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Abstract

This doctoral thesis explores the application of operations research techniques to improve

the performance and sustainability of public transport systems. The research is struc-

tured around two complementary studies that address critical challenges in the planning

and management of public transport networks: (i) the estimation of Origin-Destination

Matrices (ODMs) from heterogeneous data sources, and (ii) the sustainable planning of

bus fleet replacement under economic, environmental, and social objectives.

In the first part of this thesis, we address the problem of estimating public transport

ODMs by developing a series of bi-level optimisation models that integrate different types

of information, including outdated matrices, observed passenger flows, and boarding and

alighting data. These models are reformulated into single-level mathematical programmes

and solved using commercial solvers on benchmark instances. The results demonstrate

that the inclusion of multiple data types significantly improves estimation accuracy, and

provide valuable insights into the role of data availability and structure in transport

demand modelling.

The second part focuses on the transition towards sustainable public transport sys-

tems by proposing a multi-objective optimisation model for the replacement of diesel bus

fleets with electric vehicles. The model determines the timing, quantity, and type of

vehicles to purchase, as well as their optimal allocation across bus lines, under budgetary

and operational constraints. The objectives include minimising total costs, maximising

fleet electrification, and promoting equity in vehicle distribution across different city re-

gions. An epsilon-constraint algorithm is implemented to approximate the Pareto front

and reveal the trade-offs between the competing goals of economic efficiency, environ-

mental impact, and social equity.

Together, these two studies contribute to the field of public transport optimisation

by providing novel mathematical formulations, computational approaches, and policy-

relevant insights. The thesis advances the understanding of how data-driven optimisation

can enhance both the operational efficiency and sustainability of urban transport systems,

xiv



Abstract xv

offering practical tools and analytical frameworks for decision-makers in the transition

towards more intelligent and equitable mobility.

Keywords: public transport optimisation, Origin-Destination Matrix estimation, bi-

level programming, multi-objective optimisation, sustainable mobility, electric bus fleets,

operations research.



Chapter 1

Introduction

1.1 Context

Efficient and accessible public transportation systems are fundamental pillars of sustain-

able urban development. Mobility plays a central role in the quality of life of citizens,

influencing access to employment, education, healthcare, and social opportunities. As

urban populations continue to grow, the reliance on private vehicles has intensified, res-

ulting in increased traffic congestion, air pollution, and greenhouse gas emissions. This

trend underscores the urgent need to strengthen public transport systems, not only to alle-

viate congestion but also to reduce environmental impacts and improve urban well-being.

Investing in high-quality public transportation generates benefits that extend beyond mo-

bility, contributing to economic productivity, environmental protection, social equity, and

public health (Tumlin, 2012).

Designing and operating an efficient public transport system is a complex task that

typically involves a structured sequence of decision-making problems, including network

design, frequency setting, timetable design, and fleet and crew scheduling (Ceder and

Wilson, 1986). These planning stages operate at different decision levels, strategic, tac-

tical, and operational, and involve trade-offs among cost efficiency, service quality, and

environmental performance (Desaulniers and Hickman, 2007; Ibarra-Rojas et al., 2015).

The interdependence of these stages and the heterogeneity of available data make com-

prehensive optimisation approaches both challenging and essential. As such, research in

this field often focuses on specific strategic components that can substantially enhance

the performance and sustainability of transit systems (see Figure 1).

1



Chapter 1. Introduction 2

goals: (i) complement previous reviews emphasizing foundational studies, recent papers, and some work previously
overlooked and (ii) try to incorporate most relevant approaches to address the aforementioned problems. In this review,
we complemented our previous knowledge of the field by using the SCOPUS search engine to identify new studies, and
the paper they use as references. This method proved to be a successful methodology for the purposes of this review.
Some of the journals more extensively used include: Transportation Research (all parts), Transportation Science, Public
Transport, Transportation Research Record, Journal of Transportation Engineering, European Journal of Operational Research,
and Operations Research. Occasionally, we will refer to rail-based works that are applicable to the case of buses.

The structure of this paper is as follows. Section 2 presents a literature review for the Transit Network Design Problem.
Section 3 focuses on tactical decisions embedded in Frequency Setting and Transit Network Timetabling. Section 4 is based
on the sub-problems of the planning process that minimize operational costs considering vehicles’ usage and driver wages.
Section 5 presents integration approaches for sub-problems of the TNP. Section 6 regards studies of different real-time con-
trol strategies. Finally, Section 7 presents some conclusions drawn from our literature review regarding different areas of
further research.

2. Strategic planning decisions

Long-term decisions in the Transit Network Planning process are the focus of the Transit Network Design which
determines the lines, types of vehicles, and stop spacing to meet population’s movement requirements. A representation of an
urban zone can be defined based on a network NðV ;AÞ where the set of nodes V represents either specific points or a geo-
graphical zone called centroid while arcs ði; jÞ 2 A represent a transportation mode between nodes i and j thus, a line l is a set
of connected arcs. Common inputs are the following: potential stops; estimated travel times for each arc ði; jÞ 2 A; available
budget; types of buses and their capacities; and an origin–destination matrix denoted as OD which represents the demand
along the nodes in the network N. Then, each element ði; jÞ 2 OD denotes the number of passengers that need to travel from i
to j during a planning period (the demand of a centroid node i 2 V can be properly estimated proportionally to the distance
between the centroid i and the real origin/destination points).

In real life, passengers choose from different routes (that may consist of different trip legs covered by different lines) to
travel from a specific origin to a specific destination in order to optimize their own criteria. Fig. 2 shows an example with
four routes that cover a specific origin-destination pair ði; jÞ 2 OD: (i) a direct trip via line 2; (ii) a trip starting with line 2
and then, transferring to line 1 at transfer point T1; (iii) a trip starting along line 3 and then, transferring to line 1 at transfer
point T2; (iv) a direct trip via line 4. The previous passenger choices are embedded in an optimization problem called transit
assignment problem and it leads to an endogenous passenger demand for the bus network. Even though most authors
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Fig. 1. Interaction between stages of the planning process and real-time control strategies.

O.J. Ibarra-Rojas et al. / Transportation Research Part B 77 (2015) 38–75 41

Figure 1: Decision levels in public transport planning and their associated problem.
Source: Ibarra-Rojas et al. (2015).

This research focuses on two strategic-level problems that arise once the transit

system is already established and operational. At this stage, the network structure and

main service design decisions are in place, and the emphasis shifts towards enhancing

system performance through data-driven analysis and long-term planning (see Figure 2).
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Figure 2: Strategic-level decisions and benefits in public transport.
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Within this context, this research addresses two strategic-level problems that con-

tribute to improving public transport planning and operation through optimisation-based

methodologies. The first research project focuses on estimating passenger demand in

transit networks by developing different mathematical models for origin-destination (OD)

matrix estimation using various data sources that provide different types of information

such as boarding/alighting counts, passenger flows, and outdated OD matrix data (see

upper panel in Figure 3). The second project introduces a multi-objective optimisa-

tion framework for planning the sustainable replacement of diesel bus fleets with electric

vehicles in a multi-year planning horizon, optimising economic, environmental, and so-

cial objectives, leading to a sustainable approach of public transport (see lower panel in

Figure 3).

(a) OD Matrix estimation
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Figure 3: Optimisation approaches of this study.

Based on the above, our goal is to provide handy tools for strategic planning in pub-

lic transport. In particular, by implementing mathematical programming techniques to

model relevant decision-making problems in transportation, taking advantage of trending

technologies and available data, as well as propose efficient solution algorithms capable

Karla Isabel Cervantes Sanmiguel
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of generate high-quality solutions in acceptable computational times. We now formally

introduce the research objectives of this study.

1.2 Research Objectives

The overarching objective of this doctoral research is to develop and analyse optimisation-

based models that enhance the efficiency and sustainability of public transport systems.

This thesis integrates two complementary studies: one focused on improving the estima-

tion of passenger demand through origin-destination (OD) matrices, and another dedic-

ated to supporting the transition towards sustainable bus fleets. Together, these models

aim to provide decision-makers with robust, data-driven tools for optimising both opera-

tional performance and long-term environmental goals.

1.2.1 General Objective

The general objective of this research is to formulate and evaluate optimisation models

that contribute to sustainable public transport planning by:

• Enhancing the accuracy of OD matrix estimation using multiple types of passenger

data, and

• Designing multi-objective strategies for electric bus fleet replacement that balance

economic, environmental, and social considerations.

1.2.2 Specific Objectives

The specific objectives of this doctoral research are to:

1. Study public transport systems to identify optimisation opportunities that improve

service efficiency and sustainability, particularly in demand estimation and fleet

management.

2. Develop mathematical formulations for two interrelated problems: (i) bi-level op-

timisation models for estimating OD matrices from heterogeneous data sources,

and (ii) a multi-objective optimisation model for electric bus fleet replacement and

allocation.

3. Implement computational solution methods, including single-level reformulations

and the epsilon-constraint algorithm, and assess their performance on benchmark

instances.

Karla Isabel Cervantes Sanmiguel
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4. Investigate the trade-offs among the objectives in both models such as data use

versus accuracy in OD estimation, and cost versus equity and emissions reduction

in fleet planning.

5. Derive practical recommendations for transport authorities to support evidence-

based, equitable, and sustainable decision-making in public transport planning.

1.3 Methodology

The research develops and applies optimisation-based approaches to address two distinct

challenges in public transportation planning. For origin-destination matrix estimation,

bi-level models are formulated to account for combinations of outdated matrices, ob-

served passenger flows, boarding and alighting data, and network structural character-

istics. These models are reformulated into single-level optimisation problems and solved

using commercial solvers across benchmark instances to evaluate the impact of differ-

ent information types on estimation accuracy. In the context of sustainable bus fleet

replacement, a multi-objective optimisation framework determines the timing, quantity,

and allocation of electric vehicles, incorporating economic, environmental, and social cri-

teria. An ε-constraint algorithm is employed to approximate the Pareto front, facilitating

the analysis of trade-offs among objectives. Computational experiments and sensitiv-

ity analyses are conducted to assess model performance, explore the influence of input

parameters, and provide insights for strategic decision-making.

1.4 Scientific Contributions

This doctoral research makes several scientific contributions to the field of public transport

optimisation and sustainable mobility planning. These contributions span methodological,

analytical, and practical aspects, addressing two major challenges in urban transport

systems: (i) the accurate estimation of passenger origin-destination (OD) matrices using

diverse data sources, and (ii) the sustainable replacement and allocation of bus fleets

under multiple objectives. The key contributions are summarised as follows:

1. Novel optimisation models for OD matrix estimation. This thesis introduces a set

of bi-level optimisation models designed to estimate public transport OD matrices

by integrating multiple data types, including outdated OD matrices, passenger flow

data, and boarding-alighting information. The models are reformulated into single-

level problems, allowing their solution with a standard commercial solver. This

Karla Isabel Cervantes Sanmiguel



Chapter 1. Introduction 6

approach provides a systematic framework to evaluate how different data combin-

ations affect the accuracy of OD matrix estimation, an aspect that has received

limited attention in previous research.

2. Comprehensive analysis of data-driven estimation accuracy. Through numerical

experiments, this research quantifies the impact of various data inputs on model

performance and accuracy. The analysis reveals the importance of data selection

and the interactions between different data sources, offering valuable insights for

transport agencies aiming to improve demand estimation with limited or heterogen-

eous datasets.

3. A multi-objective optimisation framework for sustainable fleet planning. A new

multi-objective model is developed to guide the replacement of diesel bus fleets

with electric vehicles. The model simultaneously minimises total costs, including

acquisition, maintenance, energy, and infrastructure costs, while maximising fleet

electrification and promoting equity across city regions. This comprehensive formu-

lation captures the economic, environmental, and social dimensions of sustainable

transport planning within a unified optimisation framework.

4. Application of the epsilon-constraint method for Pareto front approximation. The

proposed model applies the epsilon-constraint algorithm to generate a representative

set of non-dominated solutions, allowing a detailed exploration of trade-offs among

competing objectives. This methodological contribution enhances decision support

by providing transport planners with alternative optimal strategies reflecting differ-

ent policy priorities.

5. Integration of optimisation insights for decision-making. Beyond individual models,

this research synthesises findings across both projects, demonstrating how optimisa-

tion techniques can inform data-driven and sustainability-oriented decision-making

in public transport planning. The results contribute to bridging the gap between

theoretical modelling and practical implementation, supporting more resilient and

equitable urban transport systems.

In summary, this thesis advances the understanding of how optimisation methods

can be employed to tackle key challenges in public transport management. It provides

methodological innovations, analytical insights, and decision-support tools that contribute

to both the academic literature and real-world transport policy design.
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1.5 Thesis Structure

This thesis is structured to systematically present the research conducted on public trans-

port demand estimation and sustainable bus fleet planning. Chapter 1 presented the con-

text, research objectives, methodology, and key scientific contributions. Chapter 2 reviews

the relevant literature on origin-destination matrix estimation and electric bus fleet trans-

ition, highlighting the gaps addressed by this work. Chapter 3 details the bi-level optim-

isation models for estimating public transport OD matrices, including their formulation,

computational approach, and analysis of results. Chapter 4 develops a multi-objective

framework for sustainable bus fleet replacement, addressing economic, environmental, and

social objectives, and presenting solution methods and managerial insights. Chapter 5

summarises the main findings, discusses implications, and outlines directions for further

research. Supporting analyses and additional computational details are provided in the

appendices.
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Related Literature

Urban public transport systems are the focus of extensive research due to their critical

role in ensuring mobility, reducing environmental impacts, and promoting social equity.

In this context, two complementary strands of literature are particularly relevant to this

thesis. The first concerns the estimation of origin-destination matrices (ODMs), which are

essential for understanding passenger travel patterns and informing operational decisions

such as line frequencies and network design. The second strand focuses on the planning

and optimisation of bus fleet transitions, particularly the replacement of diesel buses

with electric vehicles, considering multi-objective criteria including cost, environmental

impact, and equitable service distribution. This section reviews both bodies of literature

separately, highlighting methodological advances, key findings, and the context in which

each project of this thesis is situated. By examining these two strands, we establish the

foundation for the subsequent chapters, which present the original contributions of this

research.

2.1 Origin-Destination Matrix Estimation

Historically, ODMs were obtained from passenger surveys, which are usually infrequent

due to their high cost (Bera and Rao, 2011). In recent years, technological advances have

facilitated the acquisition of data through various automatic data collection systems,

such as Automatic Vehicle Location (AVL), Automatic Passenger Counting (APC), and

Automated Fare Collection (AFC) systems (Mohammed and Oke, 2023). Consequently,

researchers have focused their efforts on the ODMs estimation by incorporating easily

obtainable information. Our literature review draws on methodologies to estimate an

ODM for public transport systems that utilise different types of data, allowing us to

highlight the context and contributions of our study effectively. Table 1 summarises the

type of information used in each study reviewed and emphasises the analysis of the impact

of different data types on the estimated ODM.

8
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Study
Outdated information Updated information

ODM
ODM
structure

Pax flows
structure

Observed
flows

Alighting
data

Boarding
data

Lam et al. (2003) ✓ ✓ ✓
Wu and Lam (2006) ✓ ✓ ✓
Chávez-Hernández et al.
(2019)

✓ ✓

Barry et al. (2002) ✓
Alsger et al. (2015) ✓
Sánchez-Mart́ınez (2017) ✓
Hamedmoghadam et al.
(2021)

✓

Liu et al. (2021) ✓ ✓
Kumar et al. (2019) ✓ ✓ ✓
Ait-Ali and Eliasson
(2022)

✓ ✓ ✓

Our study ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Related studies for Origin-Destination matrix estimation for public transport.

As shown in Table 1, common studies typically utilise outdated ODMs and passen-

ger flow structures. However, they also incorporate recent information, such as observed

flows along specific arcs in the transit network. For instance, Lam et al. (2003) proposed

a bi-level model to estimate ODMs where the lower level corresponds to a frequency-

based stochastic user equilibrium assignment model with decisions of line frequencies.

Wu and Lam (2006) introduced a bi-level program that optimises error measurements

in observed flows and ODM at the upper level while addressing a stochastic user equi-

librium assignment in the lower level based on a frequency-adaptive congested transit

network model. The researchers suggested a heuristic solution algorithm, although they

noted that its applicability to large transit networks might be limited in practice. Lastly,

Chávez-Hernández et al. (2019) developed an augmented Lagrangian model and an iter-

ative solution method to deliver high-quality solutions with reduced CPU times. They

tested this approach on the Winnipeg and Valley of Mexico transit networks, finding

that the elimination of pairs with no demand in the outdated ODM notably reduced

computational times.

Regarding the ODM estimation for public transport using only new information,

common inputs include boarding counts. For example, Barry et al. (2002) employed

New York City Transit’s MetroCard data to determine trip sequences and origin stations,

assuming that passengers frequently return to their previous destination station and con-

clude their day where it started. They found these assumptions valid for 90% of subway

users, validating the methodology through exit counts and trip assignment modelling. Als-

ger et al. (2015) introduced an algorithm to generate matrices from user transactions using

Brisbane, Australia’s smart card data, testing the assumptions’ effects regarding walking
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distance and transfer times on the ODM. The findings indicated a minimal impact on the

estimated ODM with varying transfer time assumptions, with most passengers returning

to their initial origin within 800 metres on the same day. Sánchez-Mart́ınez (2017) pro-

posed a dynamic programming model considering various factors, such as waiting time,

in-vehicle time, and transfers, in inferring destinations. This model, now employed in Bo-

ston, Massachusetts, surpasses earlier models in accuracy. Hamedmoghadam et al. (2021)

developed a procedure that utilises statistical pattern recognition to enhance the inference

of alighting transactions and identification of transfers. They used smart card data from

Melbourne’s multi-modal public transport network to estimate the ODM accurately. Ad-

ditionally, Liu et al. (2021) included both boarding and alighting data, stating that ODM

estimation methods at the route level cannot generalise to the transit network level if

relying solely on AVL or APC data. They emphasised the necessity of estimating ODMs

in transit networks using AVL/APC data by inferring transfers.

Besides boarding and alighting data, Kumar et al. (2019) and Ait-Ali and Eliasson

(2022) employed non-linear program and used Lagrangian relaxation, including observed

flows. Specifically, Kumar et al. (2019) utilised a solver and an algorithm to find good-

quality solutions for a sparse ODM, where the errors remained within a small range, and

as matrix sparsity increased, the method yielded more precise results. Meanwhile, Ait-Ali

and Eliasson (2022) evaluated how the accuracy of estimated matrices improved with the

inclusion of additional data on link flow, destination count, and average travel distance,

starting from origin counts only. They reported that link flows are more challenging to

estimate than exit flows; relying solely on entry and exit data is insufficient for precise

link flow estimation; average trip distance enhances estimation accuracy; the value of

additional destination counts diminishes slowly, justifying the need for more exit station

observations; and adding link flow data for some links has minimal impact, especially

when other data are already considered.

In contrast to previous approaches, our work introduces multiple decision bi-level

models for ODM estimation. Our key contribution, as highlighted in Table 1, differs

from prior research in several ways. Firstly, we focus on the structure of the outdated

ODM, which has received limited attention in previous studies. Additionally, we conduct

our research in the context of public transport, which directly impacts our assignment

problem, addressing specific passenger actions such as waiting, travelling, and transferring;

we also consider factors such as the frequency of each line and bus capacity. Finally,

we assess the impact of various combinations of data types on the estimated Origin-

Destination matrix.
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The accurate OD matrices produced through these methodologies serve as critical

inputs for the second strand of our literature review: optimising electric fleet transitions

under multi-criteria objectives.

2.2 Electric Bus Fleet Replacement

Operations research techniques such as mathematical programming models have been

extensively applied to determine the optimal composition of the fleet for a multi-period

planning horizon. These models aim to minimise total system costs while adhering to

constraints such as fleet capacity, vehicle life expectancy, and operational requirements

(e.g., Emiliano et al., 2020b). On the other hand, the electrification of public transport-

ation networks is a key strategy to reduce greenhouse gas emissions and improve urban

air quality, and in the electric bus planning process (strategic, tactical, and operational),

various challenges arise. These include: 1) allocation of investments for the electric bus

fleet and charging infrastructure, 2) determining optimal locations for charging infrastruc-

ture, 3) addressing the scheduling of electric vehicles, and 4) managing the problem of

scheduling battery charges (Perumal et al., 2022).

In particular, the assignment of trips to different types of electric buses plays a

crucial role in optimising the operational and environmental performance of public trans-

portation systems. Emiliano et al. (2020a) address this problem by formulating a model

that optimises a weighted sum of emissions and total costs. Their experimental results

highlight the inherent trade-off between economic and environmental objectives. Sim-

ilarly, Tang et al. (2023) explore the problem of bus selection for a single transit line,

integrating vehicle scheduling decisions under the assumption that all buses are replaced

simultaneously. This assumption simplifies the optimisation process, but also underscores

the importance of considering fleet heterogeneity and gradual replacement strategies in

real-world applications. These studies emphasize that bus assignment decisions are not

only influenced by cost and environmental factors, but also by operational constraints and

long-term fleet renewal strategies, making them a key component in sustainable transit

planning. Finally, sensitivity analysis such as that presented in Feng and Figliozzi (2014)

plays a crucial role in the evaluation of different replacement policies and parameters

under uncertainty. In particular, variations in energy prices, advances in battery techno-

logy, and future policy changes have recently been studied for a more efficient adoption

of electromobility (see Laboratory, 2016).
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Our review of the literature focuses on fleet transition problems considering electric

buses and implementing operations research techniques in a multi-period framework that

provides valuable information to decision makers.

Various research studies have examined the issue of fleet replacement within the

framework of moving toward sustainable public transportation systems. Li et al. (2018)

present a problem that aims to maximise the total net benefit of early replacement, where

both the optimal size and the composition of the fleet can be determined under budget

constraints. The authors formulate the problem as an integer programming model, which

is solved using CPLEX for a real-world scenario in Hong Kong. In addition, a sensitivity

analysis is conducted to examine the impact of the recharging scheme and the purchase

price of buses. Islam and Lownes (2019) focus on minimising the total life cycle cost of

fleet replacement while ensuring annual emission reductions and meeting minimum elec-

trification targets. Their mixed-integer programming (MIP) model, implemented using

a commercial solver in a case study in Connecticut, USA, highlights the computational

efficiency of their approach and its ability to perform sensitivity analyses for evaluat-

ing policy implications. Similarly, Pelletier et al. (2019) develop an MIP framework to

support fleet electrification on a long-term planning horizon of 30 years. Their model

optimises a weighted sum of costs while incorporating constraints related to trip compat-

ibility, maximum vehicle age, and power and space limitations in depots. Applied to a

real-world case in France, their results indicate that the model can effectively identify the

most suitable fleet types for short- and medium-term planning, as well as assess mid-term

cost variations due to factors such as battery replacement.

More recently, Tang et al. (2021) have addressed the fleet replacement problem by

considering different electric bus technologies and optimising a weighted total that in-

cludes electrification expenses, emission costs, and a measure of user crowdedness. Their

mixed-integer non-linear programming (MINLP) model accounts for budget constraints,

minimum usage of purchased buses, and maximum bus age. Implemented in a case study

in Qingdao, China, their results highlight the influence of social considerations in fleet re-

newal decisions, demonstrating that cost minimization alone may not be sufficient when

designing sustainable and user-friendly public transport systems. Finally, Zhou et al.

(2023) proposed an MIP model to optimise the progressive renewal of bus fleets, consid-

ering not only economic costs, but also costs of climate, health, and battery recycling.

Their model incorporates government incentives as a decision variable and includes key

constraints such as bus conservation, charger demand, and charge conservation. Tested

on a real-world scenario in Singapore, their approach demonstrates the applicability of

the model to the evaluation of different policy incentives. Collectively, these studies un-

derscore the potential of operations research techniques to address the fleet replacement
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problem, including a wide range of economic, operational, environmental, and social con-

straints, making them valuable tools to support decision-making in the planning of sus-

tainable public transportation.

2.3 Summary of the Literature Review

The literature reviewed in this chapter highlights the diversity and complexity of research

on urban public transport systems. The first strand demonstrates how ODM estimation

techniques have evolved from classical statistical models to more advanced optimisation

and data-driven approaches, enhancing the accuracy and applicability of travel demand

representation. The second strand underscores the growing emphasis on sustainable fleet

management, where multi-objective optimisation plays a vital role in achieving trade-offs

between cost efficiency, environmental performance, and social equity.

By consolidating insights from both areas, this review provides a comprehensive

background that informs the two independent yet complementary projects developed in

this thesis. The subsequent chapters build upon these foundations, presenting the pro-

posed optimisation models, their implementation, and the resulting analyses in detail.
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Chapter 3

Optimisation models for estimating

public transport OD matrices

using different data types

Understanding how passengers move through an urban public transport network is funda-

mental for efficient planning and operation. Origin-destination matrices (ODMs) provide

a detailed representation of these travel patterns, serving as a cornerstone for service

design and optimisation. However, obtaining accurate and up-to-date ODMs remains a

challenge due to limitations in available data and the cost of large-scale surveys. This

chapter presents optimisation-based models for estimating ODMs using multiple data

sources and information types. By formulating the estimation problem as a series of

bi-level programmes that are later reformulated into single-level models, we explore how

incorporating various data types, such as outdated ODMs, passenger flows, and board-

ing and alighting counts, affects estimation accuracy. The analysis provides insight into

the value of different data combinations and highlights the importance of information

structure in improving the reliability of ODM estimations.

3.1 Estimating Passenger Demand in Public

Transport Networks

Origin-Destination (OD) demand matrices provide information about how passengers

travel between different zones using a transportation network. This information serves

as input for other decision problems in transit network planning, such as transit network

design, frequency setting, and timetable design (Ibarra-Rojas et al., 2015). However,

estimating an OD matrix (ODM) is a complex task, but it is possible to obtain an ap-

proximation by using data obtained from various sources of information.
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For example, historical data and population surveys can provide an outdated ODM,

while personnel physically counting, video cameras, and/or passive sensors can yield ob-

served passenger flows along transit lines. Additionally, Automated Fare Collection (AFC)

and Automated Passenger Count (APC) systems can offer boarding and alighting data

(see Figure 4). This variety of information aids in the development of optimisation models.

Moreover, recollecting and analysing different sources of information is time-consuming,

and it is not simple.

We are interested in alternative approaches to the laborious and expensive process of

obtaining data through population surveys, typically conducted every 1 or 2 decades. For

example, the literature on estimating ODMs from traffic counts (observed flows) has been

extensive (see Bera and Rao, 2011). In particular, Cascetta and Nguyen (1988) presented

a methodology for estimating ODMs from traffic counts using a generic traffic assignment

map; they showed that the approach is also valid for transit networks with an appropriate

assignment map. However, no method is universally accepted as the best because the

efficiency of implementing each method depends on factors such as the network size and

behaviour, complexity of the proposed methodology, availability of data, and the desired

level of accuracy. In response, we propose different and new bi-level optimisation models

for ODM estimation considering different types of information.

Our major goal is to identify the information types with the most significant im-

pact on the quality of the generated ODM. In particular, we use the following types of

information:

1. An outdated ODM (alternatively called sample, target, prior or obsolete matrix)

contains information about travel between different locations but does not provide

accurate data on travel patterns. It is obtained using historical data or popula-

tion mobility surveys and does not reflect changes in how people travel that may

have occurred since collecting that data. We also examine the structure of the out-

dated ODM (also called skeleton) and passenger flows (alternatively known as link

probabilities) by assuming a specific passenger travel behaviour, i.e., considering a

particular assignment problem (see Behara et al., 2020). We consider proportions;

for example, the demand proportion can be represented by the ratio of demand for

a specific OD pair to the total demand in the transit network, while passenger flow

proportions can be seen as the ratio of the number of passengers for an OD pair

using a specific segment of a transit line with respect to the total number of pas-

sengers of that OD pair. Indeed, the passenger flow proportions can be seen as the

skeletal framework of the ODM, representing the preferences of passengers. This

type of data can be obtained directly from the outdated ODM by solving an as-
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signment problem to identify the used routes and will be used to guide optimisation

models (see Behara et al., 2022; Hussain et al., 2022). The use of this information

shows how passengers are distributed across the system for different origin and des-

tination pairs, and we will use these passenger volumes as a reference to guide our

optimisation model.

2. Observed flows of passengers travelling on a bus through a specific segment of a

transit line (also known as traffic counts, link volumes, segment flows), which can

be obtained from manual and automated techniques. Manual methods involve per-

sonnel physically counting and recording the number of passengers passing a specific

location, whereas automated methods may use technologies such as video cameras

or passive sensors to collect data automatically (see Chávez-Hernández et al., 2019;

Lam et al., 2003; Pamula and Zochowska, 2023).

3. Boarding and alighting data (or production and attraction zone data) are informa-

tion about the number of passengers who board/alight a vehicle of a transit line at

specific stops. This can be automatically collected through AFC and APC systems

(e.g., Kumar et al., 2019; Mohmmand et al., 2023). In general, it is easier to ob-

tain boarding counts than alighting, but our methodology remains for any kind of

passenger count at stops.

The efficiency of a method to estimate an ODM depends on the different types of

information and how the information is used. In this study, we propose a comparison

of new bi-level optimisation models to estimate an ODM based on different data types.

Our experimental results lead us to identify the data type with the most significant effect

on ODM estimation in multiple scenarios with different demand behaviours. Figure 4

exhibits a scheme of our methodology for ODM estimation.
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Figure 4: Proposed approach to evaluate optimisation models to estimate an ODM using
different types of information.

In summary, this study addresses the estimation of passenger demand at a strategic

level of public transport planning, once the transit network is already established. The

proposed optimisation-based approach provides a structured framework to analyse how

different data sources, such as outdated OD matrices, observed flows, and boarding and

alighting information, affect the accuracy of OD matrix estimation. This formulation

contributes to improving demand modelling and also enhances the quality of data-driven

decision-making processes that support subsequent stages of public transport planning,

such as network design and service frequency optimisation.

3.2 Bi-Level Programming Formulations for the

ODME

As it is mentioned above, we could use different sources of information to generate an

ODM for public transport networks; thus, we define several decision problems in terms

of the input type. In general, to define our bi-level optimisation problems, we consider a

given network, an outdated ODM, and different types of information, such as observed

flow for some arcs of the network, the ODM structure, outdated flow proportions, and

observed demand in specific stops. Then, our ODME problems determine an estimated

ODM to minimise a weighted sum of the distance between the generated ODM and the

outdated one and the distance between generated flows and outdated flows in the upper

level, while the lower level solves the transit assignment problem minimising the total
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travel time taking into account the capacity of the buses. In particular, each variant of

our problem is defined in terms of the information assumed as an input.

We define the following notation for our ODME problems. Let GL = (NL, AL) be a

transit network, where NL is the set of stops and AL is the set of arcs (see left panel of

Figure 5). Suppose L is the set of lines with frequencies fl (fixed for the planning period),

and l(a) is the line associated with each arc a ∈ AL. We assume known travel times ca

for each arc a ∈ AL. Besides, we consider a transit vehicle (bus, train, or other) with

a capacity of q pax/veh, and we define K as the set of OD pairs (ok, dk). To represent

the upper and lower level of our problem, we use the modelling approach proposed by

Cervantes-Sanmiguel et al. (2023), which identifies passenger actions such as waiting for

the first bus, performing transfers, waiting to transfer, and travelling by bus. The latter

approach takes the lines network GL as input, and then, it generates an extended network

as G = (N,A), where N is the set of stops NL union with dummy nodes created to model

transfer events or compute waiting times. In the case of the arcs, set A represents the

union of waiting (AW ), transfer (AT ), and travel (AV ) arcs, where t(a) ∈ AT represents the

same physical travel trajectory as arc a ∈ AV , but after travelling along that trajectory,

passengers transfer to another line for the next leg of their trip. Note that the travel

and transfer arcs (a ∈ AV ∪ AT ) represent segments of the line l(a). Therefore, the flow

passing through these arcs represents passengers on a bus of the line l(a). Furthermore, it

is important to highlight that information such as the set of bus lines, service frequencies,

arc capacities, OD pairs, travel times, and the exclusive associations of each arc to a single

bus line in the extended network G are inherited from the lines network GL. For further

insights into the network generation process, please refer to Cervantes-Sanmiguel et al.

(2023). Figure 5 represents the modelling approach for the extended network G = (N,A),

where it can be noticed that the different arcs represent the different actions of passengers

in the transit system.
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Figure 5: Modeling approach of Cervantes-Sanmiguel et al. (2023) for the transit assign-
ment problem in the lower level of our ODME problems.
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Figure 6(a) exhibits passengers travelling from origin o to destination d with the

following route: first, they board Line 1 and travel from the origin o to stop 2; then,

they transfer to Line 2 and continue their journey from stop 2 to the destination d. This

route can be represented in network G with the sequence of nodes o− o1 − 1− 2− 22 − d

(see Figure 6(b)), where arc (o, o1) represents the passengers’ waiting action at the origin

before boarding Line 1. Then, from (o1, 1), passengers travel on Line 1’s vehicle. Next,

from (1, 2), they continue on Line 1’s vehicle but need to alight at stop 2 to transfer

to Line 2. At that point, they need to wait again, which is reflected in the arc (2, 22),

and finally, they continue their journey from (22, d) to reach their destination d. Note

that all routes can be represented in network G; thus, the passenger assignment problem

can be solved by a minimum cost flow problem in the extended network with specific

capacity constraints (due to vehicle capacities and lines’ frequencies), and the optimal

solution represents the minimum total travel time in the network. We highlight that

outdated flows are also generated with this model using the outdated demand as input.

We highlight that different assignment models could be used to define other optimisation

problems, but we use our proposed approach since it also considers hard constraints of

capacity of arcs associated with transit lines, which is suitable in the context of public

transport networks.

Figures

Figure 1.: Proposed approach to evaluate optimisation models to update an ODM using di↵erent
types of information.

Figure 2.: Modeling approach of Cervantes-Sanmiguel et al. (2023) for the transit assignment
problem in the lower level of our ODMU problems.

(a) Representation in the lines network GL. (b) Representation in the extended network G.

Figure 3.: Representation of an example path that passengers can follow to get from the origin o
to the destination d.

22

Figure 6: Representation of an example path that passengers can follow to get from the
origin o to the destination d.

In the case of different types of information, we consider the following input that

will lead to different models for the ODME problem.

1. The first type of information is the outdated demand. In particular, we define

parameters ĝk to represent passengers travelling from ok to dk for each OD pair

k ∈ K in the outdated demand. Note that by solving our assignment problem

considering the outdated demand ĝk, we can obtain an outdated passenger flow

denoted as v̂ka for each arc a ∈ A and OD pair k ∈ K. The latter means that we

assume passengers travel through the shortest path with available capacity, which
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holds true for both when the data for the outdated matrix was collected and for the

present time. We proposed using additional information to guide our model towards

a more accurate estimation.

2. The structural information of the outdated demand is represented with the pro-

portion of demand ĝk for each OD pair k = (ok, dk) among all passengers in the

system, which is defined as P̂ k = ĝk∑
k∈K ĝk

. In the case of structural properties of the

outdated passenger flow, we define P̂ k
a = v̂ka

ĝk
as the proportion of the outdated flow

v̂ka of passengers travelling from ok to dk through arc a ∈ A (using the associated

line l(a) ∈ L) in the extended network, among all passengers ĝk associated to that

origin-destination pair k ∈ K.

3. The current passenger flow in lines along specific arcs of the transit network is

represented as observed flow, where Ā ⊆ AL is the set of arcs with observed flow v̄ā

of passengers travelling in line l(ā) through arc ā ∈ Ā , which represents a segment

of the line l(ā). Note that our arcs represent segments of lines and should not be

confused with a roadway used by vehicles from different lines.

4. The number of passengers boarding and alighting at specific stops can also be valu-

able information. This information can be extracted through the analysis of ticket

data and other sources. Then, we define observed stops N̄ ⊆ NL of the transit

network GL, where we denote with pax+
n̄ and pax−

n̄ the passengers boarding and

alighting at stop n̄ ∈ N̄ .

Now, we introduce the following real non-negative decision variables for our models,

where variables v of passenger flow through the different arcs in the transit network are

the only ones corresponding to the lower-level problem.

• gk: estimated demand from origin ok to destination dk, for each k ∈ K.

• δ+k (δ
−
k ): deficit (excess) variable to measure the deviation between the estimated

and outdated demand of pair k ∈ K.

• δ+ka(δ
−
ka): deficit (excess) variable to measure the deviation between the estimated

and outdated passenger flow through arc a ∈ A of pair k ∈ K.

• δ+ā (δ
−
ā ): deficit (excess) variable to measure the deviation between the estimated

and observed passenger flow through arc ā ∈ Ā.

• γ+
k (γ

−
k ): deficit (excess) variable to measure the deviation between the estimated

and outdated matrix structure proportion of each pair k ∈ K. We highlight that

the matrix structure data can be obtained from boarding and alighting information.
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• γ+
ka(γ

−
ka): deficit (excess) variable to measure the deviations between the estimated

and outdated flow proportion through arc a ∈ A of pair k ∈ K.

• vk
a: passenger flow from origin ok to destination dk through the arc a ∈ A , using

the associated line l(a) ∈ L.

Based on the notation above, we describe the following mathematical formulation,

including all the characteristics of our ODME problems. We highlight that only some

of the optional elements will be chosen regarding the kind of information assumed as an

input (see Section 3.4.1 for a detailed description of our model variants). We highlight

that our model is formulated using the extended network G. This means that each arc is

exclusive to a single line, and we can identify waiting, transfers, and travel actions based

on the different types of arcs. The only information based on the lines network GL is the

observed data (Ā and N̄), which is rewritten for use within the G network in our model.

DirectDev(δ) = β1

∑
k∈K

(
δ+k + δ−k

)
+ β2

∑
k∈K

∑
a∈A

(
δ+ka + δ−ka

)
+ β3

∑
ā∈Ā

(
δ+ā + δ−ā

)
(3.1)

The objective function (3.1) of the upper level is the weighted sum of deviations for

the following direct comparisons: (i) estimated demand compared to outdated demand,

(ii) generated flows compared to outdated flows, and (iii) generated flows compared to

observed flows. The goal of using the outdated information on demand and flows in the

first two terms of the objective function is to guide the model during the optimisation

phase to obtain a behaviour of demand and passenger flows similar to the outdated data.

That said, the observed flows v̄ā represent the current information of the system, but

as stated by Lundgren and Peterson (2008), it may be impossible to generate an ODM

satisfying those observed flows. Therefore, we will use soft constraints and optimise the

deviation function for observed flows in the third term of (3.1).

StructDev(γ) = β4

∑
k∈K

(
γ+
k + γ−

k

)
+ β5

∑
k∈K

∑
a∈A

(
γ+
ka + γ−

ka

)
(3.2)

As stated by Behara et al. (2020), common objective functions for ODM estimation

problems are based on direct comparisons concerning the ODM entries or arc flows, as

in function (3.1), neglecting structural properties such as proportions of demand and

flows. In response, we propose the objective function (3.2) to analyse the impact of

using the information on the structural properties of outdated data, which are optional

to be optimised. The first term is the deviation of the demand proportion for each OD
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pair k among the total demand. In contrast, the second term is the deviation of the

flow proportion of passengers travelling from each OD pair k ∈ K through each arc a

in respect to the total demand of the OD pair k. Thus, our bi-level model, including

optional components (indicated within brackets), is described as follows.

min DirectDev(δ) +

{
StructDev(γ)

}
s.t.

gk − δ−k + δ+k = ĝk ∀k ∈ K (U1)

vk
a − δ−ka + δ+ka = v̂ka ∀a ∈ A−

⋃
ā∈Ā

{a, t(a)} , k ∈ K (U2)∑
k∈K

(
vk
a + vk

t(a)

)
− δ−ā + δ+ā = v̄ā ∀ā ∈ Ā (U3)

{(
P̂ k
∑
k′∈K

gk′

)
− γ−

k + γ+
k = gk

}
∀k ∈ K (U4){(

P̂ k
a gk

)
− γ−

ka + γ+
ka = vk

a

}
∀k ∈ K, a ∈ A (U5){ ∑

k∈K:ok=n̄

gk = pax+
n̄

}
∀n̄ ∈ N̄ (U6){ ∑

k∈K:dk=n̄

gk = pax−
n̄

}
∀n̄ ∈ N̄ (U7)

gk, δ
−
k , δ

+
k ≥ 0 ∀k ∈ K (U8)

δ−ā , δ
+
ā ≥ 0 ∀a ∈ Ā (U9)

δ−ka, δ
+
ka,v

k
a ≥ 0 ∀k ∈ K, a ∈ A (U10)

Where for each arc a ∈ A and for all k ∈ K, variables vk
a solve the following program.

min Assign(v) =
∑
k∈K

∑
a∈A

cav
k
a

s.t.∑
k∈K

(
vk
a + vk

t(a)

)
≤ qfl(a) ∀ a ∈ AV (L1)∑

k∈K

vk
a ≤ qfl(a) ∀ a ∈ AW (L2)∑

a∈A+
ok

vk
a −

∑
a∈A−

ok

vk
a = gk ∀ k ∈ K, ok ∈ N (L3)
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a∈A+

dk

vk
a −

∑
a∈A−

dk

vk
a = −gk ∀ k ∈ K, dk ∈ N (L4)

∑
a∈A+

n

vk
a −

∑
a∈A−

n

vk
a = 0 ∀ k ∈ K,n ∈ N − {ok, dk} (L5)

vk
a ≥ 0 ∀k ∈ K, a ∈ A (L6)

Constraints (U1)–(U3) define deviation variables δ, which are optimised in objective

function (3.1). In particular, equations (U1) compute deviations between estimated and

outdated demand, while constraints (U2) are for estimated and outdated flows, except

arcs where demand is observed. Finally, restrictions (U3) compare the estimated flow and

observed flow in both travel and transfer arcs because they represent the same physical

path. Moreover, we define our optional or soft constraints for the upper level in terms of

the assumed information for the optimisation problems. First, equations (U4) and (U5)

compare the demand and flow proportions generated by our decision variables concerning

the outdated ones and compute the deviation variables γ to be minimised in the object-

ive function (3.2). For example, in constraint (U4), P̂ k is the proportion of passengers

travelling from ok to dk regarding the total outdated demand; thus, the product between

P̂ k and the estimated total demand
∑

k∈K gk results in a number of passengers travelling

from ok to dk, which should approximate the estimated demand gk for OD pair k ∈ K,

and similarly for equations (U5) We define constraints for given information on passenger

flow at specific stops N̄ . In particular, constraints (U6) and (U7) guarantee that passen-

gers boarding and alighting at stop n̄ ∈ N̄ correspond to the observed passengers flow

values pax+
n̄ and pax−

n̄ , respectively. In contrast to the observed flows, which are precise

information for which an ODM may not exist that reproduces observed flows precisely,

the amount of passengers boarding and alighting at specific stops is a piece of information

with less detail; therefore, we decided to include it as a hard constraint. Indeed, notice

that the parameter pax+
n̄ (pax−

n̄ ) should match the sum of the entries for row (column)

n̄ ∈ N̄ of the ODM.

The lower level problem is described by constraints (L1)–(L6), and the objective

function Assign(v) aiming to minimise the total travel times. Constraints (L1) restrict the

total passenger flow (considering all the OD pairs) along the travel arc a ∈ AV (associated

to line l(a)) and the transfer arc t(a) ∈ AT representing the same route segment of line

l(a) to be within the capacity limits due to vehicle capacity q and the frequency fl(a)

of line l(a). The inequalities (L2) allow passenger flow through the arc a ∈ AW , where

q · fl(a) is an upper bound of the passenger flow through arc a. The equations (L3)–(L5)

are flow balance constraints for each OD pair (ok, dk) and node n ∈ N . The nature of the

variables is defined by (U8)–(U10).
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We assume an optimistic approach, i.e., we assume that when the lower-level (fol-

lower) problem has multiple optimal solutions, the follower will choose the one that is

most favorable to the upper-level (leader) decision-maker (see Dempe, 2002). Note that

the terms (3.1) and (3.2) in the objective function of the upper level include the variables

δka and γka, whose values are directly defined in terms of the decision variables vk
a of

the lower level. Moreover, we only use real and non-negative decision variables, leading

to linear bi-level programming formulations. However, even a linear bi-level program is

NP-Hard, as stated by Jeroslow (1985), and there is no general-purpose solver capable of

obtaining feasible solutions for it. Thus, we propose a methodological approach to refor-

mulate the bi-level models into single-level linear formulations using Karush-Kuhn-Tucker

(KKT) conditions and solve those reformulations to optimality using commercial solver,

leading to near-optimal solutions of the bi-level programs (see details of standard refor-

mulation approaches in Bard, 1998; Dempe, 2002). Since we are assuming an optimistic

approach, when multiple optimal solutions exist at the lower level, the objective function

in the single-level reformulation will select the configuration of lower-level variables that

yields the best value for the upper-level objective function.

3.3 Solution Methodology: Single-Level

Reformulation

To reformulate our bi-level models into a single-level one and be able to solve it through a

general-purpose solver, we can replace the lower-level problem {min Assign(v) : (L1)− (L6)}
by its primal-dual optimality conditions. Initially, we must consider the upper-level vari-

ables as constants. In this case, gk is treated as a parameter in the lower level. As a

result, the dual problem associated with the lower level is formulated as follows.

maxD(u) = −
∑
a∈AV

qfl(a)u
1
a −

∑
a∈AW

qfl(a)u
2
a +

∑
k∈K

(
gku

3
okk

− gku
3
dkk

)
(3.3)

s.t.

− u1
a + u3

i(a)k − u3
j(a)k ≤ ca ∀ a ∈ AV , k ∈ K (R1)

− u2
a + u3

i(a)k − u3
j(a)k ≤ ca ∀ a ∈ AW , k ∈ K (R2)

− u1
v(a) + u3

i(a)k − u3
j(a)k ≤ ca ∀ a ∈ AT , k ∈ K (R3)

u1
a,u

2
a ≥ 0 ∀ a ∈ AV , a ∈ AW (R4)

u3
nk ∈ R ∀ n ∈ N, k ∈ K (R5)
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Where u1
a,u

2
a, and u3

nk are dual variables associated with constraints (L1), (L2), and

(L3)–(L5) of the lower-level problem, respectively. The notations i(a) and j(a) are the

start and end nodes of arc a ∈ A, respectively. Meanwhile, v(a) ∈ AV represents the

same travel trajectory as arc a ∈ AT , but without transfer to another line. Notice that

our objective function (3.3) has three terms associated with the right side of each family

of constraints (L1)–(L5). Moreover, the objective function Assign(v) in the lower level

is defined in terms of the cost and flow for all arcs a ∈ A and OD pair k ∈ K, while

the constraints have flow variables with coefficients {1,-1} in the left side; thus, to define

all the constraints in the dual problem, we create a constraint for each pair (a, k) with

a ∈ AV ∪ AW ∪ AT and k ∈ K with right side ca, where we only need to identify which

constraints in the lower level include the flow variable va or −va to add the associated

dual variables u in the left side.

Thus, we will use the following constraints to represent optimality for the lower-level

problem of the ODME.

(L1)− (L6), (R1)− (R3)∑
k∈K

∑
a∈A

cav
k
a = −

∑
a∈AV

qfl(a)u
1
a −

∑
a∈AW

qfl(a)u
2
a +

∑
k∈K

(
gku

3
okk

− gku
3
dkk

)
(R4)

It is important to observe that the right-hand side of equation (R4) is not linear due

to products of variables g and u3. To linearise, we implement the McCormick envelop

relaxation approach, which is a relaxation technique well-suited for addressing a group of

non-linear problems including products of two real variables (MirHassani and Hooshmand,

2019), as gku
3
okk

and gku
3
dkk

.

Considering that 0 ≤ gk ≤ gU and 0 ≤ u3
nk ≤ uU , and making the variable substi-

tution xk = gku
3
okk

, ∀k ∈ K we add the following constraints.

xk ≥ gUu3
okk

+ gku
U − gUuU ∀k ∈ K (R5)

xk ≤ gku
U ∀k ∈ K (R6)

xk ≤ gUu3
okk

∀k ∈ K (R7)

Analogously, yk = gku
3
dkk

, ∀k ∈ K we add the following constraints.

yk ≥ gUu3
dkk

+ gku
U − gUuU ∀k ∈ K (R8)

yk ≤ gku
U ∀k ∈ K (R9)

yk ≤ gUu3
dkk

∀k ∈ K (R10)
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It is essential to highlight that this approach requires identifying lower and upper

bounds for each variables g and u3, which can be determined based on the problem’s

structure and considering other constraints. In our case, gk represents demand for a single

OD pair k; thus gU could be the total demand. In the case of variables u3
nk, according to

Spiess and Florian (1989), these dual variables are related to the total travel time from

node n ∈ N to the destination node dk; thus, u
U could be the total travel time using all

arcs a ∈ A. However, it should be highlighted that proving that the given bounds do not

cut off any optimal point of the lower-level problem is as difficult as solving the bi-level

problem itself (Kleinert et al., 2020).

Based on the above, the following linear program represents the reformulations of

our bi-level programs.

min DirectDev(δ) +

{
StructDev(γ)

}
s.t.

gk − δ−k + δ+k = ĝk ∀k ∈ K (U1)

vk
a − δ−ka + δ+ka = v̂ka ∀a ∈ A−

⋃
ā∈Ā

{a, t(a)} , k ∈ K (U2)∑
k∈K

(
vk
a + vk

t(a)

)
− δ−ā + δ+ā = v̄ā ∀ā ∈ Ā (U3){(

P̂ k
∑
k′∈K

gk′

)
− γ−

k + γ+
k = gk

}
∀k ∈ K (U4){(

P̂ k
a gk

)
− γ−

ka + γ+
ka = vk

a

}
∀k ∈ K, a ∈ A (U5){ ∑

k∈K:ok=n̄

gk = pax+
n̄

}
∀n̄ ∈ N̄ (U6){ ∑

k∈K:dk=n̄

gk = pax−
n̄

}
∀n̄ ∈ N̄ (U7)∑

k∈K

(
vk
a + vk

t(a)

)
≤ qfl(a) ∀ a ∈ AV (L1)∑

k∈K

vk
a ≤ qfl(a) ∀ a ∈ AW (L2)∑

a∈A+
ok

vk
a −

∑
a∈A−

ok

vk
a = gk ∀ k ∈ K, ok ∈ N (L3)

∑
a∈A+

dk

vk
a −

∑
a∈A−

dk

vk
a = −gk ∀ k ∈ K, dk ∈ N (L4)
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a∈A+

n

vk
a −

∑
a∈A−

n

vk
a = 0 ∀ k ∈ K,n ∈ N − {ok, dk} (L5)

− u1
a + u3

i(a)k − u3
j(a)k ≤ ca ∀ a ∈ AV , k ∈ K (R1)

− u2
a + u3

i(a)k − u3
j(a)k ≤ ca ∀ a ∈ AW , k ∈ K (R2)

− u1
v(a) + u3

i(a)k − u3
j(a)k ≤ ca ∀ a ∈ AT , k ∈ K (R3)∑

k∈K

∑
a∈A

cav
k
a = −

∑
a∈AV

qfl(a)u
1
a

−
∑
a∈AW

qfl(a)u
2
a +

∑
k∈K

(xk − yk) (R4)

xk ≥ gUu3
okk

+ gku
U − gUuU ∀k ∈ K (R5)

xk ≤ gku
U ∀k ∈ K (R6)

xk ≤ gUu3
okk

∀k ∈ K (R7)

yk ≥ gUu3
dkk

+ gku
U − gUuU ∀k ∈ K (R8)

yk ≤ gku
U ∀k ∈ K (R9)

yk ≤ gUu3
dkk

∀k ∈ K (R10)

gk, δ
−
k , δ

+
k ≥ 0 ∀k ∈ K (U8)

δ−ā , δ
+
ā ≥ 0 ∀a ∈ Ā (U9)

δ−ka, δ
+
ka,v

k
a ≥ 0 ∀k ∈ K, a ∈ A (U10)

vk
a ≥ 0 ∀k ∈ K, a ∈ A (L6)

u1
a,u

2
a ≥ 0 ∀ a ∈ AV , a ∈ AW (R11)

u3
nk ∈ R ∀ n ∈ N, k ∈ K (R12)

Note that constraints (R4) are redefined by using the variables xk and yk to linearise

our models. Moreover, we recall that we use brackets for optional components of our

formulations. As can be seen in the next section of our experimental stage, we are now

able to solve our optimisation models using commercial solvers.

3.4 Experimental Results

This section provides an in-depth account of the tested models and instance generation

process and presents the numerical results. We detail how each type of information

impacts the accuracy of ODM estimation within each model (similarly to Ait-Ali and

Eliasson, 2022).
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3.4.1 Model Variants for the ODME problem

In this section, we use different ODME models based on the different types of informa-

tion that can be considered as input in the decision process. We aim to identify what

kind of data and amount of it has the most significant impact on ODM estimation. This

analysis allows us to simplify our optimisation models by incorporating only essential

constraints and objective function terms while potentially enhancing computational effi-

ciency. By removing non-essential data, we mitigate the risk of the model over-fitting to

noise or irrelevant data, which could adversely affect its estimation capability. Addition-

ally, avoiding collecting irrelevant information leads to the decision maker’s more efficient

resource utilisation, dedicating time and effort exclusively towards areas that genuinely

impact the model’s performance.

Table 2 shows the tested models. The first column is the model name, while the

second and third columns exhibit the presence of optional constraints for structural prop-

erties and boarding/alighting passengers, respectively. We recall that all of our models

include constraints (U1)–(U3), (L1) – (L5), and (R1) – (R10). Finally, the last column

indicates the objective function to be optimised.

Model
Soft constraints of Hard constraints of

Objective functionstructural properties boarding/alighting
(U4), (U5) (U6),(U7)

A × × DirectDev(δ)
B ✓ × DirectDev(δ) + StructDev(γ)
C × ✓ DirectDev(δ)
D ✓ ✓ DirectDev(δ) + StructDev(γ)

Table 2: Variant models for our ODME problem based on the different type of information
assumed as input in the decision-making.

We highlight that constraints (U1), (U2), and (U3), associated with data of outdated

and observed flows, are included in all of our models, since preliminary experiments

show improved performance when using them. We implemented these models using the

commercial solver CPLEX 22.1, employing Concert Technology in C++. We carried out

the implementation on a Mac Pro with a 3.5 GHz Intel Xeon E5 processor featuring six

cores and 16 GB of RAM.

3.4.2 Generated Instances Based on Mandl’s Network

To test the variety of models, we generated scenarios using a solution from Cervantes-

Sanmiguel et al. (2023) for the benchmark Mandl’s Swiss network (Mandl, 1980). Figure
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7 presents the lines and their frequencies constituting the transport system in Mandl’s

network and the travel times between two pairs of nodes using any line.
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Figure 7: Mandl’s network transport system with travel times between two stops extracted
from Cervantes-Sanmiguel et al. (2023).

Table 3 shows the outdated ODM ĝ of passengers per day used for the instances.

We highlight that a demand of passengers per minute, or any other time interval, can be

used in our method.

Karla Isabel Cervantes Sanmiguel



Chapter 3. Optimisation models for estimating public transport

OD matrices using different data types 30

Stops 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 400 200 60 80 150 75 75 30 160 30 25 35 0 0
1 400 0 50 120 20 180 90 90 15 130 20 10 10 5 0
2 200 50 0 40 60 180 90 90 15 45 20 10 10 5 0
3 60 120 40 0 50 100 50 50 15 240 40 25 10 5 0
4 80 20 60 50 0 50 25 25 10 120 20 15 5 0 0
5 150 180 180 100 50 0 100 100 30 880 60 15 15 10 0
6 75 90 90 50 25 100 0 50 15 440 35 10 10 5 0
7 75 90 90 50 25 100 50 0 15 440 35 10 10 5 0
8 30 15 15 15 10 30 15 15 0 140 20 5 0 0 0
9 160 130 45 240 120 880 440 440 140 0 600 250 500 200 0
10 30 20 20 40 20 60 35 35 20 600 0 75 95 15 0
11 25 10 10 25 15 15 10 10 5 250 75 0 70 0 0
12 35 10 10 10 5 15 10 10 0 500 95 70 0 45 0
13 0 5 5 5 0 10 5 5 0 200 15 0 45 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Outdated ODM ĝ (trips/24 hours).

Using this as a starting point, we defined a set of 90 randomly generated instances

divided into three types of change. In these instances, specific entries of ĝ were: 1)

increased, 2) decreased, and 3) both increased and decreased to generate the exact ODM

ḡ. We performed the latter to simulate different demand behaviours over time from the

last outdated matrix to the estimated one. We applied the variations within a [−2%, 5%]

range, taking cues from the fluctuations in the Swiss population between 1860 and 2021

(Swiss Confederation, 2022). Table 4 shows details of the generated instances. The

first column presents the Instance Class in terms of how the entries of the outdated

ODM varied, that is, whether they 1) increased, 2) decreased, or 3) both, as indicated

in the second column, and the corresponding percentage of modified entries in the ODM,

indicated in the third column. Finally, the fourth column shows the range variation of

each entry; a random number within this range indicates the variation experienced by the

ODM entry over time. We generated ten instances for each instance class.
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Instance Class Change Modified Entries % Variation Interval

Incr 100% Increase 100% (0%, 5%]
Incr 75% Increase 75% (0%, 5%]
Incr 50% Increase 50% (0%, 5%]

Decr 100% Decrease 100% [−2%, 0%)
Decr 75% Decrease 75% [−2%, 0%)
Decr 50% Decrease 50% [−2%, 0%)

Both 100% Both 100% [−2%, 5%]
Both 75% Both 75% [−2%, 5%]
Both 50% Both 50% [−2%, 5%]

Table 4: Details of the randomly generated exact ODM ḡ for the instances.

To assess the accuracy of estimations made by each of the models, we calculated the

root mean squared error (RMSE) between the exact demand ḡ and the estimated demand

g, as well as the error between the exact demand ḡ and the outdated demand ĝ. Sub-

sequently, we determined the relative improvement, computed as
(

RMSE(ḡ,ĝ)−RMSE(ḡ,g)
RMSE(ḡ,ĝ)

)
100%,

to measure the difference between our estimated matrix g and the exact matrix ḡ. Notice

that a value of 100% indicates that RMSE(ḡ,g) = 0, leading to the best estimation g = ḡ.

We highlight that our optimisation models optimise different indicators as a guide to

estimate the OD Matrix since the exact demand is unknown; thus, the proposed relative

improvement focuses only on the accuracy of the estimation and not on the terms in the

objective functions. Indeed, there may be a conflict between optimising each term in

the objective function individually. However, we propose a weighted objective approach

because we use various types of information solely to guide the estimation of an ODM, and

we select the weights based on preliminary experimentation for the instances considered

in our experimental section. In particular, we solve small instances using weights within

set {1, 30, 100} for each β parameter, where the best average solutions were obtained

using β1 = 1, β2 = 30, β3 = 100, β4 = 1, β5 = 30. Notice that β2 and β5 are related

to outdated flows and their proportions, and β1 and β4 to the outdated matrix and its

proportions, whereas β3 relates to observed flows.

3.4.3 Levels of Observed Information

There is a significant issue regarding the collection of observed information, especially

within the context of transportation and public transit systems. The reliability of data

gathered through sensors and cameras used for passenger counting is fundamental for

accurate analysis and decision-making. While sensors and cameras can be used to count

individuals, their deployment may not be consistent across all segments of lines. These

devices may occasionally malfunction, leading to incomplete data collection for certain
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segments. To ensure a reliable count for each segment, it is necessary for all transit

vehicles operating on each line to report the number of passengers accurately. Any device

failure during the journey could result in gaps in the collected information. Additionally,

personnel must manually collect data in regions with limited access to advanced techno-

logies. However, this method imposes constraints on data gathering due to its reliance

on available personnel. This variability underscores the challenges in obtaining compre-

hensive data. Nevertheless, our experimental section addresses these considerations by

examining scenarios with both complete and limited information.

The first stage of our experimental results consists of adjusting the amount of ob-

served information. For each instance, we varied the number |Ā| of observed arc flows in

the transit network within the set
{
|AL|, |AL|

2
, |A

L|
4

}
, and analogously for the number of

observed stops |N̄ | to be within
{
|NL|, |NL|

2
, |N

L|
4

}
. The information we consider as ob-

served in our instances was obtained by solving the assignment problem (the lower level

of our model) using the matrix ḡ in the network to identify the flow of the observed arcs.

For the observed stops, we calculate the boarding data by summing the elements of each

row of the matrix ḡ, and the alighting data at the stops by summing the elements of each

column. Therefore, the observed information is consistent with the exact matrix. We

randomly chose the elements of |Ā| and |N̄ | from AL and NL, respectively; thus, we try

nine different combinations of the amount of information for each one of the 90 randomly

generated instances (a total of 810 runs for each model). The above allows us to find the

amount of information that provides the most accurate estimations of ODM. Counter-

intuitively, the solutions for each model do not necessarily improve when considering a

larger amount of observed data. This is illustrated in Figure 8, which presents the average

results for each Instance Class of Model C and D in our study. In this figure, we analyse

the results varying the quantity of observed flows while maintaining |N̄ | = |NL|, i.e., all
stops are observed for boarding and alighting passengers.
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Figure 4.: Mandl’s network transport system with travel times between two stops extracted from
Cervantes-Sanmiguel et al. (2023).

(a) Model C (b) Model D

Figure 5.: Performance of models varying the size of |Ā| and considering |N̄ | = |NL|.

23

Figure 8: Performance of models varying the size of |Ā| and considering |N̄ | = |NL|.

It is important to note that in six out of the nine cases, an increased percentage

of observed flows leads to an enhancement in the estimation accuracy. However, this

behaviour does not hold for instances Decr 75%, Decr 100%, and Both 50%, where the

most accurate results are achieved when only a quarter of the arcs AL are observed (see

the dotted box in Figure 8 (a)). Analogously, the same holds using Model D in instances

Decr 100%, and for Incr 75% and Incr 100%, observing that only a quarter of AL is

better than a half of AL (see the dotted box in Figure 8 (b)).

In particular, in the cases of models A, C, and D, the best alternative is to consider

|Ā| = |AL| and |N̄ | = |NL| (that is, making observations at all the line segments and all

the stops). However, in the case of Model B, the most accurate results are obtained by

incorporating only |Ā| = |AL|
4

and |N̄ | = |NL|. In general, performing an exhaustive data

collection for all information types is unnecessary. Indeed, the optimisation model acts

as a guide to generate an ODM based on outdated and observed information about the

transit network. Further qualitative analysis can be oriented to identify which arcs and

stop observations have the most significant impact on the solution quality.

3.4.4 Comparison of Models

Once we determined the best level of information (amount of data used for each data

type leading to best results), for our proposed models, we compared them to find the

best model on average for each instance class. In particular, Figure 9 shows the average

relative improvement, where we note that the model D presents the best performance

(curves of model D are the nearest ones to 100%).
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Promedio por tipo de instancia
aumenta 4.71138295333333 -4.71138295333333 299.333635483333 -299.333635483333 -30.073061 30.073061 -47.4646505666667 47.4646505666667
disminuye 19.5546354666667 -19.5546354666667 911.148633066667 -911.148633066667 -15.3531233666667 15.3531233666667 -36.0244516 36.0244516
Aumenta y disminuye 13.821844118 -13.821844118 326.383205633333 -326.383205633333 -30.2502765666667 30.2502765666667 -41.4091269333333 41.4091269333333

Promedios
Incr_50% 0.13779771 -0.13779771 340.70505673 -340.70505673 -36.1599767 36.1599767 -40.0712387 40.0712387 -58.087993113
Incr_75% 14.86690082 -14.86690082 304.31132346 -304.31132346 -29.586542 29.586542 -50.83374 50.83374 -50.62673967
Incr_100% -0.87054967 0.87054967 252.98452626 -252.98452626 -24.4726643 24.4726643 -51.488973 51.488973 -111.26040608

Decr_50% 6.79944323 -6.79944323 1200.4718918 -1200.4718918 -33.9781897 33.9781897 -47.8578533 47.8578533 -256.25471623
Decr_75% 4.89203817 -4.89203817 767.589491 -767.589491 -27.329768 27.329768 -50.519501 50.519501 -199.49162156
Decr_100% 46.972425 -46.972425 765.3845164 -765.3845164 15.2485876 -15.2485876 -9.6960005 9.6960005 -87.25530742

Both_50% 22.659243173 -22.659243173 404.6570702 -404.6570702 -25.55901 25.55901 -44.8603989 44.8603989 -61.938256922
Both_75% 8.398946581 -8.398946581 333.1143776 -333.1143776 -37.0063236 37.0063236 -39.2350179 39.2350179 -51.71887749
Both_100% 10.4073426 -10.4073426 241.3781691 -241.3781691 -28.1854961 28.1854961 -40.131964 40.131964 -64.19338186
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Figure 9: Performance using the best level of information for each model.

Besides identifying the model with the best average results, it is possible to eval-

uate the effects of using the different data types by a pair of models. In particular,

we defined the indicator dist as the distance from the average relative improvement of

the RMSE to the optimal value of 100%. Then, we computed the relative improvement
dist(ModelWithoutInformationType)−dist(ModelWithInformationType)

dist(ModelWithoutInformationType)
of using a specific information type

compared to the model without it. First, notice that if we add information on passengers

boarding and alighting to models A and B, we obtain models C and D, respectively. In

this scenario, the results of Model C lead to an improvement of 33.93% over Model A (see

yellow and green curves in Figure 9), and the results of Model D demonstrate a 68.5%

improvement over Model B (see blue and red curves in Figure 9).

Next, we compared Model A with Model B and Model C with Model D to ana-

lyse the impact of using soft constraints of structural properties and hard constraints of

boarding/alighting data. Notably, the results from Model B (red curve in Figure 9) using

structural properties and count passengers were, on average, 85.48% worse than those

from Model A (green curve in Figure 9). Conversely, using Model D (blue curve in Figure

9) improves 21.41% on average compared to Model C (yellow curve in Figure 9). However,

please note that the averages appear to be very close within the pair of points enclosed

by the dashed circles, labelled as (a) and (b) in Figure 9. In point (a), for instances

Incr 50%, Model C has an average of 36.15%, while Model D has an average of 40.07%.

For point (b) with instances Both 75%, Model C has an average of 37%, while Model D

has an average of 39.23%.
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For a more detailed comparison of models C and D, Figure 10 displays the results

obtained for both models for all instances of the Incr 50% and Both 75% classes (the

ones with similar values of the average relative improvement).

Figure 6.: Performance using the best level of information for each model.

(a) Instance Class Incr 50% (b) Instance Class Both 75%

Figure 7.: Results for models C and D for each instance.

24

Figure 10: Results for models C and D for each instance.

We observe a very similar behaviour between the two models in both plots. In Figure

10 (a), we can see that only instances 7, 8, and 9 exhibit a more significant difference in

the obtained solutions where Model C is worse than Model D. Analogously, in Figure 10

(b), we note that only instances 1, 3, and 4 show a more significant discrepancy. In the

rest of the instances, both models show similar performance, which suggests that models

C and D have similar behaviour. However, there are specific cases where one outperforms

the other regarding obtained solutions.

Our numerical results show that it is possible to identify the effect of the differ-

ent types of information to estimate an ODM through deterministic bi-level optimisation

models. Finally, we recall that combining data from multiple sources may lead to in-

consistency in the estimation, i.e., even considering a 100% level for a specific type of

information is not enough to guarantee high-quality solutions (see Chávez-Hernández

et al., 2019; Kumar et al., 2019). In general, the inconsistency of estimation models arises

because different data sources may reflect different aspects of passenger flow dynamics and

may not always align perfectly, for example, leading to infeasible optimisation problems if

using the 100% of different types of data in hard constraints. However, this combination

is needed to guide an optimisation approach like ours.

Now, we present an analysis of computational times.
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3.4.5 Computational Times

Regarding computational times, Table 5 presents the average CPU time (in seconds)

required to find an optimal solution for each model for each Instance Class, along with

their respective standard deviations. Note that the maximum average time found in the

table is 466.76 seconds, which is relatively short, given that ODM estimations are not

conducted on a daily basis.

Instance A B C D
Class Time Dev Time Dev Time Dev Time Dev

Incr 50% 31.22 7.13 58.90 18.28 74.74 20.08 69.83 14.23
Incr 75% 29.86 9.78 54.71 13.95 80.15 21.82 76.21 33.02
Incr 100% 31.36 9.02 58.31 12.22 73.98 17.10 89.42 14.86

Decr 50% 22.92 6.94 46.49 24.01 55.27 10.77 179.92 339.87
Decr 75% 23.66 6.20 74.82 60.05 60.01 8.97 62.92 27.49
Decr 100% 20.48 4.84 45.73 17.42 54.02 12.28 62.57 19.06

Both 50% 32.36 10.97 58.40 17.24 61.02 8.89 82.31 24.49
Both 75% 177.72 474.31 52.18 17.95 58.12 16.24 104.97 78.95
Both 100% 466.76 1392.60 54.02 10.12 73.33 20.70 91.07 30.57

Table 5: Average computational times and their standard deviation.

Note that we achieve optimal solutions; this is possible because our optimisation

approach leads us to solve linear programs as reformulations of bi-level programs, for

which good quality solutions can typically be obtained in reasonable computation times.

It is worth mentioning that including other additional assumptions and discrete decision

variables may alter this structure of the proposed models and lead to more intractable

problems.

Figure 16 shows the average CPU times from Table 5. It is worth noting that most

models achieve optimality in less than 120 seconds. In cases where the average time is

longer, the standard deviation also indicates a greater variability, which is caused by some

atypical behaviour of the computational time. In the case of Model D on the instance class

Decr 50%, only one instance was solved in 1146 seconds, while the others were resolved

on average in 72.57 seconds, leading to a standard deviation of 18.02. As for Model A and

the instance classes Both 75% and Both 100%, one instance in each class was resolved

in 1,527 secs and 4,430 secs, respectively. In contrast, the remaining instances in the

Both 75% class were resolved on average in 27.75 seconds, with a standard deviation of

7.19. In the case of the Both 100% class, the average resolution time was 26.38 seconds,

with a standard deviation of 3.68. Hence, the average results in these points were elevated

due to these outlier cases.
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TIEMPOS

Level Info (100,100) (25,100) (100,100) (100,100)

Instancia A B C D

InstanciaMandl_aum_50_100_100_0.txt 42.535092 55.868306 61.88552 79.44145
InstanciaMandl_aum_50_100_100_1.txt 23.262978 39.777339 58.835411 52.80086
InstanciaMandl_aum_50_100_100_2.txt 25.00436 81.943995 77.98807 73.37597
InstanciaMandl_aum_50_100_100_3.txt 35.130164 38.523422 105.7716 66.92615
InstanciaMandl_aum_50_100_100_4.txt 41.938102 47.01134 85.528872 73.77839
InstanciaMandl_aum_50_100_100_5.txt 25.810187 70.590202 66.85192 58.73049
InstanciaMandl_aum_50_100_100_6.txt 24.06309 65.58812 55.390837 96.54431
InstanciaMandl_aum_50_100_100_7.txt 34.869391 88.7439 58.640971 52.30792
InstanciaMandl_aum_50_100_100_8.txt 30.054487 63.371257 111.2809 61.03897
InstanciaMandl_aum_50_100_100_9.txt 29.557478 37.611729 65.184523 83.3086
InstanciaMandl_aum_75_100_100_0.txt 21.179874 81.65307 56.949982 81.17556
InstanciaMandl_aum_75_100_100_1.txt 26.508553 39.7304 103.917016 56.42451
InstanciaMandl_aum_75_100_100_2.txt 22.552081 55.950042 58.150546 163.9213
InstanciaMandl_aum_75_100_100_3.txt 26.233179 62.263956 103.647536 49.89436
InstanciaMandl_aum_75_100_100_4.txt 33.577988 54.081999 88.236524 80.75151
InstanciaMandl_aum_75_100_100_5.txt 20.038969 59.7473 72.066754 68.42137
InstanciaMandl_aum_75_100_100_6.txt 51.267285 59.43448 67.88403 63.09948
InstanciaMandl_aum_75_100_100_7.txt 31.608002 60.29436 91.6913 81.10478
InstanciaMandl_aum_75_100_100_8.txt 40.536285 32.808143 108.91393 50.92819
InstanciaMandl_aum_75_100_100_9.txt 25.103396 41.11842 50.089789 66.38156
InstanciaMandl_aum_100_100_100_0.txt 31.973374 61.06723 87.308341 113.41
InstanciaMandl_aum_100_100_100_1.txt 22.97467 44.78039 103.2621 105.6555
InstanciaMandl_aum_100_100_100_2.txt 22.272003 72.774839 63.903912 85.63139
InstanciaMandl_aum_100_100_100_3.txt 26.601074 54.839047 48.956888 84.75179
InstanciaMandl_aum_100_100_100_4.txt 32.625226 79.9655 78.698069 102.4953
InstanciaMandl_aum_100_100_100_5.txt 40.42535 46.584777 61.83065 76.7355
InstanciaMandl_aum_100_100_100_6.txt 23.82299 68.802222 79.453771 62.29728
InstanciaMandl_aum_100_100_100_7.txt 44.657653 52.5266 57.826811 89.31391
InstanciaMandl_aum_100_100_100_8.txt 23.554234 56.86633 66.033521 82.95005
InstanciaMandl_aum_100_100_100_9.txt 44.69949 44.859628 92.5354 90.93122
InstanciaMandl_dism_50_100_100_0.txt 25.370044 104.1242 39.41222 54.98655
InstanciaMandl_dism_50_100_100_1.txt 21.221269 34.012311 59.314944 61.21312
InstanciaMandl_dism_50_100_100_2.txt 22.093782 24.046722 50.491457 95.2852
InstanciaMandl_dism_50_100_100_3.txt 17.39166 35.634623 76.567477 89.19913
InstanciaMandl_dism_50_100_100_4.txt 31.037889 53.708102 57.281552 52.06657
InstanciaMandl_dism_50_100_100_5.txt 25.852109 47.882713 54.230579 82.98525
InstanciaMandl_dism_50_100_100_6.txt 16.23643 64.06343 63.515509 89.86303
InstanciaMandl_dism_50_100_100_7.txt 36.176372 37.6834 60.226837 49.88217
InstanciaMandl_dism_50_100_100_8.txt 20.534069 21.391081 42.311284 1146.009
InstanciaMandl_dism_50_100_100_9.txt 13.272817 42.345627 49.35489 77.70723
InstanciaMandl_dism_75_100_100_0.txt 26.134019 39.984107 46.166138 54.02578
InstanciaMandl_dism_75_100_100_1.txt 19.814917 41.810278 58.5343 88.78778
InstanciaMandl_dism_75_100_100_2.txt 37.730849 42.1948 71.006942 42.43046
InstanciaMandl_dism_75_100_100_3.txt 21.857348 46.953126 54.0581 40.48772
InstanciaMandl_dism_75_100_100_4.txt 23.623197 39.249776 71.040933 52.29944
InstanciaMandl_dism_75_100_100_5.txt 18.260697 130.0488 68.405434 60.96211
InstanciaMandl_dism_75_100_100_6.txt 21.128282 84.6984 57.92425 45.88544
InstanciaMandl_dism_75_100_100_7.txt 19.235927 63.939054 66.862514 127.8119
InstanciaMandl_dism_75_100_100_8.txt 18.60153 223.8921 57.068703 73.58048
InstanciaMandl_dism_75_100_100_9.txt 30.213 35.38095 49.00265 42.97614
InstanciaMandl_dism_100_100_100_0.txt 21.044189 29.441792 41.783753 40.83398
InstanciaMandl_dism_100_100_100_1.txt 17.884785 69.72319 60.1977 90.83172
InstanciaMandl_dism_100_100_100_2.txt 16.087905 34.487 48.869978 76.0469
InstanciaMandl_dism_100_100_100_3.txt 30.715655 75.873287 65.755234 35.74131
InstanciaMandl_dism_100_100_100_4.txt 21.063503 36.497818 48.18686 73.50104
InstanciaMandl_dism_100_100_100_5.txt 16.997868 47.0508 45.646628 39.41854
InstanciaMandl_dism_100_100_100_6.txt 17.02891 26.39686 75.935584 72.07842
InstanciaMandl_dism_100_100_100_7.txt 20.209707 30.624138 52.685497 51.59456
InstanciaMandl_dism_100_100_100_8.txt 16.845755 48.929641 36.52773 69.63343
InstanciaMandl_dism_100_100_100_9.txt 26.964982 58.235717 64.660256 76.00337
InstanciaMandl_ayd_50_100_100_0.txt 22.138252 68.789547 68.121747 49.28364
InstanciaMandl_ayd_50_100_100_1.txt 45.1598 34.73976 61.215363 67.29571
InstanciaMandl_ayd_50_100_100_2.txt 34.188483 70.908115 63.170927 100.1554
InstanciaMandl_ayd_50_100_100_3.txt 38.311424 76.91935 48.786212 84.07255
InstanciaMandl_ayd_50_100_100_4.txt 16.842232 51.459277 77.750205 67.14789
InstanciaMandl_ayd_50_100_100_5.txt 31.621566 40.064684 66.62063 73.31624
InstanciaMandl_ayd_50_100_100_6.txt 31.821404 84.209328 58.74718 84.46338
InstanciaMandl_ayd_50_100_100_7.txt 20.162814 67.28338 59.473166 74.2068
InstanciaMandl_ayd_50_100_100_8.txt 31.353305 47.09409 47.464788 82.74033
InstanciaMandl_ayd_50_100_100_9.txt 51.97023 42.524381 58.87658 140.4353
InstanciaMandl_ayd_75_100_100_0.txt 1527.4821 67.3375 96.080526 77.88845
InstanciaMandl_ayd_75_100_100_1.txt 23.14988 45.351683 44.38229 327.4361
InstanciaMandl_ayd_75_100_100_2.txt 34.43971 34.914457 50.406604 76.44136
InstanciaMandl_ayd_75_100_100_3.txt 23.143368 35.390871 50.163038 92.08931
InstanciaMandl_ayd_75_100_100_4.txt 27.798308 62.592217 43.30707 95.57068
InstanciaMandl_ayd_75_100_100_5.txt 42.37558 41.795 71.229766 76.23009
InstanciaMandl_ayd_75_100_100_6.txt 26.17577 40.925435 62.962812 84.9968
InstanciaMandl_ayd_75_100_100_7.txt 20.593868 43.747664 48.582864 73.26172
InstanciaMandl_ayd_75_100_100_8.txt 31.243613 57.517974 64.520736 56.81749
InstanciaMandl_ayd_75_100_100_9.txt 20.843696 92.1995 49.536634 88.94281
InstanciaMandl_ayd_100_100_100_0.txt 25.074501 75.5866 57.458011 52.86373
InstanciaMandl_ayd_100_100_100_1.txt 21.638944 65.338197 84.160901 69.72027
InstanciaMandl_ayd_100_100_100_2.txt 26.42313 53.857202 58.699 105.9053
InstanciaMandl_ayd_100_100_100_3.txt 34.531262 49.391976 76.330662 105.2146
InstanciaMandl_ayd_100_100_100_4.txt 26.321108 50.99767 110.779963 115.4935
InstanciaMandl_ayd_100_100_100_5.txt 4430.16505 45.64288 47.161753 50.15785
InstanciaMandl_ayd_100_100_100_6.txt 26.329957 51.915137 100.0969 93.31241
InstanciaMandl_ayd_100_100_100_7.txt 22.395395 53.36753 58.593961 79.66482
InstanciaMandl_ayd_100_100_100_8.txt 27.800525 39.134021 59.5188 151.4986
InstanciaMandl_ayd_100_100_100_9.txt 26.925627 55.00222 80.470564 86.85093

4430.16505 223.8921 111.2809 1146.009
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Promedios A B C D
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Incr_100% 31.3606064 58.3066563 73.9809463 89.417194

Decr_50% 22.9186441 46.4892209 55.2706749 179.919725
Decr_75% 23.6599766 74.8151391 60.0069964 62.924725
Decr_100% 20.4843259 45.7260243 54.024922 62.568327
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Figure 11: Computational times of solving our proposed models using a commercial op-
timisation solver.

In conclusion, when we exclude the outlier cases, we can discern a connection

between the accuracy of the model estimations and the computational time. For in-

stance, models C and D give better estimations than models A and B, but they require

more time for their resolution.

3.5 Chapter summary and remarks

The findings of this chapter demonstrate that the inclusion of diverse data sources signi-

ficantly enhances the accuracy of origin-destination matrix estimation. In particular, the

integration of boarding and alighting data proved to be especially beneficial, while rely-

ing solely on outdated ODM structures and limited flow observations resulted in reduced

precision. These results emphasise the need for careful selection and combination of data

in ODM estimation frameworks. The proposed models and methodological insights con-

tribute to advancing the understanding of how data availability and structure influence

public transport modelling, providing a solid foundation for future research and practical

applications in network optimisation and planning. The main conclusions and future

research directions derived from this study are discussed in Section 5.1 of this thesis.
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Chapter 4

Multi-objective Optimisation

Model for Sustainable Planning

of Bus Fleet Replacement

The global shift towards sustainable urban mobility requires strategic and data-driven

planning to transition from diesel-based fleets to cleaner alternatives. Urban bus systems,

as major contributors to emissions and noise pollution, play a crucial role in this trans-

ition. This chapter introduces a multi-objective optimisation model for the sustainable

planning of bus fleet replacement, addressing economic, environmental, and social dimen-

sions simultaneously. The proposed model determines the optimal timing, quantity, and

allocation of electric buses while accounting for key constraints such as budget limitations

and maximum average fleet age. By applying an epsilon-constraint method to approx-

imate the Pareto front, this study provides insights into the inherent trade-offs between

cost minimisation, environmental benefits, and equity in fleet distribution across different

regions within a city.

4.1 Planning the Transition to Electric Bus

Fleets

Mobility of cities around the world face significant challenges due to their reliance on

diesel-powered buses. These buses contribute to environmental pollution and pose serious

risks to public health. As cities strive for carbon neutrality and improved air quality, there

is growing interest in transitioning public transportation fleets to electric vehicles (EVs).

This shift is motivated by the potential benefits of reduced greenhouse gas emissions,

reduced noise pollution, and improved urban air quality (see Ribeiro and Mendes, 2022).

However, transitioning to electric buses involves complex decision-making processes.

Transportation operators must address several key issues, including the timing and quant-
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ity of electric vehicles to acquire, the selection of suitable technology, and the optimal

allocation of these vehicles to different bus lines. In addition, several constraints must be

considered, such as electrical capacity, depot space, budget limitations, and vehicle age

restrictions.

Addressing these challenges requires a holistic approach that considers not only the

economic viability of adopting electric buses, but also the environmental and social im-

pacts of this transition. Reducing costs is crucial for ensuring the financial sustainability

of public transportation agencies, especially as they adapt to new technologies and in-

frastructure demands. Equally important is the environmental benefit of electrifying the

fleet, as this transition can significantly reduce urban air pollution and greenhouse gas

emissions, directly contributing to healthier communities, as it is studied for scenarios in

Spain (Grijalva and Lopez Martinez, 2019), Poland (Dzikuc et al., 2021) and the United

States (Du and Kommalapati, 2021). Finally, ensuring an equitable distribution of elec-

tric vehicles in various city regions is essential to provide uniform benefits, such as cleaner

air and quieter streets, to all residents.

In response, we propose a tri-objective optimisation model to guide the replacement

of diesel buses with electric ones in a multi-period approach (see Figure 12). Our model

aims to achieve three main objectives: (1) minimise the total costs associated with vehicle

purchase, infrastructure, maintenance, and battery replacements; (2) optimise a measure

of gradual electrification of a transit network to reduce environmental impact; and (3)

promote equity in the distribution of electric vehicles across different regions in a city. In

addition, we include constraints such as bus conservation, annual investments, maximum

average age of the fleet, buying used vehicles, and a target for electrification to be achieved

at the end of the planning period.

SustainableSo
cia

l e
qu

ity

Costs

Electrification

Purchase buses/infrastructure, salvage
buses, and assign technology to lines

Strategic planning for public transit network electrification

Region A

Region B

Region C

Region A

Region B

Region C

Figure 12: Scheme of our optimisation approach for the Bus Fleet Replacement Problem
considering a sustainable goal.

To solve our multi-objective optimisation problem, we employ an epsilon-constraint

algorithm to approximate the Pareto front, allowing us to identify a set of non-dominated
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optimal solutions. Moreover, as stated by Avenali et al. (2024), a tool for evaluating some

uncertainties during the planning stage is critical during the adoption of electromobility,

which can be tackled with sensitivity analysis and variants of our modeling approach (as

can be seen in the experimental section). In summary, our optimisation approach allows

us to study the inherence of trade-offs in a sustainable philosophy, providing compre-

hensive new information for decision making, and leading to a valuable tool for public

transportation operators and policy makers.

4.2 Optimisation problem and mathematical

formulation

We recall that we are interested in planning the electrification of a transit network con-

sidering a sustainable perspective, that is, analysing social, economic, and environmental

aspects of it. Then, to define our decision problem, we assume that there exists a public

transport operator or government agency responsible for managing a public transport net-

work of a city divided into multiple regions. Let L denote the set of lines in the network

and R the set of regions in the city. The agency aims to gradually replace its diesel bus

fleet with electric vehicles (EVs) over a multi-year planning horizon denoted by T . The

bus fleet types eligible for acquisition are contained in the set B, which encompasses a

variety of electric technologies and battery types (b = 0 is considered as diesel technology

for modelling purposes). In this study, we also consider the possibility of acquiring used

electric vehicles in each period t ∈ T . We define the set N to indicate the years of use of

a vehicle, where 0 is considered new. Moreover, for each line l ∈ L, we assume that the

length of the line in kilometres, denoted as ϕl, is known. Finally, for each region r ∈ R,

we assume the coverage of the network kmr as given, as well as the kilometres crl covered

by each transit line l ∈ L.

The goal of our optimisation problem, called Sustainable Bus Fleet Replacement

SBFR, is to develop an electrification plan that determines decisions for each period

regarding fleet renewal, the assignment of electric vehicles to specific bus lines, and the

sale of buses that are no longer needed due to their age. This plan aims to optimise

the objective functions of operational costs, equitable distribution of EV services between

regions, and gradual electrification.

For each type of electric bus technology b ∈ B, we assume that the following para-

meters are given, which directly influence the long-term decision whether it is advantage-

ous to purchase them.
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• cvtbn: The purchase cost of a vehicle n years old with technology b ∈ B − {0} in

period t ∈ T .

• citb: The cost of purchasing infrastructure (per charger) for technology b ∈ B − {0}
in period t ∈ T . Where λlb chargers are needed when line l ∈ L is operated using

technology b ∈ B − {0}.

• cf t
bn: The cost of diesel / energy for a n-year-old vehicle with technology b ∈ B in

period t ∈ T .

• cmt
bn: The maintenance cost for a vehicle n years old with technology b ∈ B in

period t ∈ T .

• cbtb: The cost of the battery for technology b ∈ B − {0} in period t ∈ T .

• µbn:


1, if a n-year-old vehicle with technology b ∈ B − {0} requires

a battery replacement

0, otherwise

• qlb: The size of the fleet of each type of technology b ∈ B required for the line l ∈ L.

Determining the required fleet size qlb for line l constitutes a complex optimisation

problem, involving not only the allocation of buses but also the scheduling of trips and

charging actions for each vehicle (Rogge et al., 2018). In particular, we assume that an

electric vehicle must be charged to the 100% battery level after completing a trip. This

assumption directly impacts the overall system, as it leads to increased cycle times for the

vehicles. Consequently, a larger fleet of electric vehicles is needed to maintain the service

level across all lines, compared to using vehicles that do not require charging actions.

We also include a budget P t for each period t ∈ T , representing the available

financial resources that limit the total annual cost in terms of vehicle acquisition costs

cvtbn, charger installation costs citb, and ongoing operating costs, including fuel or energy

(cf t
bn), maintenance (cmt

bn) and battery replacements (cbtb) that occur every τb consecutive

years of use for vehicles with technology b. Furthermore, the budget of each period can

be increased by selling vehicles that are no longer operational (the oldest vehicles with

technology b ∈ B, which are at least βb years old), with their salvage value represented

by αbn. We resume our notation for the input in Table 6.
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Table 6: Summary of the input for our optimisation problem.
Symbol Description

L Set of lines in the transit network.
T Set of planning periods.
B Set of vehicles’ technologies, i.e., the combination of battery size and the type

of charging infrastructure.
N Set of years of use for vehicles in the transit network.
R Set of regions covered by the transit network.
cvtbn Purchase cost of a n-year-old vehicle with technology b ∈ B − {0} in period

t ∈ T .
citb Purchase cost per charger for infrastructure supporting technology b ∈ B −

{0} in period t ∈ T .
cf t

lb Diesel/Energy cost for each line l ∈ L with technology b ∈ B in period t ∈ T .
cmt

bn Maintenance cost for a n-year-old vehicle with technology b ∈ B in period
t ∈ T .

cbtb Battery cost for technology b ∈ B − {0} in period t ∈ T .
µbn Binary parameter taking the value of 1 if a n-year-old vehicle with technology

b ∈ B − {0} requires a battery replacement (i.e., n mod τb = 0), and 0
otherwise.

P t Budget for period t ∈ T .
qlb Fleet size with technology b ∈ B required for line l ∈ L.
αbn Salvage value of a n-year-old vehicle of type b ∈ B.
βb Age of use at which a bus of type b ∈ B can be salvaged.
γ Maximum bus average age across all periods.
λlb Chargers for technology b ∈ B − {0} required for line l ∈ L.
kmr Network coverage for region r ∈ R (km).
crl Kilometres covered in region r ∈ R by line l ∈ L.

Our SBFR optimisation problem determines the allocation of technologies B to the

lines L operating with conventional buses, as well as the number of electric vehicles to buy

and sell for each type of technology b ∈ B and period t ∈ T . So, we define the following

decision variables.

• ytlb =

1, if line l ∈ L operates with technology b ∈ B − {0} in period t ∈ T

0, otherwise

• ztbn : Number of n-year-old vehicles of type b ∈ B that are sold at the beginning of

period t ∈ T

• xt
bn : Number of n-year-old vehicles of type b ∈ B that are purchased at the begin-

ning of period t ∈ T

• vtbn : Number of n-year-old vehicles of type b ∈ B at the beginning of period t ∈ T
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• mt : Savings of period t ∈ T

We define (x,y, z,v,m) to represent all the decision variables. Next, we present our

mixed-integer nonlinear program (MINLP) for the SBFR problem.

minFCOSTS (x,y,v) =
∑
t∈T

 ∑
b∈B−{0}

∑
n∈N

xt
bncv

t
bn +

∑
l∈L

∑
b∈B−{0}

(ytlb − yt−1
lb )citbλlb+

∑
b∈B−{0}

cbtb
∑
n∈N

µbnv
t
bn +

∑
l∈L

∑
b∈B

cf t
lby

t
lb +

∑
b∈B

∑
n∈N

cmt
bnv

t
bn

 (4.1)

minFGRADUAL (y) =
∑
t∈T

∑
l∈L

∑
b∈B−{0}

(
ytlb − yt−1

lb

)
−

∑
t′∈T

∑
l′∈L

∑
b′∈B−{0}

(
yt

′

l′b′ − yt
′−1
l′b′

)
|T |


2

|T |
(4.2)

minFEQUITY (y) =
∑
t∈T

∑
r∈R

∑l∈L ∑
b∈B−{0}

ytlbcrl
kmr

−

∑
r′∈R

∑
l′∈L

∑
b′∈B−{0}

ytl′b′cr′l′

kmr′

|R|


2

|R| (4.3)

s.t.

vtbn = vt−1
bn−1 + xtbn − ztbn ∀b ∈ B, t ∈ T, n ≥ 1 (4.4)

vtb0 = xtb0 − ztb0 ∀b ∈ B, t ∈ T (4.5)

vtbn = 0 ∀b ∈ B, t ∈ T, n ≥ 14 (4.6)

xt0n = 0 ∀t ∈ T, n ≥ 0 (4.7)

ztbn = 0 ∀b ∈ B, t ∈ T, n < βb (4.8)

yt+1
lb ≥ ytlb ∀b ∈ B − {0}, l ∈ L, t ≤ |T | − 1 (4.9)∑
l∈L

∑
b∈B

y
|T |
lb = |L| (4.10)∑

b∈B
ytlb = 1 ∀l ∈ L, t ∈ T (4.11)∑

n∈N
vtbn =

∑
l∈L

ytlbqlb ∀b ∈ B, t ∈ T (4.12)∑
b∈B−{0}

∑
n∈N

xtbncv
t
bn +

∑
l∈L

∑
b∈B−{0}

(ytlb − yt−1
lb )citbλlb
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+
∑

b∈B−{0}

cbtb
∑
n∈N

µbnv
t
bn +

∑
b∈B

∑
l∈L

cf t
lby

t
lb

+
∑
b∈B

∑
n∈N

cmt
bnv

t
bn +mt =

∑
b∈B

∑
n∈N

ztbnαb + P t +mt−1 ∀t ∈ T (4.13)∑
b∈B

∑
n∈N

nvtbn∑
b∈B

∑
n∈N

vtbn
≤ γ ∀t ∈ T (4.14)

xtbn, z
t
bn, v

t
bn ∈ Z;U,mt ∈ R; ytlb ∈ {0, 1} ∀t ∈ T, b ∈ B,n ∈ N, l ∈ L (4.15)

The objective function (4.1) minimises the total cost associated with the purchase

of electric vehicles, the charging infrastructure, the replacement of the battery, the fuel

(diesel and electricity) and the maintenance of the vehicle. The objective function (4.2)

minimises the variance in the increment of electrified lines of consecutive periods in T to

ensure a gradual electrification of lines. Finally, the objective function (4.3) minimises the

sum between all periods of variance in the fraction of electrified kilometres in all regions

to ensure an equitable electrification of the city’s transit network.

Regarding the constraints of the problem, equations (4.4) and (4.5) represent vehicle

balance or inventory constraints. The restrictions (4.6) guarantee that there are no

vehicles older than 14 years operating in the system. The constraints (4.7) ensure that

conventional vehicles are not purchased. The equalities (4.8) guarantee that the vehicles

have not exceeded their useful life. The constraints (4.9) ensure that if a technology

b ∈ B − {0} has been assigned to line l ∈ L in period t ∈ T , that technology remains as-

signed to that line from that period onward. The equality (4.10) ensures that, by the end

of the planning period, all lines will operate with electric vehicles. The equalities (4.11)

ensure that only one technology is assigned to each line in each period. The constraints

(4.12) ensure that, in each period, there are sufficient vehicles of the different technolo-

gies to meet the operation of the lines. Equalities (4.13) ensure that the budget has not

been exceeded. The constraints (4.14) ensure that the average age of the vehicles in the

system does not exceed the maximum allowed. Finally, the constraints (4.15) represent

the nature of the variables.

4.2.1 ε-constraint algorithm for the SBFR

problem Given the multi-objective nature of our SBFR problem, we do not prioritise

identifying a single solution that optimises all objectives simultaneously. Instead, our

focus is on obtaining mathematically non-dominated solutions that presents the trade-

offs between the objectives. In particular, a solution vector x∗ in the feasible space X ,

is Pareto optimal for a triobjective minimisation problem, if there does not exist another
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x ∈ X such that f1(x) ≤ f1(x
∗), f2(x) ≤ f2(x

∗), f3(x) ≤ f3(x
∗), and fi(x) < fi(x

∗) for

some objective fi. If x
∗ is a Pareto optimal solution, then f(x∗) is a non-dominated point

in the objective value space (see Marler and Arora, 2004).

Then, we are looking for a good approximation of the set of non-dominated points,

which is called Pareto Front. This approach allows the decision maker to observe the

conflicts among the different objectives and to select the available options based on their

criteria. In this study, we will implement the ε-constraint method, which was first intro-

duced in Haimes (1971). This consists of optimising a single objective fi(x), while the

other objectives are limited by additional constraints fj(x) ≤ εj. Then, we can obtain

an approximation of the Pareto front by varying the parameters εj. Figure 13 illustrates

an example of the ε-constraint method applied to a bi-objective optimisation problem,

where the objective function F1(x) is minimised while the second objective function is

constrained by F2(x) ≤ ε.
Transportation Research Part B 173 (2023) 142–161
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Fig. 5. Example of finding non-dominated solutions using the "-constraint algorithm.

…
lÀL
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fÀFl

f � ylf

I
f P (4)

…
kÀK

⇠
vka + vkt(a)

⇡ f q
…
fÀFl

f � yl(a),f ≈ a À AV (5)

…
kÀK

vka f q � f (a) � yl(a),f (a) ≈ a À AW (6)

…
aÀA+

n

vka *
…
aÀA*

n

vka = ⇢kn ≈ k À K, n À N (7)

vka g 0 ≈ a À A, k À K (8)

xl À {0, 1} ≈ l À L (9)

ylf À {0, 1} ≈ l À L, f À Fl (10)

The constraints (1) guarantee choosing only one frequency for each line l À L included in the solution. The inequality (2) bounds
the maximum number of lines to implement in the system. The restrictions (3) satisfy the street capacity of the edge e À E, that is,
the total number of buses per minute considering all the lines that travel through e do not exceed the value of the parameter se.
The inequality (4) ensures that the budget is not exceeded in terms of frequency (note that if cl =

≥
aÀAl

ca, the budget represents
maximum fleet size). The constraints (5) limit the total flow of passengers traveling through the travel arc a À AV and the associated
transfer arc t(a) À AT (considering all the origin–destination pairs) by the capacity of the line l(a). The inequalities (6) allow there
to be a flow of passengers through the arc a À AW only when the variable yl(a),f (a) is active, where q � f (a) is an upper bound of the
flow of passengers that can circulate through a. Finally, Eq. (7) are flow balance constraints for each origin–destination pair (ok, dk)
and node n À N . The nature of the variables is defined by (8)–(10).

Table 2 shows the notation list for the sets, parameters, and variables used in our model.

4. Solution methodology for the BTND problem

Since we have a bi-objective optimization problem, we do not focus on a single solution that optimizes both objectives
simultaneously. Instead, we are interested in finding mathematically incomparable solutions representing the trade-off between
the two goals. In particular, a solution vector x< in the feasible space X , is Pareto optimal for a bi-objective minimization problem,
if there does not exist another x À X such that f1(x) f f1(x<), f2(x) f f2(x<), and fi(x) < fi(x<) for some objective fi. If x< is a
Pareto optimal solution, then, f (x<) is a non-dominated point in the objective value space (see Marler and Arora, 2004). Then, we
are looking for a good approximation of the set of non-dominated points, which is called Pareto Front. In this way, the decision-maker
will observe the conflict between the different objectives, and he will be able to choose between the options found based on his
criteria. In this study, we will implement the "-constraint method, which was first introduced in Haimes (1971). This consists of
optimizing a single objective fi(x), while the other objective is limited in an additional constraint fj (x) f ". Then, we can obtain
an approximation of the Pareto front through the variation of the " parameter (see Fig. 5).

Regarding the implementation of our "*constraint, preliminary experiments were carried out to determine the objective function
to be added as a constraint. In general, it was observed that optimizing objective function F2(v) leads to an optimization problem
with more symmetries since we only consider monetary costs in waiting arcs AW ; thus, we can obtain multiple passengers flows
with the same value of function F2(v). The latter could increase the computational time of implementing an optimization solver.
Therefore, our "-constraint algorithm optimizes F1(v) as it is detailed in Algorithm 1, where the variation of " is defined based on a
number Pbs of problems to be solved . First, it starts with an empty approximation and calculates the extremes of the approximation
(lines 1–6). Subsequently, the extremes obtained are used to observe the range in which " will vary, and depending on how many

Figure 13: Example of finding non-dominated solutions using the ε-constraint algorithm.

It is widely common in Bus Fleet Replacement problems to focus on cost minimisa-

tion as the only objective function (Emiliano et al., 2020b; Pelletier et al., 2019; Islam and

Lownes, 2019). Therefore, in our approach, we use FCOSTS as the objective function to

be minimised, while FGRADUAL and FEQUITY are incorporated as constraints, bounded by

εG and εE, respectively (see details in Algorithm 1). The algorithm begins with an empty

set of approximations and calculates the extreme points of the approximation (lines 1-3).

These extreme points are then used to establish the range over which εG and εE will vary.

We define SεG and SεE as the set of values to explore for εG and εE, and NεG and NεE as

the total number of values to explore within these sets. The values within these sets range

from F ∗
GRADUAL (F ∗

EQUITY ) to P ∗
G (P ∗

E) with an increase of ∆εG (∆εE) as defined in lines 4

and 5. Based on these sets, further calculations are conducted to ensure a thorough and

efficient exploration of the trade-offs between objectives.
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Algorithm 1: ε-constraint for the SBFR.

Input: Instance of SBFR, NεG, NεE

Output: Approximation SetPareto of Pareto front

1: SetPareto = ∅
2: Solve F ∗

COSTS = {minFCOSTS (x,y, z) : (4.4)− (4.15)},
P ∗
E = FEQUITY ((x,y, z)

∗
COSTS), P ∗

G = FGRADUAL((x,y, z)
∗
COSTS)

3: Solve F ∗
GRADUAL = {minFGRADUAL (y) : (4.4)− (4.15)},

P ∗
E = max{P ∗

E, FEQUITY (y
∗
GRADUAL)}

4: Solve F ∗
EQUITY = {minFEQUITY (y) : (4.4)− (4.15)},

P ∗
G = max{P ∗

G, FGRADUAL(y
∗
EQUITY )}

5: ∆εG =
P ∗
G−F ∗

GRADUAL

NεG
−1

6: ∆εE =
P ∗
E−F ∗

EQUITY

NεE
−1

7: SεG = {εiG | εiG = F ∗
GRADUAL + i∆εG , i = 0, 1, . . . , NεG − 1}

8: SεE =
{
εjE
∣∣ εjE = F ∗

EQUITY + j∆εE , j = 0, 1, . . . , NεE − 1
}

9: for (εG, εE) ∈ SεG × SεE do

10: Solve

P ∗
εG,εE

= {minFCOSTS (x,y,v) : (4.4)− (4.15), FGRADUAL ≤ εG, FEQUITY ≤ εE}
11: SetPareto = SetPareto ∪

{(
P ∗
εG,εE

, FGRADUAL(y
∗
εG,εE

), FEQUITY (y
∗
εG,εE

)
)}

12: end for

Finally, all experiments were performed on a MacBook Pro with an Apple M3 chip

and 18GB of RAM, using CPLEX 22.1 Concert Technology, coded in C++ and using

a stop criterion of 7200 seconds of computational time or a relative gap1 of 1%. The

experimental results are discussed in the next section.

x

4.3 Experimental Results

4.3.1 Nighttime Public Transit System of Santiago, Chile

To validate our methodology on a real-world network, we examined the nighttime public

transport system in Santiago, Chile. The network comprises 44 lines and serves 34 mu-

nicipalities in the Metropolitan Region. We considered a 20-year planning horizon and

aimed to fully electrify all routes. Seven electric bus technologies were considered for

evaluation (See Table 7).

1The relative gap is computed as
(
PrimalBound−DualBound

PrimalBound

)
100%
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Type of Bus Battery Capa-
city (kWh)

Price (USD)
cvtb0

Battery Re-
placement
(USD)

Maintenance
(USD)

Model 0 - - 0 13,125.87
Model 1 385 318,304 95,491.2 3,979.24
Model 2 229 251,256 75,376.8 5,565.28
Model 3 255 257,868 77,360.4 7,910.24
Model 4 282 305,196 91,558.8 6,664.73
Model 5 326 316,448 94,934.4 4,912.95
Model 6 350 322,596 96,778.8 3,522.06
Model 7 350 334,660 100,398 5,134.32

Table 7: Technical and cost details of diesel (Model 0) and electric bus models, including
battery capacity, purchase price, battery replacement cost, and annual maintenance.

The nighttime public transport network plays a vital role in ensuring mobility during

non-peak hours, serving commuters across 34 municipalities in the Metropolitan Region.

It provides essential connections for workers with irregular schedules, students, and others

who rely on public transit at night.

Figure 14 provides a visual representation of the network, highlighting its extensive

coverage and critical connections. This case study not only offers a practical application

of the proposed methodology, but also contributes valuable information on the planning

of sustainable and efficient public transport systems in urban areas.

Karla Isabel Cervantes Sanmiguel



Chapter 4. Multi-objective Optimisation Model for Sustainable

Planning of Bus Fleet Replacement 48

Despalomear Todo

5 km5 km
3 mi3 mi  Leaflet | © OpenStreetMap contributors © CARTO

8/10/25, 12:20 p.m. santiago_comunas_lineas.html

file:///Users/karlacervantes/Dropbox/CompartidaKarlaDOCTORADO/ELECTRIC_BUS_PLANNING/INSTANCIA SANTIAGO/santiago_comunas_lineas.html 1/1

Despalomear Todo

5 km5 km
3 mi3 mi  Leaflet | © OpenStreetMap contributors © CARTO

8/10/25, 12:20 p.m. santiago_comunas_lineas.html

file:///Users/karlacervantes/Dropbox/CompartidaKarlaDOCTORADO/ELECTRIC_BUS_PLANNING/INSTANCIA SANTIAGO/santiago_comunas_lineas.html 1/1

Figure 14: Nocturnal Public Transport Network of Santiago, Chile (@OpenStreetMap).

Given the growing emphasis on sustainability and environmental conservation, the

transition to a fully electrified fleet over a 20-year horizon aligns with global efforts to

reduce greenhouse gas emissions and dependence on fossil fuels. The electrification plan

considers seven different electric bus technologies, each with different battery capacities

and costs (Table 7). The evaluation focusses on selecting the optimal combination of tech-

nologies to achieve a balance between gradual electrification over time, cost-effectiveness,

and equitable allocation of electric vehicles.

Two purchasing scenarios were considered. In Instance A, only new vehicles can be

acquired. This restriction is modelled by setting xtbn = 0 for all used vehicles (n ≥ 1), all

periods t ∈ T , and all bus types b ∈ B. In Instance B, both new and used vehicles can

be purchased, with no restrictions on the decision variable xtbn.

Table 8 summarises the assumptions used for model parameters, including purchase

and depreciation costs (cvtbn), infrastructure costs (ci
t
b), annual fuel and energy costs (cf t

lb),

maintenance costs (cmt
bn), salvage values (αbn), fleet sizing (qlb), and network coverage

(kmr, crl). For the instances of our study, no budget restrictions were considered, repres-
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ented by assigning a very high value to P t for all t. This can be adjusted for other case

studies. The minimum operational age at which a bus of type b ∈ B (denoted βb) becomes

eligible for resale has been established at 5 years, the highest average age for buses during

all periods (γ) was established at 8 years. The range of vehicle ages considered in the

analysis spans n = 0 to 19 years. Finally, it was assumed that the number of chargers

required for technology b ∈ B \ {0} on line l ∈ L (λlb) would be half of the fleet size qlb.

Parameter Assumption
cvtbn For new vehicles, we considered average market prices for different

technologies as it is shown in Table 7 (Kementerian Dalam Negeri
Republik Indonesia, 2021). Depreciation was applied on a declining
basis: 20% annually for the first 5 years, 10% for years 6 through
10, and 5% from year 11 onward.

citb The infrastructure cost for each bus type b ∈ B \ {0} and time
t ∈ T was assumed to be USD 68,153.8, representing the average
value across available market prices (C40 Cities, 2023).

cf t
lb Annual fuel or energy cost per line l and bus type b was computed

as the product of the total annual distance travelled, the corres-
ponding energy consumption rate (diesel or electricity), and the
respective unit energy cost. Diesel was priced at USD 1.02 per
litre (Global Petrol Prices, 2025a) and electricity at USD 0.16 per
kWh (Global Petrol Prices, 2025b). Energy prices were assumed to
remain constant throughout the planning horizon. Line distances
and service frequencies were derived from GTFS data (June 2024)
(DTPM Chile, 2024).

cmt
bn For electric buses, maintenance costs for each bus type b at time t

were randomly set between 3,500 and 8,000 USD per year, which is
consistent with the maintenance costs reported for Chile in Charged
Electric Vehicles Magazine (2020). For diesel buses, a fixed annual
maintenance cost of 13,125.87 USD was assumed (see Table 7).

cbtb Battery replacement costs account for roughly 30% of the total bus
price across all models.

αbn Salvage value of bus type b of age n was assumed to be 90% of the
purchasing cost cv0bn.

qlb The fleet size for each line and bus type was estimated as the ratio
of the operational cycle time to the service frequency, assuming an
average speed of 40 km/h. For electric buses, charging time was
included in the cycle time.

kmr, crl Network coverage for region r ∈ R (km) and the kilometres covered
in region r ∈ R by line l ∈ L were derived from GEOJSON data
sourced from official Chilean transport maps (Caracena, C., 2025).

Table 8: Parameter assumptions.
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This structured instance, defined by the network characteristics, vehicle parameters,

and operational assumptions detailed in Tables 7 and 8, serves as the input for the multi-

objective optimisation model. The solution approach employs the ε-constraint algorithm,

formally introduced in the following section, to identify Pareto-optimal solutions that

allow us to study the trade-off between operational cost, network electrification, and

equitable allocation of electric buses across the network.

4.3.2 Efficiency of the ε-constraint algorithm

In this section, we analyse the quality of the solutions and the computational times

to implement our ε-constraint method in the case study. In general, our optimisation

approach is efficient since it takes less than 4 days to implement our epsilon constraint for

both instances. In the case of the scenario of new vehicles, we found solutions for 57.02%

of the iterations in the epsilon constraint, while in the case of purchasing new and used

vehicles, we find feasible solutions for 8.09% of the iterations of our ε-constraint. Notice

that since we are dealing with a multi-objective optimisation approach, the latter could

happen due to the conflict between the optimisation of the two objectives bounded in the

constraints during our experimental stage.

Figure 15 shows the relative gap among all iterations of our ε-constraint algorithm for

both instances. The dashed lines contain the iterations corresponding to a fixed value εG,

while the variables εE vary in ascending order. We also have a separator that distinguishes

different values of εG, arranged in ascending order. Notice that we obtain smaller gaps

than 1% for 94.02% of the solutions found along the iterations of our epsilon constraint

when defining a plan assuming that it is possible to purchase new vehicles only, and for

all iterations when purchasing new and used vehicles, that is, we obtain near-optimal

solutions when implementing our solution algorithm to generate an approximation of the

Pareto fronts.
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Figure 15: Relative Gaps for each iteration of the ε-constraint algorithm.
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In the case of computational times, we require less than 31.4 hours to obtain solutions

along the iterations of our epsilon constraint for each scenario, as shown in Figure 16. In

the case of purchasing new vehicles, the longer computational times correspond to the

highest value of εG. In the case of buying new and used vehicles, the longest computational

times appear in the second value of εG
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Figure 16: Computational Times for each iteration of the ε-constraint algorithm.

Summarising the analysis of the quality of the solution and the computational times

of the experimental stage, our results demonstrate that the proposed multi-objective op-

timisation approach is effective for real-sized instances. This method supports decision

making by providing new information on the trade-off involved in optimising social, eco-

nomic, and ecological objectives (see the next section).

4.3.3 Analysing the trade-off between costs, equity and

electrification metrics

In this section, we present the conflict between optimising a gradual electrification measure

(ecological goal), minimising operational costs (economic goal), and optimising equity in

the electrification of different areas in a region (social goal). We then address a sustainable

optimisation approach with three objectives.

Figure 17 shows the Pareto front approximations obtained for the two instances,

which allows only the purchase of new vehicles (left panel) and which allows the purchase

of used and new buses (right panel). We can observe that there is a conflict between the

optimised objectives, since there is a dispersion of points across the three axes related

with the different objective functions. However, performing a visual analysis of a 3D plot

to analyse the trade-off between objectives is cumbersome.
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Figure 17: Pareto front approximations for instances A and B of the SBFR problem.

From now on, we will analyse the projection of the Pareto front approximation onto

the Cartesian plane formed by the social and ecological objectives. In particular, we

denote the cost value using a colour map that transitions from green for the lower values

to red for higher values of operational costs. Figure 18 shows the projections mentioned

above for both scenarios. Notice that when assuming the purchase of only new buses

(see left panel), we observe that for low values of operational costs, the conflict between

the social and ecological goals is more pronounced, since there are green points that

form a Pareto curve for these two objectives. In particular, an improvement of 70.58%

in FGRADUAL implies a deterioration of 67.78% in the value of the function FEQUITY .

However, for medium values of the cost, no evident conflict exists, since a single solution

(orange point) appears in the graph. In the case of high-cost values (red points), there

is also a conflict, although to a lesser extent, in optimising ecological and social goals,

leading to an improvement of 50.53% in FGRADUAL, while deteriorating up to 104.30%

the objective function FEQUITY . The latter behaviour can be represented in a trade-off

indicator defined as the ratio between the improvement of FGRADUAL and the deterioration

of FEQUITY , leading to a trade-off of 1.04 and 0.48 for low and high costs, respectively.

For example, a value of 1.04 implies that FGRADUAL improves 1.04% by deterioration of

1% of FEQUITY .
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Figure 18: Projection in FGRADUAL × FEQUITY of the Pareto front approximations for
instances A and B of the SBFR problem.

In the case of allowing the purchase of new and used buses, a lower number of

non-dominated points was found in the Pareto front approximation. For this case (see

the right panel of Figure 18), there is also a conflict between optimising the social and

ecological goals at low costs, since we obtain a trade-off indicator of 0.257. On the other

hand, for medium and high costs, there is no conflict between the optimisation of both

objectives.

As shown by the results of our optimisation approach, it is possible to analyse the

conflict between the optimisation of economic, ecological, and social metrics during the

design of an electromobility adoption plan in public transportation networks. Moreover,

bearing in mind that each point of the Pareto front approximations shown in this section

is a long-term planning solution, the next section details what happens in that plan for

solutions that benefit one objective over the others.

4.3.4 Detailed non-dominated solutions

In this section, we analyse the three solutions obtained while optimising each of the

objective functions for instances A (purchase of only new vehicles) and B (purchase of

new and used vehicles). We recall that a single solution represents a distinct planning

scheme over the years, characterised by unique features and trade-off. By examining these

solutions, we aim to provide decision makers with actionable insights to support informed

choices aligned with their strategic priorities.

Figure 19, exhibits the total costs for the three solutions of instance A (dashed lines)

and B (solid lines). It can be noted that, for instance B (see solid lines), annual costs

consistently fall within the [18.6, 58.7] million dollar range, regardless of which objective

achieves the minimum value. In contrast, for instance A (see dashed lines), the range of

the total cost is [18.5,369.8], indicating a notable variation in costs because during certain
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periods, a significant number of vehicles are acquired, primarily due to the lifespan of

the buses. Furthermore, we observe that in the case where the best value for FEQUITY

is achieved by purchasing only new vehicles (see dashed blue line), a substantial initial

investment is required. In contrast, for the other scenarios, the initial investment is

not as high (see dashed green and red lines), indicating that the acquisition strategy

significantly influences the total costs. We highlight that costs are reduced when opting for

the purchase of used vehicles. However, despite the potential financial benefits, operators

rarely adopt this approach due to factors such as vehicle life expectancy, maintenance

requirements, and operational uncertainties. These considerations often lead decision

makers to prioritise the acquisition of new vehicles, despite the higher initial investment.
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Figure 19: Total costs over time for selected solutions of instances A) Purchasing only
New Vehicles and instance B) Purchasing both Used and New Vehicles.

Furthermore, when analysing the percentage of electrified lines in each period, we can

see in Figure 20 that the transport network reaches electrification 100% between years 8

and 10, regardless of the priority objective (costs, equity, environmental) or the acquisition

strategy (purchasing only new vehicles or purchasing both new and used vehicles). This

indicates that the electrification goals of 100% can be achieved in half (or less) of the time

set to plan the purchase.
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Figure 20: Percentage of lines electrified per period for each selected solution in instance
A) Purchasing only New Vehicles and instance B) Purchasing both Used and New Vehicles.

To assess equity in the allocation of electric vehicles across the different regions

of the city’s public transport network, we employ the Gini index (Gini, 1912; Ceriani

and Verme, 2012). The Gini index is a standard measure of inequality, ranging from 0

(perfect equality, where all regions receive an equal share of electric vehicle coverage) to

1 (maximal inequality, where a single region receives all coverage). In this study, it is

calculated based on the percentage of kilometres covered by electric vehicles within each

region for each planning period. As such, the Gini index provides a quantitative measure

of disparities in the distribution of electric vehicles, allowing the identification of regions

that are over- or under-served by electromobility.

Figure 21 illustrates the behaviour of the Gini index during planning periods. The

scenarios in which an equal distribution of electromobility between different regions occurs

more rapidly are those in which FEQUITY is optimised (see the dashed and solid blue lines),

which aligns with the intended representation of our model. However, there is a significant

difference between instances A and B, since it is possible to obtain a quasi-egalitarian

distribution of electric vehicles in the city in period 2, when assuming purchasing only

new vehicles. An interesting observation arises when considering the minimum value of

FCOSTS for instance B (see solid red line). In this case, by period 9, the distribution is

already fully equitable. However, in the periods preceding period 7, inequality reaches

its highest levels in all scenarios. This suggests the need to evaluate whether prioritising

a fully equitable distribution at a faster pace is preferable, even if it involves significant

disparities in the earlier stages.

Karla Isabel Cervantes Sanmiguel



Chapter 4. Multi-objective Optimisation Model for Sustainable

Planning of Bus Fleet Replacement 56

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16 18 20

New Vehicles Used and New Vehicles

Minimum FCOSTS
Minimum FGRADUAL
Minimum FEQUITY

Minimum FCOSTS
Minimum FGRADUAL
Minimum FEQUITY

G
in
iI
nd
ex

Periods

Figure 21: Gini index of each planning period for selected solutions of instance A) Pur-
chasing only New Vehicles and instance B) Purchasing both Used and New Vehicles.

In summary, the experimental results in this section illustrate how the trade-off

between the three objectives impacts the electromobility adoption plans, providing valu-

able information for decision making. Finally, we highlight that, in addition to analysing

the details of the generated plans, our tool also helps identify policy implications and in-

sights based on different contextual factors, such as period management (e.g., significant

investments at the end of government terms) or technological advancements (e.g., cost

reductions), which will be further illustrated in the next section.

4.4 Managerial insights into management of

transport systems during the transition to fleet

electrification

Effective policy management is essential in the transition to electric vehicles (EVs), and

our optimisation method offers a valuable asset in shaping these policies. In particular,

our method assists in evaluating risk through simulation of different scenarios, offering

a comprehensive perspective on potential impacts during the electromobility transition

plan. This involves analysing uncertain elements such as technological advancements and

costs related to electric buses, batteries, and charging infrastructure.

4.4.1 Assuming costs reductions

First, we simulate an annual 2.5% decrease in electromobility costs by assuming only the

purchase of new vehicles (instance A). Our aim is to provide policymakers with insight on

how these gradual cost declines affect key metrics over time. This method improves the
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understanding of the long-term impact of policies and facilitates more informed decision

making. In Figure 22 we show the non-dominated solutions generated for both instances

highlighted with circles for the base instance and triangles for the reduced cost scenario.

We emphasise that, in the reduced costs scenario, the trade-off indicator’s values between

FGRADUAL and FEQUITY stand at 2.16 for the low costs case and 0.83 for the medium

costs case. Additionally, only one non-dominated solution is observed for high-cost values

(see the red triangle).
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Figure 22: Pareto optimal solutions projected on the Cartesian plane FGRADUAL ×
FEQUITY for both the original instance A and for instance A with an assumed gradual
decrease in costs.

We compare the base instance and the scenario with a gradual reduction in capital

costs of adopting electromobility, and we can observe that when optimising FCOSTS the

total costs assuming gradual reductions ranges within [933277,1478950] compared to the

range [1082350,1283090] in the base scenario, leading to an improvement of 13.77% in the

minimal cost. Moreover, the minimal value of FGRADUAL is the same in both scenarios,

while we obtain an improvement of 19.87% in FEQUITY when solving the scenario with

reduced cost compared to the base instance.

We recall that besides analysing the trade-off between economic, ecological, and

social objectives, our optimisation approach provides the details of adoption plans for

electromobility in public transport systems. In response to the latter, Figure 23 shows

the plan of solutions that optimise each objective function for both scenarios. First, the

total costs assuming the gradual reduction of costs are lower compared to the original

instance (see the red lines in case (a) of Figure 23. The gradual electrification of the

systems has a similar behaviour in both cases (see green lines in case (b)). Finally, both

cases present a rapidly egalitarian distribution of electric buses along the different regions

while optimising FEQUITY (blue lines in case (c)), in particular, since the beginning of the
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planning period assuming a gradual reduction of costs (blue line is in the value of 0 of

vertical axis) and in period 2 in the case of the original instance (see dashed blue line).
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Figure 23: Plans for adopting electromobility concerning non-dominated points derived
from optimising each objective function within SBFR.

Our study underscores the critical role of assessing evolving cost reductions when

designing policies for the adoption of electromobility. The findings indicate that a steady

decrease in costs can yield substantial economic benefits while simultaneously improving

equity and improving system stability over the long term. Furthermore, our optimisation

framework is versatile and can be adapted to investigate other policy strategies, such as

assessing the outcomes of setting administrative deadlines alongside major investments in

designated planning intervals, replicating situations where governments provide significant

funding to accelerate fleet electrification. In addition, the model could incorporate policies

on emissions penalties for private operators within the public transport sector to assess

their economic and operational effects. These enhancements would allow policymakers to

foresee possible obstacles, evaluate different regulatory approaches, and formulate more

flexible transition strategies that are in line with long-term sustainability objectives.
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4.5 Chapter summary and remarks

The results presented in this chapter highlight the potential of multi-objective optimisa-

tion as a valuable decision-support tool for public transport authorities and policymakers.

By simultaneously balancing economic feasibility, environmental performance, and social

equity, the proposed framework contributes to the design of more sustainable and inclusive

urban transportation systems. The analysis also underscores that, while fleet electrifica-

tion offers clear environmental benefits, its economic and spatial implications necessitate

careful, coordinated planning and prioritisation. Ultimately, the methodological approach

developed in this study provides a comprehensive and adaptable foundation for future

strategies aimed at achieving carbon-neutral and equitable urban mobility. The main

conclusions and prospective research directions arising from this work are discussed in

detail in Section 5.2 of this thesis.
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Chapter 5

Conclusions and Further Research

Areas

This chapter summarises the main findings and contributions of the research presented

in this thesis, while outlining potential directions for further investigation. Two distinct

projects were addressed: the first focused on the estimation of public transport origin-

destination matrices (ODMs) using optimisation models with multiple data sources, and

the second on the sustainable transition of bus fleets from diesel to electric vehicles through

multi-objective planning. The chapter highlights the methodological advancements, prac-

tical implications, and insights gained from each study, and provides a synthesis of the

lessons learned and opportunities for future research in urban public transportation plan-

ning.

5.1 Origin-Destination Matrix Estimation

In this study, we proposed four bi-level mathematical models to estimate an ODM of

public transport. At the upper level, the models decide the passengers for each OD pair,

while the lower level determines the transit assignment problem, minimising total travel

times. Our proposed models consider a combination of different types of information as an

outdated ODM, observed flows, boarding/alighting data, and structure of the outdated

ODM and passenger flows to guide the optimisation phase through different objective

functions in the upper level and different constraints.

We performed a comparative analysis based on different amounts of information for

each information type, and the optimisation model and numerical results show that using

complete information does not necessarily lead to the best results. Moreover, comparing

our models based on different information types leads to the following conclusions.
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• Considering structural properties of the demand and flows and hard constraints for

boarding and alighting leads to finding the best estimations of the ODM (Model

D).

• Considering only soft constraints of structural properties (Model B) results in solu-

tions even worse than not considering any of them (Model A).

• Considering a model with only hard constraints of boarding and alighting (Model

C) is better than the previous two models (Model A and B).

Regarding future research directions, we should explore methods to enhance the

accuracy of our estimations by incorporating additional data sources. For instance, we

could integrate partial OD flows (as in Behara et al., 2022; Pamula and Zochowska, 2023;

Parry and Hazelton, 2012; Patil et al., 2023; Rostami Nasab and Shafahi, 2020), or route

frequency usage for passengers with AFC (or more detailed demand information over

time). Another further research area is determining which segments of lines and stops are

most relevant to observe, thus enhancing our model estimations (such as Yang and Zhou,

1998). Furthermore, exploring the utilisation of more complex assignment models could

be beneficial. This exploration would involve assessing whether the results obtained in

our study remain consistent when considering different assignment models, thus refining

our understanding of the impact of incorporating certain types of information in both

the objective function and constraints. Moreover, comparisons of estimated and exact

demand values for OD pairs in Appendix A show that model D is efficient in estimating

the demand on the tested instances. Finally, we could focus on extending the optimisation

problem to estimate OD matrices assuming network reconfigurations (which are necessary

as shown in Appendix B), including different sets of routes, stops, or infrastructure. This

is relevant due to various mobility policies that adapt to urban development in cities with

growing populations.

5.2 Sustainable Electric Bus Fleet Replacement

This research introduces a multi-objective optimisation model for the sustainable trans-

ition of bus fleets from diesel to electric vehicles within public transportation networks.

The framework incorporates economic, environmental, and social objectives to aid in the

decision-making about fleet electrification. By reducing operational expenses, improving

fleet electrification, and ensuring a fair distribution of electric buses in urban areas, the

model serves as a valuable resource for public transportation operators and policymakers.

The findings reveal the economic practicality of switching to electric buses by highlighting
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long-term savings in fuel, maintenance, and battery replacement. The use of pre-owned

electric vehicles helps lower initial expenditures, supporting adoption by operators with

limited budgets. Ecologically, gradual electrification of the fleet leads to substantial reduc-

tions in greenhouse gas emissions and improves urban air quality. The phased approach

balances environmental advantages with operational practicability. Furthermore, ensur-

ing an equitable allocation of electric buses ensures that all communities experience the

benefits of reduced noise and improved air quality, which is essential for cities with varied

socioeconomic demographics.

The use of the ε-constraint algorithm allows decision makers to analyse trade-off

between cost, electrification, and equity. Pareto front approximations provide a clear

visualisation of these relationships, enabling informed decisions based on strategic pri-

orities. Furthermore, the study highlights the importance of considering technological

advancements and the progressive reduction of costs in policy design. Simulation of scen-

arios with gradual cost reductions in electrification shows that such strategies can lead to

significant improvements in both economic and environmental metrics.

For future research, it would be relevant to explore the integration of renewable

energy sources, such as solar or wind, into the charging infrastructure, which would fur-

ther enhance the sustainability of electric fleets. Incorporating real-time optimisation

techniques would allow dynamic adjustments to fleet operations based on demand, en-

ergy availability, and traffic conditions, improving operational efficiency. Furthermore,

extending the model through robust and stochastic optimisation approaches would ad-

dress uncertainties related to energy price fluctuations, advances in battery technology,

and changes in regulations, enhancing the adaptability of the solutions. The model could

also be expanded to assess the impact of additional policy measures, such as emissions

penalties for private operators or incentives for early adoption of electric buses, provid-

ing a more comprehensive view of the economic and operational implications of different

regulatory scenarios. Finally, applying the model to cities with varying population densit-

ies, geographic configurations, and socioeconomic conditions would allow evaluation of its

scalability and adaptability, generating valuable insights for its implementation in diverse

urban contexts.
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Appendix A

Analysing ODM and passengers

flow estimation in Model D

In this section, we present a comparison between the estimated demand and the exact

demand, as well as the estimated flow and the observed flow, for model D, which ex-

perimentally demonstrated to obtain, on average, better estimations for all classes of

instances tested using an information level of |Ā| = |AL| and |N̄ | = |NL| (that is, making

observations at all the line segments and all the stops). In particular, our comparison is

conducted using a scatter plot, one for the demand and another for the segment flows.

For the demand, we plot the points (ḡk,gk) for all k ∈ K, while for the segment flows we

plot (v̄a,
∑

k∈K(v
k
a +vk

t(a))) for all a ∈ AL. Ideally, our estimations should be equal to the

exact or observed information, meaning the closer the points are to the identity line (the

straight line passing through the origin (0,0) with a slope of 1), the better.

We take one instance for each type of variation, i.e., increasing demand (Figure 24),

decreasing demand (Figure 25), and both (Figure 26). To analyze the most unfavourable

case for our estimation approach, we consider the case where all entries of the OD matrix

change.
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Figure 24: Comparison of estimated and exact passenger demand and passenger flow for
instance Incr 100%.
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Figure 25: Comparison of estimated and exact passenger demand and passenger flow for
instance Decr 100%
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Figure 26: Comparison of estimated and exact passenger demand and passenger flow for
instance Both 100%

Notice that Figures 24–26 exhibit a great similarity (fit to the line with a slope of

1) for the estimated and exact/observed values of demand and passenger flows.

In addition to performing the comparison for the case of observing 100% of the

line segments, we also show the results with an observation level of 50% (and 100%

of the stops). The results are presented below, where we can see that although there

are significant differences between estimated and observed flow only on a few arcs, the

similarity between estimated and exact demand prevails.
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Figure 27: Comparison of estimated and exact passenger demand and passenger flow for
instance Incr 100%, but using only 50% of observed flows.
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Figure 28: Comparison of estimated and exact passenger demand and passenger flow for
instance Decr 100%, but using only 50% of observed flows.
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Figure 29: Comparison of estimated and exact passenger demand and passenger flow for
instance Both 100%, but using only 50% of observed flows.

The above results reinforce our conclusions about the usefulness of optimisation

models and different types of information for estimating Origin-Destination matrices.
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Appendix B

Analysing our model assuming

changes in the transit network

In addition to changes in passenger demand for different origin-destination pairs, other

changes that may occur over time include the reconfiguration of the transport network in

terms of stops of transit lines. This is especially true in scenarios of cities with a high level

of change due to land use trends, socio-economic activities, and even those recurrently

affected by disasters. In this context, we conducted an experiment to evaluate our model

by assuming that at the time of taking the outdated demand information, one line was

missing, as shown in Figure 30.
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Figure 30: Old and new sets of transit lines to analyse our model D, assuming changes in
the transport network.

Based on the latter scenario, model D was implemented on the instances described

in Appendix A assuming a 100% level of observed flows. The results are shown in Figures

31–33.
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Figure 31: Comparison of estimated and exact passenger demand and passenger flow for
instance Incr 100%, using 100% of observed flows.
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Figure 32: Comparison of estimated and exact passenger demand and passenger flow for
instance Decr 100%, using 100% of observed flows.

 0

 200

 400

 600

 800

 1000

 1200

 0  100  200  300  400  500  600  700  800  900

OD Demand
Identity

±20% Error

E
s
ti
m
a
te
d

 
D
e
m
a
n
d

Exact Demand

 0

 500

 1000

 1500

 2000

 2500

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Segment Flow
Identity

±20% Error

E
s
ti
m
a
te
d

 
F
lo
w

Observed Flow

Figure 33: Comparison of estimated and exact passenger demand and passenger flow for
instance Both 100%, using 100% of observed flows.

Note that the flow estimation resulting from our model is of good quality. However,

there is a deviation of more than 20% between estimated demand and actual demand for

a few OD pairs (less than 13.33%). These aforementioned results indicate that the model

needs to be enhanced to address changes in the transport network.

Karla Isabel Cervantes Sanmiguel
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tion, and control of bus transport systems: A literature review. Transportation Research

Part B: Methodological, 77:38–75.

https://es.globalpetrolprices.com/Chile/diesel_prices/
https://es.globalpetrolprices.com/Chile/diesel_prices/
https://es.globalpetrolprices.com/Chile/electricity_prices/
https://es.globalpetrolprices.com/Chile/electricity_prices/


Bibliography 71

Islam, A. and Lownes, N. (2019). When to go electric? a parallel bus fleet replacement

study. Transportation Research Part D: Transport and Environment, 72:299–311.

Jeroslow, R. G. (1985). The polynomial hierarchy and a simple model for competitive

analysis. Mathematical Programming, 32(2):146–164.

Kementerian Dalam Negeri Republik Indonesia (2021). Peraturan menteri dalam

negeri nomor 1 tahun 2021. https://peraturan.bpk.go.id/Details/163288/

permendagri-no-1-tahun-2021. Accessed: 01-June-2024.
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