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ABSTRACT

This doctoral thesis explores the application of operations research techniques to improve
the performance and sustainability of public transport systems. The research is struc-
tured around two complementary studies that address critical challenges in the planning
and management of public transport networks: (i) the estimation of Origin-Destination
Matrices (ODMs) from heterogeneous data sources, and (ii) the sustainable planning of

bus fleet replacement under economic, environmental, and social objectives.

In the first part of this thesis, we address the problem of estimating public transport
ODMs by developing a series of bi-level optimisation models that integrate different types
of information, including outdated matrices, observed passenger flows, and boarding and
alighting data. These models are reformulated into single-level mathematical programmes
and solved using commercial solvers on benchmark instances. The results demonstrate
that the inclusion of multiple data types significantly improves estimation accuracy, and
provide valuable insights into the role of data availability and structure in transport

demand modelling.

The second part focuses on the transition towards sustainable public transport sys-
tems by proposing a multi-objective optimisation model for the replacement of diesel bus
fleets with electric vehicles. The model determines the timing, quantity, and type of
vehicles to purchase, as well as their optimal allocation across bus lines, under budgetary
and operational constraints. The objectives include minimising total costs, maximising
fleet electrification, and promoting equity in vehicle distribution across different city re-
gions. An epsilon-constraint algorithm is implemented to approximate the Pareto front
and reveal the trade-offs between the competing goals of economic efficiency, environ-

mental impact, and social equity.

Together, these two studies contribute to the field of public transport optimisation
by providing novel mathematical formulations, computational approaches, and policy-
relevant insights. The thesis advances the understanding of how data-driven optimisation

can enhance both the operational efficiency and sustainability of urban transport systems,

Xiv



ABSTRACT XV

offering practical tools and analytical frameworks for decision-makers in the transition

towards more intelligent and equitable mobility.

Keywords: public transport optimisation, Origin-Destination Matrix estimation, bi-
level programming, multi-objective optimisation, sustainable mobility, electric bus fleets,

operations research.



CHAPTER 1

INTRODUCTION

1.1 CONTEXT

Efficient and accessible public transportation systems are fundamental pillars of sustain-
able urban development. Mobility plays a central role in the quality of life of citizens,
influencing access to employment, education, healthcare, and social opportunities. As
urban populations continue to grow, the reliance on private vehicles has intensified, res-
ulting in increased traffic congestion, air pollution, and greenhouse gas emissions. This
trend underscores the urgent need to strengthen public transport systems, not only to alle-
viate congestion but also to reduce environmental impacts and improve urban well-being.
Investing in high-quality public transportation generates benefits that extend beyond mo-
bility, contributing to economic productivity, environmental protection, social equity, and
public health (Tumlin, 2012).

Designing and operating an efficient public transport system is a complex task that
typically involves a structured sequence of decision-making problems, including network
design, frequency setting, timetable design, and fleet and crew scheduling (Ceder and
Wilson, 1986). These planning stages operate at different decision levels, strategic, tac-
tical, and operational, and involve trade-offs among cost efficiency, service quality, and
environmental performance (Desaulniers and Hickman, 2007; Ibarra-Rojas et al., 2015).
The interdependence of these stages and the heterogeneity of available data make com-
prehensive optimisation approaches both challenging and essential. As such, research in
this field often focuses on specific strategic components that can substantially enhance

the performance and sustainability of transit systems (see Figure 1).
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Figure 1: Decision levels in public transport planning and their associated problem.
Source: Ibarra-Rojas et al. (2015).

This research focuses on two strategic-level problems that arise once the transit
system is already established and operational. At this stage, the network structure and
main service design decisions are in place, and the emphasis shifts towards enhancing

system performance through data-driven analysis and long-term planning (see Figure 2).
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Better demand understanding
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Informed operational decisions

Public Transport System

Reduced greenhouse gas emissions
Improved air quality

Equitable allocation
Cost-efficient transition

Electric Bus LN
Fleet Planning 1+

Figure 2: Strategic-level decisions and benefits in public transport.
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CHAPTER 1. INTRODUCTION 3

Within this context, this research addresses two strategic-level problems that con-
tribute to improving public transport planning and operation through optimisation-based
methodologies. The first research project focuses on estimating passenger demand in
transit networks by developing different mathematical models for origin-destination (OD)
matrix estimation using various data sources that provide different types of information
such as boarding/alighting counts, passenger flows, and outdated OD matrix data (see
upper panel in Figure 3). The second project introduces a multi-objective optimisa-
tion framework for planning the sustainable replacement of diesel bus fleets with electric
vehicles in a multi-year planning horizon, optimising economic, environmental, and so-
cial objectives, leading to a sustainable approach of public transport (see lower panel in

Figure 3).
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..............................

(b) Sustainable bus replacement

Region B \} 4 || Region B
Region A Region A \

Region C - Region C
| |
.I Purchase buses/infrastructure, salvage . ! é Costs
Period t Period t+1 |

buses, and assign technology to lines

Figure 3: Optimisation approaches of this study.

Based on the above, our goal is to provide handy tools for strategic planning in pub-
lic transport. In particular, by implementing mathematical programming techniques to
model relevant decision-making problems in transportation, taking advantage of trending

technologies and available data, as well as propose efficient solution algorithms capable
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CHAPTER 1. INTRODUCTION 4

of generate high-quality solutions in acceptable computational times. We now formally

introduce the research objectives of this study.

1.2 RESEARCH OBJECTIVES

The overarching objective of this doctoral research is to develop and analyse optimisation-
based models that enhance the efficiency and sustainability of public transport systems.
This thesis integrates two complementary studies: one focused on improving the estima-
tion of passenger demand through origin-destination (OD) matrices, and another dedic-
ated to supporting the transition towards sustainable bus fleets. Together, these models
aim to provide decision-makers with robust, data-driven tools for optimising both opera-

tional performance and long-term environmental goals.

1.2.1 GENERAL OBJECTIVE

The general objective of this research is to formulate and evaluate optimisation models

that contribute to sustainable public transport planning by:

e Enhancing the accuracy of OD matrix estimation using multiple types of passenger
data, and

e Designing multi-objective strategies for electric bus fleet replacement that balance

economic, environmental, and social considerations.

1.2.2 SPECIFIC OBJECTIVES
The specific objectives of this doctoral research are to:

1. Study public transport systems to identify optimisation opportunities that improve
service efficiency and sustainability, particularly in demand estimation and fleet

management.

2. Develop mathematical formulations for two interrelated problems: (i) bi-level op-
timisation models for estimating OD matrices from heterogeneous data sources,
and (ii) a multi-objective optimisation model for electric bus fleet replacement and

allocation.

3. Implement computational solution methods, including single-level reformulations
and the epsilon-constraint algorithm, and assess their performance on benchmark

mstances.

Karla Isabel Cervantes Sanmiguel
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4. Investigate the trade-offs among the objectives in both models such as data use
versus accuracy in OD estimation, and cost versus equity and emissions reduction

in fleet planning.

5. Derive practical recommendations for transport authorities to support evidence-

based, equitable, and sustainable decision-making in public transport planning.

1.3 METHODOLOGY

The research develops and applies optimisation-based approaches to address two distinct
challenges in public transportation planning. For origin-destination matrix estimation,
bi-level models are formulated to account for combinations of outdated matrices, ob-
served passenger flows, boarding and alighting data, and network structural character-
istics. These models are reformulated into single-level optimisation problems and solved
using commercial solvers across benchmark instances to evaluate the impact of differ-
ent information types on estimation accuracy. In the context of sustainable bus fleet
replacement, a multi-objective optimisation framework determines the timing, quantity,
and allocation of electric vehicles, incorporating economic, environmental, and social cri-
teria. An e-constraint algorithm is employed to approximate the Pareto front, facilitating
the analysis of trade-offs among objectives. Computational experiments and sensitiv-
ity analyses are conducted to assess model performance, explore the influence of input

parameters, and provide insights for strategic decision-making.

1.4 SCIENTIFIC CONTRIBUTIONS

This doctoral research makes several scientific contributions to the field of public transport
optimisation and sustainable mobility planning. These contributions span methodological,
analytical, and practical aspects, addressing two major challenges in urban transport
systems: (i) the accurate estimation of passenger origin-destination (OD) matrices using
diverse data sources, and (ii) the sustainable replacement and allocation of bus fleets

under multiple objectives. The key contributions are summarised as follows:

1. Nowel optimisation models for OD matrix estimation. This thesis introduces a set
of bi-level optimisation models designed to estimate public transport OD matrices
by integrating multiple data types, including outdated OD matrices, passenger flow
data, and boarding-alighting information. The models are reformulated into single-

level problems, allowing their solution with a standard commercial solver. This

Karla Isabel Cervantes Sanmiguel



CHAPTER 1. INTRODUCTION 6

approach provides a systematic framework to evaluate how different data combin-
ations affect the accuracy of OD matrix estimation, an aspect that has received

limited attention in previous research.

2. Comprehensive analysis of data-driven estimation accuracy. Through numerical
experiments, this research quantifies the impact of various data inputs on model
performance and accuracy. The analysis reveals the importance of data selection
and the interactions between different data sources, offering valuable insights for
transport agencies aiming to improve demand estimation with limited or heterogen-

eous datasets.

3. A multi-objective optimisation framework for sustainable fleet planning. A new
multi-objective model is developed to guide the replacement of diesel bus fleets
with electric vehicles. The model simultaneously minimises total costs, including
acquisition, maintenance, energy, and infrastructure costs, while maximising fleet
electrification and promoting equity across city regions. This comprehensive formu-
lation captures the economic, environmental, and social dimensions of sustainable

transport planning within a unified optimisation framework.

4. Application of the epsilon-constraint method for Pareto front approximation. The
proposed model applies the epsilon-constraint algorithm to generate a representative
set of non-dominated solutions, allowing a detailed exploration of trade-offs among
competing objectives. This methodological contribution enhances decision support
by providing transport planners with alternative optimal strategies reflecting differ-

ent policy priorities.

5. Integration of optimisation insights for decision-making. Beyond individual models,
this research synthesises findings across both projects, demonstrating how optimisa-
tion techniques can inform data-driven and sustainability-oriented decision-making
in public transport planning. The results contribute to bridging the gap between
theoretical modelling and practical implementation, supporting more resilient and

equitable urban transport systems.

In summary, this thesis advances the understanding of how optimisation methods
can be employed to tackle key challenges in public transport management. It provides
methodological innovations, analytical insights, and decision-support tools that contribute

to both the academic literature and real-world transport policy design.

Karla Isabel Cervantes Sanmiguel
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1.5 THESIS STRUCTURE

This thesis is structured to systematically present the research conducted on public trans-
port demand estimation and sustainable bus fleet planning. Chapter 1 presented the con-
text, research objectives, methodology, and key scientific contributions. Chapter 2 reviews
the relevant literature on origin-destination matrix estimation and electric bus fleet trans-
ition, highlighting the gaps addressed by this work. Chapter 3 details the bi-level optim-
isation models for estimating public transport OD matrices, including their formulation,
computational approach, and analysis of results. Chapter 4 develops a multi-objective
framework for sustainable bus fleet replacement, addressing economic, environmental, and
social objectives, and presenting solution methods and managerial insights. Chapter 5
summarises the main findings, discusses implications, and outlines directions for further
research. Supporting analyses and additional computational details are provided in the

appendices.

Karla Isabel Cervantes Sanmiguel



CHAPTER 2

RELATED LITERATURE

Urban public transport systems are the focus of extensive research due to their critical
role in ensuring mobility, reducing environmental impacts, and promoting social equity.
In this context, two complementary strands of literature are particularly relevant to this
thesis. The first concerns the estimation of origin-destination matrices (ODMs), which are
essential for understanding passenger travel patterns and informing operational decisions
such as line frequencies and network design. The second strand focuses on the planning
and optimisation of bus fleet transitions, particularly the replacement of diesel buses
with electric vehicles, considering multi-objective criteria including cost, environmental
impact, and equitable service distribution. This section reviews both bodies of literature
separately, highlighting methodological advances, key findings, and the context in which
each project of this thesis is situated. By examining these two strands, we establish the
foundation for the subsequent chapters, which present the original contributions of this

research.

2.1 ORIGIN-DESTINATION MATRIX ESTIMATION

Historically, ODMs were obtained from passenger surveys, which are usually infrequent
due to their high cost (Bera and Rao, 2011). In recent years, technological advances have
facilitated the acquisition of data through various automatic data collection systems,
such as Automatic Vehicle Location (AVL), Automatic Passenger Counting (APC), and
Automated Fare Collection (AFC) systems (Mohammed and Oke, 2023). Consequently,
researchers have focused their efforts on the ODMs estimation by incorporating easily
obtainable information. Our literature review draws on methodologies to estimate an
ODM for public transport systems that utilise different types of data, allowing us to
highlight the context and contributions of our study effectively. Table 1 summarises the
type of information used in each study reviewed and emphasises the analysis of the impact
of different data types on the estimated ODM.
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Outdated information Updated information

Study ODM Pax flows Observed Alighting Boarding
ODM
structure structure flows data data

Lam et al. (2003) v v v
Wu and Lam (2006) v v v
Chéavez-Hernandez et al.
(2019) v v
Barry et al. (2002) v
Alsger et al. (2015) v
Sénchez-Martinez (2017) v
Hamedmoghadam et al. v
(2021)
Liu et al. (2021) v v
Kumar et al. (2019) v v v
Ait-Ali  and  Eliasson
(2022) v v v
Our study v v v v v v

Table 1: Related studies for Origin-Destination matrix estimation for public transport.

As shown in Table 1, common studies typically utilise outdated ODMs and passen-
ger flow structures. However, they also incorporate recent information, such as observed
flows along specific arcs in the transit network. For instance, Lam et al. (2003) proposed
a bi-level model to estimate ODMs where the lower level corresponds to a frequency-
based stochastic user equilibrium assignment model with decisions of line frequencies.
Wu and Lam (2006) introduced a bi-level program that optimises error measurements
in observed flows and ODM at the upper level while addressing a stochastic user equi-
librium assignment in the lower level based on a frequency-adaptive congested transit
network model. The researchers suggested a heuristic solution algorithm, although they
noted that its applicability to large transit networks might be limited in practice. Lastly,
Chéavez-Hernandez et al. (2019) developed an augmented Lagrangian model and an iter-
ative solution method to deliver high-quality solutions with reduced CPU times. They
tested this approach on the Winnipeg and Valley of Mexico transit networks, finding
that the elimination of pairs with no demand in the outdated ODM notably reduced

computational times.

Regarding the ODM estimation for public transport using only new information,
common inputs include boarding counts. For example, Barry et al. (2002) employed
New York City Transit’s MetroCard data to determine trip sequences and origin stations,
assuming that passengers frequently return to their previous destination station and con-
clude their day where it started. They found these assumptions valid for 90% of subway
users, validating the methodology through exit counts and trip assignment modelling. Als-
ger et al. (2015) introduced an algorithm to generate matrices from user transactions using

Brisbane, Australia’s smart card data, testing the assumptions’ effects regarding walking

Karla Isabel Cervantes Sanmiguel
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distance and transfer times on the ODM. The findings indicated a minimal impact on the
estimated ODM with varying transfer time assumptions, with most passengers returning
to their initial origin within 800 metres on the same day. Sédnchez-Martinez (2017) pro-
posed a dynamic programming model considering various factors, such as waiting time,
in-vehicle time, and transfers, in inferring destinations. This model, now employed in Bo-
ston, Massachusetts, surpasses earlier models in accuracy. Hamedmoghadam et al. (2021)
developed a procedure that utilises statistical pattern recognition to enhance the inference
of alighting transactions and identification of transfers. They used smart card data from
Melbourne’s multi-modal public transport network to estimate the ODM accurately. Ad-
ditionally, Liu et al. (2021) included both boarding and alighting data, stating that ODM
estimation methods at the route level cannot generalise to the transit network level if
relying solely on AVL or APC data. They emphasised the necessity of estimating ODMs
in transit networks using AVL/APC data by inferring transfers.

Besides boarding and alighting data, Kumar et al. (2019) and Ait-Ali and Eliasson
(2022) employed non-linear program and used Lagrangian relaxation, including observed
flows. Specifically, Kumar et al. (2019) utilised a solver and an algorithm to find good-
quality solutions for a sparse ODM, where the errors remained within a small range, and
as matrix sparsity increased, the method yielded more precise results. Meanwhile, Ait-Ali
and Eliasson (2022) evaluated how the accuracy of estimated matrices improved with the
inclusion of additional data on link flow, destination count, and average travel distance,
starting from origin counts only. They reported that link flows are more challenging to
estimate than exit flows; relying solely on entry and exit data is insufficient for precise
link flow estimation; average trip distance enhances estimation accuracy; the value of
additional destination counts diminishes slowly, justifying the need for more exit station
observations; and adding link flow data for some links has minimal impact, especially

when other data are already considered.

In contrast to previous approaches, our work introduces multiple decision bi-level
models for ODM estimation. Our key contribution, as highlighted in Table 1, differs
from prior research in several ways. Firstly, we focus on the structure of the outdated
ODM, which has received limited attention in previous studies. Additionally, we conduct
our research in the context of public transport, which directly impacts our assignment
problem, addressing specific passenger actions such as waiting, travelling, and transferring;
we also consider factors such as the frequency of each line and bus capacity. Finally,
we assess the impact of various combinations of data types on the estimated Origin-

Destination matrix.
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The accurate OD matrices produced through these methodologies serve as critical
inputs for the second strand of our literature review: optimising electric fleet transitions

under multi-criteria objectives.

2.2 ELECTRIC BUus FLEET REPLACEMENT

Operations research techniques such as mathematical programming models have been
extensively applied to determine the optimal composition of the fleet for a multi-period
planning horizon. These models aim to minimise total system costs while adhering to
constraints such as fleet capacity, vehicle life expectancy, and operational requirements
(e.g., Emiliano et al., 2020b). On the other hand, the electrification of public transport-
ation networks is a key strategy to reduce greenhouse gas emissions and improve urban
air quality, and in the electric bus planning process (strategic, tactical, and operational),
various challenges arise. These include: 1) allocation of investments for the electric bus
fleet and charging infrastructure, 2) determining optimal locations for charging infrastruc-
ture, 3) addressing the scheduling of electric vehicles, and 4) managing the problem of

scheduling battery charges (Perumal et al., 2022).

In particular, the assignment of trips to different types of electric buses plays a
crucial role in optimising the operational and environmental performance of public trans-
portation systems. Emiliano et al. (2020a) address this problem by formulating a model
that optimises a weighted sum of emissions and total costs. Their experimental results
highlight the inherent trade-off between economic and environmental objectives. Sim-
ilarly, Tang et al. (2023) explore the problem of bus selection for a single transit line,
integrating vehicle scheduling decisions under the assumption that all buses are replaced
simultaneously. This assumption simplifies the optimisation process, but also underscores
the importance of considering fleet heterogeneity and gradual replacement strategies in
real-world applications. These studies emphasize that bus assignment decisions are not
only influenced by cost and environmental factors, but also by operational constraints and
long-term fleet renewal strategies, making them a key component in sustainable transit
planning. Finally, sensitivity analysis such as that presented in Feng and Figliozzi (2014)
plays a crucial role in the evaluation of different replacement policies and parameters
under uncertainty. In particular, variations in energy prices, advances in battery techno-
logy, and future policy changes have recently been studied for a more efficient adoption

of electromobility (see Laboratory, 2016).
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Our review of the literature focuses on fleet transition problems considering electric
buses and implementing operations research techniques in a multi-period framework that

provides valuable information to decision makers.

Various research studies have examined the issue of fleet replacement within the
framework of moving toward sustainable public transportation systems. Li et al. (2018)
present a problem that aims to maximise the total net benefit of early replacement, where
both the optimal size and the composition of the fleet can be determined under budget
constraints. The authors formulate the problem as an integer programming model, which
is solved using CPLEX for a real-world scenario in Hong Kong. In addition, a sensitivity
analysis is conducted to examine the impact of the recharging scheme and the purchase
price of buses. Islam and Lownes (2019) focus on minimising the total life cycle cost of
fleet replacement while ensuring annual emission reductions and meeting minimum elec-
trification targets. Their mixed-integer programming (MIP) model, implemented using
a commercial solver in a case study in Connecticut, USA, highlights the computational
efficiency of their approach and its ability to perform sensitivity analyses for evaluat-
ing policy implications. Similarly, Pelletier et al. (2019) develop an MIP framework to
support fleet electrification on a long-term planning horizon of 30 years. Their model
optimises a weighted sum of costs while incorporating constraints related to trip compat-
ibility, maximum vehicle age, and power and space limitations in depots. Applied to a
real-world case in France, their results indicate that the model can effectively identify the
most suitable fleet types for short- and medium-term planning, as well as assess mid-term

cost variations due to factors such as battery replacement.

More recently, Tang et al. (2021) have addressed the fleet replacement problem by
considering different electric bus technologies and optimising a weighted total that in-
cludes electrification expenses, emission costs, and a measure of user crowdedness. Their
mixed-integer non-linear programming (MINLP) model accounts for budget constraints,
minimum usage of purchased buses, and maximum bus age. Implemented in a case study
in Qingdao, China, their results highlight the influence of social considerations in fleet re-
newal decisions, demonstrating that cost minimization alone may not be sufficient when
designing sustainable and user-friendly public transport systems. Finally, Zhou et al.
(2023) proposed an MIP model to optimise the progressive renewal of bus fleets, consid-
ering not only economic costs, but also costs of climate, health, and battery recycling.
Their model incorporates government incentives as a decision variable and includes key
constraints such as bus conservation, charger demand, and charge conservation. Tested
on a real-world scenario in Singapore, their approach demonstrates the applicability of
the model to the evaluation of different policy incentives. Collectively, these studies un-

derscore the potential of operations research techniques to address the fleet replacement
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problem, including a wide range of economic, operational, environmental, and social con-
straints, making them valuable tools to support decision-making in the planning of sus-

tainable public transportation.

2.3 SUMMARY OF THE LITERATURE REVIEW

The literature reviewed in this chapter highlights the diversity and complexity of research
on urban public transport systems. The first strand demonstrates how ODM estimation
techniques have evolved from classical statistical models to more advanced optimisation
and data-driven approaches, enhancing the accuracy and applicability of travel demand
representation. The second strand underscores the growing emphasis on sustainable fleet
management, where multi-objective optimisation plays a vital role in achieving trade-offs

between cost efficiency, environmental performance, and social equity.

By consolidating insights from both areas, this review provides a comprehensive
background that informs the two independent yet complementary projects developed in
this thesis. The subsequent chapters build upon these foundations, presenting the pro-

posed optimisation models, their implementation, and the resulting analyses in detail.
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CHAPTER 3

OPTIMISATION MODELS FOR ESTIMATING
PUBLIC TRANSPORT OD MATRICES
USING DIFFERENT DATA TYPES

Understanding how passengers move through an urban public transport network is funda-
mental for efficient planning and operation. Origin-destination matrices (ODMs) provide
a detailed representation of these travel patterns, serving as a cornerstone for service
design and optimisation. However, obtaining accurate and up-to-date ODMs remains a
challenge due to limitations in available data and the cost of large-scale surveys. This
chapter presents optimisation-based models for estimating ODMs using multiple data
sources and information types. By formulating the estimation problem as a series of
bi-level programmes that are later reformulated into single-level models, we explore how
incorporating various data types, such as outdated ODMs, passenger flows, and board-
ing and alighting counts, affects estimation accuracy. The analysis provides insight into
the value of different data combinations and highlights the importance of information

structure in improving the reliability of ODM estimations.

3.1 ESTIMATING PASSENGER DEMAND IN PUBLIC
TRANSPORT NETWORKS

Origin-Destination (OD) demand matrices provide information about how passengers
travel between different zones using a transportation network. This information serves
as input for other decision problems in transit network planning, such as transit network
design, frequency setting, and timetable design (Ibarra-Rojas et al., 2015). However,
estimating an OD matrix (ODM) is a complex task, but it is possible to obtain an ap-

proximation by using data obtained from various sources of information.
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For example, historical data and population surveys can provide an outdated ODM,
while personnel physically counting, video cameras, and/or passive sensors can yield ob-
served passenger flows along transit lines. Additionally, Automated Fare Collection (AFC)
and Automated Passenger Count (APC) systems can offer boarding and alighting data
(see Figure 4). This variety of information aids in the development of optimisation models.
Moreover, recollecting and analysing different sources of information is time-consuming,

and it is not simple.

We are interested in alternative approaches to the laborious and expensive process of
obtaining data through population surveys, typically conducted every 1 or 2 decades. For
example, the literature on estimating ODMs from traffic counts (observed flows) has been
extensive (see Bera and Rao, 2011). In particular, Cascetta and Nguyen (1988) presented
a methodology for estimating ODMs from traffic counts using a generic traffic assignment
map; they showed that the approach is also valid for transit networks with an appropriate
assignment map. However, no method is universally accepted as the best because the
efficiency of implementing each method depends on factors such as the network size and
behaviour, complexity of the proposed methodology, availability of data, and the desired
level of accuracy. In response, we propose different and new bi-level optimisation models

for ODM estimation considering different types of information.

Our major goal is to identify the information types with the most significant im-
pact on the quality of the generated ODM. In particular, we use the following types of

information:

1. An outdated ODM (alternatively called sample, target, prior or obsolete matrix)
contains information about travel between different locations but does not provide
accurate data on travel patterns. It is obtained using historical data or popula-
tion mobility surveys and does not reflect changes in how people travel that may
have occurred since collecting that data. We also examine the structure of the out-
dated ODM (also called skeleton) and passenger flows (alternatively known as link
probabilities) by assuming a specific passenger travel behaviour, i.e., considering a
particular assignment problem (see Behara et al., 2020). We consider proportions;
for example, the demand proportion can be represented by the ratio of demand for
a specific OD pair to the total demand in the transit network, while passenger flow
proportions can be seen as the ratio of the number of passengers for an OD pair
using a specific segment of a transit line with respect to the total number of pas-
sengers of that OD pair. Indeed, the passenger flow proportions can be seen as the
skeletal framework of the ODM, representing the preferences of passengers. This

type of data can be obtained directly from the outdated ODM by solving an as-
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signment problem to identify the used routes and will be used to guide optimisation
models (see Behara et al., 2022; Hussain et al., 2022). The use of this information
shows how passengers are distributed across the system for different origin and des-
tination pairs, and we will use these passenger volumes as a reference to guide our

optimisation model.

2. Observed flows of passengers travelling on a bus through a specific segment of a
transit line (also known as traffic counts, link volumes, segment flows), which can
be obtained from manual and automated techniques. Manual methods involve per-
sonnel physically counting and recording the number of passengers passing a specific
location, whereas automated methods may use technologies such as video cameras
or passive sensors to collect data automatically (see Chévez-Hernéndez et al., 2019;
Lam et al., 2003; Pamula and Zochowska, 2023).

3. Boarding and alighting data (or production and attraction zone data) are informa-
tion about the number of passengers who board/alight a vehicle of a transit line at
specific stops. This can be automatically collected through AFC and APC systems
(e.g., Kumar et al., 2019; Mohmmand et al., 2023). In general, it is easier to ob-
tain boarding counts than alighting, but our methodology remains for any kind of

passenger count at stops.

The efficiency of a method to estimate an ODM depends on the different types of
information and how the information is used. In this study, we propose a comparison
of new bi-level optimisation models to estimate an ODM based on different data types.
Our experimental results lead us to identify the data type with the most significant effect
on ODM estimation in multiple scenarios with different demand behaviours. Figure 4

exhibits a scheme of our methodology for ODM estimation.

Karla Isabel Cervantes Sanmiguel



CHAPTER 3. OPTIMISATION MODELS FOR ESTIMATING

PUBLIC TRANSPORT

OD MATRICES USING DIFFERENT DATA TYPES 17
Sources Types of Information Models
| ———— e ——— 1
T I T pivwirrat
Population mobility surveys :> | Outdated Structure of ; _M_od_el é N
Historical data / I ODM the outdated X
i | ODM and X
i | passenger E e e
. . il | flows : ! ModelB 1 |:> -
Personnel physically counting ; | Observed | e Analysis
Video cameras |:> | flows of | : and
Passive sensors . [| passengers |l i |:> Comparison
i == | i Model C
Automated fare collection :> Boarding and /1
Automatic passenger count alightingdata | © i {77 ModelD

Figure 4: Proposed approach to evaluate optimisation models to estimate an ODM using
different types of information.

In summary, this study addresses the estimation of passenger demand at a strategic
level of public transport planning, once the transit network is already established. The
proposed optimisation-based approach provides a structured framework to analyse how
different data sources, such as outdated OD matrices, observed flows, and boarding and
alighting information, affect the accuracy of OD matrix estimation. This formulation
contributes to improving demand modelling and also enhances the quality of data-driven
decision-making processes that support subsequent stages of public transport planning,

such as network design and service frequency optimisation.

3.2 BI-LEVEL PROGRAMMING FORMULATIONS FOR THE
ODME

As it is mentioned above, we could use different sources of information to generate an
ODM for public transport networks; thus, we define several decision problems in terms
of the input type. In general, to define our bi-level optimisation problems, we consider a
given network, an outdated ODM, and different types of information, such as observed
flow for some arcs of the network, the ODM structure, outdated flow proportions, and
observed demand in specific stops. Then, our ODME problems determine an estimated
ODM to minimise a weighted sum of the distance between the generated ODM and the
outdated one and the distance between generated flows and outdated flows in the upper

level, while the lower level solves the transit assignment problem minimising the total
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travel time taking into account the capacity of the buses. In particular, each variant of

our problem is defined in terms of the information assumed as an input.

We define the following notation for our ODME problems. Let GL = (NL, AF) be a
transit network, where N* is the set of stops and A” is the set of arcs (see left panel of
Figure 5). Suppose L is the set of lines with frequencies f; (fixed for the planning period),
and [(a) is the line associated with each arc a € A*. We assume known travel times ¢,
for each arc a € AY. Besides, we consider a transit vehicle (bus, train, or other) with
a capacity of ¢ pax/veh, and we define K as the set of OD pairs (o, d). To represent
the upper and lower level of our problem, we use the modelling approach proposed by
Cervantes-Sanmiguel et al. (2023), which identifies passenger actions such as waiting for
the first bus, performing transfers, waiting to transfer, and travelling by bus. The latter
approach takes the lines network G* as input, and then, it generates an extended network
as G = (N, A), where N is the set of stops N union with dummy nodes created to model
transfer events or compute waiting times. In the case of the arcs, set A represents the
union of waiting (A"), transfer (A7), and travel (A") arcs, where t(a) € AT represents the
same physical travel trajectory as arc a € AV, but after travelling along that trajectory,
passengers transfer to another line for the next leg of their trip. Note that the travel
and transfer arcs (a € AV U AT) represent segments of the line [(a). Therefore, the flow
passing through these arcs represents passengers on a bus of the line [(a). Furthermore, it
is important to highlight that information such as the set of bus lines, service frequencies,
arc capacities, OD pairs, travel times, and the exclusive associations of each arc to a single
bus line in the extended network G are inherited from the lines network G*. For further
insights into the network generation process, please refer to Cervantes-Sanmiguel et al.
(2023). Figure 5 represents the modelling approach for the extended network G = (N, A),

where it can be noticed that the different arcs represent the different actions of passengers

in the transit system.

Set of lines L = {1,2,3}
——  Travel arcs AV
"""" » Transfer arcs AT
— —» Waiting arcs AW

AV UATUAY =4

Figure 5: Modeling approach of Cervantes-Sanmiguel et al. (2023) for the transit assign-
ment problem in the lower level of our ODME problems.
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Figure 6(a) exhibits passengers travelling from origin o to destination d with the
following route: first, they board Line 1 and travel from the origin o to stop 2; then,
they transfer to Line 2 and continue their journey from stop 2 to the destination d. This
route can be represented in network G with the sequence of nodes o —o0y —1—-2—25—d
(see Figure 6(b)), where arc (o0, 01) represents the passengers’ waiting action at the origin
before boarding Line 1. Then, from (o1, 1), passengers travel on Line 1’s vehicle. Next,
from (1,2), they continue on Line 1’s vehicle but need to alight at stop 2 to transfer
to Line 2. At that point, they need to wait again, which is reflected in the arc (2,25),
and finally, they continue their journey from (23,d) to reach their destination d. Note
that all routes can be represented in network G; thus, the passenger assignment problem
can be solved by a minimum cost flow problem in the extended network with specific
capacity constraints (due to vehicle capacities and lines’ frequencies), and the optimal
solution represents the minimum total travel time in the network. We highlight that
outdated flows are also generated with this model using the outdated demand as input.
We highlight that different assignment models could be used to define other optimisation
problems, but we use our proposed approach since it also considers hard constraints of
capacity of arcs associated with transit lines, which is suitable in the context of public

transport networks.

...... 'H'H‘H‘ @

R ﬂ“@-‘; m‘/. ................. ,@_ i E-’
) ,H,“\ ,H,H‘F/ ,ln . line 2

GL = (N, AD) 0 (of G = (N, A)

(a) Representation in the lines network GEL. (b) Representation in the extended network G.

Figure 6: Representation of an example path that passengers can follow to get from the
origin o to the destination d.

In the case of different types of information, we consider the following input that
will lead to different models for the ODME problem.

1. The first type of information is the outdated demand. In particular, we define
parameters g, to represent passengers travelling from op to dj for each OD pair
k € K in the outdated demand. Note that by solving our assignment problem
considering the outdated demand g, we can obtain an outdated passenger flow
denoted as 0¥ for each arc a € A and OD pair k € K. The latter means that we

assume passengers travel through the shortest path with available capacity, which
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holds true for both when the data for the outdated matrix was collected and for the
present time. We proposed using additional information to guide our model towards

a more accurate estimation.

2. The structural information of the outdated demand is represented with the pro-

portion of demand g, for each OD pair k& = (o, d;) among all passengers in the

system, which is defined as P* = = 9 o In the case of structural properties of the
keK
outdated passenger flow, we define P* = ;—z as the proportion of the outdated flow

% of passengers travelling from o to dj through arc a € A (using the associated
line I(a) € L) in the extended network, among all passengers gy associated to that

origin-destination pair k € K.

3. The current passenger flow in lines along specific arcs of the transit network is
represented as observed flow, where A C A" is the set of arcs with observed flow 75
of passengers travelling in line [(a) through arc @ € A , which represents a segment
of the line [(a). Note that our arcs represent segments of lines and should not be

confused with a roadway used by vehicles from different lines.

4. The number of passengers boarding and alighting at specific stops can also be valu-
able information. This information can be extracted through the analysis of ticket
data and other sources. Then, we define observed stops N C NZ of the transit
network G, where we denote with pax; and pax. the passengers boarding and
alighting at stop n € N.

Now, we introduce the following real non-negative decision variables for our models,
where variables v of passenger flow through the different arcs in the transit network are

the only ones corresponding to the lower-level problem.

e g,: estimated demand from origin o, to destination dy, for each k € K.

e 0, (8, ): deficit (excess) variable to measure the deviation between the estimated
and outdated demand of pair k € K.

e 5 (0,): deficit (excess) variable to measure the deviation between the estimated
and outdated passenger flow through arc a € A of pair k € K.

e 01(6;): deficit (excess) variable to measure the deviation between the estimated

and observed passenger flow through arc a € A.

e 7 (v ): deficit (excess) variable to measure the deviation between the estimated
and outdated matrix structure proportion of each pair £ € K. We highlight that

the matrix structure data can be obtained from boarding and alighting information.
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® v (14,): deficit (excess) variable to measure the deviations between the estimated

and outdated flow proportion through arc a € A of pair k € K.

e v¥: passenger flow from origin oy to destination dj through the arc a € A , using
the associated line [(a) € L.

Based on the notation above, we describe the following mathematical formulation,
including all the characteristics of our ODME problems. We highlight that only some
of the optional elements will be chosen regarding the kind of information assumed as an
input (see Section 3.4.1 for a detailed description of our model variants). We highlight
that our model is formulated using the extended network G. This means that each arc is
exclusive to a single line, and we can identify waiting, transfers, and travel actions based
on the different types of arcs. The only information based on the lines network G* is the

observed data (A and N), which is rewritten for use within the G network in our model.

DirectDev(8) = 3 Z (65 + ;) + Bo Z Z (640 + 0pa) + B3 Z (0 +67)  (3.1)

keK keK acA acA

The objective function (3.1) of the upper level is the weighted sum of deviations for
the following direct comparisons: (i) estimated demand compared to outdated demand,
(ii) generated flows compared to outdated flows, and (iii) generated flows compared to
observed flows. The goal of using the outdated information on demand and flows in the
first two terms of the objective function is to guide the model during the optimisation
phase to obtain a behaviour of demand and passenger flows similar to the outdated data.
That said, the observed flows v; represent the current information of the system, but
as stated by Lundgren and Peterson (2008), it may be impossible to generate an ODM
satisfying those observed flows. Therefore, we will use soft constraints and optimise the

deviation function for observed flows in the third term of (3.1).

StructDev(y) = B> (% +7) + 85 D 2 (W + Vea) (3.2)

keK keK acA

As stated by Behara et al. (2020), common objective functions for ODM estimation
problems are based on direct comparisons concerning the ODM entries or arc flows, as
in function (3.1), neglecting structural properties such as proportions of demand and
flows. In response, we propose the objective function (3.2) to analyse the impact of
using the information on the structural properties of outdated data, which are optional

to be optimised. The first term is the deviation of the demand proportion for each OD
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pair k£ among the total demand.

In contrast, the second term is the deviation of the

flow proportion of passengers travelling from each OD pair k& € K through each arc a

in respect to the total demand of the OD pair k. Thus, our bi-level model, including

optional components (indicated within brackets), is described as follows.

min DirectDev(d) + {StructDev(fy)}

s.t.
— (5_ —+ (5]:- = Qk
5ka + 6ka = U
> (VE+ Vi) = 07 +0F =1
kK

{(ﬁkzgk)—ﬁﬂ::gk}
k' eK

{(Pfgk> = Yo+ Yia = Vfi}

{ > gkzpaxi}
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{ > g, =paz; }
keK:d=n

i, 0, 0f >0
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Vk e K
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Vk e K
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Yne N
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(U4)

(U5)

(U6)

(U7)

(U8)
(U9)
(U10)

Where for each arc a € A and for all k € K, variables v* solve the following program.

=2 D v,

min Assign(v

keK acA

s.t.

ko, ok
Z (vh+ Vi) < 0fia)
keK
> Vi < dfiw
keK

k k
DoVe— D Va=g
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Vae AV
Vae AV
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(L1)
(L2)

(L3)
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a€A] a€Ay
ZV];—ZV];ZO Vke K,neN —{ogd} (L5)
acA) a€A;
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Constraints (U1)—(U3) define deviation variables d, which are optimised in objective
function (3.1). In particular, equations (Ul) compute deviations between estimated and
outdated demand, while constraints (U2) are for estimated and outdated flows, except
arcs where demand is observed. Finally, restrictions (U3) compare the estimated flow and
observed flow in both travel and transfer arcs because they represent the same physical
path. Moreover, we define our optional or soft constraints for the upper level in terms of
the assumed information for the optimisation problems. First, equations (U4) and (U5)
compare the demand and flow proportions generated by our decision variables concerning
the outdated ones and compute the deviation variables v to be minimised in the object-
ive function (3.2). For example, in constraint (U4), P* is the proportion of passengers
travelling from oy, to dj regarding the total outdated demand; thus, the product between
P* and the estimated total demand > kex 8k results in a number of passengers travelling
from of to dji, which should approximate the estimated demand g, for OD pair k € K,
and similarly for equations (U5) We define constraints for given information on passenger
flow at specific stops N. In particular, constraints (U6) and (U7) guarantee that passen-
gers boarding and alighting at stop 7 € N correspond to the observed passengers flow
values pax, and pax,, respectively. In contrast to the observed flows, which are precise
information for which an ODM may not exist that reproduces observed flows precisely,
the amount of passengers boarding and alighting at specific stops is a piece of information
with less detail; therefore, we decided to include it as a hard constraint. Indeed, notice

that the parameter paz; (pax;) should match the sum of the entries for row (column)
i € N of the ODM.

The lower level problem is described by constraints (L1)—(L6), and the objective
function Assign(v) aiming to minimise the total travel times. Constraints (L1) restrict the
total passenger flow (considering all the OD pairs) along the travel arc a € AV (associated
to line [(a)) and the transfer arc t(a) € AT representing the same route segment of line
[(a) to be within the capacity limits due to vehicle capacity ¢ and the frequency f;(a)
of line I(a). The inequalities (L2) allow passenger flow through the arc a € AW, where
q - fi(e) is an upper bound of the passenger flow through arc a. The equations (L3)-(L5)
are flow balance constraints for each OD pair (og, d;) and node n € N. The nature of the
variables is defined by (U8)—(U10).
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We assume an optimistic approach, i.e., we assume that when the lower-level (fol-
lower) problem has multiple optimal solutions, the follower will choose the one that is
most favorable to the upper-level (leader) decision-maker (see Dempe, 2002). Note that
the terms (3.1) and (3.2) in the objective function of the upper level include the variables
Oka and e, Whose values are directly defined in terms of the decision variables v* of
the lower level. Moreover, we only use real and non-negative decision variables, leading
to linear bi-level programming formulations. However, even a linear bi-level program is
NP-Hard, as stated by Jeroslow (1985), and there is no general-purpose solver capable of
obtaining feasible solutions for it. Thus, we propose a methodological approach to refor-
mulate the bi-level models into single-level linear formulations using Karush-Kuhn-Tucker
(KKT) conditions and solve those reformulations to optimality using commercial solver,
leading to near-optimal solutions of the bi-level programs (see details of standard refor-
mulation approaches in Bard, 1998; Dempe, 2002). Since we are assuming an optimistic
approach, when multiple optimal solutions exist at the lower level, the objective function
in the single-level reformulation will select the configuration of lower-level variables that

yields the best value for the upper-level objective function.

3.3 SOLUTION METHODOLOGY: SINGLE-LEVEL
REFORMULATION

To reformulate our bi-level models into a single-level one and be able to solve it through a
general-purpose solver, we can replace the lower-level problem {min Assign(v) : (L1) — (L6)}
by its primal-dual optimality conditions. Initially, we must consider the upper-level vari-
ables as constants. In this case, g, is treated as a parameter in the lower level. As a

result, the dual problem associated with the lower level is formulated as follows.

max D(u) = — Z qfiayty — Z ¢ fiy i + Z (), — grug, ) (3.3)

acAV acAW keK
s.t.
— u}z + u?(a)k — ?(a)k S Cq V a &€ AV, k? - K (Rl)
—u+ uf(a)k. — u?(a)k <c¢, Vac AV ke K (R2)
- u,llj(a) + uf(a)k - u?(a)k < ¢, Vac AT ke K (R3)
ul u >0 Vac AV ac AV (R4)
uw, eR VneNkeK (R5)
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3

1.2
Where u,, u;, and u;,

. are dual variables associated with constraints (L1), (L2), and
(L3)—(L5) of the lower-level problem, respectively. The notations i(a) and j(a) are the
start and end nodes of arc a € A, respectively. Meanwhile, v(a) € AV represents the
same travel trajectory as arc a € AT, but without transfer to another line. Notice that
our objective function (3.3) has three terms associated with the right side of each family
of constraints (L1)-(L5). Moreover, the objective function Assign(v) in the lower level
is defined in terms of the cost and flow for all arcs a € A and OD pair k£ € K, while
the constraints have flow variables with coefficients {1,-1} in the left side; thus, to define
all the constraints in the dual problem, we create a constraint for each pair (a, k) with
ac AV UAY U AT and k € K with right side c,, where we only need to identify which
constraints in the lower level include the flow variable v, or —v, to add the associated

dual variables u in the left side.

Thus, we will use the following constraints to represent optimality for the lower-level
problem of the ODME.
(L1) — (L6), (R1) — (R3)
DD cave=— D afwua— Y thwut ) (gune - gugy) (R4

keK acA acAV acAW keK

It is important to observe that the right-hand side of equation (R4) is not linear due

3. To linearise, we implement the McCormick envelop

to products of variables g and u
relaxation approach, which is a relaxation technique well-suited for addressing a group of
non-linear problems including products of two real variables (MirHassani and Hooshmand,

2019), as giu? , and guj ;.

Considering that 0 < gy < g¥ and 0 < u?, < uY, and making the variable substi-

tution x;, = guu ,, Vk € K we add the following constraints.

zp > gvud o+ grut — gu” Vk e K (R5)
zp, < gru? Vk e K (R6)
zp < gvad Vk e K (R7)

Analogously, y, = gkugk v Vk € K we add the following constraints.

Yp > gngkk + gpu¥ — gYu? Vk e K (R8)
yr < gru Vk e K (R9)
yr < gUug Vk e K (R10)
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It is essential to highlight that this approach requires identifying lower and upper
bounds for each variables g and u®, which can be determined based on the problem’s
structure and considering other constraints. In our case, g, represents demand for a single
OD pair k; thus g¥ could be the total demand. In the case of variables u?,, according to
Spiess and Florian (1989), these dual variables are related to the total travel time from
node n € N to the destination node dj; thus, uV could be the total travel time using all
arcs a € A. However, it should be highlighted that proving that the given bounds do not
cut off any optimal point of the lower-level problem is as difficult as solving the bi-level
problem itself (Kleinert et al., 2020).

Based on the above, the following linear program represents the reformulations of

our bi-level programs.

min  DirectDev(d) + {StructDev(v)}

s.t.
gk — 0, +0) = Gk Vke K (U1)
vE 6+ oL =0k Va € A — U{a,t(a)},keK (U2)
acA
Z (vi+ Vf(a)) —0; +07 =10, vae A (U3)
ke
{(pkzgk/>—%+%‘!=gk} Vke K (U4)
KeK
{(pfgk>—%§a+%§zzvlj} Vke K,ae A (U5)
{ > & =paz) } vaeN  (U6)
keK:op=n
{ > g = pa:cn} Vie N (UT7)
keK:dp=n
Z (V]; + Vf(a)) < qfi) VaecAY (L1)
KeK
> i < dfya Vae A"V  (L2)
keK
Yovi- D vi=g VkeKo eN (L3)
aeAjk a€A,,
dovi= D vi=—sg VkeKd eN (L)
a€Ay a€Ay
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dovE-Y vi=0 VkeKneN—{ogd} (L5
acAf acA;

—uy 4 U, — J(a)k < cq Vac AV ke K (R1)
—u2—|—u()k j(a) < ¢, Vac AV ke K (R2)
Uy + Wy — Wiy < Ca Vac AT ke K (R3)
DD cavi=— ) dau,
keK acA acAY
- Z qfiayus + Z (1 — yn) (R4)
ace AW keK
zp > g"ud o+ gput — g"u” Vke K (R5)
Ty < gkuU Vk € K  (R6)
zp < gvad Vke K (R7)
yr > gY udkk + gpu¥ — gYu? Vke K (RS)
ye < gru’ Vke K (R9)
yr < g7uj Vk e K (R10)
g4, 0,0 >0 Vke K (US8)
6,65 >0 Vaec A (U9)
5y 0 V>0 Vke K,ae A (U10)
vi >0 Vke K,ae A (L6)
ul,uz >0 Vac AV, ac AV (RI11)
w, €R VneNkeK (R12)

Note that constraints (R4) are redefined by using the variables z;, and yj, to linearise
our models. Moreover, we recall that we use brackets for optional components of our
formulations. As can be seen in the next section of our experimental stage, we are now

able to solve our optimisation models using commercial solvers.

3.4 EXPERIMENTAL RESULTS

This section provides an in-depth account of the tested models and instance generation
process and presents the numerical results. We detail how each type of information
impacts the accuracy of ODM estimation within each model (similarly to Ait-Ali and
Eliasson, 2022).
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3.4.1 MODEL VARIANTS FOR THE ODME PROBLEM

In this section, we use different ODME models based on the different types of informa-
tion that can be considered as input in the decision process. We aim to identify what
kind of data and amount of it has the most significant impact on ODM estimation. This
analysis allows us to simplify our optimisation models by incorporating only essential
constraints and objective function terms while potentially enhancing computational effi-
ciency. By removing non-essential data, we mitigate the risk of the model over-fitting to
noise or irrelevant data, which could adversely affect its estimation capability. Addition-
ally, avoiding collecting irrelevant information leads to the decision maker’s more efficient
resource utilisation, dedicating time and effort exclusively towards areas that genuinely

impact the model’s performance.

Table 2 shows the tested models. The first column is the model name, while the
second and third columns exhibit the presence of optional constraints for structural prop-
erties and boarding/alighting passengers, respectively. We recall that all of our models
include constraints (U1)-(U3), (L1) — (L5), and (R1) — (R10). Finally, the last column

indicates the objective function to be optimised.

Soft constraints of | Hard constraints of
Model | structural properties | boarding/alighting | Objective function
(U4), (U5) (U6),(U7)
A X X DirectDev()
B v X DirectDev(0) + StructDev(7)
C X v DirectDev(9)
D v v DirectDev(0) + StructDev(v)

Table 2: Variant models for our ODME problem based on the different type of information
assumed as input in the decision-making.

We highlight that constraints (U1), (U2), and (U3), associated with data of outdated
and observed flows, are included in all of our models, since preliminary experiments
show improved performance when using them. We implemented these models using the
commercial solver CPLEX 22.1, employing Concert Technology in C+4-. We carried out
the implementation on a Mac Pro with a 3.5 GHz Intel Xeon E5 processor featuring six
cores and 16 GB of RAM.

3.4.2 GENERATED INSTANCES BASED ON MANDL’S NETWORK

To test the variety of models, we generated scenarios using a solution from Cervantes-
Sanmiguel et al. (2023) for the benchmark Mandl’s Swiss network (Mandl, 1980). Figure
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7 presents the lines and their frequencies constituting the transport system in Mandl’s

network and the travel times between two pairs of nodes using any line.

Frequency
(trips/hour):

M a8
048
M 48
| 12
M 48

Figure 7: Mandl’s network transport system with travel times between two stops extracted
from Cervantes-Sanmiguel et al. (2023).

Table 3 shows the outdated ODM ¢ of passengers per day used for the instances.
We highlight that a demand of passengers per minute, or any other time interval, can be

used in our method.
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Stops 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 400 200 60 80 150 75 75 30 160 30 25 35 0 0

1 400 0 50 120 20 180 90 90 15 130 20 10 10 5} 0

2 200 50 0 40 60 180 90 90 15 45 20 10 10 5 0

3 60 120 40 0 50 100 50 50 15 240 40 25 10 5 0
4 80 20 60 50 0 50 25 25 10 120 20 15 5 0 0

5 150 180 180 100 50 0 100 100 30 880 60 15 15 10 O

6 75 90 90 50 25 100 0 50 15 440 35 10 10 5 0

7 75 90 90 50 25 100 50 0 15 440 35 10 10 5 0

8 30 15 15 15 10 30 15 15 0 140 20 5} 0 0 0

9 160 130 45 240 120 &880 440 440 140 0 600 250 500 200 O
10 30 20 20 40 20 60 35 35 20 600 0 75 95 15 0
11 25 10 10 25 15 15 10 10 5 250 75 0 70 0 0
12 35 10 10 10 5} 15 10 10 0 500 95 70 0 45 0
13 0 5 5 5 0 10 5 5 0 200 15 0 45 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Outdated ODM ¢ (trips/24 hours).

Using this as a starting point, we defined a set of 90 randomly generated instances
divided into three types of change. In these instances, specific entries of g were: 1)
increased, 2) decreased, and 3) both increased and decreased to generate the exact ODM
g. We performed the latter to simulate different demand behaviours over time from the
last outdated matrix to the estimated one. We applied the variations within a [—2%, 5%
range, taking cues from the fluctuations in the Swiss population between 1860 and 2021
(Swiss Confederation, 2022). Table 4 shows details of the generated instances. The
first column presents the Instance Class in terms of how the entries of the outdated
ODM varied, that is, whether they 1) increased, 2) decreased, or 3) both, as indicated
in the second column, and the corresponding percentage of modified entries in the ODM,
indicated in the third column. Finally, the fourth column shows the range variation of
each entry; a random number within this range indicates the variation experienced by the

ODM entry over time. We generated ten instances for each instance class.
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Instance Class | Change | Modified Entries % | Variation Interval
Incr_100% Increase 100% (0%, 5%]
Incr_75% Increase 75% (0%, 5%)|
Iner_50% Increase 50% (0%, 5%]
Decr_100% | Decrease 100% [—2%, 0%)
Decr_75% Decrease 5% [—2%,0%)
Decr_50% Decrease 50% [—2%, 0%)
Both_100% Both 100% [—2%, 5%)
Both_75% Both 75% [—2%, 5%]
Both_50% Both 50% [—2%, 5%]

Table 4: Details of the randomly generated exact ODM g for the instances.

To assess the accuracy of estimations made by each of the models, we calculated the
root mean squared error (RMSE) between the exact demand g and the estimated demand

g, as well as the error between the exact demand g and the outdated demand g. Sub-
RMSE(g,g)fRMSE(g,g)) 100%

RMSE(g,9)
to measure the difference between our estimated matrix g and the exact matrix g. Notice

that a value of 100% indicates that RMSE(g, g) = 0, leading to the best estimation g = g.

sequently, we determined the relative improvement, computed as (

We highlight that our optimisation models optimise different indicators as a guide to
estimate the OD Matrix since the exact demand is unknown; thus, the proposed relative
improvement focuses only on the accuracy of the estimation and not on the terms in the
objective functions. Indeed, there may be a conflict between optimising each term in
the objective function individually. However, we propose a weighted objective approach
because we use various types of information solely to guide the estimation of an ODM, and
we select the weights based on preliminary experimentation for the instances considered
in our experimental section. In particular, we solve small instances using weights within
set {1, 30, 100} for each [ parameter, where the best average solutions were obtained
using 8 = 1,8, = 30,83 = 100,53, = 1,85 = 30. Notice that S and S5 are related
to outdated flows and their proportions, and $; and [, to the outdated matrix and its

proportions, whereas (3 relates to observed flows.

3.4.3 LEVELS OF OBSERVED INFORMATION

There is a significant issue regarding the collection of observed information, especially
within the context of transportation and public transit systems. The reliability of data
gathered through sensors and cameras used for passenger counting is fundamental for
accurate analysis and decision-making. While sensors and cameras can be used to count
individuals, their deployment may not be consistent across all segments of lines. These

devices may occasionally malfunction, leading to incomplete data collection for certain
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segments. To ensure a reliable count for each segment, it is necessary for all transit
vehicles operating on each line to report the number of passengers accurately. Any device
failure during the journey could result in gaps in the collected information. Additionally,
personnel must manually collect data in regions with limited access to advanced techno-
logies. However, this method imposes constraints on data gathering due to its reliance
on available personnel. This variability underscores the challenges in obtaining compre-
hensive data. Nevertheless, our experimental section addresses these considerations by

examining scenarios with both complete and limited information.

The first stage of our experimental results consists of adjusting the amount of ob-

served information. For each instance, we varied the number |A| of observed arc flows in
|AT]

the transit network within the set {|AL\, @, T}v and analogously for the number of

observed stops |N| to be within {|NL\, “\gi, “\QJ

served in our instances was obtained by solving the assignment problem (the lower level

}. The information we consider as ob-

of our model) using the matrix g in the network to identify the flow of the observed arcs.
For the observed stops, we calculate the boarding data by summing the elements of each
row of the matrix g, and the alighting data at the stops by summing the elements of each
column. Therefore, the observed information is consistent with the exact matrix. We
randomly chose the elements of |A| and |N| from A" and N*, respectively; thus, we try
nine different combinations of the amount of information for each one of the 90 randomly
generated instances (a total of 810 runs for each model). The above allows us to find the
amount of information that provides the most accurate estimations of ODM. Counter-
intuitively, the solutions for each model do not necessarily improve when considering a
larger amount of observed data. This is illustrated in Figure 8, which presents the average
results for each Instance Class of Model C and D in our study. In this figure, we analyse
the results varying the quantity of observed flows while maintaining |N| = |N%|, i.e., all

stops are observed for boarding and alighting passengers.
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Figure 8: Performance of models varying the size of |A| and considering |N| = |[NL].

It is important to note that in six out of the nine cases, an increased percentage
of observed flows leads to an enhancement in the estimation accuracy. However, this
behaviour does not hold for instances Decr_75%, Decr_100%, and Both_50%, where the
most accurate results are achieved when only a quarter of the arcs A" are observed (see
the dotted box in Figure 8 (a)). Analogously, the same holds using Model D in instances
Decr_100%, and for Incr_75% and Incr_100%, observing that only a quarter of Al is
better than a half of AL (see the dotted box in Figure 8 (b)).

In particular, in the cases of models A, C, and D, the best alternative is to consider
|A] = |AL| and |N| = |NL| (that is, making observations at all the line segments and all
the stops). However, in the case of Model B, the most accurate results are obtained by
incorporating only |A| = ‘ATLl and |N| = |NL|. In general, performing an exhaustive data
collection for all information types is unnecessary. Indeed, the optimisation model acts
as a guide to generate an ODM based on outdated and observed information about the
transit network. Further qualitative analysis can be oriented to identify which arcs and

stop observations have the most significant impact on the solution quality.

3.4.4 COMPARISON OF MODELS

Once we determined the best level of information (amount of data used for each data
type leading to best results), for our proposed models, we compared them to find the
best model on average for each instance class. In particular, Figure 9 shows the average
relative improvement, where we note that the model D presents the best performance
(curves of model D are the nearest ones to 100%).
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Figure 9: Performance using the best level of information for each model.

Besides identifying the model with the best average results, it is possible to eval-
uate the effects of using the different data types by a pair of models. In particular,
we defined the indicator dist as the distance from the average relative improvement of

the RMSE to the optimal value of 100%. Then, we computed the relative improvement

dist(ModelWithoutInformationType)—dist(ModelWithInformationType
dist(ModelWithoutInformationType)

compared to the model without it. First, notice that if we add information on passengers

) of using a specific information type

boarding and alighting to models A and B, we obtain models C and D, respectively. In
this scenario, the results of Model C lead to an improvement of 33.93% over Model A (see
yellow and green curves in Figure 9), and the results of Model D demonstrate a 68.5%

improvement over Model B (see blue and red curves in Figure 9).

Next, we compared Model A with Model B and Model C with Model D to ana-
lyse the impact of using soft constraints of structural properties and hard constraints of
boarding/alighting data. Notably, the results from Model B (red curve in Figure 9) using
structural properties and count passengers were, on average, 85.48% worse than those
from Model A (green curve in Figure 9). Conversely, using Model D (blue curve in Figure
9) improves 21.41% on average compared to Model C (yellow curve in Figure 9). However,
please note that the averages appear to be very close within the pair of points enclosed
by the dashed circles, labelled as (a) and (b) in Figure 9. In point (a), for instances
Incr_50%, Model C has an average of 36.15%, while Model D has an average of 40.07%.
For point (b) with instances Both_75%, Model C has an average of 37%, while Model D
has an average of 39.23%.
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For a more detailed comparison of models C and D, Figure 10 displays the results
obtained for both models for all instances of the Incr_50% and Both_75% classes (the
ones with similar values of the average relative improvement).

Models: c * D Models: c P

(a) (b)

100% 100%

70% 70%

/\./”"‘r*"/
/

10%

Relative Improvement
-
(=}
o~
]
Relative Improvement
IS
S
N

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Instance Instance

(a) Instance Class Incr_50% (b) Instance Class Both_75%

Figure 10: Results for models C and D for each instance.

We observe a very similar behaviour between the two models in both plots. In Figure
10 (a), we can see that only instances 7, 8, and 9 exhibit a more significant difference in
the obtained solutions where Model C is worse than Model D. Analogously, in Figure 10
(b), we note that only instances 1, 3, and 4 show a more significant discrepancy. In the
rest of the instances, both models show similar performance, which suggests that models
C and D have similar behaviour. However, there are specific cases where one outperforms

the other regarding obtained solutions.

Our numerical results show that it is possible to identify the effect of the differ-
ent types of information to estimate an ODM through deterministic bi-level optimisation
models. Finally, we recall that combining data from multiple sources may lead to in-
consistency in the estimation, i.e., even considering a 100% level for a specific type of
information is not enough to guarantee high-quality solutions (see Chavez-Hernandez
et al., 2019; Kumar et al., 2019). In general, the inconsistency of estimation models arises
because different data sources may reflect different aspects of passenger flow dynamics and
may not always align perfectly, for example, leading to infeasible optimisation problems if
using the 100% of different types of data in hard constraints. However, this combination

is needed to guide an optimisation approach like ours.

Now, we present an analysis of computational times.
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3.4.5 COMPUTATIONAL TIMES

Regarding computational times, Table 5 presents the average CPU time (in seconds)
required to find an optimal solution for each model for each Instance Class, along with
their respective standard deviations. Note that the maximum average time found in the
table is 466.76 seconds, which is relatively short, given that ODM estimations are not

conducted on a daily basis.

Instance A B C D
Class Time Dev Time Dev | Time Dev | Time Dev

Incr_50% 31.22 7.13 58.90 18.28 | 74.74 20.08 | 69.83  14.23
Incr_75% 29.86 9.78 54.71 13.95 | 80.15 21.82 | 76.21  33.02
Incr_100% | 31.36 9.02 58.31 12.22 | 73.98 17.10 | 89.42 14.86
Decr_50% | 22.92 6.94 46.49 24.01 | 55.27 10.77 | 179.92 339.87
Decr_75% | 23.66 6.20 74.82 60.05 | 60.01 8.97 | 62.92 27.49
Decr_100% | 20.48 4.84 45.73 17.42 | 54.02 12.28 | 62.57 19.06
Both_50% | 32.36 10.97 | 58.40 17.24 | 61.02 &8.89 | 82.31 24.49
Both_75% | 177.72 474.31 | 52.18 17.95 | 58.12 16.24 | 104.97 78.95
Both_100% | 466.76 1392.60 | 54.02 10.12 | 73.33 20.70 | 91.07 30.57

Table 5: Average computational times and their standard deviation.

Note that we achieve optimal solutions; this is possible because our optimisation
approach leads us to solve linear programs as reformulations of bi-level programs, for
which good quality solutions can typically be obtained in reasonable computation times.
It is worth mentioning that including other additional assumptions and discrete decision
variables may alter this structure of the proposed models and lead to more intractable

problems.

Figure 16 shows the average CPU times from Table 5. It is worth noting that most
models achieve optimality in less than 120 seconds. In cases where the average time is
longer, the standard deviation also indicates a greater variability, which is caused by some
atypical behaviour of the computational time. In the case of Model D on the instance class
Decr_50%, only one instance was solved in 1146 seconds, while the others were resolved
on average in 72.57 seconds, leading to a standard deviation of 18.02. As for Model A and
the instance classes Both_75% and Both_100%, one instance in each class was resolved
in 1,527 secs and 4,430 secs, respectively. In contrast, the remaining instances in the
Both_75% class were resolved on average in 27.75 seconds, with a standard deviation of
7.19. In the case of the Both_100% class, the average resolution time was 26.38 seconds,
with a standard deviation of 3.68. Hence, the average results in these points were elevated

due to these outlier cases.
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Figure 11: Computational times of solving our proposed models using a commercial op-
timisation solver.

In conclusion, when we exclude the outlier cases, we can discern a connection
between the accuracy of the model estimations and the computational time. For in-
stance, models C and D give better estimations than models A and B, but they require

more time for their resolution.

3.5 CHAPTER SUMMARY AND REMARKS

The findings of this chapter demonstrate that the inclusion of diverse data sources signi-
ficantly enhances the accuracy of origin-destination matrix estimation. In particular, the
integration of boarding and alighting data proved to be especially beneficial, while rely-
ing solely on outdated ODM structures and limited flow observations resulted in reduced
precision. These results emphasise the need for careful selection and combination of data
in ODM estimation frameworks. The proposed models and methodological insights con-
tribute to advancing the understanding of how data availability and structure influence
public transport modelling, providing a solid foundation for future research and practical
applications in network optimisation and planning. The main conclusions and future

research directions derived from this study are discussed in Section 5.1 of this thesis.
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CHAPTER 4

MULTI-OBJECTIVE OPTIMISATION
MODEL FOR SUSTAINABLE PLANNING
OF Bus FLEET REPLACEMENT

The global shift towards sustainable urban mobility requires strategic and data-driven
planning to transition from diesel-based fleets to cleaner alternatives. Urban bus systems,
as major contributors to emissions and noise pollution, play a crucial role in this trans-
ition. This chapter introduces a multi-objective optimisation model for the sustainable
planning of bus fleet replacement, addressing economic, environmental, and social dimen-
sions simultaneously. The proposed model determines the optimal timing, quantity, and
allocation of electric buses while accounting for key constraints such as budget limitations
and maximum average fleet age. By applying an epsilon-constraint method to approx-
imate the Pareto front, this study provides insights into the inherent trade-offs between
cost minimisation, environmental benefits, and equity in fleet distribution across different

regions within a city.

4.1 PLANNING THE TRANSITION TO ELECTRIC BUS
FLEETS

Mobility of cities around the world face significant challenges due to their reliance on
diesel-powered buses. These buses contribute to environmental pollution and pose serious
risks to public health. As cities strive for carbon neutrality and improved air quality, there
is growing interest in transitioning public transportation fleets to electric vehicles (EVs).
This shift is motivated by the potential benefits of reduced greenhouse gas emissions,

reduced noise pollution, and improved urban air quality (see Ribeiro and Mendes, 2022).

However, transitioning to electric buses involves complex decision-making processes.

Transportation operators must address several key issues, including the timing and quant-
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ity of electric vehicles to acquire, the selection of suitable technology, and the optimal
allocation of these vehicles to different bus lines. In addition, several constraints must be
considered, such as electrical capacity, depot space, budget limitations, and vehicle age

restrictions.

Addressing these challenges requires a holistic approach that considers not only the
economic viability of adopting electric buses, but also the environmental and social im-
pacts of this transition. Reducing costs is crucial for ensuring the financial sustainability
of public transportation agencies, especially as they adapt to new technologies and in-
frastructure demands. Equally important is the environmental benefit of electrifying the
fleet, as this transition can significantly reduce urban air pollution and greenhouse gas
emissions, directly contributing to healthier communities, as it is studied for scenarios in
Spain (Grijalva and Lopez Martinez, 2019), Poland (Dzikuc et al., 2021) and the United
States (Du and Kommalapati, 2021). Finally, ensuring an equitable distribution of elec-
tric vehicles in various city regions is essential to provide uniform benefits, such as cleaner

air and quieter streets, to all residents.

In response, we propose a tri-objective optimisation model to guide the replacement
of diesel buses with electric ones in a multi-period approach (see Figure 12). Our model
aims to achieve three main objectives: (1) minimise the total costs associated with vehicle
purchase, infrastructure, maintenance, and battery replacements; (2) optimise a measure
of gradual electrification of a transit network to reduce environmental impact; and (3)
promote equity in the distribution of electric vehicles across different regions in a city. In
addition, we include constraints such as bus conservation, annual investments, maximum
average age of the fleet, buying used vehicles, and a target for electrification to be achieved

at the end of the planning period.

Region B \} 4 || Region B
Region A Region A \

Region C - Region C
| 1

I . )
. Purchase buses/infrastructure, salvage . é Costs
Period t ; ; Period t+1 |

buses, and assign technology to lines

Figure 12: Scheme of our optimisation approach for the Bus Fleet Replacement Problem
considering a sustainable goal.

To solve our multi-objective optimisation problem, we employ an epsilon-constraint

algorithm to approximate the Pareto front, allowing us to identify a set of non-dominated
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optimal solutions. Moreover, as stated by Avenali et al. (2024), a tool for evaluating some
uncertainties during the planning stage is critical during the adoption of electromobility,
which can be tackled with sensitivity analysis and variants of our modeling approach (as
can be seen in the experimental section). In summary, our optimisation approach allows
us to study the inherence of trade-offs in a sustainable philosophy, providing compre-
hensive new information for decision making, and leading to a valuable tool for public

transportation operators and policy makers.

4.2 OPTIMISATION PROBLEM AND MATHEMATICAL
FORMULATION

We recall that we are interested in planning the electrification of a transit network con-
sidering a sustainable perspective, that is, analysing social, economic, and environmental
aspects of it. Then, to define our decision problem, we assume that there exists a public
transport operator or government agency responsible for managing a public transport net-
work of a city divided into multiple regions. Let L denote the set of lines in the network
and R the set of regions in the city. The agency aims to gradually replace its diesel bus
fleet with electric vehicles (EVs) over a multi-year planning horizon denoted by 7. The
bus fleet types eligible for acquisition are contained in the set B, which encompasses a
variety of electric technologies and battery types (b = 0 is considered as diesel technology
for modelling purposes). In this study, we also consider the possibility of acquiring used
electric vehicles in each period t € T. We define the set NV to indicate the years of use of
a vehicle, where 0 is considered new. Moreover, for each line [ € L, we assume that the
length of the line in kilometres, denoted as ¢;, is known. Finally, for each region r € R,
we assume the coverage of the network km, as given, as well as the kilometres ¢,; covered

by each transit line [ € L.

The goal of our optimisation problem, called Sustainable Bus Fleet Replacement
SBFR, is to develop an electrification plan that determines decisions for each period
regarding fleet renewal, the assignment of electric vehicles to specific bus lines, and the
sale of buses that are no longer needed due to their age. This plan aims to optimise
the objective functions of operational costs, equitable distribution of EV services between

regions, and gradual electrification.

For each type of electric bus technology b € B, we assume that the following para-
meters are given, which directly influence the long-term decision whether it is advantage-

ous to purchase them.

Karla Isabel Cervantes Sanmiguel



CHAPTER 4. MULTI-OBJECTIVE OPTIMISATION MODEL FOR SUSTAINABLE
PLANNING OF Bus FLEET REPLACEMENT 41

e cv} . The purchase cost of a vehicle n years old with technology b € B — {0} in
period t € T

e cii: The cost of purchasing infrastructure (per charger) for technology b € B — {0}
in period t € T. Where \j, chargers are needed when line [ € L is operated using
technology b € B — {0}.

e cff : The cost of diesel / energy for a n-year-old vehicle with technology b € B in
period t € T'.

e ¢m! : The maintenance cost for a vehicle n years old with technology b € B in
period t € T'.

e cbl: The cost of the battery for technology b € B — {0} in period t € T..

1, if a n-year-old vehicle with technology b € B — {0} requires
® [lpn: a battery replacement

0, otherwise

e g;: The size of the fleet of each type of technology b € B required for the line [ € L.

Determining the required fleet size ¢, for line [ constitutes a complex optimisation
problem, involving not only the allocation of buses but also the scheduling of trips and
charging actions for each vehicle (Rogge et al., 2018). In particular, we assume that an
electric vehicle must be charged to the 100% battery level after completing a trip. This
assumption directly impacts the overall system, as it leads to increased cycle times for the
vehicles. Consequently, a larger fleet of electric vehicles is needed to maintain the service

level across all lines, compared to using vehicles that do not require charging actions.

We also include a budget P! for each period ¢t € T, representing the available
financial resources that limit the total annual cost in terms of vehicle acquisition costs
cvp,, charger installation costs cif, and ongoing operating costs, including fuel or energy
(eff ), maintenance (emj} ) and battery replacements (cb}) that occur every 7, consecutive
years of use for vehicles with technology b. Furthermore, the budget of each period can
be increased by selling vehicles that are no longer operational (the oldest vehicles with
technology b € B, which are at least 3, years old), with their salvage value represented

by ap,. We resume our notation for the input in Table 6.
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Table 6: Summary of the input for our optimisation problem.
Symbol | Description

L Set of lines in the transit network.
T Set of planning periods.
B Set of vehicles’ technologies, i.e., the combination of battery size and the type
of charging infrastructure.
N Set of years of use for vehicles in the transit network.
R Set of regions covered by the transit network.
cvf, | Purchase cost of a n-year-old vehicle with technology b € B — {0} in period
teT.
cit Purchase cost per charger for infrastructure supporting technology b € B —

{0} in period t € T'.
cfi Diesel/Energy cost for each line [ € L with technology b € B in period t € T..
cmy, | Maintenance cost for a n-year-old vehicle with technology b € B in period

telT.

bl Battery cost for technology b € B — {0} in period t € T'.

Lbn Binary parameter taking the value of 1 if a n-year-old vehicle with technology
b € B — {0} requires a battery replacement (i.e., n mod 7, = 0), and 0
otherwise.

pt Budget for period t € T.
i Fleet size with technology b € B required for line [ € L.

Qpn Salvage value of a n-year-old vehicle of type b € B.
o Age of use at which a bus of type b € B can be salvaged.
~y Maximum bus average age across all periods.

Aib Chargers for technology b € B — {0} required for line [ € L.
km, | Network coverage for region r € R (km).
Crl Kilometres covered in region r € R by line [ € L.

Our SBFR optimisation problem determines the allocation of technologies B to the
lines L operating with conventional buses, as well as the number of electric vehicles to buy
and sell for each type of technology b € B and period t € T'. So, we define the following

decision variables.

. 1, if line I € L operates with technology b € B — {0} in period t € T
[ J y b =
l 0, otherwise

e 2 . Number of n-year-old vehicles of type b € B that are sold at the beginning of
period t € T

e 2! : Number of n-year-old vehicles of type b € B that are purchased at the begin-
ning of period t € T

e v/ : Number of n-year-old vehicles of type b € B at the beginning of period t € T
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e m! : Savings of period t € T

We define (x,y,z, v, m) to represent all the decision variables. Next, we present our
mixed-integer nonlinear program (MINLP) for the SBFR problem.

min Foosrs (X,y,V) = Z Z Z z},cvp, + Z Z (yhy — yiy V) cip Aip+

teT \beB—{0} neN leL be B—{0}

Z cby Z [t Vg, + Z Z cfiyi, + Z Z My Uy

beB—{0}  neN leL beB beB neN

(4.1)

S S (s
t—1) B t'eTl'eL ¥ B—{0}

O (yfb_yzb

IEL be B—{0} 7|
min Fgrapuar (y) = Z T
teT
(4.2)
yf/blc'l”l'
YhCrl _ r'ERVELVeB—{0} kmy.
leL be B—{0} km. |R|
min Fequiry (y) = ) ) 7 (4.3)
teT reR
s.t.
Vb = vp )+ Ty — 2 VoeBteT,n>1 (4.4)
Uho = Tho — Zho WbeB,teT (4.5)
Upn =0 WbeB,teT,n>14 (4.6)
Ton =0 VteT,n>0 (4.7)
2 =0 Vbe B,tcT,n< B (4.8)
un ' > Voe B—{0}leL,t<|T|—1 (4.9)
T
> un =1L (4.10)
leL beB
>y =1 Vie LiteT (4.11)
beB
Z Vb = nyb(ﬂb Vbe B,teT (4.12)
neN lel
Z Z T, CUby, + Z Z (Wi — vy DeipAi

be B—{0} neN leL be B—{0}
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+ Z cb Z Fbon Uy, + Z Z cfivyiy
beB—{0} nEN beB leL
+ Z Z emp, vh, +mt = Z Z Zpnap + Pt 4 mit Vit e T (4.13)
beBneN beBneN
bEB Z:Nm};sn
cbne
S <y Vte T (4.14)
22 Vi,
beBneN
ab o b b € Z;Umb € Ryyf, € {0,1} VteT,be B,ne N,l € L (4.15)

The objective function (4.1) minimises the total cost associated with the purchase
of electric vehicles, the charging infrastructure, the replacement of the battery, the fuel
(diesel and electricity) and the maintenance of the vehicle. The objective function (4.2)
minimises the variance in the increment of electrified lines of consecutive periods in T" to
ensure a gradual electrification of lines. Finally, the objective function (4.3) minimises the
sum between all periods of variance in the fraction of electrified kilometres in all regions

to ensure an equitable electrification of the city’s transit network.

Regarding the constraints of the problem, equations (4.4) and (4.5) represent vehicle
balance or inventory constraints. The restrictions (4.6) guarantee that there are no
vehicles older than 14 years operating in the system. The constraints (4.7) ensure that
conventional vehicles are not purchased. The equalities (4.8) guarantee that the vehicles
have not exceeded their useful life. The constraints (4.9) ensure that if a technology
b € B — {0} has been assigned to line [ € L in period t € T, that technology remains as-
signed to that line from that period onward. The equality (4.10) ensures that, by the end
of the planning period, all lines will operate with electric vehicles. The equalities (4.11)
ensure that only one technology is assigned to each line in each period. The constraints
(4.12) ensure that, in each period, there are sufficient vehicles of the different technolo-
gies to meet the operation of the lines. Equalities (4.13) ensure that the budget has not
been exceeded. The constraints (4.14) ensure that the average age of the vehicles in the
system does not exceed the maximum allowed. Finally, the constraints (4.15) represent

the nature of the variables.

4.2.1 e-CONSTRAINT ALGORITHM FOR THE SBFR

problem Given the multi-objective nature of our SBFR problem, we do not prioritise
identifying a single solution that optimises all objectives simultaneously. Instead, our
focus is on obtaining mathematically non-dominated solutions that presents the trade-
offs between the objectives. In particular, a solution vector x* in the feasible space X,

is Pareto optimal for a triobjective minimisation problem, if there does not exist another
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x € X such that £(x) < fi(x%), fa(x) < o), fo(x) < fo(x"), and fi(x) < fi(x") for
some objective f;. If x* is a Pareto optimal solution, then f(x*) is a non-dominated point

in the objective value space (see Marler and Arora, 2004).

Then, we are looking for a good approximation of the set of non-dominated points,
which is called Pareto Front. This approach allows the decision maker to observe the
conflicts among the different objectives and to select the available options based on their
criteria. In this study, we will implement the e-constraint method, which was first intro-
duced in Haimes (1971). This consists of optimising a single objective f;(x), while the
other objectives are limited by additional constraints f;(x) < e;. Then, we can obtain
an approximation of the Pareto front by varying the parameters ;. Figure 13 illustrates
an example of the e-constraint method applied to a bi-objective optimisation problem,
where the objective function Fj(z) is minimised while the second objective function is

constrained by Fy(z) < e.

A
F2 (V)

=

§ é Feasible
~ criterion

space
E ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
FE(v) Fi(v)

Figure 13: Example of finding non-dominated solutions using the e-constraint algorithm.

It is widely common in Bus Fleet Replacement problems to focus on cost minimisa-
tion as the only objective function (Emiliano et al., 2020b; Pelletier et al., 2019; Islam and
Lownes, 2019). Therefore, in our approach, we use Foosrs as the objective function to
be minimised, while Foraprar and Frourry are incorporated as constraints, bounded by
e¢ and e, respectively (see details in Algorithm 1). The algorithm begins with an empty
set of approximations and calculates the extreme points of the approximation (lines 1-3).
These extreme points are then used to establish the range over which e and eg will vary.
We define S, and S;, as the set of values to explore for ¢ and €g, and N, and N, as
the total number of values to explore within these sets. The values within these sets range
from Fépapuar (Fagurry) to Pé (Pg) with an increase of A, (A.,) as defined in lines 4
and 5. Based on these sets, further calculations are conducted to ensure a thorough and

efficient exploration of the trade-offs between objectives.
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Algorithm 1: e-constraint for the SBFR.
Input: Instance of SBFR, N, N,

€E

o>
Output: Approximation SetPareto of Pareto front
1: SetPareto =)
2: Solve Fjpgre = {min Frosrs (x,y.2) : (4.4) — (4.15)},

Py = Fpquiry (%Y, 2)cosrs) s £6 = Farapuac((%,¥,2)cosrs)
3: Solve Flpapuar = {min Forapuar (y) : (4.4) — (4.15)},

P = max{Pg, Fpquiry (Yorapuac)}
4: Solve Fyoyrry = {min Frqurry (y) : (4.4) — (4.15)},

P = max{ I, FGRADUAL(y*EQUITY>}

. — Pe—FGrapuar
5: A, = Nen
. _ Pe—Fpouiry
6. AEE - ANEE_l
7: See =16 | €6 = Férapuar + 10, 1 =0,1,..., Noi, — 1}
I J o : ©
8: S‘?E_{gE ‘ er = Frourry + JA:, j_Oa]-)-"aNsE_]-}
9: for (eg,ep) € Sep, X Se, do

10: Solve

*

P ., ={min Foosrs (X,y, V) : (4.4) — (4.15), Ferapvar < €g, Fequiry < g}
11: SetPareto = SetPareto U { (P:G,EE’ FGRADUAL(Y:&EE); FEQUITY(y:G,€E))}
12: end for

Finally, all experiments were performed on a MacBook Pro with an Apple M3 chip
and 18GB of RAM, using CPLEX 22.1 Concert Technology, coded in C++ and using
a stop criterion of 7200 seconds of computational time or a relative gap' of 1%. The

experimental results are discussed in the next section.

X

4.3 EXPERIMENTAL RESULTS

4.3.1 NIGHTTIME PUBLIC TRANSIT SYSTEM OF SANTIAGO, CHILE

To validate our methodology on a real-world network, we examined the nighttime public
transport system in Santiago, Chile. The network comprises 44 lines and serves 34 mu-
nicipalities in the Metropolitan Region. We considered a 20-year planning horizon and
aimed to fully electrify all routes. Seven electric bus technologies were considered for
evaluation (See Table 7).

PrimalBound— DualBound ) 100%

IThe relative gap is computed as ( rimalBound
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Type of Bus | Battery Capa- | Price (USD) | Battery Re- | Maintenance
city (kWh) cvly placement (USD)
(USD)
Model 0 - - 0 13,125.87
Model 1 385 318,304 95,491.2 3,979.24
Model 2 229 251,256 75,376.8 5,565.28
Model 3 255 257,868 77,360.4 7,910.24
Model 4 282 305,196 91,558.8 6,664.73
Model 5 326 316,448 94,934.4 4,912.95
Model 6 350 322,596 96,778.8 3,522.06
Model 7 350 334,660 100,398 5,134.32

Table 7: Technical and cost details of diesel (Model 0) and electric bus models, including
battery capacity, purchase price, battery replacement cost, and annual maintenance.

The nighttime public transport network plays a vital role in ensuring mobility during
non-peak hours, serving commuters across 34 municipalities in the Metropolitan Region.
It provides essential connections for workers with irregular schedules, students, and others

who rely on public transit at night.

Figure 14 provides a visual representation of the network, highlighting its extensive
coverage and critical connections. This case study not only offers a practical application
of the proposed methodology, but also contributes valuable information on the planning

of sustainable and efficient public transport systems in urban areas.
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Figure 14: Nocturnal Public Transport Network of Santiago, Chile (@OpenStreetMap).

Given the growing emphasis on sustainability and environmental conservation, the
transition to a fully electrified fleet over a 20-year horizon aligns with global efforts to
reduce greenhouse gas emissions and dependence on fossil fuels. The electrification plan
considers seven different electric bus technologies, each with different battery capacities
and costs (Table 7). The evaluation focusses on selecting the optimal combination of tech-
nologies to achieve a balance between gradual electrification over time, cost-effectiveness,

and equitable allocation of electric vehicles.

Two purchasing scenarios were considered. In Instance A, only new vehicles can be
acquired. This restriction is modelled by setting zy,, = 0 for all used vehicles (n > 1), all
periods t € T, and all bus types b € B. In Instance B, both new and used vehicles can

be purchased, with no restrictions on the decision variable x,.

Table 8 summarises the assumptions used for model parameters, including purchase
and depreciation costs (cv},), infrastructure costs (cif ), annual fuel and energy costs (cf},),
maintenance costs (emj ), salvage values (ay,), fleet sizing (qi), and network coverage

(km,., cy). For the instances of our study, no budget restrictions were considered, repres-
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ented by assigning a very high value to P! for all . This can be adjusted for other case
studies. The minimum operational age at which a bus of type b € B (denoted ;) becomes
eligible for resale has been established at 5 years, the highest average age for buses during
all periods () was established at 8 years. The range of vehicle ages considered in the
analysis spans n = 0 to 19 years. Finally, it was assumed that the number of chargers
required for technology b € B\ {0} on line [ € L (\;) would be half of the fleet size g;.

Parameter | Assumption

el For new vehicles, we considered average market prices for different
technologies as it is shown in Table 7 (Kementerian Dalam Negeri
Republik Indonesia, 2021). Depreciation was applied on a declining
basis: 20% annually for the first 5 years, 10% for years 6 through
10, and 5% from year 11 onward.
ciy The infrastructure cost for each bus type b € B\ {0} and time
t € T was assumed to be USD 68,153.8, representing the average
value across available market prices (C40 Cities, 2023).
cfl Annual fuel or energy cost per line [ and bus type b was computed
as the product of the total annual distance travelled, the corres-
ponding energy consumption rate (diesel or electricity), and the
respective unit energy cost. Diesel was priced at USD 1.02 per
litre (Global Petrol Prices, 2025a) and electricity at USD 0.16 per
kWh (Global Petrol Prices, 2025b). Energy prices were assumed to
remain constant throughout the planning horizon. Line distances
and service frequencies were derived from GTFS data (June 2024)
(DTPM Chile, 2024).
cmy,, For electric buses, maintenance costs for each bus type b at time ¢
were randomly set between 3,500 and 8,000 USD per year, which is
consistent with the maintenance costs reported for Chile in Charged
Electric Vehicles Magazine (2020). For diesel buses, a fixed annual
maintenance cost of 13,125.87 USD was assumed (see Table 7).

cb! Battery replacement costs account for roughly 30% of the total bus
price across all models.

Qpn Salvage value of bus type b of age n was assumed to be 90% of the
purchasing cost cv) .

qw The fleet size for each line and bus type was estimated as the ratio

of the operational cycle time to the service frequency, assuming an
average speed of 40 km/h. For electric buses, charging time was
included in the cycle time.

km.,., ¢y Network coverage for region r € R (km) and the kilometres covered
in region r € R by line [ € L were derived from GEOJSON data
sourced from official Chilean transport maps (Caracena, C., 2025).

Table 8: Parameter assumptions.
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This structured instance, defined by the network characteristics, vehicle parameters,
and operational assumptions detailed in Tables 7 and 8, serves as the input for the multi-
objective optimisation model. The solution approach employs the e-constraint algorithm,
formally introduced in the following section, to identify Pareto-optimal solutions that
allow us to study the trade-off between operational cost, network electrification, and

equitable allocation of electric buses across the network.

4.3.2 EFFICIENCY OF THE £-CONSTRAINT ALGORITHM

In this section, we analyse the quality of the solutions and the computational times
to implement our e-constraint method in the case study. In general, our optimisation
approach is efficient since it takes less than 4 days to implement our epsilon constraint for
both instances. In the case of the scenario of new vehicles, we found solutions for 57.02%
of the iterations in the epsilon constraint, while in the case of purchasing new and used
vehicles, we find feasible solutions for 8.09% of the iterations of our e-constraint. Notice
that since we are dealing with a multi-objective optimisation approach, the latter could
happen due to the conflict between the optimisation of the two objectives bounded in the

constraints during our experimental stage.

Figure 15 shows the relative gap among all iterations of our e-constraint algorithm for
both instances. The dashed lines contain the iterations corresponding to a fixed value e,
while the variables eg vary in ascending order. We also have a separator that distinguishes
different values of ¢, arranged in ascending order. Notice that we obtain smaller gaps
than 1% for 94.02% of the solutions found along the iterations of our epsilon constraint
when defining a plan assuming that it is possible to purchase new vehicles only, and for
all iterations when purchasing new and used vehicles, that is, we obtain near-optimal
solutions when implementing our solution algorithm to generate an approximation of the
Pareto fronts.

(a) New Vehicles (b) Used and New Vehicles
16 ‘ 16
14 ; 14

Iterations Iterations

Figure 15: Relative Gaps for each iteration of the e-constraint algorithm.
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In the case of computational times, we require less than 31.4 hours to obtain solutions
along the iterations of our epsilon constraint for each scenario, as shown in Figure 16. In
the case of purchasing new vehicles, the longer computational times correspond to the
highest value of 5. In the case of buying new and used vehicles, the longest computational

times appear in the second value of €4

a) New Vehicles sed and New Vehicles
New Vehicl b) Used and New Vehicl
000 0 Lo 1 .o 7000 |
| S R A A R
5000F L i i i i i i i 5000 |
@ Co ‘ ‘ ‘ ‘ ‘ ‘ . @
§4000 - e % | A | gz&ooo [
E3000f 1w LT . £3000}
L e . | | | | |
20000 0 | | | | | | | 2000 f
L i e i i le® I e
1000F i :'., Sl % :: et ® e ! ° ! - 1000 f
.
0 .......... - 0 .
Iterations Iterations

Figure 16: Computational Times for each iteration of the e-constraint algorithm.

Summarising the analysis of the quality of the solution and the computational times
of the experimental stage, our results demonstrate that the proposed multi-objective op-
timisation approach is effective for real-sized instances. This method supports decision
making by providing new information on the trade-off involved in optimising social, eco-

nomic, and ecological objectives (see the next section).

4.3.3 ANALYSING THE TRADE-OFF BETWEEN COSTS, EQUITY AND
ELECTRIFICATION METRICS

In this section, we present the conflict between optimising a gradual electrification measure
(ecological goal), minimising operational costs (economic goal), and optimising equity in
the electrification of different areas in a region (social goal). We then address a sustainable

optimisation approach with three objectives.

Figure 17 shows the Pareto front approximations obtained for the two instances,
which allows only the purchase of new vehicles (left panel) and which allows the purchase
of used and new buses (right panel). We can observe that there is a conflict between the
optimised objectives, since there is a dispersion of points across the three axes related
with the different objective functions. However, performing a visual analysis of a 3D plot

to analyse the trade-off between objectives is cumbersome.
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Figure 17: Pareto front approximations for instances A and B of the SBFR problem.

From now on, we will analyse the projection of the Pareto front approximation onto
the Cartesian plane formed by the social and ecological objectives. In particular, we
denote the cost value using a colour map that transitions from green for the lower values
to red for higher values of operational costs. Figure 18 shows the projections mentioned
above for both scenarios. Notice that when assuming the purchase of only new buses
(see left panel), we observe that for low values of operational costs, the conflict between
the social and ecological goals is more pronounced, since there are green points that
form a Pareto curve for these two objectives. In particular, an improvement of 70.58%
in Forapuar implies a deterioration of 67.78% in the value of the function Frguiry.
However, for medium values of the cost, no evident conflict exists, since a single solution
(orange point) appears in the graph. In the case of high-cost values (red points), there
is also a conflict, although to a lesser extent, in optimising ecological and social goals,
leading to an improvement of 50.53% in Fgrapuar, while deteriorating up to 104.30%
the objective function Fgoury. The latter behaviour can be represented in a trade-off
indicator defined as the ratio between the improvement of Fizrapyar, and the deterioration
of Frourry, leading to a trade-off of 1.04 and 0.48 for low and high costs, respectively.
For example, a value of 1.04 implies that Fgrapryar improves 1.04% by deterioration of

1% Of FEQUITY-
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Figure 18: Projection in Fgrapvar X Frourry of the Pareto front approximations for
instances A and B of the SBFR problem.

In the case of allowing the purchase of new and used buses, a lower number of
non-dominated points was found in the Pareto front approximation. For this case (see
the right panel of Figure 18), there is also a conflict between optimising the social and
ecological goals at low costs, since we obtain a trade-off indicator of 0.257. On the other
hand, for medium and high costs, there is no conflict between the optimisation of both

objectives.

As shown by the results of our optimisation approach, it is possible to analyse the
conflict between the optimisation of economic, ecological, and social metrics during the
design of an electromobility adoption plan in public transportation networks. Moreover,
bearing in mind that each point of the Pareto front approximations shown in this section
is a long-term planning solution, the next section details what happens in that plan for

solutions that benefit one objective over the others.

4.3.4 DETAILED NON-DOMINATED SOLUTIONS

In this section, we analyse the three solutions obtained while optimising each of the
objective functions for instances A (purchase of only new vehicles) and B (purchase of
new and used vehicles). We recall that a single solution represents a distinct planning
scheme over the years, characterised by unique features and trade-off. By examining these
solutions, we aim to provide decision makers with actionable insights to support informed

choices aligned with their strategic priorities.

Figure 19, exhibits the total costs for the three solutions of instance A (dashed lines)
and B (solid lines). It can be noted that, for instance B (see solid lines), annual costs
consistently fall within the [18.6,58.7] million dollar range, regardless of which objective
achieves the minimum value. In contrast, for instance A (see dashed lines), the range of

the total cost is [18.5,369.8], indicating a notable variation in costs because during certain
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periods, a significant number of vehicles are acquired, primarily due to the lifespan of
the buses. Furthermore, we observe that in the case where the best value for Frguiry
is achieved by purchasing only new vehicles (see dashed blue line), a substantial initial
investment is required. In contrast, for the other scenarios, the initial investment is
not as high (see dashed green and red lines), indicating that the acquisition strategy
significantly influences the total costs. We highlight that costs are reduced when opting for
the purchase of used vehicles. However, despite the potential financial benefits, operators
rarely adopt this approach due to factors such as vehicle life expectancy, maintenance
requirements, and operational uncertainties. These considerations often lead decision

makers to prioritise the acquisition of new vehicles, despite the higher initial investment.

New Vehicles Used and New Vehicles

400 r - . -
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350 F Minimum FGrapuaL Minimum FGrapuaL
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Figure 19: Total costs over time for selected solutions of instances A) Purchasing only
New Vehicles and instance B) Purchasing both Used and New Vehicles.

Furthermore, when analysing the percentage of electrified lines in each period, we can
see in Figure 20 that the transport network reaches electrification 100% between years 8
and 10, regardless of the priority objective (costs, equity, environmental) or the acquisition
strategy (purchasing only new vehicles or purchasing both new and used vehicles). This
indicates that the electrification goals of 100% can be achieved in half (or less) of the time

set to plan the purchase.
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Figure 20: Percentage of lines electrified per period for each selected solution in instance
A) Purchasing only New Vehicles and instance B) Purchasing both Used and New Vehicles.

To assess equity in the allocation of electric vehicles across the different regions
of the city’s public transport network, we employ the Gini index (Gini, 1912; Ceriani
and Verme, 2012). The Gini index is a standard measure of inequality, ranging from 0
(perfect equality, where all regions receive an equal share of electric vehicle coverage) to
1 (maximal inequality, where a single region receives all coverage). In this study, it is
calculated based on the percentage of kilometres covered by electric vehicles within each
region for each planning period. As such, the Gini index provides a quantitative measure
of disparities in the distribution of electric vehicles, allowing the identification of regions

that are over- or under-served by electromobility.

Figure 21 illustrates the behaviour of the Gini index during planning periods. The
scenarios in which an equal distribution of electromobility between different regions occurs
more rapidly are those in which Fggury is optimised (see the dashed and solid blue lines),
which aligns with the intended representation of our model. However, there is a significant
difference between instances A and B, since it is possible to obtain a quasi-egalitarian
distribution of electric vehicles in the city in period 2, when assuming purchasing only
new vehicles. An interesting observation arises when considering the minimum value of
Feosts for instance B (see solid red line). In this case, by period 9, the distribution is
already fully equitable. However, in the periods preceding period 7, inequality reaches
its highest levels in all scenarios. This suggests the need to evaluate whether prioritising
a fully equitable distribution at a faster pace is preferable, even if it involves significant

disparities in the earlier stages.
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Figure 21: Gini index of each planning period for selected solutions of instance A) Pur-
chasing only New Vehicles and instance B) Purchasing both Used and New Vehicles.

In summary, the experimental results in this section illustrate how the trade-off
between the three objectives impacts the electromobility adoption plans, providing valu-
able information for decision making. Finally, we highlight that, in addition to analysing
the details of the generated plans, our tool also helps identify policy implications and in-
sights based on different contextual factors, such as period management (e.g., significant
investments at the end of government terms) or technological advancements (e.g., cost

reductions), which will be further illustrated in the next section.

4.4 MANAGERIAL INSIGHTS INTO MANAGEMENT OF
TRANSPORT SYSTEMS DURING THE TRANSITION TO FLEET
ELECTRIFICATION

Effective policy management is essential in the transition to electric vehicles (EVs), and
our optimisation method offers a valuable asset in shaping these policies. In particular,
our method assists in evaluating risk through simulation of different scenarios, offering
a comprehensive perspective on potential impacts during the electromobility transition
plan. This involves analysing uncertain elements such as technological advancements and

costs related to electric buses, batteries, and charging infrastructure.

4.4.1 ASSUMING COSTS REDUCTIONS

First, we simulate an annual 2.5% decrease in electromobility costs by assuming only the
purchase of new vehicles (instance A). Our aim is to provide policymakers with insight on

how these gradual cost declines affect key metrics over time. This method improves the
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understanding of the long-term impact of policies and facilitates more informed decision
making. In Figure 22 we show the non-dominated solutions generated for both instances
highlighted with circles for the base instance and triangles for the reduced cost scenario.
We emphasise that, in the reduced costs scenario, the trade-off indicator’s values between
Forapuar and Frgurry stand at 2.16 for the low costs case and 0.83 for the medium
costs case. Additionally, only one non-dominated solution is observed for high-cost values

(see the red triangle).
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Figure 22: Pareto optimal solutions projected on the Cartesian plane Fgrapuar X
Frourry for both the original instance A and for instance A with an assumed gradual
decrease in costs.

We compare the base instance and the scenario with a gradual reduction in capital
costs of adopting electromobility, and we can observe that when optimising Frosrs the
total costs assuming gradual reductions ranges within [933277,1478950] compared to the
range [1082350,1283090] in the base scenario, leading to an improvement of 13.77% in the
minimal cost. Moreover, the minimal value of Fgrapuar is the same in both scenarios,
while we obtain an improvement of 19.87% in Fggurry when solving the scenario with

reduced cost compared to the base instance.

We recall that besides analysing the trade-off between economic, ecological, and
social objectives, our optimisation approach provides the details of adoption plans for
electromobility in public transport systems. In response to the latter, Figure 23 shows
the plan of solutions that optimise each objective function for both scenarios. First, the
total costs assuming the gradual reduction of costs are lower compared to the original
instance (see the red lines in case (a) of Figure 23. The gradual electrification of the
systems has a similar behaviour in both cases (see green lines in case (b)). Finally, both
cases present a rapidly egalitarian distribution of electric buses along the different regions

while optimising Foury (blue lines in case (c)), in particular, since the beginning of the
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planning period assuming a gradual reduction of costs (blue line is in the value of 0 of

vertical axis) and in period 2 in the case of the original instance (see dashed blue line).
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Figure 23: Plans for adopting electromobility concerning non-dominated points derived
from optimising each objective function within SBFR.

Our study underscores the critical role of assessing evolving cost reductions when
designing policies for the adoption of electromobility. The findings indicate that a steady
decrease in costs can yield substantial economic benefits while simultaneously improving
equity and improving system stability over the long term. Furthermore, our optimisation
framework is versatile and can be adapted to investigate other policy strategies, such as
assessing the outcomes of setting administrative deadlines alongside major investments in
designated planning intervals, replicating situations where governments provide significant
funding to accelerate fleet electrification. In addition, the model could incorporate policies
on emissions penalties for private operators within the public transport sector to assess
their economic and operational effects. These enhancements would allow policymakers to
foresee possible obstacles, evaluate different regulatory approaches, and formulate more

flexible transition strategies that are in line with long-term sustainability objectives.
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4.5 CHAPTER SUMMARY AND REMARKS

The results presented in this chapter highlight the potential of multi-objective optimisa-
tion as a valuable decision-support tool for public transport authorities and policymakers.
By simultaneously balancing economic feasibility, environmental performance, and social
equity, the proposed framework contributes to the design of more sustainable and inclusive
urban transportation systems. The analysis also underscores that, while fleet electrifica-
tion offers clear environmental benefits, its economic and spatial implications necessitate
careful, coordinated planning and prioritisation. Ultimately, the methodological approach
developed in this study provides a comprehensive and adaptable foundation for future
strategies aimed at achieving carbon-neutral and equitable urban mobility. The main
conclusions and prospective research directions arising from this work are discussed in
detail in Section 5.2 of this thesis.
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CHAPTER 5

CONCLUSIONS AND FURTHER RESEARCH
AREAS

This chapter summarises the main findings and contributions of the research presented
in this thesis, while outlining potential directions for further investigation. Two distinct
projects were addressed: the first focused on the estimation of public transport origin-
destination matrices (ODMs) using optimisation models with multiple data sources, and
the second on the sustainable transition of bus fleets from diesel to electric vehicles through
multi-objective planning. The chapter highlights the methodological advancements, prac-
tical implications, and insights gained from each study, and provides a synthesis of the
lessons learned and opportunities for future research in urban public transportation plan-

ning.

5.1 ORIGIN-DESTINATION MATRIX ESTIMATION

In this study, we proposed four bi-level mathematical models to estimate an ODM of
public transport. At the upper level, the models decide the passengers for each OD pair,
while the lower level determines the transit assignment problem, minimising total travel
times. Our proposed models consider a combination of different types of information as an
outdated ODM, observed flows, boarding/alighting data, and structure of the outdated
ODM and passenger flows to guide the optimisation phase through different objective

functions in the upper level and different constraints.

We performed a comparative analysis based on different amounts of information for
each information type, and the optimisation model and numerical results show that using
complete information does not necessarily lead to the best results. Moreover, comparing

our models based on different information types leads to the following conclusions.
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e Considering structural properties of the demand and flows and hard constraints for
boarding and alighting leads to finding the best estimations of the ODM (Model
D).

e Considering only soft constraints of structural properties (Model B) results in solu-

tions even worse than not considering any of them (Model A).

e Considering a model with only hard constraints of boarding and alighting (Model
C) is better than the previous two models (Model A and B).

Regarding future research directions, we should explore methods to enhance the
accuracy of our estimations by incorporating additional data sources. For instance, we
could integrate partial OD flows (as in Behara et al., 2022; Pamula and Zochowska, 2023,;
Parry and Hazelton, 2012; Patil et al., 2023; Rostami Nasab and Shafahi, 2020), or route
frequency usage for passengers with AFC (or more detailed demand information over
time). Another further research area is determining which segments of lines and stops are
most relevant to observe, thus enhancing our model estimations (such as Yang and Zhou,
1998). Furthermore, exploring the utilisation of more complex assignment models could
be beneficial. This exploration would involve assessing whether the results obtained in
our study remain consistent when considering different assignment models, thus refining
our understanding of the impact of incorporating certain types of information in both
the objective function and constraints. Moreover, comparisons of estimated and exact
demand values for OD pairs in Appendix A show that model D is efficient in estimating
the demand on the tested instances. Finally, we could focus on extending the optimisation
problem to estimate OD matrices assuming network reconfigurations (which are necessary
as shown in Appendix B), including different sets of routes, stops, or infrastructure. This
is relevant due to various mobility policies that adapt to urban development in cities with

growing populations.

5.2 SUSTAINABLE ELECTRIC BUS FLEET REPLACEMENT

This research introduces a multi-objective optimisation model for the sustainable trans-
ition of bus fleets from diesel to electric vehicles within public transportation networks.
The framework incorporates economic, environmental, and social objectives to aid in the
decision-making about fleet electrification. By reducing operational expenses, improving
fleet electrification, and ensuring a fair distribution of electric buses in urban areas, the
model serves as a valuable resource for public transportation operators and policymakers.

The findings reveal the economic practicality of switching to electric buses by highlighting
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long-term savings in fuel, maintenance, and battery replacement. The use of pre-owned
electric vehicles helps lower initial expenditures, supporting adoption by operators with
limited budgets. Ecologically, gradual electrification of the fleet leads to substantial reduc-
tions in greenhouse gas emissions and improves urban air quality. The phased approach
balances environmental advantages with operational practicability. Furthermore, ensur-
ing an equitable allocation of electric buses ensures that all communities experience the
benefits of reduced noise and improved air quality, which is essential for cities with varied

socioeconomic demographics.

The use of the e-constraint algorithm allows decision makers to analyse trade-off
between cost, electrification, and equity. Pareto front approximations provide a clear
visualisation of these relationships, enabling informed decisions based on strategic pri-
orities. Furthermore, the study highlights the importance of considering technological
advancements and the progressive reduction of costs in policy design. Simulation of scen-
arios with gradual cost reductions in electrification shows that such strategies can lead to

significant improvements in both economic and environmental metrics.

For future research, it would be relevant to explore the integration of renewable
energy sources, such as solar or wind, into the charging infrastructure, which would fur-
ther enhance the sustainability of electric fleets. Incorporating real-time optimisation
techniques would allow dynamic adjustments to fleet operations based on demand, en-
ergy availability, and traffic conditions, improving operational efficiency. Furthermore,
extending the model through robust and stochastic optimisation approaches would ad-
dress uncertainties related to energy price fluctuations, advances in battery technology,
and changes in regulations, enhancing the adaptability of the solutions. The model could
also be expanded to assess the impact of additional policy measures, such as emissions
penalties for private operators or incentives for early adoption of electric buses, provid-
ing a more comprehensive view of the economic and operational implications of different
regulatory scenarios. Finally, applying the model to cities with varying population densit-
ies, geographic configurations, and socioeconomic conditions would allow evaluation of its
scalability and adaptability, generating valuable insights for its implementation in diverse

urban contexts.
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APPENDIX A

ANALYSING ODM AND PASSENGERS
FLOW ESTIMATION IN MODEL D

In this section, we present a comparison between the estimated demand and the exact
demand, as well as the estimated flow and the observed flow, for model D, which ex-
perimentally demonstrated to obtain, on average, better estimations for all classes of
instances tested using an information level of |A| = |A¥| and |N| = |NL| (that is, making
observations at all the line segments and all the stops). In particular, our comparison is
conducted using a scatter plot, one for the demand and another for the segment flows.
For the demand, we plot the points (g, gx) for all £ € K, while for the segment flows we
plot (Ta, > per (VE+ Vf(a))) for all @ € AL. Ideally, our estimations should be equal to the
exact or observed information, meaning the closer the points are to the identity line (the
straight line passing through the origin (0,0) with a slope of 1), the better.

We take one instance for each type of variation, i.e., increasing demand (Figure 24),
decreasing demand (Figure 25), and both (Figure 26). To analyze the most unfavourable
case for our estimation approach, we consider the case where all entries of the OD matrix

change.
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Figure 24: Comparison of estimated and exact passenger demand and passenger flow for
instance Incr_100%.
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Figure 25: Comparison of estimated and exact passenger demand and passenger flow for
instance Decr_100%
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Figure 26: Comparison of estimated and exact passenger demand and passenger flow for
instance Both_100%

Notice that Figures 24-26 exhibit a great similarity (fit to the line with a slope of

1) for the estimated and exact/observed values of demand and passenger flows.

In addition to performing the comparison for the case of observing 100% of the
line segments, we also show the results with an observation level of 50% (and 100%
of the stops). The results are presented below, where we can see that although there
are significant differences between estimated and observed flow only on a few arcs, the

similarity between estimated and exact demand prevails.

Karla Isabel Cervantes Sanmiguel



APPENDIX A. ANALYSING ODM AND PASSENGERS FLOW ESTIMATION IN
MobpEL D 65

1200 | hl 2500 ' a
OD Demand e Segment Flow e
Identity . Identity 7
+20% Error - - - - -7 +20% Error - - - - .
1000 .- - .
- 2000 [~ - -
- 0 ’
2 800 L - -
£ - : & 1500 - ¢ - -
& z o . -
S 3
g o0r - -3
5 e £ .- -
E e - @ 1000 | -
& 400 - B I
P e .. P
500 - -
200 L oa® - - -
7 e [3e
.
0 P . . . . . . . . ‘ 0 L L L L L L L L L )
0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Exact Demand Observed Flow

Figure 27: Comparison of estimated and exact passenger demand and passenger flow for
instance Incr_100%, but using only 50% of observed flows.
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Figure 28: Comparison of estimated and exact passenger demand and passenger flow for
instance Decr_100%, but using only 50% of observed flows.
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Figure 29: Comparison of estimated and exact passenger demand and passenger flow for
instance Both_100%, but using only 50% of observed flows.

The above results reinforce our conclusions about the usefulness of optimisation
models and different types of information for estimating Origin-Destination matrices.
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APPENDIX B

ANALYSING OUR MODEL ASSUMING
CHANGES IN THE TRANSIT NETWORK

In addition to changes in passenger demand for different origin-destination pairs, other
changes that may occur over time include the reconfiguration of the transport network in
terms of stops of transit lines. This is especially true in scenarios of cities with a high level
of change due to land use trends, socio-economic activities, and even those recurrently
affected by disasters. In this context, we conducted an experiment to evaluate our model

by assuming that at the time of taking the outdated demand information, one line was
missing, as shown in Figure 30.

Frequency
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Figure 30: Old and new sets of transit lines to analyse our model D, assuming changes in
the transport network.

Based on the latter scenario, model D was implemented on the instances described

in Appendix A assuming a 100% level of observed flows. The results are shown in Figures
31-33.
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Figure 31: Comparison of estimated and exact passenger demand and passenger flow for
instance Incr_100%, using 100% of observed flows.
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Figure 32: Comparison of estimated and exact passenger demand and passenger flow for

instance Decr_100%, using 100% of observed flows.
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Figure 33: Comparison of estimated and exact passenger demand and passenger flow for
instance Both_100%, using 100% of observed flows.

Note that the flow estimation resulting from our model is of good quality. However,

there is a deviation of more than 20% between estimated demand and actual demand for
a few OD pairs (less than 13.33%). These aforementioned results indicate that the model

needs to be enhanced to address changes in the transport network.

Karla Isabel Cervantes Sanmiguel
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