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CHAPTER 1

INTRODUCTION

This work focuses on the Orienteering Problem with Mandatory Visits and Conflicts
(OPMVC). This problem is a variant of the Orienteering Problem (OP), it has
mandatory visits, optional locations with associated scores, and constraints that
forbid certain pairs of places from being visited on the same route. The goal is to
maximize the score obtained by visiting some optional locations while ensuring that
all mandatory places are visited within the given maximum time limit.

The OPMVC has diverse applications across our lives due to its nature of
being a combinatorial problem. Delivery and logistics involve planning efficient
routes to ensure that essential locations (such as distribution centers) are visited
while maximizing additional deliveries within distance or schedule constraints. In
supply chain management, the OPMVC is used to coordinate the flow of goods from
suppliers to customers, ensuring visits to hubs, for example. In tourism, the OPMVC
helps to design itineraries that include must-see attractions while maximizing the
number of additional spots to visit in a limited travel time. In vehicle routing, the
OPMVC can be used to plan routes for a delivery service. It requires delivering
packages to specific points, where the customers have paid for urgent delivery and
selecting additional clients who chose the free option. The aim is to serve all the
required stops and attempt to make as many extra stops as possible in order to
maximize the score. All within the space and time allowed in the vehicle and working
hours.

This study contributes with an exact method for solving the OPMVC based on
a Branch and Cut (B&C) framework. The innovation is that this is the first time all
OPMVC instances of literature have been solved to optimality using an undirected
formulation with valid inequalities added dynamically as the solving progresses.
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1.1 MOTIVATION

Although one metaheuristic and some exact methods have been proposed, not all
of the OPMVC benchmark instances have been solved to optimality. Therefore,
considering that other variants of the OP that have been successfully solved using
the B&C method, there is an opportunity for this problem to be solved in the same
way. The motivation for this thesis is to propose an exact method that can solve the
OPMVC to optimality or at least improve the best-known solutions for this problem.

This would be beneficial not only in academic research but also in practical
situations that share the same characteristics of the OPMVC.

1.2 HYPOTHESIS

Reformulating the OPMVC using undirected graphs and solving it within a Branch
and Cut framework is expected to improve computational efficiency by taking advan-
tage of symmetry. This formulation is expected to accelerate convergence, leading to
optimal or near-optimal solutions for benchmark instances. Consequently, this ap-
proach is anticipated to produce better solutions than the existing in the literature,
in less time and provide a viable alternative for solving larger OPMVC instances,
making it more practical for real-world applications. This assumption is based on
the fact that existing variants of the Orienteering Problem (OP) have successfully
been tackled with B&C techniques, especially by making use of cutting planes that
enforce tightening the linear relaxation.

1.3 OBJECTIVE

The primary objective of this thesis is to develop and evaluate an exact approach
for solving the OPMVC using an undirected graph formulation, expecting to reduce
computational complexity, accelerate convergence, and improve solution quality and
efficiency compared to existing methods.

1.3.1 SPECIFIC OBJECTIVES

o Advance the state of the art in solving the OPMVC.
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o Identify and adapt efficient cuts from the literature to enhance the solution
process.

e Develop an effective separation method in the Branch and Cut framework to
distinguish between applicable and non-applicable cuts.

o Disseminate the findings through publication in a peer-reviewed scientific jour-
nal.

1.4 CONTRIBUTION

This study proposes an exact method to solve the OPMVC using a B&C algorithm.
The contributions are the following.

o Formulation of an exact approach: The problem was reformulated to use undi-
rected graphs, which reduced the number of variables. Consequently, B&C was
approximately 90% faster than the benchmark MILP formulation and was able
to solve instances with up to 262 vertices to optimality in less than five minutes.

 Identification of valid inequalities in the literature: Major inequalities valid in
the literature were identified and incorporated. These are logical cuts, match-
ing inequalities, infeasible path inequalities, and connectivity inequalities. It
was determined that connectivity inequalities help to minimize the optimality
gap and improve the overall performance of the algorithm.

o Separation Algorithm Development: Design and implement separation proce-
dures to efficiently identify and apply valid cuts.

o Integration of CPLEX Dynamic Search: Incorporate CPLEX’s dynamic search
framework to enhance computational performance.

o Improve the state of the art: The proposed B&C was able to solve to optimality
all 340 OPMVC benchmark instances. Additionally, it generated 69 new best-
known solutions and improved 60 existing best-known solutions.

o Scientific dissemination and validation: Progress of this work were dissemi-
nated in the Latin-Iberoamerican Conference on Operations Research (CLAIO)
in Guadalajara. A scientific article based on this work has been submitted
and accepted. Pérez-Franco, M., Boyer, V., & Salazar-Aguilar, M. A. The
orienteering problem with mandatory visits and conflicts: A branch and cut ap-
proach. Journal of the Operational Research Society TJOR. https://doi.org/10.
1080/01605682.2025.253658. [forthcoming].
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1.5 METHODOLOGY

1. Literature review: Examine the TSP, OP, relevant problem variants, and B&C
solution techniques.

2. Identification and definition of the problem: Study the basic mathematical
formulation of the OPMVC using a model based on directed graphs.

3. Reformulation of the problem: The problem is defined using an undirected
graph with the aim of taking advantage of the symmetry of the model.

4. Identification of relevant cuts: Obtain information on cutting planes from
similar problems in the literature.

5. Model implementation: Develop the problem formulation using an undirected
graph representation.

6. Incorporation of Valid Inequalities: Introduce additional valid inequalities to
strengthen the model.

7. Benchmark Validation: Solve benchmark instances to evaluate model perfor-
mance.

8. Result Analysis: Assess computational performance and compare solutions
with existing methods.

1.6 THESIS STRUCTURE

The structure of this thesis is as follows. Chapter 2 provides a literature review
introducing key concepts and previous research relevant to this study. Chapter 3
presents the formal description of the problem and the optimization model based on
an undirected graph. Chapter 4 describes the B&C framework, including the primal
heuristic, valid inequalities, and the separation algorithms. Chapter 5 discusses
the experimental setup, computational results, and their interpretation. It also
describes the hardware used, characteristics of the benchmark instances, and presents
a comparative analysis through tables and graphs. Chapter 6 concludes the thesis by
summarizing the main findings, reflecting on the research objectives, and providing
directions for future research.



CHAPTER 2

LITERATURE REVIEW

This chapter serves as the foundation for the research by presenting previous re-
search, concepts, and methodologies related to this study. Starting with the Travel-
ing Salesman Problem (TSP) and covering its origin, historical development, and rel-
evant formulations. Then, analyze how the TSP has been effectively solved through
Branch and Cut (B&C) approaches. Next, the definition of the Orienteering Prob-
lem (OP) and its key characteristics, along with its contrast with TSP, are presented.
Applicable cases are provided where the OP solutions have been obtained with ex-
act B&C formulations. Then, variants of OP, which are structurally similar to the
presented problem, are described. Finally, the OPMVC is introduced, containing a
description of the problem definition, its connection to previous problems investi-
gated, and relevant models, methods, and findings from the literature on which this
thesis is based.

2.1 THE TRAVELING SALESMAN PROBLEM

In operations research and optimization, a routing problem is the process of finding
the best way to move objects or resources from one place to another. The Traveling
Salesman Problem (TSP) is a classic optimization problem that seeks to find the
shortest route among a set of places, visiting each of them just once. The objective
is to minimize the total distance traveled by a salesman between each pair of places
while visiting all cities on the tour. The TSP was first investigated by William
Rowam Hamilton and Thomas Penyngton Kirkman in the 1800s as stated in Matai
et al. [2010]. Later, in 1930, the TSP was studied in Vienna by Menger and by
Hassler, Whitney, and Merrill in Princeton, as reported in Cook et al. [1998].

It is a complex problem to solve due to its combinatorial nature. This is



CHAPTER 2. LITERATURE REVIEW 6

because, with a number n of places to go, there are 1/2(n — 1)! possible ways to visit
them. Therefore, the more places exist, the more potential routes must be analyzed
to choose the one with the shortest time.

One of the most significant works is the one of Dantzig et al. [1954]. This study
aimed to visit 48 cities, one in each state of the USA, with Washington D.C. as the
initial and final point. A linear programming approach using an undirected graph
model was developed to achieve this. A highlight is the introduction of inequalities
to avoid subtours in the solution. A subtour is a part of a route that forms a cycle
of cities but does not include all the cities of the problem. Finally, this work solved
the problem and found the optimal solution. Furthermore, it established a new
benchmark in the field of the TSP.

The researchers continued exploring different optimization techniques to solve
problems with more places. Grotschel and Holland [1985] implemented a cutting
plane algorithm to solve to optimality a 1000-cities instance. However, it required
61 minutes and 9 seconds of computational time to solve it. Whereby, later in
Grotschel and Holland [1991], authors employed polyhedral combinatorics to de-
crease the computational resources needed to solve the same instance. This study
contributed to the state of the art by solving the TSP with exact methods using
Linear Programming, cutting planes, heuristics, and the Branch and Bound (B&B)
method. A polyhedral cutting planes method was proposed by Padberg and Rinaldi
[1991]. Where each time a cut did not lead to an optimal solution, a strategy that
kept producing cuts after branching was performed. The method was implemented
in Fortran, and all tested instances were solved depending on the parameter and
number of nearest neighbors (NN) on 1616, 849, 1016, and 1072 seconds.

Recent studies have worked on TSP problems by combining heuristics with
exact methods. This combination is usually used to improve the initial solution
quality. Research has also expanded to TSP variants, adding specific characteristics
or constraints. In Nekovar et al. [2021], an interesting TSP variant is explored in
the context of power transmission line inspections, where an inspection vehicle must
make multiple trips to inspect all power lines due to travel constraints. The objective
is to optimize the inspection routes and minimize operational costs. An Integer
Linear Programming (ILP) and a Greedy Randomized Adaptive Search Procedure
(GRASP) metaheuristic, which provides competitive solutions, were proposed.

In addition to exact methods, many algorithms, heuristics, and metaheuris-
tics have been developed to find feasible solutions that are close to optimal. Some
proposed techniques are the Ant Colony Optimization Algorithm (ACO), Genetic
Algorithm (GA), Simulated Annealing (SA), and Particle Swarm Optimization Al-
gorithm (PSO). Ha et al. [2020] focus on a variant of the TSP that works with drones
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(TSP-D), with the objectives of minimizing the total operational cost and the time
required for completion. They present a hybrid genetic algorithm search with dy-
namic population management and adaptive diversity control. This sophisticated
search strategy ensures that the solutions remain diverse throughout the search and
dynamically adjust the population. Their results improve many of the best-known
solutions in the literature.

2.2 'THE ORIENTEERING PROBLEM

According to Feillet et al. [2005], the Orienteering Problem (OP) is one of the three
profit-based problems of the TSP and was proposed by Tsiligirides [1984] and Golden
et al. [1987]. The OP is also known as the Selective Traveling Salesman Problem
(STSP) according to Laporte and Martello [1990]. It is of great interest due to
its practical applications in the real world, such as in logistics and transportation,
urban planning, telecommunications, supply chain, tourism, and many more. The
OP is a routing problem whose goal is to determine which subset of places to visit
and in which order, allowing to travel at most a certain distance or time and, for
every visited place, a certain number of points to maximize the total collected score
is determined.

To the best of our knowledge, the first contributions of exact methods for
the OP were published in Laporte and Martello [1990], where an ILP model was
proposed. Two versions of the algorithm were created. The first one relaxed the
connectivity constraints, and the violated conditions were gradually added using a
B&B method only when an integer solution was found. The connectivity constraints
make sure that the selected vertices are in a single connected path. The second
algorithm introduces the constraints as soon as it finds a group of connected vertices
that are not part of a starting set. Later, in Ramesh et al. [1992], an algorithm was
developed for solving a variant of OP, where the start and end points are the same.
The algorithm applies Lagrangian relaxation through a spanning tree procedure in a
B&B framework. It explores the characteristics of relaxation and includes strategies
to improve performance. Results were obtained for instances with up to 150 places.

A B&C method was proposed in Gendreau et al. [1998a]. A variety of classes
of valid inequalities were developed to improve the solution process, and then, they
were integrated into the B&C algorithm. Also, two heuristics were created to have
a construction process, followed by an optimization phase until no improvement can
be found. The algorithm is capable of handling instances with up to 300 places.
On the other hand, the B&C approach in Fischetti et al. [1998] includes exact
and heuristic separation algorithms for the symmetric Selective Traveling Salesman
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Problem (STSP). They use various types of valid inequalities and introduce several
new classes like the conditional and cycle cover cuts. All the linear programs were
solved in CPLEX, and the algorithm could optimally solve instances with up to 300
places. In Kobeaga et al. [2024], a B&C was developed. It was able to improve the
values of the lower and upper bounds in the literature. One of the used techniques
was the Integrated Constraint Handling, in which a separation algorithm simultane-
ously treats Subtour Elimination Constraints and Connectivity Constraints for the
Cycle Problems. A variable pricing procedure was implemented to reduce the com-
putational complexity, and a novel method for computing the global upper bound
was used to improve the algorithm performance.

2.3 VARIANTS OF THE ORIENTEERING PROBLEM

There are several variants of the OP, each with unique characteristics. The Team
Orienteering Problem (TOP) is a combinatorial optimization problem in which mul-
tiple vehicles are used to maximize profit from visited places while operating under
travel budgets. Every vehicle starts from a depot and visits a set of places. Every
place has an associated score that can be collected if it is visited. In Xu et al. [2020],
an approximation algorithm for the TOP is presented, whose approximation ratio is
at least 0.32. This means that the algorithm guarantees a solution whose total profit
is at least 32% of the optimal solution, even in the worst-case scenario. The results
show that the benefits obtained by the proposed algorithms are approximately 12.5%
to 17.5% higher than those of the existing algorithms.

On the other hand, the Orienteering Problem with Time Windows (OPTW)
includes specific time windows during which places must be visited. The goal is to
maximize the total score collected by visiting different locations within time con-
straints. The research of Gama and Fernandes [2021] seeks to solve this problem by
applying neural network models trained through reinforcement learning. The results
show that the proposed model offers better solutions than the traditional heuristics
proposed for dynamic and varied environments.

In Lin and Vincent [2017], the Team OPTW and Mandatory Visits (TOPTW-
MYV) is studied. This variant involves multiple vehicles, and aims to maximize the
total score in all routes, considering vehicle capacities and a limited number of vehi-
cles. Additionally, it incorporates mandatory visits and time constraints. A MILP
model and a Multi-Start Simulated Annealing (MSA) heuristic are proposed to solve
the problem. The results showed that the MSA algorithm obtained better solutions
than the commercial solver Gurobi in solving small instances of the benchmark.
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The Time Dependent OPTW and Service Time Dependent Profits (TDOPTW-
STP) is studied in Khodadadian et al. [2022], and has variations of travel times
based on daily times. The objective is to maximize profits by having minimum and
maximum service times or time windows and a given time budget. A MILP formu-
lation is presented, as well as a Variable Neighborhood Search (VNS) metaheuristic.
Experimental results show that the VNS algorithm provides high-quality real-time
solutions. It also provides more efficient time budget management, especially in
more congested traffic networks.

In the Clustered Orienteering Problem (COP) places are grouped into clusters
with an associated score, which is collected only if all of the places in the cluster are
served. The objective is to maximize total profits within a time limit. In Wu et al.
[2024] an evolutionary algorithm is proposed to solve this problem. This algorithm
combines a backbone-based crossover operator, a destroy-and-repair mutation op-
erator for search diversification, and a solution-based tabu search procedure. The
proposed algorithm outperforms the state-of-the-art algorithms on 924 benchmark
instances from the literature, and it sets new lower bounds in 14 instances.

Uncertainty in travel times or scores is considered in the Stochastic Orien-
teering Problem (SOP).The objective is to plan a route that maximizes the score
obtained by visiting certain places in a graph, respecting a travel budget on edges
with stochastic costs and a defined probability of failure. Thayer and Carpin [2021]
introduced an adaptive method that builds a path tree that allows exploring mul-
tiple sequences of places. This method increases the expected reward and controls
the computation time.

Having reviewed the background and variations of the OP, this paper focuses
on a variant of the OP, referred to as the Orienteering Problem with Mandatory
Visits and Conflicts (OPMVC). This variant of the classic model enhances it with
new constraints to capture conditions in the logistics and planning industry.

2.4 THE ORIENTEERING PROBLEM WITH
MANDATORY VISITS AND CONFLICTS

The OPMVC was first studied in Palomo-Martinez et al. [2017b] and considers
additional constraints, such as mandatory visits and incompatibilities among places.
The mandatory places must be visited as a part of the solution tour. On the other
hand, optional places are not required to be in the solution, and visiting them
depends on time constraints. Every optional place has a positive score which is
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collected if and only if the place is visited, while mandatory places have a score of
zero. Conflicts between the places appear when pairs of places cannot be visited on
the same route, forcing them to choose which place to visit. The OPMVC also has
a time budget, and the solution must ensure that the total time spent traversing the
edges between visited places does not exceed this limit. The goal of the OPMVC is
to maximize the total score obtained from the visited optional places, while visiting
the mandatory ones and respecting time limit and conflicts between places.

The first method for solving the OPMVC was developed by Palomo-Martinez
et al. [2017b], who proposed a hybrid algorithm that combines a reactive Greedy
Randomized Adaptive Search Procedure (GRASP) with a general Variable Neigh-
borhood Search (VNS). The algorithm performs a multi-start strategy, in which
several initial solutions are generated and then improved using the general VNS
method. The process continues until it reaches a stopping condition.Computational
experiments validate the algorithm’s performance, and it found optimal solutions
for 128 out of 340 instances.

Later, in Palomo-Martinez et al. [2017a], the authors adapt five MILP formu-
lations derived from the TSP with emphasis on subtour elimination constraints. An
exhaustive comparison using the commercial solver CPLEX showed that the best
performance was obtained with the Gavish and Graves subtour elimination con-
straints by achieving 71% more optimal solutions than the other approaches. They
observed that increasing the number of conflicts between nodes is beneficial in find-
ing more optimal solutions within a reasonable time. This benefit occurs because
adding more constraints reduces the number of possible solutions that meet all con-
straints. However, not all instances were solved to optimality within a time limit of

1h.

Similar problems have been studied before. In Salazar-Aguilar et al. [2014],
a Multi-District Team Orienteering Problem was presented. It involves scheduling
mandatory and optional tasks across multiple districts within a specified planning
horizon and exclusionary constraints. The authors proposed a Mixed-Integer formu-
lation and an Adaptive Large Neighborhood Search (ALNS) algorithm. A Memetic
Algorithm (MA) for the Orienteering Problem with Mandatory Visits and Exclusion-
ary Constraints (OPMVEC) was presented in Lu et al. [2018]. The study combines
a dedicated Tabu Search (TS) that accommodates feasible and infeasible solutions
through constraint relaxation, a backbone-based crossover, and a randomized muta-
tion procedure to avoid premature convergence.

The OPMVC is an interesting problem to study because of its numerous prac-
tical applications. It aims to identify routes where particular places must be reached,
while some places are optional, and some are impossible to visit on the same route
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because of restrictions or conflicts. An interesting application is in package delivery
logistics. Electric vehicle delivery modality has recently increased in countries such
as China, the United States, Estonia, and Spain. This brings new challenges and,
one in particular, is focused on battery life as studied in Martins et al. [2021]. Both
OPMVC and STSP-TDP aim to optimize routes considering constraints. Both prob-
lems focus on finding the best sequence of places to visit or deliver to maximize a
score collected under certain constraints, such as vehicle capacity or available time.
In addition, both involve selecting deliveries or stops to minimize costs or times.
However, the main difference is the nature of the constraints and the scores. The
STSP-TDP introduces time-dependent benefits, allowing the score of visiting a place
to vary throughout the day. On the other hand, the OPMVC focuses on optimizing
routes under the constraint of battery life without considering temporal changes in
benefits.

In the fuel delivery problem, the objective is to supply the required places while
minimizing the distance traveled between them, as studied in Allen et al. [2024]. The
fuel delivery problem and OPMVC share the structure of optimizing routes under
limited resource constraints. In both cases, some places must be visited (mandatory),
and others can be visited optionally, depending on operational constraints such as
limited resources. The main difference is that OPMVC seeks to maximize a score
based on the optional nodes visited. At the same time, the fuel delivery problem
focuses more on route efficiency and delivery at urgent places.

The Unmanned Aerial Vehicle (UAV, Peyman et al. [2024]) mission planning
is a problem that involves defining the route that a drone should take. The objective
is to complete the mission safely to optimize resources such as the battery, to adapt
to the conditions, and to comply with the defined restrictions. Both UAV mission
planning and OPMVC aim to optimize routes under limited resource constraints,
such as battery (in the case of drones) and maximum time in the OPMVC. Both
require selecting a subset of places to visit. The main difference is that the UAV
faces navigation challenges in three dimensions and dynamic environments. At the
same time, the OPMVC is more static and relies on two-dimensional routes and
conflicts between vertices.

Another application is tourism planning, which aims to design itineraries that
maximize visitor satisfaction. It requires selecting specific places of interest that a
traveler wants to visit, but it is impossible to visit all of them. The objective is to
choose a set of places to be visited by a single route to maximize the benefit associated
with the interest that each site offers to the traveler. This problem is known as
Selective Traveling Salesman Problem with Time-Dependent Profits (STSP-TDP)
and is studied in Barrena et al. [2023]. The OPMVC presents similarities since both
seek to optimize an itinerary subject to specific restrictions. Both problems involve
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planning a tour to maximize an objective function while meeting certain limitations.
However, the key difference is that the score associated with the places in the STSP-
TDP is variable and depends on the visit time to each point, while in the OPMVC,
the score related to the optional vertices is static.

Table (2.1) shows a summary of the problems related to OPMVC and their

key characteristics.

Problem (OP)

visit.
« Maximizes total score.
« Time/distance budget constraint.

of OP. Also known as Se-
lective Traveling Salesman
Problem (STSP).

Problem Key Characteristics Similarities with OP- References
MVC
Traveling Sales- « Seeks the shortest route between Fundamental base of OP- Matai et al. [2010],
man Problem places. MVC. MILP formulations Dantzig et al. [1954],
(TSP) « Visits every place only once. of OPMVC were adapted Grotschel  and  Holland
¢ Minimizes total distance. from TSP literature. [1985],
Orienteering ¢ Determines subset of places to OPMVC is a direct variant Tsiligirides [1984], Golden

et al. [1987], Laporte and
Martello [1990]

ing Problem with
Time ‘Windows
and Mandatory
Visits (TOPTW-

¢ Time windows.
« Mandatory visits.

with OPMVC, but in-
cludes time windows and
multiple vehicles.

Team Orien- « Extension of OP with multiple Variant of OP. The differ- Xu et al. [2020]
teering Problem vehicles. ence is that in the OPMVC
(TOP) « Maximizes score of visited places. is a single route and in the

¢ Individual travel budgets. TOP there are multiple ve-

hicles.

Orienteering » Extension of OP. Variant of OP. OPMVC Gama and Fernandes [2021
Problem with o Specific time windows per place. has total time limit, but
Time ‘Windows e Visit must begin within defined not specific windows per
(OPTW) interval. place.
Team Orienteer- « Combines multiple vehicles. Shares mandatory visits Lin and Vincent [2017]

(TDOPTW-STP)

scores.

MV)

Time-Dependent e Scores and times vary by hour. Variant of OP. The dif- Khodadadian et al. [2022]
Orienteering ¢ Maximizes benefits with time ference is that OPMVC

Problem with budget. has static scores and

Time Windows ¢ Time windows and service times. TDOPTW-STP dynamic

Clustered Orien-
teering Problem
(COP)

« Places grouped in clusters.
e Score obtained if all places in the
cluster are served.

Variant of OP. OPMVC
on conflicts be-
tween individual vertices,
not grouping.

focuses

Wu et al. [2024]

Stochastic Orien-
teering Problem

o Considers uncertainty in travel
times.

Variant of OP. OPMVC is
deterministic and without

Thayer and Carpin [2021]

Planning (UAV)

« Adapts to conditions and restric-
tions.
« Three-dimensional navigation.

ferences are that the UAV
faces 3D navigation and
dynamic environments.

(SOP) « Uncertainty in place scores. random variables.
Multi-District ¢ Mandatory and optional activi- Contains exclusion con- Salazar-Aguilar et al.
Team Orien- ties. straints or conflicts like the [2014]
teering Problem « Multiple districts. OPMVC, but adds multi-
(MDTOP) « Planning horizon. ple districts.
« Exclusion constraints.
Selective Trav- ¢ Maximizes score by visiting Similar to the OPMVC in Barrena et al. [2023]
eling Salesman places maximizes score. The dif-
Problem with ¢ Time-dependent variable scoring ference is that the STSP-
Time-Dependent ¢ Optimizes itinerary with con- TDP has dynamic scores.
Profits (STSP- straints
TDP)
Unmanned Aerial ¢ Defines route for drone missions. Both select subset of Peyman et al. [2024]
Vehicle Mission « Optimizes resources like battery. places to visit. The dif-

« Time budget constraint.
¢ Objective: maximize total score.

Fuel Delivery « Minimize distance traveled. Both have mandatory and Allen et al. [2024]
Problem ¢ Mandatory and optional places. optional visit places. The
e Limited resource constraints. difference is that the fuel

delivery focuses on route

efficiency and urgent deliv-

eries.
Orienteering « Mandatory vertices that must be Main study problem. Palomo-Martinez et al.
Problem with visited. Combines mandatory vis- [2017a], Palomo-Martinez
Mandatory Visits « Optional vertices with score. its and conflict constraints et al. [2017b], Lu et al.
and Conflicts ¢ Conflicts between vertices (in- [2018]
(OPMVC) compatibilities).

Continued on next page
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Table 2.1 — continued from previous page
‘ Problem ‘ Key Characteristics Connection with OP- ‘ Study Title / Author(s) ‘

MVC

TABLE 2.1: Comparison of optimization problems related to OPMVC

As illustrated, the OPMVC shares similarities in structure and constraints with
numerous problems, such as those encountered in tourism planning, drone missions,
and fuel distribution. Nevertheless, it has specific features, such as mandatory visits
and conflicts between vertices. To this day and to the best of our knowledge, no exact
method has been able to solve all of the instances of the OPMVC from the literature
to optimality. Therefore, this work contributes by developing a B&C algorithm to
solve all of them to optimality.



CHAPTER 3

FORMAL DEFINITION AND
MATHEMATICAL FORMULATION

This chapter presents the formal definition of the OPMVC, a complex combinatorial
optimization problem. The problem is formulated using an undirected graph, defin-
ing the parameters, decision variables, objective function, and key constraints that
ensure the feasibility of the generated routes. Finally, to facilitate understanding,
an illustrative example is shown.

3.1 ProprposeD OPMVC

The key optimization model related to this work is the one proposed by Palomo-
Martinez et al. [2017a]. In that work, five mixed-integer linear formulations from the
TSP literature were adapted and used to represent the OPMVC, all of them based
on directed graphs. The Gavish and Graves (GG) subtour elimination constraints
outperformed all the studied ones, and they are added to the model. The complete
model is in Appendix (A).

In this work, with the aim of reducing the number of variables, we derived a
new formulation based on an undirected graph. We considered the work of Fischetti
et al. [1998]. Therefore, the notation is similar. The undirected graph is defined by
G = (V, E), where V represents the set of vertices, and £ = {(i,j) € V*|i < j} is
the set of edges. In this formulation, each vertex i € V is assigned a score s;, rep-
resenting the profit obtained by visiting it. Two special vertices, o and d, represent
the route’s origin and destination depot. These vertices are always included in the
solution. The binary variable z. shows whether edge e € E will be traversed in the
solution or not, and the binary variable y; indicates if the vertex ¢ € V is visited.

14
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The route must respect a global time constraint, meaning the total traversal time
of the selected edges cannot exceed a maximum value denoted as T,,... Each edge
e € E has an associated travel time t.. The set M C V includes all mandatory
vertices, and it always includes o and d. The used notations are defined in Table

(3.1).

Notation Definition
o,d o and d represent the starting and ending vertices or
depots, respectively.
T ooz The maximum total duration allowed for the route.
te The edge e € E travel time.
Si The score assigned to each vertex i € V, with s, =0
for mandatory vertices (i € M).
McV The set of mandatory vertices, which includes o and
d.
V\M The set of optional vertices, which are not manda-
tory.
CcVv? C is the set of conflicting vertex pairs, where if

(i,7) € C, vertices i and j cannot be on the same
route.

ES)={(i,j)eE|i€ Sand je S}

The set of edges between vertices within the subset
ScV.

0(S)=A{(i,j) e E|lieSandj¢ S}

The set of edges where one vertex is in S and the
other is outside S.

E(i),0(i)

If S ={i}, i€V, we write E(i) and §(7), instead of
E{i}) and §({i}).

V(T)={ieV |Tné@) # 0}

The set of vertices V' that have at least one edge in
the set T C E.

z(T) = Z.’Ee, forT CFE

Sum of the values of the variables x, associated with

ecT all the edges in the subset T' C E.
y(S) = Z y;, for S CV Sum of the values of y; for all elements i that are in
ics the subset S of V.

TABLE 3.1: Definition of parameters for the proposed OPMVC formulation

Then, considering the decision variables.

° a’;e :{ 0’
. = 17
Yi = 0,

otherwise

otherwise

1, if edge e € E is traversed

if vertex 1 € V is visited
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The formulation is as follows.

Mazimize z = Z SiY; (3.1)
st. Y tete < Thax, (3.2)
2(0(0)) = x(6(d)) = 1, (3-3)

x(6(2)) = 2y, i€ V\{o,d}, (3.4)

z(E(S)) < |5 -1, ScV, (3.5)

v =1, e M, (3.6)

Y —f—y] S 1, (Z,j) & C, (3 7)

z. € {0, 1}, ee b, (3.8)

y; € {0,1}, eV (3.9)

The objective function (3.1) maximizes the sum of the scores related to vertex i
and multiplied by binary variable y;, i € V. Constraint (3.2) restricts the maximum
route length. Constraint (3.3) ensures that one connection leaves the initial depot
and only one reaches the final depot. The degree constraints (3.4) ensure that when
a vertex i is visited (y;= 1), it must have two incident edges (incoming and outgo-
ing); otherwise(y; = 0), it should have no incident edges. The subtour elimination
constraints are (3.5). The constraints (3.6) force to visit all the mandatory vertices.
Conflicts among vertices are avoided by constraints (3.7). Finally, constraints (3.8)
and (3.9) define the binary nature of the decision variables.

3.2 ILLUSTRATIVE EXAMPLE OF THE OPMVC

This section presents an example of the OPMVC. The example illustrates how the
model operates with mandatory and optional vertices, travel times, and conflicts.
It also illustrates how the objective function and constraints intersect to produce a
feasible, high-scoring route.

There are given six vertices, where:

Vertex O is the initial depot (o).

Vertex D is the final depot (d).

Vertex 3 is mandatory and must be visited.

Vertices 1, 2, and 4 are optional vertices.
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o Vertices 2 and 4 have conflict between them, so they cannot be visited on the
same route.

o Thax is 15.

The objective is to maximize the score by visiting mandatory and optional vertices,
ensuring the total time does not exceed Tiax. Figure (3.1) illustrates an example of
the OPMVC problem with six vertices: an initial depot (O), a final depot (D), a
mandatory vertex (3) that must be visited, and three optional vertices (1, 2, 4) with
their positive associated scores that are the numbers in bold, for example, vertex
number 1 has a score of 45, vertex 2 of 46, and vertex 4 of 49. Vertices 2 and 4 conflict,
so they cannot be included in the same route. The figure shows the connections
between vertices with their respective time. The total route time must not exceed
Thax = 15, all mandatory vertices must be visited, and the optimal solution must
maximize the score collected from the visited optional vertices, avoiding conflicts.

45

(OO R
, ; S ’,/ N = {1,2,4}
46 49

F1GURE 3.1: OPMVC example

When solving the example, we find that the best solution reaches a maximum
score of 94 and it takes a 10 time units, within the allowed T},... This solution
visits mandatory vertex 3, as well as the optional vertices 1 and 4, while avoiding
the conflict between vertices 2 and 4. The optimal route is shown in Figure (3.2).
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45 y3:1

®

46 49
FIGURE 3.2: OPMVC solution



CHAPTER 4

BrANCH & CuT ALGORITHM

This chapter presents a detailed description of the proposed Branch-and-Cut method.
First, a general flowchart illustrates the overall process of the method. Then, each
step is described in detail followed by a primal heuristic which helps generate high-
quality solutions in the early stages of the search. Following this, the valid inequal-
ities are discussed. These constraints enhance the problem formulation and refine
the feasible region. Finally, the separation algorithms used to identify and inte-
grate these inequalities into the model are presented. Throughout this chapter, we
systematically develop each of these components.

4.1 BRANCH AND CUT FRAMEWORK

Figure (4.1) summarizes the general Branch and Cut algorithm. It starts by solving
the linear relaxation of the problem (step LP), this means we solve the problem
without integer conditions and subtour elimination constraints. A solution X* is
derived from this relaxation, which can follow two paths depending on its nature. If
X* is integer and feasible, the algorithm terminates with an optimal solution (Stop
step). Besides, if the solution is fractional, then the algorithm continues to the next
step, which is the primal heuristic.

During the primal heuristic step (step Primal heuristic X*), an attempt is to
refine the fractional solution with the aim of getting a better approximation of the
solution. The obtained fractional solution is then processed by the separation algo-
rithms in the Separation Algorithm(X*) step. Here, new constraints are identified
(New constraints found step), and added to the LP (Add constraints). This process
of adding constraints is continued until there are no more to add.

Then, the flow continues through the B&B process in search of the integer opti-

19
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mal solution and terminates at the Stop step. The LP, with all the added constraints,
is sent to the B&B phase (LP + constraints to B¢B), where lazy constraints are used
to eliminate integer solutions that are infeasible due to the presence of subtours.

Start

Y

LP |

<
<

Integer and feasible
X*
Fractional

[Primal Heuristic(X *'

Y

[Separation Algorithm (X '.

l

] Yes
New constraints found? [

Add constraints'

Stop

FIGURE 4.1: B&C Framework.

4.2 VALID INEQUALITIES

Valid inequalities are crucial in improving optimization models, specifically in B&C
methods. Their objective is to refine the problem’s linear relaxation, eliminating the
infeasible solutions without excluding the feasible ones. The role of valid inequalities
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is also to reduce the solution space, helping to converge faster to the optimal solution.
In the B&C diagram process in Figure (4.1), valid inequalities are in the Separation
Algorithm (X*) step and added in Add constraints.

Valid inequalities are not generated arbitrarily. Separation algorithms are used
to find the appropriate constraints. These algorithms are a set of techniques specif-
ically designed to identify valid inequalities that are not present in the problem’s
initial linear relaxation. Depending on the nature of the problem and the type of
inequality to be found, a particular separation algorithm is used. These algorithms
operate at the step Separation Algorithm (X*) in the B&C framework (Figure 4.1).

Each type of valid inequality used in this study is described below, along with
the separation algorithm used to detect and incorporate them into the model.

4.2.1 LocicAL CONSTRAINTS

These constraints impose basic assumptions derived directly from the logical struc-
ture of the problem. Their primary purpose is to guarantee that any valid solution
must comply with these basic rules.

An example would be that if a vertex is part of a route, the vertex immediately
preceding and following the vertex in the sequence must also be included in the path.
Even though these constraints are often quite evident, their function is crucial in
ensuring feasible solutions. These constraints quickly eliminate non-viable solutions
early in the solving process. In mathematical terms, logical constraints are expressed
as shown in expression (4.1). This mathematical expression implies that if y; = 0
for some ¢ € V' then no edges can connect to vertex i, where 0(7) represents the set
of edges incident to vertex .

Te <y, 1€V, eecdi) (4.1)

Although (4.2) relaxes the conditions of (4.1), its formulation ensures the va-
lidity of (4.1) in the practice of the separation algorithm.

xe+$e’ §y1+y]7 (27]) GC, 665@)7 eleé(j) (42>
Logical constraints are systematically reviewed to determine when they should

be added to the problem formulation, ensuring that the generated solutions always
respect the fundamental conditions of the logical structure.
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Figure (4.2) illustrates the valid inequality (4.1) and shows a graph with ver-
tices 4, j, and k, where edges (7,7) (z;; = 0.5) and (i, k) (x; = 1). This inequality
ensures that if vertex i is not selected (y; = 0), no edges incident to i can be activated
(i; = x4 = 0), thus eliminating infeasible solutions early in the B&(C' algorithm.
For example, by setting y; = 0, the graph is reduced to isolated vertices (j and k),
demonstrating how these logical cuts restrict the search space to feasible solutions.

0.5 1

FIGURE 4.2: Logical inequality visualization

4.2.2 MATCHING INEQUALITIES

Matching inequalities come from the concept of perfect matching in graph theory.
In this context, a matching is a set of edges in a graph such that every vertex is
connected to one other vertex through an edge, leaving no unmatched vertex. A
perfect matching ensures that all vertices in the graph are connected, forming pairs
of vertices with no isolated vertices.

The main goal of matching inequalities is to establish constraints that prevent
invalid solutions, such as creating subtours. Subtours are small cycles within the
solution that do not include all vertices; therefore, the conditions of the problem
are violated. Matching inequalities are part of a family of restrictions called Comb
Inequalities. Formally, they are defined as shown in expression (4.3).

-1
2 Y

2(E(H)) + 2(T) < y(H) + HCV, Ted(H),

T odd, |J V(e)=0 (4.3)

ecT
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Here, H is the handle and represents a subset of vertices, while T' is a set of
edges called the teeth. Matching inequalities are used to enforce the linear relaxation
of the optimization problem and prevent the appearance of infeasible solutions, such
as the subtours mentioned above.

The impact of these inequalities on improving the problem solution has been
widely demonstrated, not only in the original work of Fischetti et al. [1998], but also
in more recent research, such as that of Kobeaga et al. [2024]. These investigations
show how matching inequalities strengthen the problem formulation, accelerating
convergence to the optimal solution.

Figure (4.3) shows an example of a comb inequality applied to a 48-vertices
instance, where vertices 12, 15, and 32, represented by solid circles, form the handle
H. The teeth T are the edges T' = {(11,12), (15,39), (32,45)}. Numerical values
on the edges (such as 0.5, 0.190265, or 0.809735) correspond to the weights of the
linear relaxation of the problem. The dashed lines indicate non-active edges in this
specific inequality. In this example, the inequality (4.3) becomes z(E(H))+z(T) <
y(H) + 2L where #(E(H)) = 1.5, #(T) = 1+ 1+ 1 = 3, and y(H) = 3. With

|T| = 3, the inequality becomes 1.5+ 3 < 3 + %, or 4.5 < 4. Since 4.5 > 4, this

inequality is violated by the current fractional solution, demonstrating how matching

inequalities can identify and eliminate non-optimal fractional solutions.

1 0809735 e 0190265 .1 0809735 © .1 11 S 05 105 0
R L0190265 ¢ 22 1 Dloozes . 33 i ¢ 38 . 28 L . o4 1 7 34 1 s
05 1 L1 LG

T8 oes ool T D4

FI1GURE 4.3: Matching inequality visualization

4.2.3 INFEASIBLE PATH INEQUALITIES

Infeasible path inequalities are constraints employed in optimization to exclude paths
or sequences of vertices from the solution set. These paths may be eliminated for
violating particular problem constraints, like time and distance restrictions or other
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logical criteria of the model. As a result, ignoring these invalid paths, the algorithm
can be confident that it is focusing on feasible and potentially optimal solutions.

First, there are the edge cover inequalities, which exclude paths based on time
constraints. If we have a subset 7" C F, where the sum of the travel time of all
the edges is greater than the maximum allowed time ¢,,,,. The following constraint
(4.4), proposed by Leifer and Rosenwein [1994], can be introduced.

e(T)<|T| =1 , D> te> tmax (4.4)

eeT

Consider a scenario where you have a set of vertices V', and a subset S C V
that includes a pair of vertices (i,7) that are in conflict, i.e., (i,7) € C, where C
is the conflict set. Suppose these vertices are part of the same solution, meaning
they are selected to be in the same path or route. According to the inequality (4.5),
the number of edges in the subgraph induced by S, denoted E(S), must satisfy the
constraint x(F(S)) < |S| — 2. This means that in the subset S, the number of edges
cannot exceed |S| — 2, where |S| is the number of vertices in S.

To handle such cases, the following vertex conflict inequality is introduced
(4.5).

2(E(S)) <|S| -2, ScCV,S2NC#0 (4.5)

Where S is a subset of vertices and S? N C' # ) i.e. there exists at least a pair of
vertices in conflict in S.

This inequality is used to enforce the edge cover constraint because, when a
conflict between vertices exists, it ensures that no possible path that goes through
all the vertices in S can be formed.

Later, this process is taken one step further with profit cut inequalities. These
inequalities are used when a path has a total profit less than a known lower bound
2. The path is considered infeasible because it would not provide enough value or
profit to the optimization model. The following inequality, proposed by Gendreau
et al. [1998a], expresses this idea in expression (4.6).

z(0(8)>2, ScCV,|5>2 > s<z (4.6)

i€S

Where S is a subset of vertices and ) ,cq s; represents the total benefit associated
with S. This inequality makes sure that those routes in which the total benefit is
not greater than the lower bound z cannot be included.
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To further strengthen this constraint, especially when the subset S contains
source and destination vertices o € S and d € S, the inequality can be modified to
exclude all possible subpaths within S, as shown in expression (4.7).

2(E(S) <y(S)—2, ScV,oeb deb Y s;<z (4.7)

€8

This type of inequality is primarily beneficial to make sure there is no partial path
in S that constitutes a valid solution, effectively excluding all subpaths that do not
meet the minimum benefit requirements.

Figure (4.4) shows the concept of infeasible path cuts. A graph with solid
vertices and weighted edges is shown on the left, where the red vertices (0 and 48)
represent the initial and final depots. The numbers above the edges indicate the
transition costs, while the values inside the vertices are the identification labels.
On the right, a subgraph with dotted lines is shown representing infeasible paths
according to the constraint (4.6), where the sum of the profits 3_,cg s; for these sets
of vertices is less than the set lower bound z. These paths are eliminated from the
search space by adding cut inequalities that impose xz(0(S)) > 2 for any set S that
does not meet the minimum profit requirement.

702 T30 s b 36 b Dl v as
o4l Toas o3 L P R VI

Dol TR

FIGURE 4.4: Infeasible path inequality visualization

4.2.4 (CONNECTIVITY INEQUALITIES

Connectivity inequalities are constraints that ensure that a single connected path
will represent the optimal solution of an optimization problem. This is important
to prevent the solution from being in disconnected subtours. In other words, they
check constantly that each visited vertex is connected to another vertex through a
path.
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Gendreau et al. [1998a] presented these inequalities and are known as the
Generalized Subtour Elimination Constraints (GSECs). The objective of GSECs is
to make the solution a connected component. In the context of problems like the
OPMVC, these constraints are essential to avoid the generated path that splits into
many infeasible parts.

The connectivity inequalities for the OPMVC are presented by the expressions
in Table (4.1).

Mathematical Expression Definition
This inequality guarantees that if a ver-
z(6(5)) = 2y; tex ¢ outside S is included in the solution
ScV,oelS, desS, (4.8) | (yi = 1), there are at least two edges be-
ieV\S tween S and the rest of the graph to main-

tain the route’s feasibility.

This inequality ensures that the number of

z(6(5)) = 2y;, edges crossing the subset S is at least twice
SCcV,oeV\S, (4.9) | the variable associated with the vertices
deV\S, ies outside S.

This generalized form ensures that the
edges of S are enough to maintain connec-
#(6(5)) > 29 + 25 — 2, . °

SCV,i€s, tween vertices ¢ and j in the subsets S and

jeV\S, ocS des V'\ S. Proposed by Kobeaga et al. [2024].
(4.10)

tivity, also considering the relations be-

TABLE 4.1: Connectivity inequalities

Constraint (4.11) ensures the connection between visited vertices, specifically
when S has mandatory vertices. The Cycle Cover Cut was proposed by Fischetti et
al. [1998] and its feasibility was proved by Gendreau et al. [1998b]. Its purpose is
to remove solutions that do not meet connectivity given mandatory vertices, guar-
anteeing that the mandatory vertices are present in the route in a continuous and
connected way.

2(B(S) <y(S)—1, SCV,SAM#Q (4.11)

Figure (4.5) illustrates the application of the connectivity inequality (4.8). The
red vertices (0 and 48) represent the source and destination depots located within
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the set S. The white vertices (10, 25, 28, 33, 34, 41, and 44) are outside the set S
(i.e., i€ V'\ S). The gray vertices (5, 13, 21, and 38) are part of the set S. Vertex
28, highlighted with a double circle, represents a selected vertex in the solution,
which triggers the constraint z(6(S5)) > 2y.s. The black edges show connections
that satisfy this restriction, ensuring that there are at least two edges between the
set S and the rest of the graph when vertex 28 is included in the solution.

0.83 '
@ 042

FIGURE 4.5: Connectivity inequality visualization

4.3 SEPARATION ALGORITHMS

4.3.1 MOoODIFIED KRUSKAL ALGORITHM

The modified Kruskal Algorithm (4.3) seeks to identify matching inequalities from
a fractional solution (z*,y*). Based on the support graph G* = (V*, E*), subsets of
edges can be generated based on various thresholds 6 defined on the set ©. A non-
cyclic forest is constructed for every threshold, which obeys a criterion resembling the
classic Kruskal algorithm. Connected components are identified at each step, where
adjacent edges with the highest fractional value are checked. When a large subset
of edges T is found, a valid inequality of the form x(FE(H)) + z(T) < y(H) + \TIT—I
is obtained, and the model is enhanced by adding it as its constraint.

The modified Kruskal algorithm is adapted to identify and apply matching
cuts efficiently, as described by Fischetti et al. [1998].
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Let G* = (V*, E*) be the support graph derived from a fractional solution
(x*,y*) where:

o« E*={ee€ E |z} > 0}: Edges with nonzero fractional values.

o V* =V(E*): Set of visited vertices.

Modified Kruskal Algorithm

Require: Graph G* = (V* E*) associated with a fractional point
(z*,y*) and a threshold set ©
for # € © do

Set Gy = (V*, Ep) with Ej ={e€ E |z} > 0}
Initialize an empty set T
Sort edges e € I in increasing order of z
for ec £ do
if 7 U{e} does not form a cycle in 7 then
Add e to T
Set H as the set of the connected components in 7
containing e
Sort the edges e € 0(H) = {ei,es,...,€m} in decreasing
order of
Find T = {ejy,€y,..., €7/} C d(H) such that |T| >3, and
maximize x} + (x}, + i —1)+---+ (xzm_l + Ty, 1)
for e, f € T? with e # f and E(e)NE(f) #0 do
Remove e and f from T
Remove v € E(e) N E(f) from H if v € H, otherwise
add v to H
end for
Add the cut z(E(H))+x(T) <y(H) + |T|T_1
end if
end for
end for

Algorithm 1: Modified Kruskal Algorithm

4.3.2 RANDOM PATH CONSTRUCTION ALGORITHM

Infeasible path inequalities are detected using a random path construction algorithm
(2), which can find the routes that violate any previous restrictions. The algorithm is
applied to a fractional solution (z*,y*). Starting from a vertex s € V* and followed
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*

by the selection of edges based on the fractional values z7,
constructed. At each iteration, a new adjacent edge that is not connected to depots
o or d is selected; also, the total time accumulated so far is not greater than the
allowed limit ¢,,,,. When no more edges can be added without violating the time
constraint, the depots are joined to the built path in a way that minimizes the total

a probabilistic path is

path length.

Random Path Construction Algorithm

Require: Graph G* = (V* E*) associated with a fractional point
(*,y*) and an initial vertex s € V*

*

Le

2 fer Tf

Select e € d(s) \ 0(0) Ud(d) with probability p.

Set P« {e}

Set Ep={e€d(i)\d(o)Ud(d) | i € E(P) and |6(i) N P| =1}
while Ep # () and Z te < tmae do

Ve e FE, set p, =

ecP
Select e € Ep with probability p.
P+ PU{e}
Update Ep

end while
Add the depots o and d to P such that the length of P is
minimized
return P

Algorithm 2: Random Path Construction Algorithm

4.3.3 MAX-FLoOwW ALGORITHM

Connectivity inequalities are added to the model by solving subproblems with
the Max-Flow Algorithm (3). This algorithm is used to determine the maximum
amount of flow that can pass between vertices in a network, ensuring that there is
connectivity, and eliminates solutions that lead to disconnected subtours.

Starting from the support graph G* = (V*, E*) associated with a fractional
solution (x*,y*), the algorithm visits all the vertices i € V* and solves a maximum
flow problem originated at the vertex and terminating at the depots {0, d}. From the
residual graph formed, the connected components containing vertex ¢ and the depots
are identified and denoted as S; and S,;. When the total of the payoffs of vertices in
S,q falls below a minimum level 2z, a minimum inequality in the payoff is included.
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Then, on each identified subset, several cases are considered: if it contains conflicting
vertices, an inequality is added that limits the number of internal edges; whether at
least one of the vertices of the subset is a mandatory vertex, a cut depending on the
variable y is added; otherwise, a subtour removal inequality is added. Finally, to
ensure that every visited vertex is correctly connected, an inequality is added that
requires the number of incident edges to exceed 2.

Connectivity inequalities separation algorithm
Require: Graph G* = (V* E*) associated with a fractional point
(z*,y*) and a lower bound z
for i€ V* do
Solve the Max-Flow problem from i to {o,d} in G*
Let G* be the final residual graph
Set S; as the set of connected components in G* containing

Set S,; as the set of connected components in G* containing
o and d
if Z s; < z then
1€S,q

Add the cut z(E(Seq)) < y(Seq) —2 (4.7)
end if
for S € {S;,Soq} do
if S contains at least two vertices with conflict then
Add the cut z(E(S)) < |S|—2 (4.5)
end if
if SN M # () then
Add the cut z(E(S)) <y(S)—1 (4.11)

else
Add the cut z(E(S)) <|S|—1 (3.5)
end if
Add the cut z(4(9)) > 2y; (4.9)
end for
end for

Algorithm 3: Connectivity inequalities separation algorithm

4.4 PRIMAL HEURISTIC

The primal heuristic is used to generate high-quality feasible solutions in the early
stages of the search process. This heuristic has three main parts, as shown in
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Figure (4.6): path construction, reparation, and improvement phase. The heuristic
is used at the root vertex in each iteration of the cutting phase and whenever a new
candidate solution is identified.

The approach starts with the random construction of a path, as described
in Algorithm (2), using the fractional solution as input. When the initial route
has been generated, the repair phase eliminates the conflicts or violations of the
solution. At this stage, it identifies issues, whether the vertices selected have
a conflict with other vertices or whether the time limit is exceeded. Conflicted
vertices are ordered according to the value of their score, and vertices with the
lowest scores are deleted. Then, if the total duration of the route is higher than
the allowed maximum time, the optional vertices with the lowest score are removed
from the route to reduce the total time until the route is feasible in terms of duration.

The final phase of the heuristic is the improvement phase, which seeks to
increase the quality of the produced solution in the previous steps, ensuring that
it does not violate any of the constraints. During this phase, mandatory vertices
that are not included in the route are added. Mandatory vertices are selected from
a group of candidates and are inserted into the route using two methods. The first
is the best-insertion method that seeks to insert the vertex at the best possible
position in the path. If it is impossible, the swap-insertion technique is used, where
an optional vertex already in the path is swapped with the required mandatory
vertex to be inserted. Then, the optional vertices try to be inserted using a best-
insertion strategy to try to raise the value of the objective function. The vertex
insertion is carried out only if it is within the available time limit.

Random selection of visited node.
Expand the route to both sides.

‘ Repair route: conflicts and time budget}

Improvement: add mandatory nodes
not included and insert optional nodes

FIGURE 4.6: Primal Heuristic Diagram



CHAPTER 5

EXPERIMENTATION AND RESULTS

This chapter presents the results of tests on benchmark instances from the literature.
It first defines the experimental setup, detailing the solution process, hardware and
software used, and instance characteristics. The results section compares the pro-
posed B&C approach with the MILP model using Gavish and Graves (GG) subtour
elimination constraints (Palomo-Martinez et al. [2017a]), and a Hybrid Variable
Neighborhood Search (HVNS) by Palomo-Martinez et al. [2017b]. Key performance
metrics include computation time, the number of optimal solutions found, best so-
lutions improved, and cuts added.

5.1 COMPUTATIONAL EXPERIMENTS

A PowerShell script was used to execute the C++ implementation on 340
benchmark instances with a 3600-second time limit. The instances, sourced from
Palomo-Martinez et al. [2017a], are classified into six groups based on Table (5.1).
Each vertex may be incompatible with up to three others, and instance sizes range
from 21 to 262 vertices.

The OPMVC instances are based on those of the OP and slightly modified to
include the problem’s characteristics. OP instances in the literature were created
based on multiple problems. For example, an instance involves visiting one city
in every state of the USA, starting and ending in Washington, aiming to find
the shortest path. This modification involves randomly adding a percentage of
mandatory vertices, introducing conflicts among optional vertices, and adjusting
the distance limit.

The computational experiments were conducted on a HP 7230 workstation

with an Intel Xeon(R) CPU E3-1245 v3 (3.40 GHz) processor and 16 GB of RAM,
operating under Windows 10 Pro.

32
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‘ Class ‘ Mandatory vertices | Free conflict vertices | Number of instances

1 | 10% < 50 62
o | I 20% < 50 55
5 | B 30% < 50 53
s | B 10% > 50 62
s B 20% > 50 55
¢ | I 30% > 50 53

TABLE 5.1: Characteristics of the benchmark instance classes

5.2 RESULTS

The primary objective of the experiment is to compare the performance of the
proposed B&C algorithm in solving the OPMVC on all benchmark instances from
the literature. Specifically, we evaluate the algorithm’s capacity to find optimal
and feasible solutions, resolution times, and the number of improved solutions.
Additionally, these metrics are analyzed at the root vertex of the B&C process.
All the instances were run separately within a time limit of 1 hour for the B&C
and HVNS methods and 3 hours for the GG method. To ensure fairness, the three
approaches were executed in the same computational environment.

Table (5.2) presents the average feasibility and optimality rates achieved by the
proposed B&C approach and benchmark methods. The B&C method consistently
achieves 100% feasibility and optimality across all problem instances. In contrast,
the GG method exhibits variability, with feasibility rates between 74.2% and 96.2%
and optimality rates from 72.6% to 76.4%. The HVNS ensures full feasibility but
shows significant variation in optimality, ranging from 45.3% to 90.6%. These re-
sults highlight the robustness of the B&C approach in consistently achieving both
feasibility and optimality compared to alternative methods. The optimality rates of
GG and HVNS are calculated in terms of the proportion of instances in which the
methods yield the same optimal solution as the proposed B&C, which is presumed
to be optimal.
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Class B&C GG HVNS
Feas Op Feas Op Feas Op

1 100.0% 100.0% | 77.4% 72.6% | 100.0% 66.1%
2 100.0% 100.0% | 89.1% 72.7% | 100.0% 69.1%
3 100.0% 100.0% | 96.2% 75.5% | 100.0% 90.6%
4 100.0% 100.0% | 74.2% 72.6% | 100.0% 56.5%
) 100.0% 100.0% | 81.8% 76.4% | 100.0% 47.3%
6 100.0% 100.0% | 79.2% 75.5% | 100.0% 45.3%

TABLE 5.2: Average feasibility and optimality rates

Table (5.3) presents the average CPU times per instance class. The results indicate
that the B&C method consistently requires less computational time than the GG
method and, in certain cases, outperforms the HVNS. On average, B&C is approxi-
mately 90% faster than GG but about four times slower than the HVNS approach.
Notably, B&C solves benchmark instances with up to 262 vertices in under five min-
utes. The table also highlights that for some classes, such as Class 1 and Class 3,
B&C requires only a few seconds, whereas GG may take over an hour. The HVNS
remains relatively efficient but is occasionally outperformed by B&C in terms of
CPU time.

B&C GG HVNS

Class | min avg max min avg max min avg max
1 <01 172 2500 | <0.1 9782 3600.0 | <0.1 44 37.0
2 <0.1 46 94.0 <01 751.0 36000 | <01 1.9 19.0
3 <01 1.0 29.0 <01 5344 36000 | <0.1 0.5 2.6

4 <0.1 24.8 284.0 | <0.1 1145.0 3600.0 | <0.1 14.2 193.6
) <01 111 156.0 | <0.1 970.1 3600.0 | <0.1 10.6 1154
6 <0.1 132 286.0 | <0.1 1034.4 3600.0 | <0.1 6.7 59.6

TABLE 5.3: CPU Times in seconds

Table (5.4) shows the number and the respective percentage of instances where the
B&C method improved upon the solutions obtained by GG and the HVNS. Figure
(5.1) plots the percentage of instances where the B&C method improved upon the
solutions obtained by GG and the HVNS. The results show that algorithm B&C
significantly improves over GG and the HVNS, with a particularly notable impact



CHAPTER 5. EXPERIMENTATION AND RESULTS

in classes 4, 5, and 6. Compared to GG, B&C improves between 11.3% and 27.4%
of the solutions, while compared to the HVNS, it achieves improvements greater
than 31.0% in five of the six classes, reaching up to 54.7% in class 6. Overall, B&C
outperforms both methods in 17.7% of cases for class 1, 12.7% for class 2, and 5.7%
for class 3. Meanwhile, for the last classes, the percentage of improvement ranged
between 20% and 25.8%. The fact that Class 3 has lower percentages of improvement
does not necessarily mean that it is more challenging; on the contrary, many optimal
solutions have already been found using the GG and HVNS methods, and B&C only

completes the task of finding the few that were missing.

TABLE 5.4: Number (#) and percentage (%) of solutions improved by B&C

60
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40

30

20

10

Percentage of solution improved

Class B&C vs GG | B&C vs HVNS | Overall
# % # % # %
1 14 22.6 21 37.9 11 177
2 8 14.5 17 31.0 7127
3 6 11.3 D 9.4 3 5.7
4 17 274 27 43.5 16 25.8
5 11 20.0 29 52.7 11 20.0
6 13 24.5 29 54.7 13 245

F1GURE 5.1: Comparison of B&C Improvement over GG and HVNS

@ B&C vs Hybrid (%)

Instance Class

@ B&C vs GG (%)
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5.2.1 RESULTS AT ROOT VERTEX

In this experiment, we examine the performance at the root vertex. It demonstrates
the effectiveness of the first relaxation and cutting step. This evaluation helps
estimate how close the root vertex solution is to the optimal value in the end, as
well as the effort required by the branching process.

Table (5.5) shows the percentage solution quality at the root vertex after the
cutting phase. The results for the root vertex of classes 2, 3, and 6 are 100% feasible.
Class 3 is the most efficient, with 84.9% optimality and an average CPU time of 0.5
s. CPU times are generally low, with averages ranging from 0.5 to 4.7 seconds.
Values of up to 62 seconds are observed in class 1. The gap in class 4 is 29.5% and
a maximum of 152%. It is calculated relative to the optimal solution obtained by
the full B&C as shown in the Equation (5.1).

Z - Z TOO
Gap = < BlC — ZBLC t) x 100 (5.1)
Zp&c
Solution quality GAP (%) CPU (s)
Class | Feas Op min avg max min avg max

98.4%  29.0% 0.0 11.0 92.0 0.0 4.7 62.0
100.0% 56.4% 0.0 10.7 71.0 0.0 1.1 25.0
98.1%  84.9% 0.0 25.1 77.0 0.0 0.5 19.0
100.0% 6.5% 0.0 29.5 152.0 | 0.0 4.4 53.0
100.0% 16.4% 0.0 20.0 83.0 0.0 3.0 58.0
100.0% 18.9% 0.0 20.5 109.0 ] 0.0 2.6 35.0

SO = W N

TABLE 5.5: Results obtained at the root vertex

Figure (5.2) shows the relationship in the literature instances regarding the
percentage of mandatory vertices, the percentage of vertices in conflicts, and the
amount of time it takes to solve them. To visualize and explore this relationship, a
box plot was created showing the computational time it took for the B&C method to
solve the instances of each class according to their characteristics. The figure shows
that conflicts between vertices are essential to computational performance. Classes
1, 2, and 3 in orange have more than 50% of vertices in conflict and show low CPU
times, from 1s to a maximum of 25s. This indicates that conflicts restrict the space of
feasible solutions and accelerate solution resolution. On the other hand, classes 4, 5,
and 6 in blue that have less than 50% of vertices in conflict show greater times, up to
60 s in class 5. This occurs when combined with 20 or 30% mandatory vertices. This
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highlights that, while conflicts simplify the problem by reducing options, mandatory
vertices only have a significant impact when conflicts are minimal.

Computational time (s)
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FIGURE 5.2: Relation between percentage of mandatory vertices and conflict free

vertices
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5.3 PRIMAL HEURISTIC PERFORMANCE

We also performed the experiment of solving all instances at the root vertex. We
evaluate the results obtained by the B&C method in the root vertex and compare
them with those from the complete HVNS method, the analysis was conducted on
the 340 instances. Table (5.6) presents a summary of the percentage of instances
for which feasible and optimal solutions were obtained by each method, categorized
by class. It also shows the average time each method took to reach the solution. It
is important to note that for two instances, one in class 1 and another in class 3,
the B&C method fails to find a solution because the heuristic does not identify a
feasible solution that satisfies the mandatory vertex constraints. Lastly, the average
gap between the objective function results of HVNS and B&C at the root vertex
is shown in the last column. This average gap is based on instances where both
methods found a solution and it is calculated as shown in the Equation (5.2).

Gap — (ZHVNS — ZB&cmot> « 100 (5.2)
ZHVNS
Class B&C root vertex HVNS Gap
Feas Op Avg time || Feas Op Avg time
1 98.4% 29.0% 4.8 100.0% 66.1% 4.4 10.0%
2 100.0% 56.4% 1.1 100.0% 69.1% 1.9 5.0%
3 98.1% 84.9% 0.5 100.0% 90.6% 0.5 1.2%
4 100.0% 6.5% 4.4 100.0% 56.5% 14.2 1.3%
5 100.0% 16.4% 3.0 100.0% 47.3% 10.6 9.0%
6 100.0% 18.9% 2.1 100.0% 45.3% 6.7 8.0%

TABLE 5.6: Average Feasible and Optimal Solutions comparing B&C and HVNS

The results show that, while both methods yield feasible solutions in nearly all
cases, HVNS consistently outperforms B&C in terms of finding optimal solutions.
For most problem classes, HVNS achieves a higher percentage of optimal solutions,
especially in classes 4, 5, and 6, where the gap between the two methods is most
pronounced. This suggests that HVNS is more effective in exploring the solution
space and identifying optimal solutions, while B&C with the root vertex limit
tends to find good feasible solutions faster but misses the optimal ones in some cases.

The gap in optimal solutions between the two methods is relatively small in
classes 2 and 3, where both B&C and HVNS achieve similar results in terms of
optimality.
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HVNS consistently has slightly higher average CPU times compared to B&C,
but its maximum CPU times can be significantly larger, particularly in classes 4, 5,
and 6, as shown in Table (5.7). For example, the maximum CPU time for HVNS in
class 4 is 193.6 seconds, which is notably higher than the maximum for B&C in the
same class (53 seconds).

Overall, B&C is more efficient in terms of CPU time, particularly for simpler
problem classes (1-3), where it requires very little computational effort. HVNS,
while requiring more time, may provide better-quality solutions, as seen in the
previous analysis of optimality. This trade-off between computation time and
solution quality makes B&C a suitable choice for problems where speed is crucial,
while HVNS may be preferred when higher-quality solutions are needed, despite the
increased computational cost.

B&C root vertex HVNS

Class || min avg max min avg max

1 0 4.8 62 <0.1 4.4 37.0

2 0 1.1 25 <0.1 1.9 19.0

3 0 0.5 19 <0.1 0.5 5.6

4 0 4.4 53 <0.1 14.2 193.6
) 0 3.0 58 <0.1 10.6 1154
6 0 2.1 24 <0.1 6.7 59.6

TABLE 5.7: CPU Times (in seconds) comparing B&C and HVNS

5.3.1 FAMILIES OF CUTS

Experiments were conducted where only one cut family was tested and the other
three were not included. Also, one family was removed, and three were left in
the tests. Two variations of the experiment will be conducted. The first variation
involves the value in the root vertex and the second variation involves running the
full B&C procedure. The families of cuts are considered as follows:

1. Logical Cuts: (4.1) and (4.2).
2. Matching Cuts: (4.3).

3. Infeasible Path Cuts: (4.5) and (4.7).
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4. Connectivity Cuts: (4.8), (4.9) and (4.11).

The condensed time and gap averages of the 6 classes are shown in Table
(5.8) and contain the experiments on the 340 literature instances. The labels W/
and W/o indicate with or without, respectively, and are used to show the inclusion
or exclusion of a particular family of cuts in each experiment. The gap reported
corresponds to the value provided by the solver. The complete results are in the

Appendix C.
Root Vertex B&C
Method Avg Time (s) | Avg Gap (%) | Avg Time (s) | Avg Gap (%)
W/ All Cuts 2.679 18.621 11.744 0.000
W/ Logical Cuts 2.015 32.403 690.415 3.115
W/ Matching Cuts 1.856 33.468 696.232 3.129
W/ Infeasible Path Cuts 2.312 27.887 374.885 1.412
W/ Connectivity Cuts 2.941 17.563 10.053 0.000
W /o Logical Cuts 2.544 18.080 9.776 0.000
W /o Matching Cuts 3.147 18.242 9.491 0.000
W /o Infeasible Path Cuts 2.900 18.835 10.544 0.000
W /o Connectivity Cuts 2.800 25.680 365.617 1.432

TABLE 5.8: Average time and gap in Root Vertex and B&C of family cuts tests

Matching Cuts are the fastest in the initial root vertex phase at 1.856
seconds, although they have the most significant gap of 33.5%. On the other hand,
Connectivity Cuts and the method with all active cuts achieve the smallest gaps of
17.6% and 18.6%, respectively, but with longer times of 2.941 and 2.679 seconds.
This suggests that Logical or Matching Cuts speed up the initial solution at the
expense of less optimal solutions.

When analyzing the full B&C, the results change. Methods that include
Matching or Logical Cuts have execution times of approximately 700 seconds
despite maintaining relatively small gaps of 3.1%. In contrast, turning off these
cuts reduces the time to less than 10 seconds with a gap of 0.0%. It is essential to
highlight the impact of Connectivity Cuts: when disabling them, the time increases
to 365.617 seconds, increasing the gap and no longer being 0.0%. This proves that
they are essential for the efficiency of the algorithm.

To further analyze the impact of each cut family, the results from Table (5.8)
were then plotted by number of vertices. Figure (5.3) shows the CPU time as a
function of the number of vertices for the B&C method testing only one cut family.
All variants maintain low and uniform processing times for small to medium-sized
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instances of 21-102 vertices, with some outliers that do not exceed 600 seconds.
However, an inflection point is observed from 122 vertices, where tests with Match-
ing, Infeasible Path, Logical, and Connectivity cuts increase in computational time,
reaching the maximum limit of 3600 seconds for instances of 152 vertices and above.
This contrasts with the full B&C implementation, which maintains low times even
on the largest instances, reaching 200 seconds with 263 vertices. On vertices with 77
and 102 vertices, outliers are distributed up to 1600 seconds, while for the basic B&C
implementation, they remain below 400 seconds. This suggests that the performance
of algorithms with additional cuts may depend on the specific characteristics of each
instance.

Parameter o o o o
3500 1 mm gnc
I BnC W/Matching Cuts
3000 4 B BnC W/Infeasible Path Cuts o
H BnC W/Connectivity Cuts
I BnC W/Logical Cuts o
2500 A
2000
1500 A
o
1000
o
500 3 @
o o o o ©
o [} i
0 -ﬁo—- —Se—T e 8025 —Boso —EOOE =
T T T T T T T T T T T T
31 32 33 34 49 52 77 102 122 152 201 263

T
21
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F1cURE 5.3: CPU time by number of vertices in B&C method with a single family

5.4 COMPARISON OF RESULTS WITH A MEMETIC
ALGORITHM (MA)

The current section provides a comparative overview of the results obtained in
this study and those presented by Lu et al. [2018], which used the same set
of 340 benchmark instances to solve the same problem. Lu et al. suggested a
solution approach based on a Memetic Algorithm (MA). Additionally, their study
investigates a mixed approach that combines the MA and the Integer Programming
(IP) model by Gavish and Graves (OPMVEC-GG), where the MA is used to
produce an initial solution to the CPLEX solver.

Since the experiments were performed in different computational environments
and there is no access to the source codes used by Lu et al., it is not possible
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to make a fair comparison of the reported CPU times between our exact B&C
method, standalone MA, and the hybrid MA+OPMVEC-GG approach. We decided
not to make that comparison and focus the analysis on the quality of the solu-
tions obtained, through the percentage of optimal solutions found with each method.

Table (5.9) shows the percentage of the optimal solutions found by each
method per classes. B&C method has 100 percent optimality in all the six classes.
In comparision, the heuristic-based approaches have a lower rates of optimality. It
is important to notice that the hybrid variant is better than the standalone MA in
each class with the exception of Class 3, in which they perform equally well.

Class | B&C (%) | MA (%) | MA + OPMVEC-GG (%)
1 100.0 85.5 85.5
2 100.0 92.7 94.6
3 100.0 98.1 98.1
4 100.0 77.4 80.6
5 100.0 81.8 85.5
6 100.0 79.2 84.9

TABLE 5.9: Percentage of optimal solutions in each class



CHAPTER 6

CONCLUSION

This thesis introduces a novel Branch-and-Cut approach for solving the Orienteering
Problem with Mandatory Visits and Conflicts (OPMVC), outperforming traditional
Mixed Integer Linear Programming (MILP) methods by achieving optimal solutions
for all the literature benchmark instances. Using undirected graphs, the proposed
methodology reduces computational complexity and accelerates convergence, setting
a new benchmark in OPMVC optimization. In particular, the B&C approach
consistently achieves 100% feasibility and optimality across all benchmark instances,
contributes with 69 new optimal solutions, and improves 60 previously reported
best-known solutions.

The performance of the proposed B&C was evaluated by comparing the
results obtained with the best approaches from the literature, i.e. a MILP approach
based on a directed graph formulation and a Hybrid Variable Neighborhood Search.
It is approximately 90% faster on average than the MILP approach. Although the
hybrid VNS was up to four times faster than B&C, B&C solves instances of up to
262 vertices in less than five minutes to optimality.

The analysis of the experimental results also provides valuable insights into
the influence of instance characteristics. Mandatory vertices significantly impacted
time only when vertex conflicts were minimal (Classes 4, 5, and 6 with 20% or
30% mandatory vertices). The tests with the cut families reveal that connectivity
inequalities are essential for the algorithm’s efficiency and for achieving a 0%
optimality gap. Our results show that all cuts in the proposed B&C framework
were key to achieving optimality in all instances.

In summary, this work develops and validates a robust and scalable B&C ap-
proach that successfully solved all OPMVC benchmark instances available in the
literature to optimality within a reasonable time limit. The undirected graph-based
formulation, the integration of relevant valid inequalities, and the development of an
effective separation method establish a new benchmark for OPMVC optimization,
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marking a substantial advance in the state-of-the-art for this complex combinatorial
problem.

6.1 FUTURE WORK

Future research should focus on developing a new benchmark that includes larger
instances with a higher number of vertices. This would enable a thorough assess-
ment of the proposed method scalability and robustness when addressing more
complex and realistic challenges.

A key aspect to explore is the impact of conflict density on solution quality.
Understanding this relationship could lead to refinements in the mathematical
formulation and enhancements in the search strategy. Additionally, incorporating
alternative heuristic algorithms may improve initial solution quality, accelerating
convergence within the optimization process.

Another promising direction is the implementation of parallel computing
techniques to enhance computational efficiency. Given the intensive nature of graph
optimization, parallelizing the algorithm could exploit modern hardware archi-
tectures to significantly reduce execution times, particularly for large-scale instances.

Finally, investigating Branch and Price as an alternative approach for solving
large instances could provide a more effective way to manage problem complexity. By
dynamically generating only the most relevant columns, this technique may improve
solution quality while maintaining computational feasibility.



APPENDIX A

GAVISH AND GRAVES MODEL FOR
THE OPMVC

This appendix presents the complete mathematical formulation for the OPMVC
based on the model proposed by Palomo-Martinez et al. [2017a]. This model uses a
directed graph G = (N, A), with A is a set of directed arcs and N is a set of nodes.
It incorporates the subtour elimination constraints based on the ones by Gavish and
Graves Gavish and Graves [1978]. The formulation is shown below.

1 If node j is visited after visiting node i, (i,j) € A; (A1)
’ 0 otherwise.
1 If the i node is visited, i € N;
Yi = _ (A.2)
0 otherwise.
The model with the subtour elimination constraints is:
Mazimize z =Y _ s;y; (A.3)
1EN
s.t. Z T1; — 1, <A4)
i€EN:(1,i)€A
i€EN:(i,;n)€A
yr = 1, ke M, (A.6)
Z xji =Y, iE N\{l},
JEN:(ji)EA
> T =Y i€ N\{n}, (A.8)
JEN:(i,j)EA
vit+y; <1, i€ N,jeC;,C; #1), (A.9)
>ty < Toas (A.10)
(i,5)€A
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n—1 n—1
D 95— D 9i = Yis i€ N\{l,n} (A.12)
j=1 j=2
ri; € {0,1}, (i,7) € A, (A.13)
yi €1{0,1}, e(i) € N, (A.14)

Where:

s; is the score obtained from visiting node 1.

C; C V is the set of nodes in conflict with node 1.

ti; is the travel time required to go from node 7 to node j.

Tnae is the maximum total time allowed for the route.

gi; is the flow of a single commodity traversing arc (i, 7).

Constraints (A.4) and (A.5) guarantee that the route starts at node 1 and ends at
node n. Constraints (A.6) stipulate that no mandatory node can be left out of the
route. Constraints (A.7) and (A.8) set the flow conservation constraint. Constraints
(A.9) ensure no conflicts between the nodes in the route. Constraints (A.10) guar-
antee the total time taken to complete the route is within the allowed time. The
(A.13) and (A.14) constraints are related to the nature of the decision variables.
The subtour elimination constraints (A.11) and (A.12) are based on the single
commodity-flow model of Gavish and Graves [1978], let g;; be the flow of a sin-
gle commodity traversing arc (i,7). They ensure that n — 1 flow units leave the
source node and that each visited node consumes only one flow unit. If the variable
gij is greater than zero, it can be considered as the number of arcs from node j to
the destination node on the optimal tour. Expression (A.12) ensures that a node
consumes a flow unit only if it is visited.



APPENDIX B

DETAILED RESULTS

This appendix presents detailed results for each instance of the six classes
using our B&C method, the MILP GG method, and the HVNS. The B&C and
HVNS methods took a maximum of 1 hour, while the GG took a maximum of 3 hours

Each table corresponds to each of the six classes and is specified in every
description. The first column has the name of the instance. Then, there are three
sections that correspond to each method, each with three columns. Column z is
the value of the objective function achieved. The Gap column is the percentage
difference between the obtained solution and the optimal value. Finally, the CPU
column indicates the computation time, in seconds, that the method took to resolve
the instance.

TABLE B.1: Results for Class I

Inst. B&C GG HVNS

z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
att48A 15 0.00 0.00 15 0.00 12.00 15 0.38
att48B 17 0.00 0.00 17 0.00 6.00 17 0.19
att48C 10 0.00 0.00 10 0.00 65.00 8 0.12
att48D 13 0.00 0.00 13 0.00 7.00 13 0.24
att48E 15 0.00 0.00 15 0.00 5.00 14 0.26
cmt121A 535 0.00 0.00 535 0.00 | 2078.00 535 1.24
cmt121B 416 0.00 16.00 396 0.29 | 10799.00 416 3.92
cmt121C 501 0.00 13.00 497 0.05 | 10799.00 498 2.76
cmt121D 530 0.00 2.00 530 0.00 760.00 530 1.42
cmt151A 815 0.00 8.00 815 0.00 6593.00 807 8.83
cmt151B 872 0.00 0.00 872 0.00 2096.00 872 2.05
cmt151C 435 0.00 12.00 435 0.00 1538.00 432 4.59
cmt151D 571 0.00 22.00 571 0.01 | 10799.00 568 8.74
cmtlb1E 673 0.00 9.00 673 0.00 1379.00 666 6.20

Continued on next page
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Table B.1 — Continued from previous page

Inst. B&C GG HVNS

z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
cmt200A 598 0.00 33.00 n/a n/a | 10799.00 591 9.69
cmt200B | 1352 0.00 1.00 n/a n/a | 10799.00 | 1352 6.10
cmt200C 751 0.00 23.00 n/a n/a | 10799.00 750 16.72
cmt200D 919 0.00 44.00 n/a n/a | 10799.00 902 15.64
cmt200E | 1028 0.00 36.00 n/a n/a | 10799.00 | 1008 20.13
eil30A 6375 0.00 0.00 | 6375 0.00 0.00 | 6375 0.09
€il30B 5125 0.00 0.00 | 5125 0.00 5.00 | 5125 0.07
€il30C 5775 0.00 0.00 | 5775 0.00 4.00 | 5775 0.10
€il30D 6275 0.00 0.00 | 6275 0.00 14.00 | 6275 0.10
eil33A 5230 0.00 0.00 | 5230 0.00 8.00 | 5230 0.13
eil33B 14380 0.00 0.00 | 14380 0.00 2.00 | 14380 0.12
€il33C 7430 0.00 0.00 | 7430 0.00 13.00 | 7430 0.14
€il33D 11630 0.00 0.00 | 11630 0.00 6.00 | 11630 0.15
eil33E 12830 0.00 0.00 | 12830 0.00 1.00 | 12830 0.15
eil51A 245 0.00 0.00 245 0.00 13.00 245 0.37
eil51B 287 0.00 0.00 287 0.00 6.00 287 0.25
eil51C 122 0.00 0.00 122 0.00 10.00 111 0.14
eil51D 150 0.00 0.00 150 0.00 15.00 148 0.33
eil51E 177 0.00 0.00 177 0.00 12.00 173 0.50
eil76A 520 0.00 1.00 520 0.00 35.00 518 1.43
eil76B 599 0.00 0.00 599 0.00 13.00 599 0.44
€il76C 232 0.00 1.00 232 0.00 61.00 232 0.84
eil76D 312 0.00 1.00 312 0.00 43.00 312 1.02
eil76E 367 0.00 0.00 367 0.00 44.00 367 0.82
eil101A 570 0.00 2.00 570 0.00 237.00 562 1.77
eil101B 612 0.00 0.00 612 0.00 131.00 612 0.93
€il101C 281 0.00 1.00 281 0.00 301.00 281 1.13
eil101D 367 0.00 1.00 367 0.00 449.00 367 1.53
eill101E 414 0.00 2.00 414 0.00 883.00 407 1.74
gil262A 4413 0.00 238.00 n/a n/a | 10799.00 | 4278 36.50
gil262B 4980 0.00 1.00 n/a n/a | 10799.00 | 4980 9.33
gil262C 2556 0.00 250.00 n/a n/a | 10799.00 | 2499 33.55
gil262D 3215 0.00 202.00 n/a n/a | 10799.00 | 3143 33.12
gil262E 3692 0.00 150.00 n/a n/a | 10799.00 | 3529 36.98
op21A 165 0.00 0.00 165 0.00 0.00 165 0.04
op21B 135 0.00 0.00 135 0.00 1.00 135 0.02
op21C 150 0.00 0.00 150 0.00 0.00 150 0.03
op21D 155 0.00 0.00 155 0.00 1.00 155 0.04
op32A 85 0.00 0.00 85 0.00 0.00 85 0.12
op32B 115 0.00 0.00 115 0.00 0.00 115 0.07

Continued on next page
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Table B.1 — Continued from previous page
Inst. B&C GG HVNS
z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
op32C 35 0.00 0.00 35 0.00 1.00 35 0.02
op32D 60 0.00 0.00 60 0.00 1.00 60 0.05
op32E 75 0.00 0.00 75 0.00 2.00 75 0.08
op33A 260 0.00 0.00 260 0.00 0.00 260 0.10
op33B 330 0.00 0.00 330 0.00 1.00 330 0.08
op33C 110 0.00 0.00 110 0.00 1.00 110 0.03
op33D 160 0.00 0.00 160 0.00 0.00 160 0.05
op33E 180 0.00 0.00 180 0.00 0.00 180 0.06
TABLE B.2: Results for Class 11
Inst. B&C GG HVNS
z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
att4d8A 12 0.00 0.00 12 0.00 4.00 12 0.07
att48B 11 0.00 0.00 11 0.00 100.00 11 0.12
att48C 12 0.00 0.00 12 0.00 14.00 12 0.07
att48D 12 0.00 0.00 12 0.00 4.00 12 0.08
cmt121A | 330 0.00 0.00 | 330 0.00 | 3120.00 | 329 1.03
cmt121B | 305 0.00 4.00 | 301 0.07 | 10799.00 | 300 1.70
cmt121C | 330 0.00 0.00 | 330 0.00 | 1795.00 | 327 0.84
cmt121D | 330 0.00 0.00 | 330 0.00 964.00 | 330 0.69
cmt151A | 462 0.00 4.00 | 462 0.00 261.00 | 454 3.17
cmt151B | 561 0.00 0.00 | 561 0.00 296.00 | 561 1.06
cmt151C | 433 0.00 2.00 | 433 0.00 195.00 | 415 2.32
cmt151D | 496 0.00 3.00 | 496 0.00 | 1535.00 | 496 2.75
cmt151E 541 0.00 1.00 541 0.00 162.00 540 2.42
cmt200A | 825 0.00 2.00 | 825 0.00 | 3385.00 | 825 3.26
cmt200B | 486 0.00 16.00 | 486 0.00 | 4133.00 | 481 10.96
cmt200C | 625 0.00 28.00 | n/a n/a | 10799.00 | 600 7.50
cmt200D | 732 0.00 19.00 | 699 0.06 | 10799.00 | 706 14.80
eil30A 2925 0.00 0.00 | 2925 0.00 0.00 | 2925 0.04
€il30B 1625 0.00 0.00 | 1625 0.00 1.00 | 1625 0.02
€il30C 1625 0.00 0.00 | 1625 0.00 2.00 | 1625 0.02
€il30D 2475 0.00 0.00 | 2475 0.00 1.00 | 2475 0.03
eil33A 8480 0.00 0.00 | 8480 0.00 2.00 | 8480 0.06
€il33B 8480 0.00 0.00 | 8480 0.00 1.00 | 8480 0.06
€il33C 8480 0.00 0.00 | 8480 0.00 4.00 | 8480 0.05
€il33D 9430 0.00 0.00 | 9430 0.00 2.00 | 9430 0.06

Continued on next page




APPENDIX B. DETAILED RESULTS 50
Table B.2 — Continued from previous page

Inst. B&C GG HVNS
z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
eil51A 168 0.00 0.00 | 168 0.00 3.00 | 168 0.13
eil51B 148 0.00 0.00 | 148 0.00 6.00 | 148 0.17
eil51C 168 0.00 0.00 | 168 0.00 6.00 | 168 0.15
eil51D 168 0.00 0.00 | 168 0.00 5.00 | 168 0.13
eil76A 377 0.00 0.00 | 377 0.00 80.00 | 377 0.36
eil76B 409 0.00 0.00 | 409 0.00 11.00 | 409 0.25
eil76C 201 0.00 0.00 | 201 0.00 33.00 | 201 0.44
eil76D 294 0.00 0.00 | 294 0.00 20.00 | 293 0.37
eil76E 345 0.00 0.00 | 345 0.00 29.00 | 339 0.42
eill101A 386 0.00 1.00 | 386 0.00 163.00 | 383 1.47
€il101B 409 0.00 0.00 | 409 0.00 27.00 | 409 0.51
eil101C 260 0.00 0.00 | 260 0.00 69.00 | 260 1.37
eil101D 326 0.00 0.00 | 326 0.00 92.00 | 311 1.34
eill101E 370 0.00 0.00 | 370 0.00 114.00 | 370 1.26
gil262A | 3003 0.00 0.00 | n/a n/a | 10799.00 | 3003 4.57
gil262B | 2418 0.00 94.00 | n/a n/a | 10799.00 | 2294 18.89
gil262C | 2861 0.00 40.00 | n/a n/a | 10799.00 | 2788 11.66
gil262D | 3000 0.00 39.00 | n/a n/a | 10799.00 | 2967 8.69
op21A 60 0.00 0.00 60 0.00 0.00 60 0.01
op21B 125 0.00 0.00 | 125 0.00 0.00 | 125 0.01
op21C 60 0.00 0.00 60 0.00 0.00 60 0.01
op21D 75 0.00 0.00 75 0.00 0.00 60 0.01
op21E 80 0.00 0.00 80 0.00 1.00 80 0.02
op32A 80 0.00 0.00 80 0.00 1.00 80 0.05
op32B 70 0.00 0.00 70 0.00 2.00 70 0.05
op32C 80 0.00 0.00 80 0.00 0.00 80 0.04
op33A 210 0.00 0.00 | 210 0.00 0.00 | 210 0.05
op33B 170 0.00 0.00 | 170 0.00 1.00 | 170 0.03
op33C 210 0.00 0.00 | 210 0.00 0.00 | 210 0.05
op33D 220 0.00 0.00 | 220 0.00 0.00 | 220 0.04

TABLE B.3: Results for Class III

Inst. B&C GG HVNS
z | Gap(%) | CPU(s) 2z | Gap(%) | CPU(s) z | CPU(s)
att48A 4 0.00 0.00 4 0.00 6.00 4 0.08
att48B 7 0.00 0.00 7 0.00 4.00 7 0.08
att48C 4 0.00 0.00 4 0.00 6.00 4 0.05

Continued on next page
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Table B.3 — Continued from previous page

Inst. B&C GG HVNS
z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
att48D 5 0.00 0.00 5 0.00 4.00 5 0.07
att48E 5 0.00 0.00 5 0.00 4.00 5 0.06
cmt121A | 152 0.00 0.00 | 152 0.00 131.00 | 152 0.37
cmt121B 152 0.00 0.00 152 0.00 145.00 152 0.35
cmt121C | 152 0.00 0.00 | 152 0.00 175.00 | 152 0.32
cmt121D | 152 0.00 0.00 | 152 0.00 165.00 | 152 0.35
cmt151A | 199 0.00 0.00 | 199 0.00 344.00 | 199 0.50
cmt151B | 179 0.00 2.00 | 179 0.00 299.00 | 179 0.75
cmt151C | 199 0.00 0.00 | 199 0.00 | 1302.00 | 199 0.60
cmt151D | 199 0.00 0.00 | 199 0.00 253.00 | 199 0.55
cmt200A | 463 0.00 0.00 | 463 0.00 | 7415.00 | 463 1.40
cmt200B | 391 0.00 6.00 | 391 0.00 | 1010.00 | 354 3.06
cmt200C | 452 0.00 9.00 | 452 0.00 | 10799.00 | 431 2.59
cmt200D | 463 0.00 1.00 | 463 0.00 | 5827.00 | 463 1.66
eil30A 950 0.00 0.00 | 950 0.00 2.00 | 950 0.01
€il30B 1950 0.00 0.00 | 1950 0.00 0.00 | 1950 0.02
€il30C 2075 0.00 0.00 | 2075 0.00 0.00 | 2075 0.02
€il30D 2075 0.00 0.00 | 2075 0.00 0.00 | 2075 0.02
eil33A 5530 0.00 0.00 | 5530 0.00 0.00 | 5530 0.03
€il33B 5530 0.00 0.00 | 5530 0.00 0.00 | 5530 0.02
€il33C 5530 0.00 0.00 | 5530 0.00 0.00 | 5530 0.02
eil51A 99 0.00 0.00 99 0.00 3.00 99 0.06
eil51B 90 0.00 0.00 90 0.00 7.00 90 0.08
€il51C 99 0.00 0.00 99 0.00 1.00 99 0.08
eil51D 99 0.00 0.00 99 0.00 1.00 99 0.06
eil76 A 167 0.00 0.00 | 167 0.00 8.00 | 167 0.15
€il76B 202 0.00 0.00 | 202 0.00 10.00 | 202 0.13
eil76C 142 0.00 0.00 142 0.00 16.00 142 0.15
eil76D 193 0.00 0.00 | 193 0.00 16.00 | 193 0.25
eil76E 202 0.00 0.00 | 202 0.00 36.00 | 202 0.12
eill101A 175 0.00 0.00 | 175 0.00 22.00 | 175 0.19
eil101B 155 0.00 0.00 | 155 0.00 24.00 | 143 0.32
€il101C 175 0.00 0.00 | 175 0.00 47.00 | 175 0.32
eil101D 175 0.00 0.00 | 175 0.00 56.00 | 175 0.19
gil262A | 1369 0.00 0.00 | n/a n/a | 10799.00 | 1369 2.06
gil262B 1220 0.00 29.00 | 1220 0.01 | 10799.00 | 1036 3.53
gil262C 1369 0.00 5.00 | 1366 0.00 | 10799.00 | 1355 5.62
gil262D | 1369 0.00 0.00 | 1369 0.00 | 2632.00 | 1369 2.24
op21A 45 0.00 0.00 45 0.00 0.00 45 0.01
op21B 30 0.00 0.00 30 0.00 0.00 30 0.01

Continued on next page
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Table B.3 — Continued from previous page
Inst. B&C GG HVNS
z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
op21C 45 0.00 0.00 45 0.00 0.00 45 0.01
op21D 45 0.00 0.00 45 0.00 0.00 45 0.01
op32A 45 0.00 0.00 45 0.00 0.00 45 0.02
op32B 45 0.00 0.00 45 0.00 0.00 45 0.02
op32C 45 0.00 0.00 45 0.00 0.00 45 0.02
op32D 45 0.00 0.00 45 0.00 0.00 45 0.02
op33A 130 0.00 0.00 | 130 0.00 0.00 | 130 0.01
op33B 80 0.00 0.00 80 0.00 0.00 80 0.01
op33C 120 0.00 0.00 | 120 0.00 1.00 | 120 0.01
op33D 130 0.00 0.00 | 130 0.00 0.00 | 130 0.01
TABLE B.4: Results for Class IV
Inst. B&C GG HVNS
z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
att48A 21 0.00 0.00 21 0.00 7.00 20 0.63
att48B 29 0.00 0.00 29 0.00 17.00 28 0.90
att48C 13 0.00 0.00 13 0.00 175.00 13 0.34
att48D 17 0.00 0.00 17 0.00 155.00 17 0.58
att48E 20 0.00 0.00 20 0.00 21.00 19 0.55
cmt121A 814 0.00 5.00 802 0.14 | 10799.00 804 8.37
cmt121B 513 0.00 4.00 509 0.53 | 10799.00 510 11.50
cmt121C 669 0.00 3.00 669 0.27 | 10799.00 655 10.45
cmt121D e 0.00 3.00 757 0.19 | 10799.00 768 11.65
cmt151A | 1087 0.00 7.00 | 1087 0.00 | 1257.00 | 1054 22.74
cmt151B 1483 0.00 8.00 n/a n/a | 10799.00 1451 21.87
cmt151C 477 0.00 15.00 n/a n/a | 10799.00 471 5.83
cmt151D 647 0.00 16.00 641 0.04 | 10799.00 627 14.71
cmt151E 799 0.00 15.00 799 0.00 | 3517.00 770 14.80
cmt200A 723 0.00 32.00 n/a n/a | 10799.00 723 20.73
cmt200B | 2171 0.00 50.00 n/a n/a | 10799.00 | 2093 30.33
cmt200C 908 0.00 27.00 n/a n/a | 10799.00 894 21.98
cmt200D | 1151 0.00 25.00 n/a n/a | 10799.00 | 1085 38.87
cmt200E | 1324 0.00 13.00 n/a n/a | 10799.00 | 1291 45.84
eil30A 9375 0.00 0.00 | 9375 0.00 39.00 | 9375 0.39
€il30B 5450 0.00 0.00 | 5450 0.00 365.00 | 5450 0.14
€il30C 7300 0.00 0.00 | 7300 0.00 132.00 | 7300 0.25
€il30D 8575 0.00 0.00 | 8575 0.00 30.00 | 8575 0.25

Continued on next page
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Table B.4 — Continued from previous page

Inst. B&C GG HVNS

z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
eil33A 6950 0.00 0.00 | 6950 0.00 74.00 | 6950 0.19
eil33B 19730 0.00 0.00 | 19730 0.00 13.00 | 19730 0.34
€il33C 10630 0.00 0.00 | 10630 0.00 18.00 | 10630 0.28
€il33D 14180 0.00 0.00 | 14180 0.00 10.00 | 14180 0.31
eil33E 17430 0.00 0.00 | 17430 0.00 6.00 | 17430 0.37
eil51A 328 0.00 0.00 328 0.00 39.00 325 0.90
eil51B 509 0.00 0.00 509 0.00 30.00 509 1.53
€il51C 168 0.00 0.00 168 0.00 19.00 168 0.24
eil51D 201 0.00 0.00 201 0.00 14.00 198 0.43
eil51E 232 0.00 0.00 232 0.00 23.00 232 0.62
eil76A 629 0.00 0.00 629 0.00 46.00 623 2.79
€il76B 923 0.00 1.00 923 0.00 133.00 913 1.69
eil76C 274 0.00 1.00 274 0.00 794.00 274 1.63
€il76D 366 0.00 1.00 366 0.00 92.00 366 2.37
eil76E 442 0.00 0.00 442 0.00 35.00 442 2.12
eil101A 789 0.00 2.00 789 0.00 294.00 764 7.87
eil101B 1071 0.00 1.00 | 1071 0.00 | 2209.00 | 1058 6.43
eil101C 326 0.00 2.00 326 0.00 328.00 326 1.38
€il101D 422 0.00 2.00 422 0.00 1895.00 422 2.60
eill101E 491 0.00 3.00 491 0.00 | 2457.00 491 5.95
gil262A 5668 0.00 260.00 n/a n/a | 10799.00 | 5423 67.09
gil262B 8007 0.00 284.00 n/a n/a | 10799.00 | 7657 55.50
gil262C 3002 0.00 196.00 n/a n/a | 10799.00 | 2894 19.15
gil262D 3883 0.00 164.00 n/a n/a | 10799.00 | 3752 136.74
gil262E 4475 0.00 189.00 n/a n/a | 10799.00 | 4279 193.60
op21A 260 0.00 0.00 260 0.00 1.00 260 0.09
op21B 180 0.00 0.00 180 0.00 0.00 180 0.05
op21C 215 0.00 0.00 215 0.00 1.00 215 0.09
op21D 260 0.00 0.00 260 0.00 0.00 260 0.09
op32A 110 0.00 0.00 110 0.00 1.00 110 0.21
op32B 180 0.00 0.00 180 0.00 1.00 180 0.13
op32C 35 0.00 0.00 35 0.00 5.00 35 0.02
op32D 75 0.00 0.00 75 0.00 2.00 75 0.10
op32E 90 0.00 0.00 90 0.00 1.00 90 0.18
op33A 310 0.00 0.00 310 0.00 3.00 310 0.22
op33B 460 0.00 0.00 460 0.00 4.00 460 0.17
op33C 120 0.00 0.00 120 0.00 4.00 120 0.04
op33D 180 0.00 0.00 180 0.00 2.00 180 0.08
op33E 220 0.00 0.00 220 0.00 3.00 220 0.12
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TABLE B.5: Results for Class V

Inst. B&C GG HVNS

z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
att48A 24 0.00 0.00 24 0.00 15.00 24 0.69
att48B 19 0.00 0.00 19 0.00 18.00 19 0.38
att48C 23 0.00 0.00 23 0.00 7.00 22 0.51
att48D 25 0.00 0.00 25 0.00 27.00 25 0.56
cmt121A 640 0.00 5.00 n/a n/a | 10799.00 627 14.38
cmt121B 482 0.00 6.00 n/a n/a | 10799.00 465 11.73
cmt121C 636 0.00 7.00 630 0.16 | 10799.00 612 6.22
cmt121D 711 0.00 4.00 672 0.15 | 10799.00 696 7.73
cmt151A 681 0.00 8.00 681 0.00 793.00 657 9.12
cmt151B 1207 0.00 6.00 | 1207 0.00 2504.00 | 1184 9.91
cmt151C 610 0.00 7.00 610 0.00 605.00 597 6.74
cmt151D 773 0.00 7.00 773 0.00 1253.00 755 10.01
cmtlb1lE 914 0.00 2.00 914 0.00 861.00 889 12.94
cmt200A | 1678 0.00 23.00 | 1678 0.00 | 10799.00 | 1634 65.59
cmt200B 760 0.00 29.00 n/a n/a | 10799.00 685 25.46
cmt200C 1053 0.00 13.00 | 1053 0.00 2552.00 939 30.35
cmt200D | 1262 0.00 13.00 | 1262 0.00 | 8399.00 | 1151 36.69
eil30A 6225 0.00 0.00 | 6225 0.00 15.00 | 6225 0.22
€il30B 3350 0.00 0.00 | 3350 0.00 16.00 | 3350 0.10
€il30C 4750 0.00 0.00 | 4750 0.00 17.00 | 4750 0.12
€il30D 5075 0.00 0.00 | 5075 0.00 88.00 | 5075 0.21
eil33A 14230 0.00 0.00 | 14230 0.00 6.00 | 14230 0.22
eil33B 12880 0.00 0.00 | 12880 0.00 9.00 | 12880 0.20
€il33C 14930 0.00 0.00 | 14930 0.00 8.00 | 14930 0.19
€il33D 15680 0.00 0.00 | 15680 0.00 7.00 | 15680 0.15
eil51A 402 0.00 0.00 402 0.00 11.00 402 0.52
€il51B 236 0.00 0.00 236 0.00 46.00 235 0.48
€il51C 302 0.00 0.00 302 0.00 49.00 298 0.73
€il51D 357 0.00 0.00 357 0.00 22.00 340 0.69
eil7T6 A 481 0.00 0.00 481 0.00 274.00 481 3.01
€il76B 754 0.00 0.00 754 0.00 37.00 747 3.50
eil76C 228 0.00 0.00 228 0.00 156.00 228 0.76
eil76D 341 0.00 0.00 341 0.00 78.00 333 1.86
eil76E 411 0.00 0.00 411 0.00 152.00 403 1.69
eill101A 559 0.00 2.00 559 0.00 489.00 538 6.79
€il101B 857 0.00 2.00 857 0.00 1138.00 848 3.81
€il101C 296 0.00 1.00 296 0.00 82.00 291 244

Continued on next page
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Table B.5 — Continued from previous page

Inst. B&C GG HVNS

z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
eil101D 418 0.00 1.00 418 0.00 175.00 403 3.06
eill101E 521 0.00 1.00 521 0.00 327.00 495 3.96
gil262A 6363 0.00 46.00 n/a n/a | 10799.00 | 6183 41.17
gil262B 3766 0.00 119.00 n/a n/a | 10799.00 | 3128 35.84
gil262C 4875 0.00 130.00 n/a n/a | 10799.00 | 4476 115.39
gil262D 5593 0.00 156.00 n/a n/a | 10799.00 | 5215 86.78
op21A 135 0.00 0.00 135 0.00 0.00 135 0.01
op21B 235 0.00 0.00 235 0.00 1.00 235 0.04
op21C 135 0.00 0.00 135 0.00 0.00 135 0.01
op21D 135 0.00 0.00 135 0.00 0.00 135 0.01
op21E 165 0.00 0.00 165 0.00 0.00 165 0.02
op32A 150 0.00 0.00 150 0.00 3.00 150 0.14
op32B 110 0.00 0.00 110 0.00 2.00 110 0.15
op32C 140 0.00 0.00 140 0.00 2.00 140 0.15
op33A 400 0.00 0.00 400 0.00 3.00 400 0.18
op33B 270 0.00 0.00 270 0.00 5.00 270 0.06
op33C 410 0.00 0.00 410 0.00 0.00 410 0.17
op33D 440 0.00 0.00 440 0.00 4.00 440 0.14

TABLE B.6: Results for Class VI

Inst. B&C GG HVNS

z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
att48A 11 0.00 0.00 11 0.00 10.00 11 0.25
att48B 19 0.00 0.00 19 0.00 14.00 18 0.43
att48C 12 0.00 0.00 12 0.00 7.00 11 0.22
att48D 14 0.00 0.00 14 0.00 13.00 14 0.34
att48E 16 0.00 0.00 16 0.00 6.00 15 0.55
cmt121A 503 0.00 3.00 503 0.14 | 10799.00 491 6.53
cmt121B 458 0.00 2.00 456 0.25 | 10799.00 446 6.31
cmt121C 557 0.00 3.00 510 0.24 | 10799.00 547 5.94
cmt121D 618 0.00 3.00 573 0.10 | 10799.00 611 3.06
cmt151A 873 0.00 6.00 873 0.00 | 4120.00 842 10.38
cmt151B 549 0.00 10.00 549 0.00 | 7921.00 517 14.34
cmt151C 740 0.00 6.00 740 0.00 | 2371.00 689 8.91
cmt151D 852 0.00 6.00 852 0.00 730.00 816 12.00
cmt200A | 1445 0.00 28.00 | 1430 0.01 | 10799.00 | 1387 27.97
cmt200B 955 0.00 16.00 n/a n/a | 10799.00 932 13.68

Continued on next page
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Table B.6 — Continued from previous page

Inst. B&C GG HVNS

z | Gap(%) | CPU(s) z | Gap(%) | CPU(s) z | CPU(s)
cmt200C | 1224 0.00 7.00 | 1224 0.00 | 1574.00 | 1148 26.47
cmt200D | 1386 0.00 14.00 | 1385 0.00 | 10799.00 | 1298 27.46
eil30A 1550 0.00 0.00 | 1550 0.00 251.00 | 1550 0.02
€il30B 4775 0.00 0.00 | 4775 0.00 8.00 | 4775 0.12
€il30C 5550 0.00 0.00 | 5550 0.00 4.00 | 5550 0.09
€il30D 5850 0.00 0.00 | 5850 0.00 2.00 | 5725 0.04
eil33A 10600 0.00 0.00 | 10600 0.00 8.00 | 10600 0.15
€il33B 13330 0.00 0.00 | 13330 0.00 3.00 | 13330 0.11
€il33C 14030 0.00 0.00 | 14030 0.00 12.00 | 14030 0.05
eil51A 329 0.00 0.00 329 0.00 9.00 329 0.66
eil51B 212 0.00 0.00 212 0.00 13.00 212 0.45
€il51C 289 0.00 0.00 289 0.00 9.00 281 0.42
eil51D 344 0.00 0.00 344 0.00 11.00 343 0.50
eil76A 233 0.00 0.00 233 0.00 79.00 233 1.23
€il76B 613 0.00 1.00 613 0.00 180.00 602 1.85
eil76C 211 0.00 0.00 211 0.00 50.00 211 0.92
eil76D 305 0.00 1.00 305 0.00 322.00 304 1.64
eil76E 386 0.00 2.00 386 0.00 213.00 372 1.39
eill01A 633 0.00 1.00 633 0.00 839.00 620 2.94
eil101B 344 0.00 3.00 344 0.00 570.00 335 1.40
€il101C 474 0.00 2.00 474 0.00 405.00 466 7.20
€il101D 555 0.00 1.00 555 0.00 296.00 541 4.91
gil262A 4784 0.00 133.00 n/a n/a | 10799.00 | 4516 51.51
gil262B 3063 0.00 286.00 n/a n/a | 10799.00 | 2486 23.35
gil262C 4102 0.00 56.00 n/a n/a | 10799.00 | 3807 29.68
gil262D 4686 0.00 112.00 n/a n/a | 10799.00 | 4393 59.59
op21A 155 0.00 0.00 155 0.00 1.00 155 0.03
op21B 75 0.00 0.00 75 0.00 1.00 75 0.02
op21C 110 0.00 0.00 110 0.00 1.00 110 0.04
op21D 160 0.00 0.00 160 0.00 1.00 160 0.04
op32A 115 0.00 0.00 115 0.00 1.00 115 0.13
op32B 65 0.00 0.00 65 0.00 4.00 65 0.04
op32C 105 0.00 0.00 105 0.00 2.00 105 0.15
op32D 130 0.00 0.00 130 0.00 0.00 130 0.11
op33A 350 0.00 0.00 350 0.00 4.00 350 0.09
op33B 130 0.00 0.00 130 0.00 4.00 130 0.03
op33C 240 0.00 0.00 240 0.00 6.00 240 0.11
op33D 300 0.00 0.00 300 0.00 2.00 300 0.11




APPENDIX C

DETAILED RESULTS OF FAMILIES OF
CUTS TESTS

Tables are shown by class, showing the results of the methods solved without certain
families of cuts. The first column has the name of the exercise, the second has the total
amount of time to solve the instances in seconds, the third column has the average time,
the third has the percentage of average gap, and the fourth is the percentage of feasible
instances.

TABLE C.1: Performance on root without cuts families on Class 1.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible instances
Root 297 4.8 37.8 98.4
W /o Logical Cuts 341 5.5 234 100
W /o Matching Cuts 377 6.1 36.7 98.4
W /o Infeasible Path Cuts 291 4.7 25.6 100
W /o Connectivity Cuts 120 1.9 35.8 98.4
Root w/all 291 4.7 20.8 98.4
Root w/o any 95 1.5 43.4 100
W/ Logical Cuts 90 1.5 44.4 98.4
W/ Matching Cuts 83 1.3 40.5 98.4
W/ Infeasible Path Cuts 123 2.0 38.5 100
W/ Connectivity Cuts 340 5.5 21.6 100
W /o Logical Cuts 244 3.9 25.1 100
W /o Matching Cuts 310 5.0 25.4 100
W /o Infeasible Path Cuts 293 4.7 23.7 100
W /o Connectivity Cuts 122 2.0 32.6 98.4
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TABLE C.2: Performance on B&C without cuts families on Class 1.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
B&C 1069 17.2 0.0 100
W /o Logical Cuts 895 144 0.0 100
W/o Matching Cuts 765 12.3 0.0 100
W /o Infeasible Path Cuts 894 144 0.0 100
W/o Connectivity Cuts 42805 690.4 0.0 100
W/ Logical Cuts 48665 785 3.9 100
W/ Matching Cuts 48693 785.4 3.8 100
W/ Infeasible Path Cuts 43155 696 24 100
W/ Connectivity Cuts 798 12.9 0.0 100

TABLE C.3: Performance on root without cuts families on Class 2.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
Root 58 1.1 10.7 100
W /o Logical Cuts 60 1.1 17.2 100
W /o Matching Cuts 53 0.1 13.1 100
W /o Infeasible Path Cuts 67 1.2 13.8 100
W/o Connectivity Cuts 78 14 17.2 96.4
Root w/all 60 1.1 15.8 100
Root w/o any 54 1.0 24.9 96.4
W/ Logical Cuts 49 0.9 23.5 92.7
W/ Matching Cuts 48 0.9 23.7 96.4
W/ Infeasible Path Cuts 72 1.3 18.0 96.4
W/ Connectivity Cuts 46 0.8 12.5 100
W /o Logical Cuts 62 1.1 9.7 100
W /o Matching Cuts 60 1.1 13.1 100
W /o Infeasible Path Cuts 48 0.9 12.8 100
W/o Connectivity Cuts 84 1.5 17.3 98.2
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TABLE C.4: Performance on B&C without cuts families on Class 2.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
B&C 253 4.6 0.0 100
W /o Logical Cuts 206 3.7 0.0 100
W/o Matching Cuts 263 4.8 0.0 100
W /o Infeasible Path Cuts 214 3.9 0.0 100
W/o Connectivity Cuts 4048 74.1 0.0 100
W/ Logical Cuts 12558 228.3 0.3 100
W/ Matching Cuts 12759 232 0.4 100
W/ Infeasible Path Cuts 4142 75.3 0.0 100
W/ Connectivity Cuts 184 3.3 0.0 100

TABLE C.5: Performance on root without cuts families on Class 3.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
Root 28.0 0.5 6.3 98.1
W /o Logical Cuts 20.0 0.4 23.4 98.1
W /o Matching Cuts 20.0 0.4 9.7 100.0
W /o Infeasible Path Cuts 20.0 0.4 8.0 100.0
W/o Connectivity Cuts 25.0 0.5 16.2 92.5
Root w/all 18.0 0.4 8.0 100.0
Root w/o any 24.0 0.5 174 94.3
W/ Logical Cuts 23.0 0.4 10.7 92.5
W/ Matching Cuts 27.0 0.5 19.5 100.0
W/ Infeasible Path Cuts 27.0 0.5 17.3 96.2
W/ Connectivity Cuts 23.0 0.4 8.7 98.1
W /o Logical Cuts 28.0 0.5 26.7 98.1
W /o Matching Cuts 27.0 0.5 24.0 98.1
W /o Infeasible Path Cuts 25.0 0.4 27.0 98.1
W/o Connectivity Cuts 32.0 0.6 13.5 98.1
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TABLE C.6: Performance on B&C without cuts families on Class 3.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
B&C 52.0 1.0 0.0 100.0
W /o Logical Cuts 51.0 0.1 0.0 100.0
W/o Matching Cuts 43.0 0.8 0.0 100.0
W /o Infeasible Path Cuts 48.0 0.9 0.0 100.0
W/o Connectivity Cuts 89.0 1.68 0.0 100.0
W/ Logical Cuts 1972.0 37.2 0.0 100.0
W/ Matching Cuts 2703.0 51.0 0.0 100.0
W/ Infeasible Path Cuts 78.0 1.5 0.0 100.0
W/ Connectivity Cuts 40.0 0.8 0.0 100.0

TABLE C.7: Performance on root without cuts families on Class 4.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
Root 231.0 4.4 29.5 100.0
W /o Logical Cuts 291.0 4.4 22.6 100.0
W /o Matching Cuts 275.0 44 23.0 100.0
W /o Infeasible Path Cuts 303.0 4.9 244 100.0
W/o Connectivity Cuts 243.0 3.9 36.7 95.2
W/ Logical Cuts 221.0 3.6 22.7 100.0
W/ Matching Cuts 326.0 5.3 24.7 100.0
W/ Infeasible Path Cuts 316.0 5.1 23.1 100.0
W/ Connectivity Cuts 332.0 5.4 22.0 100.0

TABLE C.8: Performance on B&C without cuts families on Class 4.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
B&C 1329.0 214 0.0 100.0
W /o Logical Cuts 1033.0 16.7 0.0 100.0
W/o Matching Cuts 965.0 15.6 0.0 100.0
W /o Infeasible Path Cuts 1175.0 19.0 0.0 100.0
W /o Connectivity Cuts 52113.0 840.5 0.0 100.0
W/ Logical Cuts 80876.0 1304.5 9.1 100.0
W/ Matching Cuts 81797.0 1319.3 9.1 100.0
W/ Infeasible Path Cuts 51720.0 834.2 3.9 100.0
W/ Connectivity Cuts 1255.0 20.2 0.0 100.0
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TABLE C.9: Performance on root without cuts families on Class 5.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
Root 157.0 3.0 20.0 100.0
W /o Logical Cuts 156.0 2.8 19.0 100.0
W/o Matching Cuts 147.0 2.7 19.5 100.0
W /o Infeasible Path Cuts 188.0 3.4 20.8 100.0
W/o Connectivity Cuts 198.0 3.6 27.3 96.4
W/ Logical Cuts 192.0 3.5 21.1 98.1
W/ Matching Cuts 132.0 2.4 18.2 100.0
W/ Infeasible Path Cuts 180.0 3.3 20.1 100.0
W/ Connectivity Cuts 180.0 3.3 18.8 100.0

TABLE C.10: Performance on B&C without cuts families on Class 5.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
B&C 588.0 10.7 0.0 100.0
W /o Logical Cuts 451.0 8.2 0.0 100.0
W /o Matching Cuts 476.0 8.7 0.0 100.0
W /o Infeasible Path Cuts 409.0 7.4 0.0 100.0
W/o Connectivity Cuts 19441.0 353.5 0.0 100.0
W/ Logical Cuts 46209.0 840.2 2.8 100.0
W/ Matching Cuts 46463.0 844.8 2.9 100.0
W/ Infeasible Path Cuts 19500.0 354.5 1.2 100.0
W/ Connectivity Cuts 450.0 8.2 0.0 100.0

TABLE C.11: Performance on root without cuts families on Class 6.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
Root 137.0 2.6 20.5 94.3
W /o Logical Cuts 116.0 2.2 37.3 98.1
W/o Matching Cuts 127.0 2.4 38.2 98.1
W /o Infeasible Path Cuts 74.0 14 20.4 100.0
W /o Connectivity Cuts 214.0 4.0 28.0 90.6
W/ Logical Cuts 123.0 2.3 19.7 98.1
W/ Matching Cuts 131.0 2.5 18.0 96.2
W/ Infeasible Path Cuts 70.0 1.3 37.8 100.0
W/ Connectivity Cuts 79.0 1.5 19.1 100.0
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TABLE C.12: Performance on B&C without cuts families on Class 6.

Method Total time (in s) | Avg time (in s) | % Avg gap | % Feasible
B&C 702.0 13.2 0.0 100.0
W /o Logical Cuts 688.0 13.0 0.0 100.0
W/o Matching Cuts 715.0 13.5 0.0 100.0
W /o Infeasible Path Cuts 845.0 16.0 0.0 100.0
W/o Connectivity Cuts 9018.0 150.2 0.0 100.0
W/ Logical Cuts 44461.0 838.9 1.5 100.0
W/ Matching Cuts 44304.0 835.9 1.5 100.0
W/ Infeasible Path Cuts 8866.0 167.3 0.2 100.0
W/ Connectivity Cuts 691.0 13.0 0.0 100.0
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