté mis resultados en congresos nacionales e internacionales, destacando mi participación en el EAI COMPSE 2022 y en ciclos de conferencias organizados por la FIME y la FCFM de la UANL.

Durante mi formación doctoral, también me desempeñé como docente en la Facultad de Ingeniería Mecánica y Eléctrica (agosto-diciembre 2019) y en la Facultad de Ciencias Físico Matemáticas, donde impartí clases en línea durante la pandemia entre 2020 y 2021. Tras una pausa para enfocarme en la redacción de mi tesis, retomé

mi labor docente en agosto de 2023. Actualmente (mayo de 2025), continúo como profesor en la FCFM-UANL, donde imparto asignaturas como Programación Básica (en Python), Fundamentos de Sistemas Operativos, Minería de Datos, Inteligencia Artificial, Programación Lineal e Investigación de Operaciones, entre otras. A lo largo de este tiempo, he recibido varios reconocimientos por ponencias y talleres relacionados con ciencia de datos, Power BI y tecnologías emergentes.

A lo largo de estos años he confirmado que el talento es valioso, pero el esfuerzo sostenido, la disciplina y la pasión por aprender son imprescindibles. Puedes tener facilidad para resolver problemas, pero solo mediante el trabajo constante se demuestra la verdadera capacidad.

De cara al futuro, mi objetivo es continuar como docente e investigador, colaborar en proyectos con impacto social y científico, y quizá formar parte de alguna empresa especializada en áreas afines a mi línea de investigación. Sea cual sea el camino, mi compromiso seguirá siendo con la ciencia, la educación y la mejora continua.