UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POST-GRADO

COMPORTAMIENTO MECANICO Y MICROESTRUCTURAL DE ACEROS DOBLE FASE

POR

CARLOS JAVIER LIZCANO ZULAICA

DIRECCIÓN GENEITESISBIBLIOTECAS

EN OPCION AL GRADO DE DOCTOR EN INGENIERIA DE MATERIALES

CIUDAD UNIVERSITARIA

MAYO 2001

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

DIVISION DE ESTUDIOS DE POST-GRADO

COMPORTAMIENTO MECANICO Y MICROESTRUCTURAL DE ACEROS DOBLE FASE

POR

UNIVER CARLOS JAVIER LIZCANO ZUEAICA EVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

EN OPCION AL GRADO DE DOCTOR EN INGENIERIA DE MATERIALES

MAYO 2001

CIUDAD UNIVERSITARIA

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISIÓN DE ESTUDIOS DE POST-GRADO

UNIVERSIDAD AUTÓN PORIA DE NUEVO LEÓN DIRECCIÓNCARLOS JAVIER LIZCANO ZULAICA TECAS

TESIS

EN OPCIÓN AL GRADO DE DOCTOR EN INGENIERÍA DE MATERIALES

CIUDAD UNIVERSITARIA

MAYO 2001

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISIÓN DE ESTUDIOS DE POST-GRADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓ CARLOS JAVIER LIZCANO ZULAICA TECAS

TESIS

EN OPCIÓN AL GRADO DE DOCTOR EN INGENIERÍA DE MATERIALES

CIUDAD UNIVERSITARIA

MAYO 2001

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DIVISIÓN DE ESTUDIOS DE POST-GRADO

Los miembros del comité de tesis recomendamos que la tesis "Comportamiento mecánico y microestructural de aceros doble fase" realizada por el M.C. Carlos Javier Lizcano Zulaica sea aceptada para su defensa como opción al grado de Doctor en Ingeniería de Materiales.

San Nicolás de los Garza; Nuevo León. Mayo de 2001

DEDICATORIA

A Dios.

A mi esposa, Laura Elena, y mis hijos, Carlos Javier II e Israel, por sus palabras de aliento, confianza y paciencia.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

A la memoria de mi padre, Luis Lizcano Cavazos, y de mi madre, Andrea Zulaica de Lizcano.

AGRADECIMIENTOS

A la Facultad de Ingeniería Mecánica y Eléctrica de la U.A.N.L., en especial al programa de Doctorado en Ingeniería de los Materiales.

A la División de Tecnología de Hylsa, por las facilidades proporcionadas para el desarrollo de este trabajo y por su autorización para publicarlo.

A Galvak, S.A. de C.V., por el apoyo que me brindó para el desarrollo de este estudio.

Al Ing. Juan Celada III, por ser todo un visionario en la importancia del desarrollo de estos nuevos aceros y fomentar su realización.

Al Dr. Ignacio Alvarez Elcoro, por compartir su amistad, experiencia y madurez profesional en la realización de este trabajo.

Al Dr. Rafael Colás Ortiz, por sus palabras motivadoras siempre de aliento y entusiasmo para que se iniciara y concluyera este trabajo.

Al Dr. Alberto Pérez Unzueta, por sus valiosos comentarios durante la supervisión del presente estudio.

A los Doctores Patricia Rodríguez López y Juan Oscar Molina Solís por su valiosa participación en la revisión de este trabajo.

Al Ing. Omar Cerda Rodríguez, por que sin su ayuda no hubiera sido posible la realización de este proyecto.

ÍNDICE

		Página
Prólogo		vii
Síntesis	2	X
Capítulo 1.	Introducción	1
ALERE FLAMM VERITATIS	1.1. Objetivo	3
5	1.2. Hipótesis	3
E S	Lista de figuras	8
	Referencias	8
Capítulo 2.	Análisis matemático	13
	2.1. Análisis de Hollomon	. 14
UNIVERS	2.2. Análisis de Crussard-Jaoul (CJ)2.3. Análisis modificado CJ	EQN 16
DIREC	Lista de figuras	22
	Referencias	22
Capítulo 3.	Fabricación de acero	23
	3.1. Fusión.	23
	3.2. Laminación.	29
	Lista de figuras.	33
	Lista de tablas.	33

-

iii

iv	

Página

Capítulo 4.	Experimentación	34
	4.1. Materiales	34
	4.2. Tratamientos térmicos.	35
	4.3. Ensayos mecánicos.	37
	Lista de figuras	39
	Lista de tablas.	39
	Referencias	39
ATONO	MA	
Capítulo 5.	Análisis de pruebas mecánicas	40
E	5.1. Aceros al silicio	41
E E	5.2. Aceros al manganeso	48
	Lista de figuras	56
	Lista de tablas.	57
	Referencias	57
Capítulo 6.	Análisis metalográfico NOVA DE NUEVO LE	ó ⁵⁸
UTIT LIC	6.1. Aceros al silicio	58
DIRE	6.2. Aceros al manganeso L DE BIBLIOTECAS	71
	Lista de figuras	83
0 ⁴ 7	Lista de tablas.	83
	Referencias	84

a,

s...

Página

(Capítulo 7. Discusión			85	
		7.1.	Análisi	s de propiedades mecánicas	86
			7.1.1.	Aceros al silicio	86
			7.1.2.	Aceros al manganeso	97
		7.2.	Análisi	s metalográfico	106
STONOM			Discusi	ón matemática	108
	ALERE FLAM	IAM	7.3.1.	Introducción	108
	VERITATIS	$\overline{}$	7.3.2.	Análisis de aceros al silicio	114
RS		61	7.3.3.	Análisis de aceros al manganeso	121
B		2	7.3.4.	Análisis de ambos aceros	129
Lista de figuras			131		
Lista de tablas.				132	
		Refe	rencias		133

4

-

ne: 1

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Capítulo 8. Conclusiones, recomendaciones y limitaciones

DIREC(⁸ .	I. Conclusiones FRAL DE BIBLIOTECAS	138
BIII 8.	2. Recomendaciones	139
8.	3. Limitaciones	140

Apéndice A	141
Apéndice B	146
Apéndice C	154

Apéndice D 164 Apéndice E 173 Apéndice F Apéndice G Apéndice H Curriculum vitae UNIV

184 187 190 201 ERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

vi

Página

PRÓLOGO

El inicio del siglo XXI ha estado acompañado de grandes avances científicos y tecnológicos. Quizá el área que más se maneja en los medios de comunicación ha sido el avance en el uso de la computadora personal como una herramienta de trabajo diaria para millones de personas y en particular el uso de redes de información como Internet. Otra área que ha sido ampliamente difundida es el avance en ingeniería genética y en la posibilidad actual de clonar seres vivos. En el área de ciencia e Ingeniería de Materiales, hemos visto la introducción de nuevos y mejores materiales en varias aplicaciones.

A pesar de todos estos avances, el metal que sigue siendo el principal material para un sin fin de aplicaciones es el acero. Esta relativamente sencilla aleación de fierro y carbono, ha sido la base del desarrollo industrial. Actualmente existen más de 1,000 diferentes tipos de aceros y parecería que para cada requerimiento de la vida moderna, existe un acero para satisfacer esta demanda

JNIVERSIDAD AUTONOMA DE NUEVO LEON

De ahí que, día a día se continúe con las investigaciones científicas y tecnológicas para encontrar aceros que satisfagan las cada vez más rigurosas condiciones de trabajo de la industria moderna.

Este es el caso del presente trabajo donde se han desarrollado dos nuevas familias de aceros. Partiendo de la idea de diseñar una aleación en base a un control microestructural, se buscó formar estos aceros con diferentes proporciones de fases, siendo estas, granos de martensita en una matriz de ferrita. De aquí el nombre genérico de aceros fer-mar.

La consolidación de estos aceros, su transformación mecánica, sus cambios microestructurales por medio de tratamientos térmicos y finalmente las propiedades mecánicas obtenidas han sido claramente explicadas por el autor. Es precisamente, la relación que existe entre las propiedades mecánicas y la microestructura del acero, el trabajo principal de la presente tesis. El autor propone y comprueba una serie de relaciones cualitativas y cuantitativas, todas ellas de gran utilidad para el productor, usuario y consumidor de este importante material, el acero.

La tesis concluye que la ley de las mezclas es adecuada para el propósito de predecir las propiedades mecánicas.

Uno por su parte puede concluir que es una gran satisfacción observar, una vez más, el gran esfuerzo, dedicación y buenos resultados que se obtienen cuando la industria y la universidad trabajen en forma conjunta para el avance científico y tecnológico, no sólo de nuestro país sino de toda la humanidad.

Ing. Ricardo Viramontes Brown. Dr. Alberto Pérez Unzueta. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN San Nicolás de los Garza N.L. Mayo 2001. DIRECCIÓN GENERAL DE BIBLIOTECAS

RESUMEN

Dos familias de 5 aceros al Si-Mn fueron producidas, una de 0 a 2% de Si y otra de 0 a 2 % de Mn. La fusión del acero se llevo a cabo en un horno de inducción de 1.2 ton y la laminación de los lingotes a barras redondas de 20 mm de diámetro en un tren de laminación compuesto de un molino de desbaste trío y un molino cross country.

Se maquinaron probetas redondas según el estándar ASTM E-8 de 12.7 mm de diámetro para ensayos de tensión y fueron sometidas a tratamiento térmico de templado intercrítico en agua; en cuatro niveles de temperatura, distribuidos en forma proporcional entre A_{c1} y A_{c3} .

Análisis metalográfico cuantitativo se llevó acabo con ataques de Nital para medir el tamaño de grano ferritico y con LePera para medir las fases presentes.

UNIVERSIDAD AUTONOMA DE NUEVO LEON

Una revisión de análisis de endurecimiento por deformación de las curvas σ - ε muestra que el análisis de Crussard-Jaoul modificado se ajusta a las diferentes etapas de endurecimiento de estos aceros.

Es posible explicar las variables mecánicas, como σ y ε , a través de la aplicación de la ley de las mezclas de fases metalográficas.

Un análisis de correlación de la microestructura con los resultados de los ensayos de tensión combinados de ambas familias comprueba que σ_u y $\sigma_{0,2}$ dependen principalmente de la cantidad de fases metalográficas y del tamaño de grano ferrítico.

CAPÍTULO 1

INTRODUCCIÓN

Los resultados de un proyecto concerniente al desarrollo de aceros doble fase para mejorar la resistencia a la corrosión de la varilla de refuerzo en estructuras de concreto [11] promovieron la profundización en el trabajo con un nuevo enfoque de carácter mecánico. El nuevo tema es el desarrollo matemático que explique el comportamiento plástico de los aceros que muestran en su estructura metalográfica varias fases, haciendo énfasis en las mezclas ferítico-martensíticas.

Es un hecho bien reconocido que la microestructura resultante de la transformación de fases juega un papel predominante en la determinación de las propiedades mecánicas de los aceros especiales tratados térmicamente. La microestructura es clasificada primeramente en productos de transformación de fase simple; tales como ferrita, martensita y bainita. Considerables esfuerzos han sido dirigidos a explicar la relación entre las características microestructurales de una fase simple de martensita o de bainita con sus propiedades mecánicas. Sin embargo, muy poco estudio se ha realizado para clarificar el factor controlante que afecta las propiedades mecánicas de la estructura mezclada de martensita y productos de descomposición no martensíticos, a pesar del hecho que tales estructuras mezcladas han sido encontradas frecuentemente en prácticas comerciales y que la mejora en propiedades mecánicas ha sido asociada con tales mezclas.

Por lo anterior, una mejor comprensión de las estructuras mezcladas proveerá nuevas sugerencias para modificaciones de técnicas de tratamientos térmicos y conducirá a nuevas ideas para mejorar las propiedades mecánicas de aceros de alta resistencia.

Los aceros doble fase, cuya microestructura consiste de una matriz de ferrita con partículas de martensita, han recibido una gran atención debido a su útil combinación de alta resistencia y buena ductilidad. Estos aceros están caracterizados por un esfuerzo de flujo inicial bajo y una alta razón inicial de endurecimiento por trabajo mecánico. Ha habido numerosos intentos para describir el comportamiento esfuerzo-deformación o esfuerzo-endurecimiento de estos aceros [21] a [221]. El análisis de Crussard-Jaoul (C-J) [231] a [251] basado en la relación de Swift ha sido aplicada para correlacionar los comportamientos de esfuerzo-deformación de los aceros doble fase [11] a [221]. Con el análisis modificado de C-J fue mostrado que los aceros doble fase se deforman en dos etapas de endurecimiento por deformación.

Desde principio de este siglo XX se han dirigido esfuerzos considerables al desarrollo de leyes empíricas que describan el endurecimiento por trabajo de metales policristalinos y aleaciones, esto fue reflejado por la derivación de la relación de Ludwik, Hollomon, Voce, Swift-Krupkowski [261] a [291], etc. Los parámetros involucrados en estas relaciones, particularmente el valor del exponente de endurecimiento en dichas ecuaciones (*n*), han sido correlacionados a los cambios en la microestructura y los procesos que ocurren durante la deformación. Recientemente ha habido una demanda creciente por materiales de alta resistencia tales como metales trabajados en frío y aleaciones y aceros tratados térmicamente desde un punto de vista de ahorro de energía. La significancia técnica de los parámetros de endurecimiento por trabajo en materiales de alta resistencia ha sido también reportada. Desafortunadamente, en la mayoría de los casos, se han obtenido valores no del todo satisfactorios para estos materiales de alta resistencia.

Uno de los problemas básicos es que no se ha puesto atención al hecho de que estos materiales de alta resistencia tienen un alto límite de proporcionalidad y que endurecen en frío inmediatamente sin exhibir el fenómeno discontinuo de cedencia en sus curvas esfuerzo-deformación. Por eso, la solución al problema es desarrollar una fórmula empírica en la cual sean consideradas las propiedades anteriores.

1.1. OBJETIVO.

El objetivo del presente trabajo es la caracterización de las propiedades mecánicas de dos nuevas familias de aceros aleados al silicio y al manganeso, así como el desarrollo de un modelo predictivo de las propiedades mecánicas en función de la microestructura del acero. Este objetivo es parte de un proyecto más amplio a largo plazo sobre el desarrollo de nuevos materiales metálicos, que actualmente se desarrolla en la Universidad Autónoma de Nuevo León, en colaboración con empresas de la localidad.

1.2. HIPÓTESIS.

Las hipótesis planteadas en el presente trabajo son:

a. La aplicación y corroboración del análisis modificado C-J basado en la fórmula de Swift. Esta técnica es aplicada a dos familias de acero, al Si y al
Mn, para describir su comportamiento deformación-endurecimiento. Una discusión crítica del análisis empírico ha sido elaborada en base a dos criterios: (1) una relación lineal razonable para las gráficas de esfuerzo-deformación y (2) la concordancia entre las constantes calculadas usando el criterio de inestabilidad en los ensayos de tensión uniaxial y los evaluados de las gráficas logarítmicas de esfuerzo-deformación.

- Las propiedades mecánicas de un acero que presenta dos o más fases puede caracterizarse por medio de la ley de las mezclas.
- c. Las propiedades mecánicas de un acero que presenta dos o más fases pueden explicarse por medio de correlación múltiple con las características de las fases metalográficas.

El desglose de trabajo del proyecto se encuentra explicado en la Figura 2.1 y contempla su realización desde la fusión y producción del acero hasta su análisis y conclusiones. La duración de la investigación, de la Figura 2.2a hasta 2.2 d, fue de 2.5 años efectivos distribuidos en 4 años calendario.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

. -

DIRECCIÓN GENERAL DE BIBLIOTECAS

. -

Figura 1.2 b: Programa de la investigación Julio 97 a Junio 98.

Figura 1.2 d: Programa de la investigación Julio 00 a Junio 01.

Lista de figuras:

Figura 1.1: Desglose del alcance de la Investigación.

Figura 1.2 a: Programa de la investigación Julio 96 a Junio 97.

Figura 1.2 b: Programa de la investigación Julio 97 a Junio 98.

Figura 1.2 c: Programa de la investigación Julio 98 a Junio 99.

Figura 1.2 d: Programa de la investigación Julio 00 a Junio 01.

REFERENCIAS

[11] Covarrubias A. Octavio. Determinación de propiedades de resistencia a la corrosión de aceros aleados al silicio embebidos en mortero. Tesis de la División de post-grado de FIME de la UANL. Julio de 1999.

[21] Naresh C. Goel, Sandeep Sangal and Kris Tangri. A Theoretical Model for the Flow Behavior of Commercial Dual - Phase Steels Containing Metastable Retained Autenite: Part I. Derivation of Flow Curve Equations. Metallurgical Transactions A, Volume 16A, November 1985. Pg. 2013-2021.

[31] Naresh C. Goel, Sandeep Sangal and Kris Tangri. A Theoretical Model for the Flow Behavior of Commercial Dual - Phase Steels Containing Metastable Retained Autenite: Part II. Derivation of Flow Curve Equations. Metallurgical Transactions A, Volume 16A, November 1985. Pg. 2023-2029.

[41] K. Cho and J. Gurland. The Law of Mixtures Applied to the Plastic Deformation of Two-Phase Alloys of Coarse Micrustructures. Metallurgical Transactions A, Volume 19A, August 1988. Pg. 2027-2040.

[51] A. R. Marder. Deformation Characteristics of Dual-Phase Steels. Metallurgical Transactions A, Volume 13A, January 1982. Pg. 85-92.

[61] L. N. Pussegoda and W. R. Tyson. Modelling of a Dual - Phase Steel From Its Ferrite and Martensite Constituents. Canadian Metallurgical Quaterly, Volume 23, No. 3, 1984. Pg. 341-347.

[71] Zhonghao Jiang, Jingke Liu, Jianshe Lian. A new Relationship Between the Flow Stress and the Microstructural parameters for Dual Phase Steels. Acta Metall. Mater. Vol. 40 No. 7, 1992. Pg. 1587-1597.

[81] Olaf Maid, Winfried Dahl, Christian Strabburger und Wolfgang Müschenborn. Einflub der Gefügeparameter auf the mechanischen Eigenschaften von Dualphasen-Stahl. Stahl und Eisen 108 (1988) Nr 8, April. Pg. 355-364.

[91] A. Bhattacharyya, T. Sakaki, and G. J. Weng. The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dua-phase steels. Metallurgical Transactions A, Volume 24A, February 1993. Pg. 301-314.

[101] A. Bhattacharyya, and G. J. Weng. Theoretical calculation of the stress-strain behavior of dual-phase metals with randommly oriented spheroidal inclusions. Metallurgical Transactions A, Volume 27A, august 1996. Pg. 2359-2365.

[111] Yoshiyuki Tomita and Kunio Okabayashi. Tensile Stress - Strain Analysis of Cold Worked Metals and Steels Dual - Phase Steels. Metallurgical Transactions A, Volume 16A, May 1985. Pg. 865-872.

[121] D. A. Korzekwa, D. K. Matłock and G. Krauss. Dislocation Substructure as a Function of Strain in a Dual-Phase Steel. Metallurgical Transactions A, Volume 15 A, June 1984. Pg. 1221-1228.

[131] Yoshiyuki Tomita. Effect of Morphology of Second - Phase martensite on Tensile Properties of Fe - 0.1 C Dual Phase Steels. Journal of Materials Science 25 (1990). Pg. 5179-5184.

[141] Z. Jiang, J. Lian and J. Chen. Stain Hardening Behavior and Its relationships to Tensile Mechanical Properties of Dual Phase Steel. Materials Sience and Technology, December 1992, Vol. 8. Pg. 1075-1081.

DIRECCIÓN GENERAL DE BIBLIOTECAS

[151] Zhonghao Jiang, Zhenzhong Guan, Jianshe Lian. The Relationship Between Ductility and Material Parameters for Dual Phase Steel. Journal of materials Science 28 (1993). Pg. 1814-1818.

[161] Zhonghao Jiang, Zhenzhong Guan, Jianshe Lian. Effects of Microstructural Variables on the deformation Behavior of Dual - Phase Steel. Materials Sience and Engineering A 190 (1995). Pg. 55-64.

[17I] Cochrane, Hal. Formable Dual Phase Steels. Engineering, Materials Science, Dissertation Abstracts International, Vol. 51, Nº 3, September 1990. Pg. 1442-1443.

[181] A. Bag, K K Ray and E S Dwarakadasa. Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels. Metallurgical and Materials Transactions A, Volume 30A, May 1999. Pg. 1193-1202.

[191] Luis F. Ramos, David K Matlock and George Krauss. On the Deformation Behavior of Dual - Phase Steels. Metallurgical Transactions A, Volume 10A, February 1979. Pg. 259-261.

[201] Thak Sang Byun, In Sup Kim. Tensile properties and inhomogeneous deformation of ferrite-martensite dual -phase steels. Journal of materials Science 28 (1993). Pg. 2923-2932.

[211] S. R. Mediratta, V. Ramaswamy. Dependence of strain hardening exponent on the volume fraction and carbon content of martensite in dual phase steels during multistage work hardening. Journal of materials Science Letters 9 (1990). Pg. 205-206.

[221] R. D. Lawson, David K Matlock and George Krauss. The effect of microstructure on the deformation behavior and mechanical properties of a dual phase steel. Fundamentals of Dual-Phase Steels, edited by R.A. Kot and B.L. Bramfitt. Conference Proceedings, The Metallurgical Society of AIME. February 1981. [231] E. Reed - Hill, W. R. Cribb and S. N. Monteiro. Concerning the Analysis of Tensile Stress - Strain Data Using Log d σ / d ϵ_p Versus Log σ Diagrams. Metallurgical Transactions, Volume 4 November 1973. Pg. 2665-2667.

[24I] Crussard. Rapport Entre la Forme Exacte des Courbes de Traction des Metaux et les Modifications Concomitantes de leur Structure. Revue de Metallurgie L N° 10, 1953. Pg. 697-710.

[251] B. Jaoul. Etude de la Forme des Couebes de Deformation Plastique. Journal of the mechanics and Physics of solids, 1957, Vol. 3. Pg. 95-115.

[261] J.H. Hollomon. Tensile Deformation. Transactions TMS-AIME, 62, 1945. Pg. 268.

[271] E. Voce. The relationship between stress and strain for homogeneous deformation. Journal of the Institute of Metals, 74, 1948. Pg. 537.

JMADE

[281] P. Ludwik. Element der Technologischen Mechanic. Julius Springer, Berlin, 1909. Pg. 268.

[291] H.W. Swift. Journal of the Mechanics and Physics of Solids 1, 1952. Pg. 1-18.

CAPÍTULO 2

ANÁLISIS MATEMÁTICO

Los cambios [3A] que ocurren en el proceso de deformación durante una prueba de tensión pueden producir etapas en la curva esfuerzo-deformación de un material policristalino. En níquel y cobre se han identificado hasta cuatro etapas:

Etapa 0 .- se inicia con el deslizamiento múltiple de los granos más grandes difundiéndose este fenómeno en los granos vecinos. Esta etapa termina cuando todos los granos se están deformando por deslizamiento múltiple, iniciándose la

^{etapa 1.} UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Etapa 1.- que consiste en el deslizamiento múltiple de todos los granos difiere fundamentalmente del suave deslizamiento de la etapa 1 de un cristal simple ccc (fcc) causado por el movimiento libre de las dislocaciones.

Etapa 2.- que también ocurre en un cristal simple, el deslizamiento se ve frenado por el fuerte mecanismo de endurecimiento por deformación, resultante de la acumulación de grupos de dislocaciones (barreras de Cotrell-Lomer).

Etapa 3 .- también existente en un cristal simple, es caracterizada por recuperación dinámica.

Esencialmente existen tres métodos principales para explicar el comportamiento plástico de los metales policristalinos. A continuación se describirán cada un de ellos y el porque fue seleccionado el método C-J modificado para la realización de este trabajo.

2.1. ANÁLISIS DE HOLLOMON.

supone

Ya que las etapas de deformación de un espécimen policristalino son mucho menos evidentes de identificar, por lo anteriormente explicado, que las de un cristal típico ccc (fcc), algunas formas de análisis son requeridas para poder revelarlas. Los métodos de Hollomon y el de Crussard y Jaoul de análisis esfuerzo-deformación han sido utilizados para este propósito. A pesar de que ellos dan parámetros descriptivos de la deformación en estas etapas, son inherentemente deficientes. La técnica de Hollomon

$\sigma = k \varepsilon^{n'} \tag{1-1}$

y determina n' de la pendiente de la gráfica ln σ vs ln ϵ donde σ es el esfuerzo verdadero y ϵ es la deformación plástica verdadera.

UNIVERSIDAD AUTONOMA DE NUEVO LEON

La constante, n'_{cal} , puede ser calculada usando el criterio de inestabilidad en la prueba de tensión (Considère): NERAL DE BIBLIOTECAS

$$d\sigma_t/d\varepsilon - \sigma_t = \mathbf{0} \tag{1-2}$$

Para el límite de la deformación verdadera uniforme máxima $\varepsilon = \varepsilon_u$

$$(d\sigma_t/d\varepsilon)_{\varepsilon=\varepsilon u} - \sigma_{tu} = 0 \tag{1-3}$$

donde σ_{tu} es el esfuerzo máximo verdadero. Diferenciando la ecuación (1-1) resulta

$$d\sigma_{l}/d\varepsilon = kn\varepsilon^{n'-1} \tag{1-4}$$

Resolviendo para k de la ecuación (1-1) y substituyendo en la ecuación (1-4)

$$d\sigma_t/d\varepsilon = (n'/\varepsilon)(\sigma_t)$$
(1-5)

y para $\varepsilon = \varepsilon_u$

$$(d\sigma_t/d\varepsilon)_{\varepsilon=\varepsilon u} = (n'/\varepsilon_u)(\sigma_{tu})$$
(1-6)

de la ecuación (1-3) y (1-6) se deriva

$$\dot{n}_{\rm cal} = \varepsilon_u$$
 (1-7)

2. 2. ANÁLISIS DE CRUSSARD-JAOUL (C-J).

El análisis C-J [1A] y [2A] supone la relación exponencial de Ludwick

σ_i=σ₀+ke" (1-8) UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

donde σ_i es el esfuerzo verdadero; ε , la deformación verdadera; *n*, el exponente de endurecimiento mecánico; y σ_0 y *k* son constantes del material. La forma logarítmica de la diferencial con respecto a ε de la ecuación (1-8), es

$$\ln \left(d\sigma_t / d\epsilon \right) = \ln \left(k n^{C-J} \right) + \left(n^{C-J} - 1 \right) \ln \epsilon$$
(1-9)

La pendiente de la línea de la ecuación (1-9) es ($n^{C-J} - 1$) mientras que su intersección con ln $\varepsilon = 0$ resulta ln (kn^{C-J}), pudiéndose así calcular fácilmente n^{C-J} , k y σ_0 . La constante, n^{C-J}_{cal} , puede ser calculada usando el criterio de inestabilidad en la prueba de tensión:

Diferenciando la ecuación (1-8) resulta

$$d\sigma_{n}/d\varepsilon = kn\varepsilon^{n-1} \tag{1-10}$$

Resolviendo para k de la ecuación (1-8) y substituyendo en la ecuación (1-10)

$$d\sigma_t/d\varepsilon = (n/\varepsilon)(\sigma_t - \sigma_o) \tag{1-11}$$

y para $\varepsilon = \varepsilon_u$

. .-

$$(d\sigma_t/d\varepsilon)_{\varepsilon=\varepsilon u} = (n/\varepsilon_u)(\sigma_{tu} - \sigma_0) \qquad (1-12)$$

de la ecuación (1-3) y (1-12) se deriva

$$n^{\mathrm{C}-\mathrm{J}}_{\mathrm{cal}} = \left[\sigma_{tu} / \left(\sigma_{tu} - \sigma_{\mathrm{o}}\right)\right] \varepsilon_{u} \qquad (1-13)$$

Ambos métodos, Hollomon y C-J, sufren del hecho que involucran en su análisis en el eje de la abscisas el lnɛ. Parámetros tales como n, k, y σ_0 determinados por mapeos con lnɛ tienden a ser imprecisos porque la pendiente de una curva ln σ o ln $(d\sigma_t/d\epsilon)$ vs lnɛ depende de donde se localiza el origen de la deformación.

2.3. ANÁLISIS MODIFICADO C–J.

Este análisis está basado en la fórmula de Swift [3A]. En este caso, la relación esfuerzo-deformación se representa

$$\varepsilon = \varepsilon_0 + c \sigma_l^m \tag{1-14}$$

CAS

donde ε_0 es la deformación verdadera inicial, *m* es el exponente de endurecimiento mecánico y *c* es una constante del material. La forma logarítmica de la ecuación (1-14) diferenciada con respecto a ε , resulta

$$\ln \left(d\sigma_t \, / \, d\epsilon \right) = (1 - m) \ln \sigma_t - \ln \left(\, cm \right) \tag{1-15}$$

La pendiente de esta ecuación logarítmica es (1 - m), mientras su intersección con $\sigma_t = 0$ proporciona ln (*cm*). Así, con estos parámetros pueden ser fácilmente determinados *m* y *c*. La ecuación (1-15) ajusta una curva esfuerzo-deformación (o al menos parte de tal curva) como está representado en la figura 2.1 a una ley exponencial que extrapola a ε_0 o deformación inicial, en $\sigma = 0$. La intercección con el eje de los esfuerzos es σ_0 y su relación con ε_0 es calculada de

Deformación verdadera

Figura 2.1: Ilustración para mostrar la significancia de ε_0 en la relación.

 $\varepsilon = \varepsilon_0 + c \sigma_t^m$

Sí el estado inicial de la ley exponencial de la curva esfuerzo-deformación se ajusta a los datos de deformación cero, σ_0 es el límite de proporcionalidad. Correspondientemente, ε_0 representa la predeformación inicial sólo cuando σ_0 es el límite de proporcionalidad y σ_0 tiende a cero cuando la predeformación es cero, en un espécimen recocido. Consecuentemente, en el caso general ε_0 puede no ser una deformación física real, Sin embargo es un parámetro útil para describir una etapa de la curva esfuerzo-deformación real.

Las ventajas del análisis C-J modificado son:

- A) dσ₁ / dε y σ son parámetros definidos por el estado actual del material (la densidad de dislocaciones y su arreglo) y no por su historia pasada, como es el caso para ε. Entonces, los parámetros m, c y ε₀ deben ser físicamente más significativos que n, k, y σ₀.
- B) También, en la ausencia de efectos de recuperación y envejecimiento por deformación, la curva del ln (dσ_t / dε) vs ln σ debe ser independiente de la localización del origen de la deformación, experimentalmente esto ya ha sido demostrado por Cribb [3A], haciendo independiente de esta forma los parámetros m, c y ε₀, de la condición inicial del espécimen en cuanto sí fue o no predeformado.
 C) En el análisis de inestabilidad es posible escribir una expresión simple para la deformación uniforme ε_u, involuctando sólo dos de los parámetros de la ecuación (1-8), siempre y cuando σ₀ o ε₀ sean grandes. Bajo estas condiciones el problema aparece cuando son utilizados los métodos C-J o Hollomon. Para pequeños σ₀ los tres métodos son equivalentes y predicen que ε_u = n =1 / m. Sin embargo para grandes σ₀, n no puede ser relacionada simplemente con ε₀ en el análisis C-J, mientras que en el análisis de Hollomon n es no representativo del comportamiento esfuerzo-deformación. Con el análisis modificado C-J se demuestra ε_u de la manera siguiente:

Diferenciando la ecuación (1-14) resulta

$$d\sigma_t/d\varepsilon = (\sigma^{1-m})/cm \tag{1-17}$$

Resolviendo para c de la ecuación (1-14) y substituyendo en la ecuación (1-17)

$$d\sigma_t/d\varepsilon = \sigma_t / [m(\varepsilon - \varepsilon_0)]$$
(1-18)

y para $\varepsilon = \varepsilon_u$

$$(d\sigma_t/d\varepsilon)_{\varepsilon=\varepsilon u} = \sigma_{tu} / [m(\varepsilon_u - \varepsilon_0)]$$
(1-19)

de la ecuación (1-3) y (1-19) se deriva

1

$$\varepsilon_u = 1/m + \varepsilon_0 \tag{1-20}$$

donde, en especímenes con curvas esfuerzo-deformación de etapas múltiples, m y ε_0 corresponden a la porción en la cual aparece el estrangulamiento. El Parámetro, m_{cal} , puede ser calculado despejando de la ecuación (1-20)

UNIVERSIDAD AUTONOMA DE NUEVO LEON $m_{cai} = 1/(\varepsilon_u - \varepsilon_o)$, (1-21)

DIRECCIÓN GENERAL DE BIBLIOTECAS

Con el propósito de visualizar la posible relación entre ε_u y los esfurzos de las dos últimas etapas de deformación así, como también con sus pendientes, se desarrollará a continuación dicha expresión [4A] y [5A].

Aplicando la ecuación de Swift a las dos últimas etapas de deformación se obtiene [4A] y [5A]:

$$\varepsilon = \varepsilon_{o1} + c_1 \sigma_t^{m1}$$
 para la etapa 1, antes de ε_k (1-22)

 $\varepsilon = \varepsilon_{02} + c_2 \sigma_t^{m^2}$ para la etapa 2, después de ε_k (1-23)
donde c_1 , c_2 , ε_{01} y ε_{02} son las constantes del material y m_1 y m_2 son los exponentes de deformación-endurecimiento de las dos etapas. La deformación de inestabilidad o deformación uniforme máxima ε_u puede ser expresada como

$$\varepsilon_{u} = \varepsilon_{k} + (\varepsilon_{u} - \varepsilon_{k}) \tag{1-24}$$

con la ecuación (1-23), el segundo término del lado derecho de la ecuación (1-24) puede ser expresado como

$$\varepsilon_u - \varepsilon_k = c_2 \quad (\sigma_{tu}^{m2} - \sigma_{tk}^{m2}) \tag{1-25}$$

$$1 = c_2 m_2 \sigma_{tu}^{m^2 - 1} \left(d\sigma_t / d\varepsilon \right)$$
 (1-26)

del criterio de inestabilidad resulta

 $d\sigma_1 / d\varepsilon = \sigma_{tu}$

JN combinando las ecuaciones (1-26) y (1-27) MA DE NUEVO LEÓN DIRECCIÓN $GE_2 = 1/(m_2 \sigma_{nu}^{m_2})$ E BIBLIOTECAS ⁽¹⁻²⁸⁾

mezclando la ecuación (1-28) con la (1-25) se obtiene

$$\varepsilon_{u} = \varepsilon_{k} + 1/m_{2} \left[1 - (\sigma_{tk} / \sigma_{tu})^{m2} \right]$$
(1-29)

en la transición con la ecuación (1-22) ε_k se expresa

$$\varepsilon_k = \varepsilon_{01} + c_1 \sigma_{tk}^{m1} \tag{1-30}$$

(1-27)

se entiende que en la deformación de transición, ε_k , las razones de endurecimiento por deformación descritas por las ecuaciones (1-22) y (1-23) son iguales [5A]

$$c_1 m_1 \sigma_{ik}^{m_{1-1}} = c_2 m_2 \sigma_{ik}^{m_{2-1}} \tag{1-31}$$

0

4 4

$$c_1 m_1 \sigma_{lk}^{\ m1} = c_2 m_2 \sigma_{lk}^{\ m2} \tag{1-32}$$

mezclando la ecuación (1-28) con la (1-32)

$$c_1 \sigma_{tk}^{m_1} = 1/m_1 (\sigma_{tk} / \sigma_{tu})^{m_2}$$
(1-33)

de las ecuaciones (1-29), (1-30) y (1-33) resulta

$$\varepsilon_{u} = \varepsilon_{o1} + 1/m_{2} + (1/m_{1} - 1/m_{2})(\sigma_{tk} / \sigma_{tu})^{m2}$$
(1-34)

Por lo que en este trabajo se tratará de comprobar la validez de la ecuación (1-34)

UNICIÓN GENERAL DE BIBLIOTECAS

Lista de figuras:

Figura 2.1: Ilustración para mostrar la significancia de ε_0 en la relación $\varepsilon = \varepsilon_0 + c\sigma_t^m$

.

REFERENCIAS

[1A] Crussard. Rapport Entre la Forme Exacte des Courbes de Traction des Metaux et les Modifications Concomitantes de leur Structure. Revue de Metallurgie L N° 10, 1953. Pg. 697-710.

[2A] B. Jaoul. Etude de la Forme des Couebes de Deformation Plastique. Journal of the mechanics and Physics of solids, 1957, Vol. 3. Pg. 95-115.

[3A] E. Reed - Hill, W. R. Cribb and S. N. Monteiro. Concerning the Analysis of Tensile Stress - Strain Data Using Log dσ / dε_p Versus Log σ Diagrams. Metallurgical Transactions, Volume 4 November 1973. Pg. 2665-2667.

[4A] Zhonghao Jiang, Zhenzhong Guan, Jianshe Lian. The Relationship Between Ductility and Material Parameters for Dual Phase Steel. Journal of materials Science 28 (1993). Pg. 1814-1818.

[5A] Z. Jiang, J. Lian and J. Chen. Strain Hardening Behavior and Its relationships to Tensile Mechanical Properties of Dual Phase Steel. Materials Sience and Technology, December 1992, Vol. 8. Pg. 1075-1081.

CAPÍTULO 3

FABRICACIÓN DE ACERO

La experimentación inició con de la fabricación de los aceros a ser estudiados, Se requirió de un pequeño horno de fusión y un pequeño laminador en caliente. Por el lado de fusión fueron identificados algunos hornos de inducción pequeños que podrían haber sido utilizados en esta etapa; pero, por el lado de formado los laminadores operativos más pequeños fueron trenes de laminación en producción industrial sin lograr conseguir ninguno a nivel de laboratorio o a escala piloto, obligando a la producción de lingotes de acero de 60 a 80 kg de peso. Lo anterior condujo a que la fusión de estos aceros se realizará en la acería experimental de HYL, mientras que su formado en caliente fue llevado a cabo en el laminador de la empresa Metamex localizada en el Estado de Puebla.

DIRECCIÓN GENERAL DE BIBLIOTECAS 3. 1. FUSIÓN.

Dos hornos estaban disponibles para la fusión de estos aceros: un horno eléctrico de arco de 500 kg de capacidad y un horno de inducción de 1.2 ton de capacidad. Se seleccionó el horno de inducción, cuyas características principales se encuentran en la Tabla 3.1, por ofrecer mejores condiciones de limpieza en el metal y fue revestido con refractario de 99% de MgO a fin de evitar inclusiones exógenas no metálicas y garantizar un acero lo más limpio posible. La Figura 3.1 muestra una fotografía de este horno en la etapa de vaciado.

Tabla 3.1: Datos característicos del horno de inducción.

- HORNO DE INDUCCIÓN SIN NUCLEO.
- INDUCTOTHERM VIP.
- MODELO POWER-TRAK 750-5.
- 1.2 ton de CAPACIDAD.
- 750 kW DE POTENCIA ACTIVA.
- 700 Hz. DE FRECUENCIA.
- REFRACTARIO DE 99% MgO.

Figura 3.1: Vaciado del horno de inducción.

La carga metálica utilizada consistió en recorte de lámina de acero de la planta de decapado, ver Figura 3.2. Por sus características este material es muy limpio, homogéneo en su composición química y de bajo contenido de carbono, por lo que el

ajuste de elementos aleantes fue una tarea sencilla. Se utilizó para esto Fe-Mn (72% Mn y 7% C), Fe-Mn medio carbón (80%Mn y 1.5%C), Fe-Si (73%Si) y grafito de 97% C.

Con el propósito de conseguir las mejores condiciones de vaciado se analizó la posibilidad de fabricar lingoteras de hierro vaciado en el horno cubilote de Hylsa, pero el alto costo que exigía esta alternativa obligó a simplificar el molde de vaciado. Una opción factible consistía en producir moldes de arena autofraguante pero Hylsa ya no poseía el departamento de fundición de piezas donde se pudieron haber fabricado. La opción más económica resultó ser la de utilizar mangas refractarias silicoaluminosas, las cuales son utilizadas como alimentadores en el vaciado tipo fuente de lingotes de acero.

Figura 3.2: Carga metálica, recorte de lámina de acero. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

La Figura 3.3(a-e) describe la secuencia de pasos en el proceso de fabricación de las molduras para el vaciado de las barras de acero. El primer paso, (a), consistió en ensamblar y sellar con concreto refractario de alta alúmina, cuatro mangas refractarias silicoaluminosas formando una columna de 914 mm. La parte inferior de esta columna fue clausurada con un tapón de concreto refractario de alta alúmina. Posteriormente seis de estas columnas fueron colocadas en la base de acero para alojar luego la caja metálica que da apoyo mecánico al ensamble, (b). La boca superior de las columnas fueron selladas con bolsas de plástico para evitar entrada de arena silica, (c). El espacio libre entre las columnas de mangas refractarias y la caja metálica se rellenó con arena sílica garantizando así un buen apoyo mecánico, (d). El remate superior del ensamble se realizó con concreto refractario de alta alúmina, (e). Para efectuar el secado del ensamble se usaron mecheros de gas natural. Este remate deja un hueco de suficiente nivel para trabajar como mazarota y compensar la contracción de las piezas vaciadas.

El conjunto ya vaciado, Figura 3.4, es una araña de 400 kg de seis barras de acero de 100 mm de diámetro con un peso unitario promedio de 60 kg y una longitud de 800 mm. Las barras de sección redonda fueron separadas con soplete de la mazarota, Figura 3.5, La superficie resultó ser bastante limpia, libre de material refractario. Existe una costura perimetral en la unión de las mangas refractarias, pero ésta fue eliminada en el proceso de recalentamiento antes de su laminación.

CUATRO MANGAS REFRACTARIAS SILICO-ALUMINOSA DE 55% SiO₂ Y 40 % Al₂O₃. LONGITUD TOTAL DE 914 mm.

UNIVERSIDAD AUTÓNOMA DE NU

Figura 3.3: Ensamble de molduras para el vaciado de las barras de acero.

Figura 3.5: Barras cortadas separadas del conjunto.

Figura 3.7: Horno de recalentamiento de barras.

3.2. LAMINACIÓN.

La laminación de las barras se realizó en la empresa Operadora Metamex S. A. de C. V. El arreglo general del tren laminador está explicado en la Figura 3.6. Éste consta de un horno de recalentamiento de barras de hasta 1,000 mm de longitud con una capacidad de 16 ton por carga, ver Figura 3.7, un molino trío de desbaste con un motor de 1,000 Hp y rodillos de 14" de diámetro, ver Figura 3.8, y un molino Cross Country con 5 castillos y un motor de 700 HP y rodillos de diámetro de 8", ver Figura 3.9.

La secuencia de pases para las barras de esta experimentación se encuentra en la Tabla 3.2, los primeros nueve pases se llevaron a cabo en el molino trío y del 10 al 14 en el molino Cross Country. El producto final fueron barras de 21 mm de diámetro. Después del noveno pase en el molino trío el producto es enviado a la tijera de corte para ser despuntado y enviado al molino Cross Country. Aquí los pases 10, 11 y 12 son de desbaste. El pase 13 es preparador y el 14 es acabador. Lo más peculiar de esta

planta es que el manejo de la barra caliente es llevado acabo en forma manual. El Apéndice G muestra las temperaturas de laminación en cada pase de procesamiento.

A la salida del pase 14 el producto es enviado a la cama de enfriamiento y posteriormente a la tijera de corte para proporcionarle su longitud final, ver Figuras 3.10 y 3.11.

Figura 3.9: Molino Cross Country.

Figura 3.11: Cama de enfriamiento y tijera de corte.

Pase	Pase Molino For			Dimensión (m	sión (mm)		
- 1			A	В	Н		
_		-	Cara	Diagonal Mayor	Diagonal Menor		
0	Trío	Redondo	100	100	100		
1	Trío	Semi plano					
2	Trío	Cuadrado	81.5	106.97	106.97		
3	Trio	Rombo	73.7	109.97	84		
4	Trio	Rombo	62.2	90.53	71.7		
5	Trío	Cuadrado	57.15	74.19	74.19		
6	Trío	Rombo	52.58	80.97	49.86		
7	Trío	Cuadrado	44.45	56.23	56.23		
8	Trio	Rombo	41.8	60.11	43.72		
9	Trío	Cuadrado	38.1	47.26	47.26		
	C. Country	Rombo					
	C. Country	Rombo					
VE 12 AMM	C. Country	Cuadrado	29	41.01	41.01		
13	C. Country	Ovalo		28	19		
14	C. Country	Redondo	20.64	20.64	20.64		
	2112						

Tabla 3.2: Secuencia de pases.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

-

Lista de figuras:

Figura 3.1: Vaciado del horno de inducción.

Figura 3.2: Carga metálica, recorte de lámina de acero.

Figura 3.3: Ensamble de molduras para el vaciado de las barras de acero.

Figura 3.4: Conjunto de barras vaciadas.

Figura 3.5: Barras cortadas separadas del conjunto.

Figura 3.6: Arreglo general del molino laminador.

Figura 3.7: Horno de recalentamiento de barras.

Figura 3.8: Molino trío de desbaste.

Figura 3.9: Molino Cross Country.

Figura 3.10: Molino Cross Country y cama de enfriamiento.

Figura 3.11: Cama de enfriamiento y tijera de corte

Lista de Tablas:

Tabla 3.1: Datos característicos del horno de inducción.

Tabla 3.2: Secuencia de pases.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ® DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 4

EXPERIMENTACIÓN

4.1. MATERIALES.

Dos familias de aceros fueron producidas: (1) acero al Si y (2) acero al Mn. Su composición química se encuentra sumarizada en la Tabla 4.1. Las barras obtenidas de la laminación, de 21 mm de diámetro fueron maquinadas en probetas de tensión y sometidas a tratamiento térmico.

А Análisis químico de aceros al Silicio (% en peso) Cr С MΩ Si P S Cu Ni Mo Acero 0.007 0.009 0.167 0.056 0.018 -1 0.13 0.62 0.01 0.003 0.004 0.012 0.135 0.48 0.39 0.049 0.020 0.001 2 0.10 0.006 0.012 0.124 0.046 0.002 0.64 0.38 0.018 6 0.11 0.010 0.115 0.041 0.44 0.66 0.008 0.008 0.002 5 0.10 0.009 0.104 0.75 1.23 0.006 0.037 0.018 0.002 3 0.11 0.73 0.012 0.129 0.047 0.001 2.02 0.005 0.021 4 0.12 Análisis químico de aceros al Manganeso (% en peso) P S Cu Ni Si Cr Mo С Mn Acero 0.46 0.004 0.007 0.026 0.006 0.009 0.001 0.44 0.12 1 0.41 0.005 0.007 0.021 0.011 0.011 0.001 0.68 5 0.07 0.002 0.61 0.005 0.006 0.020 0.008 0.001 0.92 3 0.11 0.49 0.007 0.006 0.023 0.003 0.012 0.002 1.19 4 0.09 0.056 0.002 1.80 0.83 0.004 0.010 0.010 0.002 6 0.09 1.92 0.006 0.055 0.002 0.69 0.005 0.012 0.009 2 0.10

Tabla 4.1: Análisis químico de las familias de los aceros producidos.

4.2. TRATAMIENTO TÉRMICO.

Las piezas maquinadas se sometieron a un tratamiento térmico intercrítico con media hora de homogenización térmica y acompañado con temple en agua, Figura 4.1. Para lograr variaciones en el contenido de martensita se establecieron cuatro niveles de temperatura intercrítica definidos por la quinta parte de la diferencia entre las temperaturas A_{c1} y A_{c3} dadas por la fórmula de Andrwes [1C], Tabla 4.2.

Tabla 4.2: Temperaturas intercríticas consideradas.

Nº. de Si ACERO (% peso)	Si	Temp	eratura i	ntercritic	a (°C)	Ac1	Ac3
	A	B	C	ס	(°C)	(°C)	
1	0.01	751	787	822	857	716	893
2	0.39	765	802	839	875	729	912
6	0.38	763	800	836	873	727	909
5	0.66	775	814	852	890	737	929
3	1.23	789	828	867	905	750	944
4	2.02	814	855	896	937	774	978

ACEROS AL SI

ACEROS AL Mn

Nº. de Mn ACERO (% peso)	Mn	Temp	peratura i	ntercritic	-a (°C)	Ac1	Ac3
	A	8	С	Ð	(°C)	(°C)	
1	0.44	756	779	803	827	732	851
5	0.68	753	779	805	830	728	856
3	0.92	753	775	797	819	731	842
6	1.19	748	771	794	817	725	840
4	1.80	749	770	791	813	728	834
2	1.92	742	762	781	801	723	821

Un ejemplo de esta división de temperaturas críticas se encuentra representado en

la Figura 4.2 para el caso del acero con 2% de Si.

Figura 4.2: Temperaturas intercríticas para el acero de 2% de Si.

El calentamiento de las piezas fue realizado en un horno mufla de resistencia eléctrica marca Thermkraft Incorporated con una potencia de 6,900 W y una temperatura máxima de 1,380°C, bajo una atmósfera de Argón a una presión positiva de 1 cm de H₂O para evitar oxidación de la superficie de la pieza a tratar. Se utilizó equipo de termometría para registrar las curvas de calentamiento y de enfriamiento de las piezas, alcanzándose velocidades de enfriamiento hasta de 60 °C/seg.

4.3. ENSAYOS MECÁNICOS

Los materiales tratados térmicamente fueron primero maquinados a probetas de tensión como la mostrada en la Figura 4.3. Luego, con el propósito de investigar el efecto del trabajo en frío en la relación de esfuerzo-deformación, los especímenes fueron estirados uniaxialmente a temperatura ambiente hasta fractura a una razón de 2 mm/min en una máquina Tinius Olsen, modelo 290 SN de 540 kN, con una longitud de referencia de 50.8 mm. La medición de la deformación se realizó por desplazamiento del pistón de la máquina. Un total de 180 especímenes fueron probados, 90 de cada familía, para garantizar que al menos uno de los ensayos arrojará resultados aceptables, Tabla 4.3.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Figura 4.3: Forma y dimensiones del espécimen de tensión.

Tabla 4.3: Cantidad de ensayos realizados.

ACEROS AL SI

ALERE FL	N de	assMin as	Sin		peratura	ntercritic		Minia
VERITA	ACERO	(%)。	Tratamiento		28 B. S	16 C	Dels	
	1.4	-0.44	. A. S	AND AND	3-3-An	3: 3: 64		. 15
3	5.	40,68	3	3	13	3	32.3	15
	3	0.92		3	3	3.		15
	6	1 19	3	1 S 8 199	3	3.5	3	15
	4	1.80	3	3	Sti 3	3	-2	15
	2 .	1:92	Sanga Sultan	13.3	3	1 3 4	3.	45
	Total			18.18		18 4	18	90

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Las microestructuras de los aceros fueron examinadas usando material tomado de las piezas fracturadas de la prueba de tensión, a una distancia de 9 a 12 mm de la zona de la fractura. El volumen de las fases presente, el tamaño de grano ferrítico y de partícula martensítica, perlítica y bainitica fue determinado por microscopía óptica usando un analizador de imágenes marca " Image-Pro Plus versión 3.0 ". Las probetas se atacaron con Nital al 3% para revelar las fronteras de grano y medir su tamaño, también se usó LePera [2C] (una mezcla 1:1 de nital al 4% y metabisulfito de sodio en agua destilada al 1%) el cual revela a la ferrita de color entre azul a café brillante, la martensita y la austenita se muestran de color blanco, la bainita y la martensia revenida café oscuro y la perlita negra o gris.

Lista de figuras:

Figura 4.1: Temple intercrítico.

Figura 4.2: Temperaturas intercríticas para el acero de 2% de Si.

Figura 4.3: Forma y dimensiones del espécimen de tensión.

Lista de Tablas:

Tabla 4.1: Análisis químico de las familias de aceros producidos.

Tabla 4.2: Temperaturas intercríticas consideradas.

Tabla 4.3: Cantidad de ensayos realizados.

REFERENCIAS

[1C] K. W. Andrews. Empirical Formulae for the Calculation of Some Transformation Temperatures. Journal of the Iron and Steel Institute, Luly 1965. Pg. 721-727.

[2C] Frank S. LePera. Improved Etching Technique to Emphasize martensite and Bainite in High-Strength Dual-Phase Steel. Journal of Metals. March 1980. Pg. 38-39. UNIVERSIDAD AUTONOMA DE NUEVO LEON DIRECCIÓN GENERAL DE BIBLIOTECAS

CAPÍTULO 5

ANÁLISIS DE PRUEBAS MECÁNICAS

Los resultados obtenidos en los ensayos de tensión fueron convertidos a deformaciones y esfuerzos verdaderos, ε y σ , utilizando las expresiones [1D]:

$$\varepsilon = \ln (e + 1)$$

$$\sigma = P/A_o (e + 1)$$

donde P, Ao y e son la carga aplicada, el área de la sección transversal inicial y la deformación lineal convencional.

DIRECCION GENERAL DE BIBLIOTECAS

La conversión de la información a gráficas de ln $(d\sigma_t / d\epsilon)$ vs ln σ_t y los cálculos de las pendientes e intercecciones con el eje de las ordenadas fueron realizados por el método de ajuste de mínimos cuadrados utilizando el paquete de computación Excel. La pendiente, $d\sigma_t / d\epsilon$, fue definida como la tangente de la curva y fue procesada por el método de la interpolación de Lagrange de una parábola de segundo grado [2D].

A continuación se expondrá los resultados obtenidos de los ensayos mecánicos para los dos grupos de familias de aceros analizados, al Si y al Mn.

(5.1)

(5.2)

5.1. ACEROS AL SILICIO.

Las curvas esfuerzo-deformación verdaderos se muestran en las Figuras 5.1a a 5.1f. Los datos de las pruebas de tensión, la resistencia última a la tensión verdadera σ_{tu} , la resistencia a la cedencia verdadera $\sigma_{t0.2}$, la relación de éstas, la máxima deformación uniforme verdadera ε_u , la deformación verdadera a la fractura ε_t , el producto $\sigma_{tu} \propto \varepsilon_t$ (equivalente a la tenacidad), y el porciento de reducción de área se muestran en la Tabla 5.1.

Figura 5.1a: Curva esfuerzo-deformación verdadera aceros al Si sin tratamiento térmico.

Figura 5.1c: Curva esfuerzo-deformación verdadera aceros al 0. 4%Si.

Figura 5.1e: Curva esfuerzo-deformación verdadera aceros al 1.2 %Si.

Figura 5.1f: Curva esfuerzo-deformación verdadera aceros al 2.0 %Si.

Tabla 5.1: Propiedade	s mecánicas de la	familia de	aceros al	silicio.
-----------------------	-------------------	------------	-----------	----------

	Tipo de acero	Nivel	σ _{0.2}	σu	022/05	8 ₄	ધ્ય	σμχεί	Reducción de área
			MPa	MPa	2.3	%	%	MPax%	%
INIVE	RCID	25°C	231.3	469.2	0.49	32.2	48.0	22,544	79.1
	MOID	A	370.5	654.3	0.57	14.8	25.2	- 16,470	
	1	в	364.8	629.8	0.58	14.8	24.2	15,233	• 66 .6
		C	346.9	599.8	0.58	14.8	26.7	16,037	78.9
DI	RFCC	DN	341.1	581.1	0.59	14.8	26.5	15,379	75.4
		25°C	297.7	570.1	0.52	30.0	40.0	22,804	73.5
•		Α	368.3	679.5	0.54	13.1	21.8	14,846	67.8
Ξ. ¹	2	В	364.0	694.4	0.52	16.6	27.0	18,767	67.2
, ¹	ी। जिन्हों	С	412.5	794.8	0.52	14.8	22.8	18,147	58.3
		D	432.2	745.8	0.58	12.2	21.4	15,988	63.1
		25°C	298.4	575.9	0.52	30.0	43.2	24,861	73.0
		Α	433.3	830.9	0.52	17.4	25.0	20,737	49.3
	5	в	414.7	776.6	0.53	15.7	23.7	18,440	58.4
	Ť	c	439.9	837.3	0.53	15.7	23.4	19,616	48.9
		Ď	455.3	782.2	0.58	13.1	20.6	16,141	60.6
		25°C	378.0	684.7	0.55	26.2	40.0	27,389	68.3
18		A	376.5	849.0	0.44	18.2	25.8	21,922	50.3
	3	B	336.9	797.0	0.42	17.4	25.0	19,949	53.9
	3 57 0	ē	336.9	796.0	0.42	19.1	27.8	22,159	59.1
		Ď	386.1	829.2	0.47	16.6	24.7	20,482	51.6
		25°C	442.3	762.9	0.58	26.2	38.2	29,171	67.5
		A	415.6	935.0	0.44	16.1	20.4	19,083	37.7
	4	в	412.4	968.5	0.43	20.4	26.9	26,073	42.0
	(m)	č	397.6	945.7	0.42	20.7	28.8	27,266	42.6
		ň	495.1	1.044.6	0.47	16.6	23.6	24,634	43.7

Las Figuras 5.2a a la 5.2f muestran las representaciones de las curvas ln $(d\sigma/d\varepsilon)$ vs. ln σ , distribuidas en tipos de acero.

Figura 5.2c: Representación de curvas ln $(d\sigma/d\varepsilon)$ vs. ln σ verdaderas para los aceros al 0.7% silicio.

Figura 5.2e: Representación de curvas $\ln (d\sigma/d\epsilon)$ vs. Ln σ verdaderas para los aceros al 2% silicio.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS 5.2. ACEROS AL MANGANESO.

Las curvas esfuerzo-deformación verdaderos obtenidas de los aceros al Mn se muestran en la Figura 5.3. Los datos de las pruebas de tensión, la resistencia última a la tensión verdadera σ_{tu} , la resistencia a la cedencia verdadera $\sigma_{t0.2}$, la relación de éstas, la máxima deformación uniforme verdadera ε_u , la deformación verdadera a la fractura ε_t , el producto $\sigma_{tu} \ge \varepsilon_t$ (equivalente a la tenacidad), y el porciento de reducción de área se encuentran mostradas en la Tabla 5.2.

Figura 5.3b: Curva esfuerzo-deformación verdadera aceros al 0.44% Mn.

Figura 5.3d: Curva esfuerzo-deformación verdadera aceros al 1.2% Mn.

Figura 5.3f: Curva esfuerzo-deformación verdadera aceros al 1.92% Mn.

lipo de acero	Nivel	σ _{0.2}	συ	$\sigma_{0,2}/\sigma_u$	ε _u	8	σμΧει	Reducción de área
		MPa	MPa		%	%	MPax%	%
	25°C	289.6	564.6	0.51	30.0	43.1	24,318	71.4
<i></i>	A	405.5	687.7	0.59	17.4	27.4	18,829	68.0
1	В	447.9	815.5	0.55	13.1	19.6	15,958	43.1
	C	406.3	738.7	0.55	14.8	23.3	17,178	61.2
()	D	491.9	843.2	0.58	13.1	20.2	17.004	51.6
	25°C	369.8	537.3	0.69	30.0	42.6	22,903	74.8
	Α	362.0	735.4	0.49	16.6	24.5	18,013	60.3
5	в	356.9	683.8	0.52	16.6	24.5	16,750	69.7
	C	373.8	677.8	0.55	14.8	25.0	16.916	68.1
	D	442.2	706.5	0.63	16.6	26.0	18.387	70.4
	25°C	443.4	630.5	0.70	27.8	41.3	26,059	77.1
	A	318.9	824.8	0.39	18.0	23.9	19,693	42.6
4	B	354.8	859.3	0.41	16.6	22.2	19,039	43.9
	C	333.1	855.9	0.39	19.9	28.1	24.074	51.8
NION	D	457.7	966.5	0.47	12.2	18.0	17.367	41.7
JNOW	25°C	448.3	682.6	0.66	23.1	38.3	26,165	72.5
	A	361.1	901.3	0.40	19.1	25.8	23,223	41.2
FDF FIGMMANT	B	480.2	1,106.7	0.43	17.4	22.2	24,521	27.8
VERITATIS	C	496.3	1,125.2	0.44	17.4	21.3	23,950	26.6
	D	450.4	1,061.0	0.42	18.2	25.3	26,804	43.2
	25°C	490.1	721.0	0.68	23.9	37.5	27,026	65.3
	A	492.4	1,029.3	0.48	15.7	19.0	19,508	24.2
2	B	489.8	1,077.5	0.45	15.7	19.8	21,294	23.1
	C	535.9	1,124.8	0.48	16.6	24.2	27,205	39.2
	D	561.2	1,128.5	0.50	13.1	18.5	20.833	37.8

Tabla 5.2: Propiedades mecánicas de la familia de aceros al manganeso.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

÷.--

DIR La Figura 5.4 muestra las representaciones de las curvas ln $(d\sigma/d\varepsilon)$ vs. ln σ , distribuidas en tipos de acero al manganeso.

Figura 5.4b: Representación de curvas ln $(d\sigma/d\varepsilon)$ vs. ln σ verdaderas para los aceros al 0.7% manganeso.

Figura 5.4d: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al 1.8% manganeso.

Figura 5.4e Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al manganeso sin tratamiento térmico.
Lista de figuras:

Figura 5.1a: Curva esfuerzo-deformación verdadera aceros al Si sin tratamiento térmico.

Figura 5.1b: Curva esfuerzo-deformación verdadera aceros al 0.01%Si.

Figura 5.1c: Curva esfuerzo-deformación verdadera aceros al 0. 4%Si.

Figura 5.1d: Curva esfuerzo-deformación verdadera aceros al 0.66%Si.

Figura 5.1e: Curva esfuerzo-deformación verdadera aceros al 1.2 %Si.

Figura 5.1f: Curva esfuerzo-deformación verdadera aceros al 2.0 %Si.

Figura 5.2a: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al 0% silicio.

Figura 5.2b: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al 0.4% silicio.

Figura 5.2c: Representación de curvas ln $(d\sigma/d\varepsilon)$ vs. ln σ verdaderas para los aceros al 0.7% silicio.

Figura 5.2d: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al 1.2% silicio.

Figura 5.2e: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al 2% silicio.

Figura 5.2f: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. In σ verdaderas para los aceros al silicio sin tratamiento térmico.

Figura 5.3a: Curva esfuerzo-deformación verdadera aceros al Mn sin tratamiento térmico.

Figura 5.3b: Curva esfuerzo-deformación verdadera aceros al 0.44% Mn. Figura 5.3c: Curva esfuerzo-deformación verdadera aceros al 0.68% Mn.

Figura 5.3d: Curva esfuerzo-deformación verdadera aceros al 1.2% Mn.

Figura 5.3e: Curva esfuerzo-deformación verdadera aceros al 1.8% Mn.

Figura 5.3f: Curva esfuerzo-deformación verdadera aceros al 1.92% Mn.

Figura 5.4a: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al 0.4% manganeso.

Figura 5.4b: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al 0.7% manganeso.

Figura 5.4c: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al 1.2% manganeso.

Figura 5.4d: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al 1.8% manganeso.

Figura 5.4e: Representación de curvas ln $(d\sigma/d\varepsilon)$ vs. ln σ verdaderas para los aceros al 1.9% manganeso.

Figura 5.4e: Representación de curvas ln $(d\sigma/d\epsilon)$ vs. ln σ verdaderas para los aceros al manganeso sin tratamiento térmico.

Lista de Tablas:

Tabla 5.1: Propiedades mecánicas de la familia de aceros al silicio. Tabla 5.2: Propiedades mecánicas de la familia de aceros al manganeso

REFERENCIAS

[1D] George E. Dieter. Mechanical Metallurgy, International Student Edition, McGraw-Hill Kogakusha, LTD. 1961.
[2D] Polynomial Interpolation . Lagrange Interpolation Formula for Unequally Spaces
Data.

CAPÍTULO 6

ANÁLISIS METALOGRÁFICO

6.1. ACEROS AL SILICIO.

Las Figuras 6.1 a 6.5 muestran las micrografías correspondientes al ataque con Nital al 3% y las Figuras 6.6 a 6.10 las correspondientes al ataque con LePera, de todos los niveles de temperatura de los tratamientos térmicos proporcionados a las probetas.

Se observó el bandeamiento de la fase oscura, en algunos casos bastante severo, en las muestras de casi todas las familias de acero. Este fenómeno es producido durante el laminado en caliente en la región intercrítica, entre A_{c1} y A_{c3} , al bandearse la perlita y como consecuencia, después de los tratamientos térmicos, conservan esta tendencia las fases secundarias como ferrita epitaxial, bainita, martensita, austenita retenida. De acuerdo a [1E] y [2E] un bandeo severo podría afectar seriamente la relación ductilidad resistencia en los aceros doble fase.

Se observó además la presencia de inclusiones no metálicas, tipos sulfuros y silicatos, pero que lamentablemente no se cotejaron con la norma ASTM E-45, ni tampoco se cuantificó su contenido en el análisis de fases, considerándose como fase oscura.

La martensita está generalmente en una morfología dislocada (lath) y se encuentra distribuida en forma aislada entre 2 a 3 μ m de tamaño localizada a lo largo de las fronteras de grano de la ferrita. La perlita exhibe agregados normales laminares de carburos de hierro.

En los niveles de temperatura D de los aceros 1, 2, 4 y 5, se observa la formación de grandes partículas de bainita superior indicando que se ha sobrepasado la temperatura crítica superior correspondiente a Ac₃.

La dirección de la laminación se identifica, aún después del tratamiento térmico, por la presencia de islas alargadas de martensita que pudieron nuclear en los bordes de ferrita deformada antes de que se produjera la recristalización. Ciertas micrografías muestran una tercera fase (café oscura a gris) entre la microestructura ferrita martensita.

Debido a que no se realizó, además del ensayo metalográfico, otra medición cuantitativa como difracción de rayos X, microdureza o microscopía electrónica de barrido; no se tiene la certeza de la identificación de cada fase, y, por lo tanto, se nombrarán a la austenita y a la martensita fase blanca, a la perlita y a la bainita (incluyendo las inclusiones no metálicas) fase oscura y a la ferrita fase ferrita.

Una descripción cualitativa de la microestructura se encuentra en el Apéndice A.

En la Tabla 6.1 está el resultado cuantitativo de la fracción volumétrica y del tamaño de partícula para cada fase. La fracción de ferrita alrededor de 90% en las muestras sin tratamiento térmico en todos los tipos de acero bajo hasta 30 ó 60 % para el nivel de temperatura D. La fase blanca osciló entre 1% a un máximo de 7% y la fase oscura de un 8% a un 66%.

El tamaño de partícula ferrítica d_{ferrita} es de aproximadamente 30 μ m en promedio para la familia de acero 1 y de 20 μ m en promedio para las otras familias. Para la fase blanca oscila entre 0.3 a 4 μ m y para la oscura entre 0.2 a 33 μ m.

Tipo de acero	Nivel	Fracción volumétrica			Tamaño de partícula (µm)			Composición Química (%)		
C.e		f _{fernta}	f _{blance}	f _{oscusa}	d _{territa}	d _{blanca}	d _{oscura}	C	Mn	Si
	25°C	92%	0%	8%	28,78	0.00	6.60	0.13	0.62	0.0
TONO	A	86%	3%	11%	30,60	1.80	6.26	0.13	0.62	0.0
	B	84%	3%	13%	35.69	0.31	10.59	0.13	0.62	0.0
	C	78%	2%	20%	30.00	3.00	7.60	0.13	0.62	0.0
ALERE FLAM	IAM D	50%	2%	48%	20.00	0.30	25.00	0.13	0.62	0.0
- VL/MITATIN	25°C	86%	0%	13%	18.53	0.00	7.09	0.10	0.48	0.3
		83%	3%	14%	20.92	3.95	4.37	0.10	0.48	0.3
200	В	82%	1%	16%	18.43	2.90	4.42	0.10	0.48	0.3
	C	79%	2%	19%	17.91	1.59	10.03	0.10	0.48	0.3
		30%	4%	66%	20.44	0.00	33.43	0.10	0.48	0.3
	25°C	93%	0%	8%	24.13	0.00	5.27	0.10	0.44	0.6
	A	84%	4%	11%	22.97	6.53	0.30	0.10	0.44	0.6
5 🗧	В	90%	3%	7%	19.58	3.18	3.65	0.10	0.44	0.6
	c	79%	4%	17%	18.36	3.25	3.17	0.10	0.44	0.6
	D	63%	2%	35%	13.44	3,20	29.63	0.10	0.44	0.6
	25°C	85%	0%	15%	22.81	0.00	8.12	0.11	0.75	1.2
	A	84%	7%	9%	21.98	3.22	2.00	0.11	0.75	1.2
3	B	87%	4%	9%	23.24	1.60	1.00	0.11	0.75	1.2
	C	90%	3%	7%	21.29	1.45	0.20	0.11	0.75	1.2
	D	82%	5%	13%	16.37	3.29	3.32	0.11	0.75	1.2
	25°C	87%	0%	14%	23.82	0.00	8.38	0.12	0.73	2.0
/ FRS	A	89%	4%	7%	19.74	1.78	0.50	0.12	0.73	-2.0
4	8	85%	6%	9%	19.41	2.22	1.00	0.12	0.73	2.0
	C	E)ificil de me	dir	18.65	1.80	0.50	0.12	0.73	2.0
	D	55%	6%	38%	18.75	4.48	15.10	0.12	0.73	2.0

. .

. Net a

Tabla 6.1. Análisis cuantitativo de fases aceros al silicio.

Ataque con Nital de la familia 1 al silicio.

Figura 6.1. Ataque con Nital de la familia 1 al silicio.

Ataque con Nital de la familia 2 al silicio.

Figura 6.2. Ataque con Nital de la familia 2 al Silicio.

Ataque con Nital de la familia 5 al silicio.

Ataque con Nital de la familia 3 al silicio.

Figura 6.4. Ataque con Nital de la familia 3 al silicio.

Ataque con Nital de la familia 4 al silicio.

Figura 6.5. Ataque con Nital de la familia 4 al Silicio.

Ataque con LePera de la familia 1 al silicio. 200x

Ataque con LePera de la familia 2 al silicio. 200x

Figura 6.7. Ataque con LePera de la familia 2 al Silicio.

Ataque con LePera de la familia 5 al silicio. 200x

Ataque con LePera de la familia 3 al silicio. 200x

Ataque con LePera de la familia 4 al silicio. 200x

Figura 6.10. Ataque con LePera de la familia 4 al Silicio.

6.2. ACEROS AL MANGANESO

. .

Las Figuras 6.11 a 6.15 muestran las micrografías correspondientes al ataque con Nital al 3% y las Figuras 6.16 a 6.20 las correspondientes al ataque con LePera de todos los niveles de temperatura de los tratamientos térmicos proporcionados a las probetas.

Al igual que la familia de aceros al silicio las muestras mostraron también bandeaniento e inclusiones no metálicas.

Una descripción cualitativa de la microestructura se encuentra en el Apéndice A. En la Tabla 6.2 está el resultado cuantitativo de la fracción volumétrica y del tamaño de partícula para cada fase. La fracción de ferrita alrededor de 90% en las muestras sin tratamiento térmico en todos los tipos de acero bajo hasta 30 u 60 % para el nivel de temperatura D. La fase blanca osciló entre 1% a un máximo de 7% y la fase oscura de un 8% a un 66%.

El tamaño de partícula ferritica d_{ferrita} es de aproximadamente 30 μ m en promedio para la familia de acero 1 y de 20 μ m en promedio para las otras familias. Para la fase blanca oscila entre 0.3 a 4 μ m y para la oscura entre 0.2 a 33 μ m.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Tipo de acero	Nivel	Metalografia			Tamaño de partícula (µm)			Composición Química (%)		
		f _{lenita}	f _{blanca}	f _{oscara}	d territa	d _{blanca}	d _{oscura}	C	Mn	Si
	25°C	83%	0%	17%	25.29	0.00	7.38	0.12	0.44	0.46
	A	94%	0%	6%	25.57	0.00	5.00	0.12	0.44	0.46
1	В	79%	9%	13%	24.69	5.76	1.04	0.12	0.44	0.46
	C	86%	2%	13%	14.51	3.16	5.70	0.12	0.44	0.46
82. 178	D	86%	1%	12%	23,24	0.10	3.96	0.12	0.44	0.46
	25°C	88%	0%	12%	21.47	0.00	6.50	0.07	0.68	0.41
	A	87%	2%	12%	14.31	3.15	1.03	0.07	0.68	0.41
5	в	86%	0.2%	14%	16.50	0.43	4.87	0.07	0.68	0.41
	с	85%	1%	14%	17.89	0.34	4.16	0.07	0.68	0.41
	D	81%	1%	17%	17.16	1.60	14.30	0.07	0.68	0.41
	25°C	85%	0%	15%	12.05	0.00	5.81	0.09	1.19	0.49
	A	74%	3%	23%	11.47	2.54	1.00	0.09	1.19	0.49
4	В	66%	9%	26%	10.75	2.89	3.00	0.09	1.19	0.49
	c	62%	10%	28%	10.75	2.63	2.22	0.09	1.19	0.49
	Ď	70%	5%	25%	7.63	2.72	2.00	0.09	1.19	0.49
	25°C	75%	0%	25%	9.35	0.00	9.46	0.09	• 1.80	0.83
FONO	A A	78%	5%	17%	7.53	2.72	0.10	0.09	1.80	0.83
6		73%	8%	20%	7 69	2.74	2.00	0.09	1.80	0.83
11		72%	11%	16%	9.58	2.92	1.00	0.09	1.80	0.83
ALERE FLAM	AM		Dificil de me	dir	6.96	1.00	0.50	0.09	1.80	0.83
A VERIJAT I S	25%	63%	3%	34%	8.06	5.55	7,90	0.10	1.92	0.69
		60%	5%	34%	10.41	2.30	3.93	0.10	1.92	0.69
1 SUM	Ê	65%	11%	23%	10.46	3.07	4.50	0.10	1.92	0.69
	6.7.1	58%	10%	32%	9.17	2.60	5.31	0.10	1.92	0.69
	∠ĭ I	65%	12%	22%	7.01	1.82	6.61	0.10	1.92	0.69

Tabla 6.2. Análisis cuantitativo de fases aceros al manganeso.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

-

• •

Ataque con Nital de la familia 1 al manganeso.

Figura 6.12. Ataque con Nital de la familia 5 al Manganeso.

Nivel D

Ataque con Nital de la familia 4 al manganeso.

Ataque con Nital de la familia 6 al manganeso.

Figura 6.14. Ataque con Nital de la familia 6 al Manganeso.

Ataque con Nital de la familia 2 al manganeso.

Figura 6.15. Ataque con Nital de la familia 2 al manganeso.

Ataque con LePera de la familia I al manganeso. 200x

Figura 6.16. Ataque con LePera de la familia 1 al Manganeso.

Ataque con LePera de la familia 5 al manganeso. 200x

Figura 6.17. Ataque con LePera de la familia 5 al manganeso.

Ataque con LePera de la familia 4 al manganeso. 200x

Figura 6.18. Ataque con LePera de la familia 4 al Manganeso.

Ataque con LePera de la familia 6 al manganeso. 200x

Figura 6.19. Ataque con LePera de la familia 6 al manganeso.

Ataque con LePera de la familia 2 al manganeso.

Figura 6.20. Ataque con LePera de la familia 2 al Manganeso.

Lista de figuras:

Figura 6.1. Ataque con Nital de la familia 1 al silicio. Figura 6.2. Ataque con Nital de la familia 2 al silicio. Figura 6.3. Ataque con Nital de la familia 5 al silicio. Figura 6.4. Ataque con Nital de la familia 3 al silicio. Figura 6.5. Ataque con Nital de la familia 4 al silicio. Figura 6.6. Ataque con LePera de la familia 1 al silicio. Figura 6.7. Ataque con LePera de la familia 2 al silicio. Figura 6.8. Ataque con LePera de la familia 5 al silicio. Figura 6.9. Ataque con LePera de la familia 3 al silicio. Figura 6.10. Ataque con LePera de la familia 4 al silicio. Figura 6.11. Ataque con Nital de la familia 1 al manganeso. Figura 6.12. Ataque con Nital de la familia 5 al manganeso. Figura 6.13. Ataque con Nital de la familia 4 al manganeso. Figura 6.14. Ataque con Nital de la familia 6 al manganeso. Figura 6.16. Ataque con LePera de la familia 1 al manganeso. Figura 6.17. Ataque con LePera de la familia 5 al manganeso. Figura 6.18. Ataque con LePera de la familia 4 al manganeso. Figura 6.19. Ataque con LePera de la familia 6 al manganeso.

Figura 6.20. Ataque con LePera de la familia 2 al manganeso.

DIRECCIÓN GENERAL DE BIBLIOTECAS Lista de Tablas:

. Tabla 6.1. Análisis cuantitativo de fases aceros al silicio.

Tabla 6.2. Análisis cuantitativo de fases aceros al manganeso.

REFERENCIAS

[1E] A. R. Marder . Deformation Characteristics of Dual-Phase Steels . Metallurgical Transactions A, Volume 13A, January 1982 . pg. 85-92 .

[2E] Hans-Joachim Klaar, Ismail A. El-Sesy and Abdel-hamid A. Hussein. Microstructure and properties of a C - Mn - Si - Dual - Phase Steel. Steel Research 61 (1990) N° 2. Pg. 85-92.

CAPÍTULO 7

DISCUSIÓN

La metodología de discusión consiste en analizar primero el comportamiento mecánico de las dos familias de aceros, Si y Mn, posteriormente como segundo paso, elaborar el análisis metalográfico correspondiente para finalmente, como tercer paso, relacionarlo con los resultados obtenidos del análisis mecánico y conseguir así explicar el comportamiento plástico de estos aceros. Para reforzar la discusión se comparan estos resultados con los ya publicados en los artículos técnicos relacionados con este tema.

El criterio de análisis de las propiedades mecánicas consiste en formar grupos que posean aproximadamente el mismo orden de magnitud del valor de la pendiente (1-m), y de la constante ln cm, obtenido de las representaciones ln (dσ/dε) vs. ln σ, ecuaciones (1-14) y (1-15). El análisis metalográfico se lleva a cabo de igual manera agrupando muestras que poseean estructuras metalográficas similares en morfología, distribución y tamaño de las distintas fases presentes. El análisis integrado se realiza con el empate de ambas combinaciones.

7.1. ANÁLISIS DE PROPIEDADES MECÁNICAS.

7.1.1. Aceros al silicio.

interpretación.

S. 55

La Tabla 7.1 muestra los resultados de la pendiente (1-m) y la constante ln cm para toda la familia de aceros al silicio con los diferentes niveles de tratamiento térmico aplicados así como también los grupos seleccionados según dichos factores. Estos se han dividido en tres categorías según sea el caso de las curvas de representación ln $(d\sigma/d\epsilon)$ vs. ln σ , de una etapa de estiramiento, de dos etapas y de tres etapas. La misma información se encuentra en la Tabla 7.2 pero reordenada por grupo para facilitar su

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS Tabla 7.1: Pendiente (1-m) y constante ln cm para aceros al silicio.

Aceros al Si Pendiente (1-m)

				Nivel	Pendiente (1-m)			Constante in am		
	Grupo	Acero	% Si	Etapa ->	1	2	3	1	2	3
		1	0.0	Sin Tratamiento	224			19.91		
		2	0.4	Sin Tratarriento	-2 46			21.96		
	0	5	0.7	Sin Tratamiento	-2.54			22.50		
		3	12	Sin Tratamiento	-266			24.00		
		4	2.0	Sin Tratamiento	-291		4	26.00		
		1	0.0	C	-2.57	-35.51		23.43	233.34	
	2.0	5	0.7	A	-2.51	-39.31		24.14	270.76	
	1	5	0.7	в	-2.47	-37.66		23.74	256.84	
	8	5	0.7	С	-2.61	-38.22		24.93	263.76	
		1	0.0	D	-2.28	-19.35		21.62	129.48	
	2	2	0.4	С	-2.47	-17.04		23.93	120.66	
	FONC	15	0.7	D	-3.07	-18.67		27.87	131.10	
	201912		0.0	A	-2.26	-30.12		21.86	201.71	
	ALERE FLAM	MANT	0.0	В	-2.34	-31.25		22.25	207.58	
	VERITAT	2	-0.4	В	-1.57	-2.86	-11.82	17.78	25.80	83.97
S	6	3	1.2	В	-1.19	-2.41	-12.00	15.79	23.38	87.05
\sim	13040	3	1.2	С	-1.44	-2.50	-10.99	17.29	23.86	80.17
Y IIII		∕⊃3	1.2	A	-1.30	-2.96	-14.80	16.63	27.15	106.60
Э		4	2.0	— A—	-1.42	-3.05	-14.65	17.82	28.28	107.19
\mathbb{Z}		2	0.4	A	-1.90	-271	-16.55	19.93	25.00	114.61
	80	3	(1,2	D	-1.59	-2.72	-14.25	18.45	25.63	102.61
(JV)		4	20	D	-1.59	-3.66	-14.52	19.34	32.80	107.96
		4	2.0	В	-1.34	-271	-7.41	17.21	25.91	57.87
		4	2.0	C	-1.29	-2.61	-7.92	16.81	25.13	61.20

Tabla 7.2: Reordenamiento de (1-m) y ln cm de acuerdo al grupo asignado aceros al

silicio.

Las Figuras 7.1(a) a la 7.1(c) muestran la representación ln ($d\sigma/d\epsilon$) vs. ln σ de los grupos 0, 4 y 13 (para su identificación ver Tabla 7.1) correspondientes respectivamente a los aceros cuyos comportamientos pertenecen a 1 etapa, 2 etapas y 3 etapas, las gráficas correspondientes a los grupos particulares restantes se encuentran en el Apéndice B.

En estas gráficas se puede observar claramente que existe una relación lineal entre las distintas muestras del comportamiento de la resistencia a la cedencia, el punto de quiebre 1, el punto de quiebre 2 y, obviamente, la resistencia última.

Para realizar el análisis que maximice el valor del cuadrado del coeficiente de correlación, R^2 , de la relación lineal existente entre las muestras de acero para cada

resistencia analizada; aparte de los grupos definidos por similiridad de la pendiente (1-m), identificados con números arabigos; se han definido otros grupos con números romanos según la Tabla 7.3. La Tabla 7.4 muestra el valor de la pendiente y de la constante así como R² de los distintos grupos. En renglón sombreado gris están seleccionados los grupos que poseen un R² > 0.8 en todas las resistencias correspondientes al grupo en cuestión. Estos corresponden a los grupos 0, 1, 2, III y V, el IV también ha sido considerado por su alto R²; sus gráficas se encuentran en las Figuras 7.2 (a) a la 7.2 (f).

Además, para el caso del Grupo 0 existe una relación entre la pendiente (1-m), la constante ln cm y el porciento de silicio representado en la Figura 7.3.

Figura 7.1 (a): Representación ln ($d\sigma/d\epsilon$) vs. ln σ del Grupo 0 aceros al silicio.

Figura 7.1 (c): Representación ln ($d\sigma/d\epsilon$) vs. ln σ del Grupo 13 aceros al silicio.

.

Tabla 7.3: Definición total de grupos aceros al silicio.
			Cedencia			Quiebre 1		Quiebre 2			
		Pendiente	Constante	R ²	Pendiente	Constante	\mathbb{R}^2	Pendiente	Constante	R ²	
	(mm)	168	1 206	194							
	Game	-m	455	- 11.88				103		0.84	
	Gnm2	2.64	700	0.88				114	- 0.02	1.00	
	Gumo 3	3.09	-979	100	and the second			037	4.84	1.00	
	Guro4	2.54	-650	0.88				0.86	1.71	0.65	
1	Gum 5	N241	-5.72	0.91				0.75	2.36	0.77	
	Gupo 6	4.03	32.32	1.00	8.90	-47.11	1.00	0.84	1.80	0.68	
	Gupo7	3.25	-10.33	1.00	3.71	-15.10	1.00	2.53	-9.63	1.00	
	Guro 8	2.48	-5.86	0.94	3.61	-14.45	0.95	0.15	6.46	0.58	
5	Gupo 9	1.69	-1.05	1.00	0.82	3.51	1.00	60.02	-400.69	1.00	
Ä	Grupo 10	2.42	-5.49	0.89	3.62	-14.51	0.95	0.21	6.02	0.15	
B	Grupo II	1.74	-1.37	0.37	2.22	-5.59	0.82	0.89	1.41	0.71	
	Gupo 12	1.99	-2.86	0.68	2.72	-8.76	0.84	0.45	4.41	0.36	
	Grupo 13	2.01	-2.99	0.70	2.77	-9.06	0.77	0.41	4.63	0.34	
	Gupo 14	2.00	-2.92	0.72	2.67	-8.39	0.73	0.45	4.40	0.38	
	Grupo Tot	2.14	3.91	0.56				0.59	3.48	0.51	
	Gumi	2.43	-5.85	0.95				0.78	2.25	0.66	
UNI	GumI	2.43	D-5.85U	0.93	NON	(AD	ΕN	0.67	2.91	0.76	
	Guno	260	-6.81	0.96				114	-0.11	4.88	
1	GumIV	2.54	-6.50	0.88				0.86	1.71	0.65	
	Gun	1.85	-1.89	1.00	7.95	-3.80	. 0.98	1.21	0.68	0.87	
	GameVI	1.68	-0.98	0.94	2.26	-5.76	0.82	0.64	3.11	0.49	
	GumVII	1.99	-3.02	0.52		1 0		0.62	3.23	0.66	
	Contro Mile		(1 ,000)	200 C. 18 ¹ 0							

Tabla 7.4: Valor de la pendiente, de la constante y de R^2 de los distintos grupos de aceros al silicio.

Nota 1: Números en negritas son los factores de correlación cuadrático mayores de 0.8 para grupos de 3 ó más muestras

Nota 2: Rengiones con fondo gris son los grupos de 3 ó más muestas con factores de conelación cuadrático mayores de 0.8 para todas las resistencias conespondientes, cedencia, quiebre 1 y quiebre 2.

Relación de Resistencias

Figura 7.2(b): Relación de resistencias del Grupo 1 aceros al silicio.

9

Figura 7.2(d): Relación de resistencias del Grupo III aceros al silicio.

Figura 7.2(f): Relación de resistencias del Grupo V aceros al silicio.

•

Pendiente de la curva (1-m) y constnte in cm vs % Si Aceros sin tratamiento al Si

7.1.2. Aceros al manganeso.

4 ×

La Tabla 7.5 muestra los resultados de la pendiente (1 - m) y la constante ln cm para toda la familia de aceros al manganeso con los diferentes niveles de tratamiento térmico aplicados así como también los grupos seleccionados según dichos factores. Estos se han dividido en tres categorías según sea el caso de las curvas de representación ln (d σ /d ϵ) vs. ln σ , de una etapa de estiramiento, de dos etapas y de tres etapas. La misma información se encuentra en la Tabla 7.6 pero reordenada por grupo para facilitar su interpretación.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Tabla 7.6: Reordenamiento de (1-m) y ln cm de acuerdo al grupo asignado aceros al

manganeso.

	ň.			Nivel	Pe	andiente (1-/	71)	Constante in cm			
	Grupo	Acero	%Mn	Etapa ->	1	2	3	1	2	3	
		1	0.4	Sin Tratamiento	-233			21.16		<u> </u>	
		5	0.7	Sn Tratamiento	-247			21.84			
	0	6	18	Sin Tratamiento	-318			27.42			
	fiel.	4	12	Sin Tratamiento	-293			25.37			
		2	19	Sn Tratamiento	-354			29.93			
		1	04	В	-236	-17.88		23.40	126.91		
	1	5	07	в	-226	-20.96]	21.91	143.27		
		5	0.7	Ğ	-217	-14.95		21.41	104.26		
		1	0.4	c	-1.94	-260	-25.51	20.36	24.51	175.10	
	2	5	0.7	A	-1.88	-2.50	-32.07	19.91	23.74	218.11	
		1	0.4		-232	-295	-20.69	23.37	27.37	146.36	
TON	OM	5	0.7	D	-203	-290	-19.92	20.67	26.13	137.13	
		$\overline{\mathbf{X}}$	0.4	A	-1.04	-3.81	-19.42	14.39	31.79	133.59	
	4	6	1.8	D	-1.45	-3.72	-14.47	18.37	33.24	107.83	
ALERE I		4	1.2	D	-1.50	-3.62	-18.57	18.76	32.64	134.78	
		4	1.2	A	-1.16	-267	-16.60	15.83	25.24	118.20	
	>>	4	1.2	B	-1.25	-2.88	-18.44	16.57	26.81	131.36	
		6	1.8	A	-1.36	-3.05	-10.68	17.22	27.93	79.51	
	X O	4	1.2	С	-1.31	-271	-10.22	16.74	25.49	75.79	
		6	1.8	В	-1.40	-4.13	-8.00	18.20	36.26	63.23	
		2	1.9	с	-1.42	-4.47	-9.63	18.57	38.70	74.84	
		1 20	1.9	A	-1.79	-4.56	-11.58	20.68	38.97	87.61	
	8	2	1.9	В	-1.67	-4.81	-11.39	20.02	40.90	86.75	
		6	1.8	C I	-1.53	-4.42	-16.00	19.18	38.36	119.42	
		2	1.9	D	-1.61	-4.64	-17.87	19.92	40.24	132.84	

Las Figuras 7.4(a) a la 7.4(c) nuestran la representación ln (do/de) vs. ln o de los Grupos 0, 1 y 17 (para su identificación ver Tabla 7.5) correspondientes respectivamente a los aceros cuyos comportamientos pertenecen a 1 etapa, 2 etapas y 3 etapas, las gráficas correspondientes a los grupos restantes se encuentran en el Apéndice C.

Para realizar el análisis que maximice el valor del cuadrado del coeficiente de correlación \mathbb{R}^2 , al igual que con los aceros al Si, de la relación lineal existente entre las muestras de acero para cada resistencia analizada; se han definido grupos por similiridad de la pendiente (1- m), identificados con números arabigos y otros grupos en números romanos según la Tabla 7.7. La Tabla 7.8 muestra el valor de la pendiente y de

la constante así como R^2 de los distintos grupos. En renglón sombreado gris están seleccionados los grupos que poseen un $R^2 > 0.8$ en todas las resistencias correspondientes a el grupo en cuestión. Estos corresponden a los Grupos 1, 3, IV y VII; sus gráficas se encuentran en las Figuras 7.5(a) a la 7.5(d).

Además para el caso del Grupo 0 existe una relación entre la pendiente (1-m), la constante ln cm y el porciento de manganeso representado en la Figura 7.6.

Figura 7.4(c): Representación ln ($d\sigma/d\epsilon$) vs. ln σ del Grupo 17 aceros al manganeso.

¥ =

Tabla 7.7: Definición total de Grupos de aceros al manganeso.

Tabla '	7.8:	Valor de	la pendiente,	de la constante	y de R ²	de los	distintos	grupos	aceros

al manganeso.

			Cedencia			Quiebre 1	5	Quiebre 2			
		Pendiente	Constante	R^2	Pendiente	Constante	R^2	Pendiente	Constante	R ²	
	Grupo 0	0.23	6.19	0.01							
	Grupo 1	218	4,36	0.93			inia aili	an 14- Sugar	0 9 9 · · · ·	0.93	
	Grupo 2	-1.28	16.32	1.00	-0.90	13.78	1.00	-116.97	776.21	1.00	
	Grupo 3	1.99	-3.35	1.00	423	-18.54	1.00	2.34	-8.05	1.00	
	Grupo 4	15.68	-86.18	0.97	4.05	-17.58	0.98	1.56	-3.14	0.51	
	Gupo 5	-0.05	9.39	1.00	0.76	3.91	1.00	1.02	0.65	1.00	
11	Grupo 6	1.10	2.70	1.00	0.11	7.87	1.00	0.81	1.88	1.00	
	Grupo 7	0.72	5.10	1.00	-25.41	177.13	1.00	-2.11	22.22	1.00	
	Grupo 8	-18.36	123.33	1.00	0.62	4.78	1.00	-0.71	12.28	1.00	
	Grupo 9	0.70	5.29	1.00	3.39	-13.57	1.00	-1153.20	8076.80	1.00	
Z	Grupo 10	0.89	3.40	0.37	2.85	-9.77	0.70	223	-7.31	0.94	
Ź	Grupo 11	4.69	-19.62	0.37	3.76	-15.62	0.96	1.34	-1.55	0.46	
	Grupo 12	0.08	8.68	0.02	0.12	7.87	0.02	-0.68	11.93	0.08	
	Grupo 13	0.62	5.72	0.34	-1.14	16.50	0.03	0.72	0.72	0.09	
	Grupo 14	0.90	3.99	0.62	2.64	-8.58	0.84	3.27	-15.32	0.29	
	Grupo 15	2.80	-8.06	0.25	3.28	-12.52	0.90	1.19	-0.51	0.42	
	Grupo 16	0.85	4.29	0.64	1.36	-0.01	0.16	2.41	-9.33	0.19	
	Grupo 17	1.66	-0.88	0.31	1.91	-3.66	0.67	0.58	3.47	0.24	
-	Grupo Tot	1.86	-2.12	0.37	1.91	-3.66	0.67	0.51	4.01	0.21	
TINITY/	Gumal	1 33	0.75	0.57				1.93	-5.31	0.78	
UNIV	Gupor	0.89	340	0.37	285	A-9.77	0.70	223	-7.31	0.94	
	Gimil	2181	4.33	0.93	1			243	6.99	0.93	
Г	GamIV	189	273	0.99	407	-18.80	1.00	220-	7.10	0.95	
L	GanoV	· 105	2.98	0.78	0.71	4.18	1.00	-0.34	9.72	0.68	
	GunoVI	1 15	2.46	0.98	1.08	1.83	0.79	0.25	5.70	0.28	
ŝ	Cano	2417	-230	0.98	113	0.87	0.78	- 6× 6	- 465	0.92	
	Guno VII	1 1 27	1.02	0.17	and the second secon			2.30	-7.79	0.60	
5345 B	GunolX	1.34	1.29	0.85	0.98	2.45	0.88	0.22	5.97	0.03	
	Gumy	1 17	2.32	0.94	1.46	-0.68	0.71	0.76	2.18	0.19	
	Gim XI	121	2.06	0.86	1.08	1.85	0.82	0.27	5.64	0.03	
	Gupora	a star 1		66705							

Nota 1: Números en negritas son los factores de correlación quadrático mayores de 0.8 para grupos de 3 ó más muestras

Nota 2: Renglones con fondo gris son los grupos de 3 ó más muestras con factores de correlación cuadrático mayores de 0.8 para todas las resistencias correspondientes: cedencia, quiebre 1 y quiebre 2.

Relación de Resistencias

Figura 7.5(b): Relación de resistencias del Grupo III aceros al manganeso.

Figura 7.5(d): Relación de resistencias del Grupo VII aceros al manganeso.

Pendiente de la curva (1-m) y constnte ln cm vs % Mn Aceros sin tratamiento al Mn

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS 7.2. ANÁLISIS METALOGRÁFICO.

Las Tablas 7.9 y 7.10 contienen las propiedades mecánicas y los resultados cuantitativos metalográficos de la familia de aceros al silicio y al manganeso respectivamente, ordenados de acuerdo a los grupos obtenidos por las curvas $\ln(d\sigma/d\epsilon)$ vs $\ln \sigma$ y en el Apéndice H se encuentran las micrografías correspondientes.

Tipodeacero	Nvel		2	Ph	quiedade	sMacan	icas		Fracción Volumétrica			Tarrarodepatio.ta(im)		
		G2	Q,	a ₁2/a,	€u N	ą	q,Xą	Redución de área	f _{ilmita}	ftana	facuta	d _{inito} (ditanta	dana
	-	W-S	Ma		%	%	MPax %	<u>%</u>						
1	1C	3469	599.8	0.58	148	267	16,037	789	78%	208%	20%	30,00	300	7.6
	5A	4333	830.9	0.52	17.4	250	20,737	493	84%	429%	11%	2297	653	03
	68	4147	7766	0.53	157	237	18440	584	90%	292%	7%	1958	318	36
	50	4399	837.3	053	157	234	19616	489	79%	375%	17%	1836	325	31
2	1D	34L1	581.1	0.59	148	265	15379	754	50%	1.55%	48%	2000	030	250
	20	4125	7948	0.52	148	228	18147	583	79%	1.80%	19%	17.91	159	100
	5D	4553	782.2	058	131	206	16,141	606	63%	1.90%	35%	1344	320	296
3	1A	3/05	6543	0.57	148	252	16470		86%	320%	11%	3060	180	62
	1B	3648	629.8	0.58	148	242	15233	666	84%	316%	13%	3569	0.31	105
6	38	3369	797.0	042	174	250	19949	539	87%	384%	9%	2324	160	1.0
	30	3369	7960	0.42	191	27.8	72,159	59.1	90%	270%	7%	2129	1,45	02
	2B	3640	691.4	0.52	166	27.0	18767	672	82%	1.44%	16%	1843	290	44
7	3A	3765	849.0	0.44	182	258	21,922	503	84%	690%	9%	2198	322	20
	4A	4156	9360	0.44	161	204	19063	37.7	89%	351%	7%	1974	1.78	05
Oald	2A	3683	679.5	0.54	131	21.8	14,846	67.8	83%	302%	14%	2092	3.95	43
	Œ	3361	8292	0.47	166	247	20.482	51.6	82%	523%	13%	16.37	329	33
110025695UA	Ð	4951	10446	047	166	236	24634	437	55%	645%	38%	1875	448	15.1
VI9DITAT	48	4124	9685	043	204	269	26073	420	85%	650%	9%	1941	222	1.0
VI/RITAI	40	3976	9457	0.42	207	288	27,265	426		Difici de maci	r .	1865	1.80	0.5
00%	20	4322	7458	0.58	122	21.4	15,988	631	30%	3.65%	66%	2044	QΩ	- 334

Tabla 7.9: Análisis cuantitativo metalográfico de los grupos de acero al silicio

Tabla 7.10: Análisis cuantitativo metalográfico de los grupos de acero al

	Gupo	Nvel			Pro	piedades.	Macanica	5		Fiaco	án Valumét	nica _	Тататс	dependant	alum
			60	q,	anta	Ę	Ę	Q,XQ	Redución de área	f _{fanka}	f _{ilanza}	fana	ditate	d _{itana}	dama
		1	MPa	MPa		%	%	MPax%	%					(3	
	REC	1B	447.9	8155	0.55	13.1	196	15,958	- 431	79%	9%	- 13%	24.69	5.76	1.04
		. 58	3659	683.8	0.52	16.6	245	16,750	697	85%	0.2%	14%	16.50	043	4.87
		5C	3738	677.8	0.55	14.8	25.0	16,916	68.1	85%	1%	14%	17.89	0.34	416
		1C	4063	7387	0.55	14.8	233	17,178	612	86%	2%	13%	14.51	316	570
la r	2	5A	362.0	735.4	0.49	16.6	245	18,013	603	87%	1.6%	12%	14.31	315	1.03
	-	1D	491.9	8432	0.58	13.1	202	17,004	51.6	86%	1.3%	12%	23.24	0.10	396
	3	SD	4422	706.5	0.63	166	260	18,387	70.4	81%	1.2%	17%	17.16	1.60	14.30
		1A	4055	687.7	0.59	17.4	27.4	18,829	68.0	94%	00%	6%	25.57	000	500
	4	6D	4504	1,061.0	0.42	182	253	26,804	432	0%	0%	-4%	6.96	1,00	0.50
		40	451.7	9665	0.47	122	18.0	17,357	41.7	70%	5%	25%	7.63	272	200
		4A	3189	824.8	039	180	23.9	19,683	426	74%	3%	Z3%	11.47	254	1.00
	5	4 B	3548	859.3	0.41	166	222	19,039	43.9	66%	9%	26%	10.75	289	3.00
		6A	3611	901.3	0.40	19.1	258	23,223	412	76%	5%	17%	7.53	272	0.10
	6	4C	3331	855.9	0.39	t9 9	28.1	24,074	51.8	62%	10%	28%	10.75	263	272
	- 21.	68	4802	1,1067	0.43	17.4	222	24,521	278	73%	8%	20%	7.69	274	200
	1 7	æ	5359	1,124.8	0.48	166	242	27,205	392	58%	10%	32%	917	260	5.31
		2A	4824	1,029.3	0.48	157	19,0	19,508	242	60%	5%	34%	10,41	230	393
	8	28	4898	1,077.5	0.45	15.7	19.8	21,294	231	65%	11%	23%	10.46	307	450
		60	4963	1,1252	0.44	17.4	21.3	Z3,960	266	72%	11%	16%	9.58	292	1.00
	9	20	5612	1,128.5	0.50	131	185	20,833	378	65%	12%	22%	7.01	1.82	661

manganeso.

a

7.3. DISCUSIÓN MATEMÁTICA.

7.3.1. Introducción.

Varios modelos teóricos han sido propuestos para explicar el comportamiento de la deformación de los aceros multifásicos [1F] a [20F]. Un mecanismo que está basado en la acumulación de dislocaciones en un material que se deforma no homogéneamente ha sido propuesto por Ashby y es citado por Krauss [11F] como responsable de la gran razón de endurecimiento por trabajo mecánico de los aceros multifase.

La mayoría de los modelos tratan cada constituyente de la microetructura como continua y las propiedades mecánicas de cada constituyente se supone ser independiente de los otros elementos en la microestructura. Otra consideración de muchos de estos modelos es que la martensita se deforma a la misma extensión que la ferrita. Sin embargo, los resultados de varios estudios indican que la deformación de un acero multifase no es homogénea, con mayor deformación en la ferrita que en la martensita [1F] y [2F].

Varias teorías de deformación han sido propuestas en el pasado para describir el comportamiento plástico de materiales multifase; ninguna de estas es satisfactoria para aceros doble fase. A continuación se revisarán brevemente las principales características de estas teorías [1F].

Teoría micromecanística.

La teoría de Ashby, describe el efecto de una segunda fase dura y no deformable en el endurecimiento de deformación de una matriz suave, está basada en el concepto de que, con el propósito de compensar la diferencia en la deformación de la matriz y de la segunda fase, una cierta densidad de dislocaciones geométricamente necesarias deben de ser generadas. A pesar de sus bases mecanísticas, el modelo de Asbhy tiene una aplicabilidad limitada a tales materiales como los aceros doble fase debido a las siguientes razones.

La suposición de una segunda fase no deformable no es válida ya que la martensita se deforma particularmente con la aplicación de altas cargas. Por esto el modelo de Asbhy sobrestima la densidad de dislocaciones necesarias geométricamente por sobre estimar los esfuerzos plásticos. Para tomar en consideración la naturaleza deformable de la segunda fase y del tamaño del grano de la matriz, Karlsson y Linden han extendido la teoría de Asbhy. Su aplicación a la curva plástica de un acero ferrito-perlítico, sin embargo, explica solamente la cuarta parte del endurecimiento del trabajo medido. Ellos concluyeron que esta baja estimación del comportamiento plástico, se debió al hecho de que la contribución de las dislocaciones geométricamente necesarias no fue grande y la transferencia de carga entre las fases tiene un importante papel.

Además, el modelo de Asbhy parece describir el comportamiento esfuerzodeformacion de las aleaciones endurecidas por dispersión a bajas temperaturas, a temperatura ambiente y superiores, la recuperación puede conducir a un comportamiento plástico dependiente del tiempo y la temperatura.

Modelo mecánico continuo.

El modelo mecánico continuo para el comportamiento de esfuerzo y deformación de agregado de dos fases cae en dos categorías. Esto son esquemas de aproximación y análisis de elemento finito. Los esquemas de aproximación basados en la teoría plástica continua han sido desarrollados para predecir el comportamiento plástico de metales endurecidos por dispersión, compósitos elástico- plástico de fibras reforzadas o compósitos de fluencia térmica (creeping) no lineal. La mayor desventaja de este modelo, además de sus limitaciones en tratar con problemas no lineales, es que se supone que los constituyentes individuales se comportan de forma uniforme siguiendo una deformación homogénea continua y plástica en cada fase. Esta es una suposición no realista puesto que el flujo plástico podría ocurrir no hetereogéneamente en un grano

simple. La aplicación de análisis elastoplástico con el método de elementos finitos a materiales heterogéneos en el intervalo plástico permite cálculos de curvas esfuerzodeformación de arreglos microestructurales específicos, proporciona que las selecciones apropiadas son hechas de los parámetros elástico, cedencia, y endurecimiento por deformación de los microconstituyentes. Aunque la técnica de los métodos de elementos finitos pudiera proporcionar información útil en los detalles de distribución local de esfuerzos y deformaciones en los microconstituyentes de los materiales heterogéneos como los aceros doble fase, la complejidad de tales aproximaciones ha probado ser una severa limitación a su utilidad.

Ley de las mezclas.

La ley de las mezclas es una expresión que predice una variación lineal de esfuerzo o deformación como una función de la fracción volumétrica de la segunda fase, ha sido aplicada a los aceros doble fase por varios investigadores. En lugar de dos extremos no realistas, esto es: la condición de isodeformación y la condición de isoesfuerzo, ver Figura 7.7. Fischmeister y Karlsson [21F] y [22F] han encontrado experimentalmente, así como también sus cálculos del método de elemento finito, que la distribución de esfuerzos y deformaciones de materiales de dos fases es mejor descrita por una ley de mezclas intermedia. Tal ley intermedia de mezclas fue primero propuesta por Tamura [23F], divide ambos, el esfuerzo y la deformación, entre los constituyentes en la relación de sus fracciones volumétricas y puede ser escrita para un acero doble fase como:

$$\sigma_{c} = V_{m}\sigma_{m} + V_{\alpha'}\sigma_{\alpha'}$$
(7-1)

$$\varepsilon_{c} = V_{m}\varepsilon_{m} + V_{\alpha'}\varepsilon_{\alpha'} \tag{7-2}$$

Donde V_m y V_{α} 'son fracciones volumétricas de la matriz de ferrita y de martensita, respectivamente; σ_m , ε_m y $\sigma_{\alpha'}$, $\varepsilon_{\alpha'}$ son los esfuerzos y deformaciones verdaderos correspondientes de la matriz de ferrita y martensita, respectivamente; σ_c y

 ε_c son los esfuerzos y deformaciones plástico del compósito. Esta ley de las mezclas está gráficamente representada en la Figura 7.7.

Deformación Verdadera (E)

Figura 7.7: Curvas de esfuerzo-deformación de una material suave, fase matriz m; un material duro, fase martensita α ' y el compósito de ambos.

Las ecuaciones (7-1) y (7-2) no indican nada acerca de las cantidades absolutas de la transferencia de esfuerzo y deformación. Esta cantidad es determinada solo si la pendiente q de la correspondiente línea AB es conocida. El valor de q puede ser determinado por la relación de transferencia esfuerzo a deformación:

$q = (\sigma_{\alpha'} - \sigma_{m}) / (\varepsilon_{\alpha'} - \varepsilon_{m})$ (7-3) UNIVERSIDAD AUTONOMA DE NUEVO LEÓN

A mayor valor de q, la situación se acerca más a la condición de isodeformación la cual es $\varepsilon_m = \varepsilon_{\alpha'} = \varepsilon_c y$ la correspondiente línea vertical EF. Un pequeño valor de qimplica una mayor deformación relativa de la matriz comparada a la de la martensita, donde $\sigma_m = \sigma_{\alpha'} = \sigma_c$, es aproximada para q = 0 y la correspondiente línea horizontal GH. El valor de q depende de la fracción volumétrica y la relación de esfuerzo plástico χ de las fases constituyentes, su geometría, su endurecimiento por deformación y también en su deformación aplicada. La naturaleza exacta de esta dependencia, sin embargo no es conocida. Un menor valor de q generalmente implica un valor de χ más grande. Como una regla práctica para predecir el comportamiento de deformación de estructuras de dos fases, Fischmeister y Karlsson [21F] y [22F] han encontrado experimentalmente que la ley de mezclas dadas por las ecuaciones (7-1) y (7-2) dan resultados útiles con valores de q alrededor de 4,500 MPa. Para aleaciones de dos fases de Fe-C ellos encontraron que el valor de q variaba entre 3,000 y 11,000 MPa, y con una mayor concentración en el intervalo de 3,000 a 6,000 MPa.

A continuación se tratará de explicar los resultados obtenidos en los ensayos mecánicos considerando la ley de las mezclas, pues con el estado actual de información es el que presenta mayor aplicabilidad. También se utilizará correlaciones múltiples utilizando el paquete de computación Statgraphic Plus 5 con el propósito de interpretar la influencia que tienen los factores metalográficos en las propiedades mecánicas de los aceros multifase.

Antes de realizar el análisis conviene realizar algunos comentarios. A diferencia de la mayoría de los aceros, el comportamiento esfuerzo-deformación de los aceros multifase no puede ser aproximado a una simple función parabólica sobre el intervalo total de la deformación, esto es que los aceros multifase no exhiben un solo valor de *n*. Análisis con ecuaciones constitutivas han indicado que la curva esfuerzo-deformación de estos aceros podría ser dividida en hasta al menos tres regiones de deformación. Cada una descrita por una función parabólica o valor de *n*. El carácter y el número de regiones o etapas depende de parámetros estructurales como tamaño de partícula y fracción volumétrica de cada fase. La existencia de más de una etapa indica que un solo mecanismo de endurecimiento no podría describir el comportamiento de endurecimiento por trabajo mecánico de todas las deformaciones.

La deformación de estructuras de dos fases según Tangri [1F] generalmente ocurre en las siguientes etapas:

Etapa 0: Ambas fases se deforman elásticamente.

Etapa 1: Solamente la fase suave se deforma plásticamente mientras la fase dura permanece elástica. Aquí según J. Chen [13F] el'endurecimiento por deformación en esta etapa es controlado por dos factores: la distribución de dislocaciones en la ferrita y su densidad en ésta.

Etapa 2: Ambas fases se deforman plásticamente. Esta etapa conduce a la fractura acompañando a la decohesión en la interfase de la fractura de la fase dura.

Por otro lado, P. Ramarao [20F] ha encontrado 3 etapas de deformación en los aceros doble fase ferrita-martensita, y en un caso hasta 4, concluyendo lo siguiente: Etapa 0: Ambas fases se deforman elásticamente.

Etapa 1: Solamente la fase suave se deforma plásticamente mientras la fase dura permanece elástica. Una deformación homogénea de la ferrita toma lugar debido a la presencia de dislocaciones móviles por los esfuerzos residuales alrededor de las partículas de martensita distribuidas uniformemente.

DIRECCION GENERAL DE BIBLIOTECAS

Etapa 2: La ferrita se deforma no homogéneamente debido a la formación de un arreglo de dislocación celular como un resultado de deslizamiento transversal y recuperación dinámica.

Etapa 3: No da explicación de este fenómeno, pero posiblemente se deba a la deformación plástica de ambas fases.

Es conveniente mencionar que Kim [19F] ha encontrado también 3 etapas de deformación en aceros doble fase.

En el presente análisis se tratará de explicar las tres etapas como el resultado de la participación de las tres fases, ferrita, fase blanca y fase oscura; aunque una verificación al respecto no se llevó a cabo.

7.3.2. Análisis de aceros al silicio.

Si se observa la Tabla 7-1 de pendientes de las curvas ln ($d\sigma/d\epsilon$) vs. ln σ , se encuentra que el valor más pequeño de la pendiente de la primera etapa de los aceros tratados térmicamente corresponde alrededor de -1.5, por lo que es posible adelantar que dicho valor pertenece a la pendiente de la ferrita. Tomando esto en consideración y analizando el grupo 1 perteneciente a las probetas que no fueron tratadas térmicamente, con la ayuda del solver de excel, es posible explicar la pendiente de estas muestras utilizando la ley de las mezclas tal y como lo explica la Tabla 7.11.

 Tabla 7.11: Determinación de la pendiente de la perlita de los aceros al silicio sin

 tratamiento térmico por la ley de las mezclas.

V LIND	Família	Fracción v	olumetrica				VOL.
		Ferrita	Perlita	Ferrita	Perlita	Cur	va `
DIDE	oto	%	%	Calculada	Calculada	Calculada	Real
DIREC		NUE	NEK	ALL	JE BII	BLIOI E	CAS
1	1	0.92	0.08	-1.49	-10.45	-2.24	-2.24
	2	0.86	0.14	-1.25	-10.15	-2.46	-2.46
¥ =	5	0.92	0.08	-1.87	-10.74	-2.54	-2.54
-	3	0.85	0.15	-1.33	-10.18	-2.66	-2.66
	4	0.87	0.13	-1.77	-10.22	-2.91	-2.91
				-162	-10.40		

El valor promedio de la pendiente de la ferrita oscila en -1.6 y el de la perlita alrededor de -11. suponiendo que la bainita también se comporta de manera similar a la perlita y conservando el orden de magnitud de dicho valor es posible explicar por medio de la ley de mezclas, aplicada a tres fases, las pendientes de los otros grupos correspondientes a los que se les aplicó tratamientos térmicos, como se presenta en la Tabla 7.12.

Tabla 7.12: Ley de las mezclas aplicada a las pendientes de los grupos de acero	al
silicio.	

		Fracc	ion Volumet	rica			F	endiente			
						Supuesto de Fa	se		Ponder	ado	
Grupo	Nivel			· 1				Calcu	ado	Experin	ental
		ftenita	f _{blance}	f	Ť _{Sesaita}	f _{tianca}	f _{olymith}	2	3	2	3
	10	78.0%	21%	19.9%	-1.61	-900	-11	-3.45	-22.20	-2.57	-35.51
10	5A	84.3%	4.3%	11.4%	-1.61	-900	-11	-2.61	-41.20	-2.51	-39.31
	58	90.2%	2.9%	6.9%	-1.61	-900	-11	-2.21	-28.51	-2.47	-37.66
	5C.	79.3%	3.7%	17.0%	-1.61	-900	-11	-3.15	-36.87	-2.61	-38,22
ALCHE	1D	50 1%	1.6%	48.4%	-1.61	-900	-5	-3.22	-17.29	-2.28	-19.35
2 VD	KI LAMO	78.9%	1.8%	19.3%	-1.61	-900	-5	-2.24	-18.43	-2.47	-17.04
		63.3%	1.9%	34.8%	-1.61	-900	-5	-2.76	-19.86	-3.07	-18.67
	16	85.8%	32%	11.0%	-1.61	-900	-11	-2.59	-31.41	-2.26	-30.12
3		84.0%	3.7%	12.8%	-1.61	-900	-11	-2.76	-31.21	-2.34	-31.25
$\bigcirc X$	10	87 194	3.8%	9.1%	-161	-300	-15	-2.76	-14.27	-2.86	-11.82
	20	00.2%	27%	7 1%	-161	-300	-15	-2.52	-10.61	-241	-12.00
6	20	02 20/	1.4%	16.7%	-1.61	-300	-15	-3.76	-8.08	-2.50	-10.99
	20	02.370	60%	94%	-1.61	-300	-15	-2.76	-23.47	-2.96	-14.80
7	0.34	00.170 00.607	3.5%	7.0%	-1.61	-300	-15	-2.49	-13.03	-3.05	-14.65
	44	02.0%	3 10%	14.1%	-1.61	-200	-11	-2.89	-8.92	-2.71	-16.55
	24	04.0%	5.0%	13 1%	-161	-200	-11	-2.76	-13.22	-272	-14.25
77811	30	01.0%	6.5%	38.4%	-1.61	-200	-11	-5.11	-18.02	-3.66	-14.52
UHH		04 60/	6.5%	89%	-1.61	-75	-14	-2.60	-7.48	-271	-7.41
9	48	04.0%	1 0.370	- <u>v</u> .3/0	-161	-75	-14			-2.61	-7.92
		0000	3.6%	1 66.4%	-161	-900	-5	-3.80	-36.61	-4.92	-34.94
	20		3.070	1 10.470				and the second s		-	

IVERSIDA

El valor resultante de la pendiente de la fase blanca, correspondiente a la martensita y a la austenita asciende a una cantidad bastante alta de hasta –900. Para poder comprobar este valor es necesario producir probetas con diferentes contenidos de C y aplicarles un tratamiento de temple normal para producir 100% de martensita y de esta manera poder efectuar su caracterización.

Para explicar la variación de magnitud de la pendiente de la fase blanca desde – 900 hasta -75 es necesario determinar con precisión su composición química y su morfología.

Mediante el análisis de regresión múltiple aplicado a las muestras sin tratamiento térmico pertenecientes al grupo 0 se demuestra la justificación de la ley de las mezclas

como lo presenta la Tabla 7.13, aquí se optimiza el coeficiente R² ajustado a su máximo valor.

 Tabla 7.13: Análisis de regresión múltiple de las propiedades mecánicas de los aceros al silicio sin tratamiento térmico.

Factor	σ ₀₂	συ	Ęu	ધ
Constante	4,836	13,955	-520	75
% Si	112	186	-5	4
f _{oscura}	-4,625	-14,136	577	0
f _{ferrita}	-4,604	-13,429	550	0
d _{femita} ^{-0,5}	0	0	0	-146
R ²	99.95	99.98	96.93	99.84
R ² ajustado	99.81	99.90	87.72	99.68

Tanto $\sigma_{0.2}$, σ_u y ε_u son función del contenido de silicio y la fracción volumétrica de las fases de ferrita y de perlita (fase oscura). Éstas dos últimas lo afectan con mayor impacto.

Se considera que la cedencia intrínseca de la ferrita es de 150 MPa, una resistencia última de 280 MPa y una deformación última de 35% [24F]; y para la perlita una resistencia a la cedencia de 100 MPa, una resistencia última de 1,000 MPa y una deformación última de 10%, es posible explicar el comportamiento mecánico de los aceros sin tratar por la ley de las mezclas al añadir a cada fase el efecto que tiene el tamaño de partícula y el efecto que tiene el endurecimiento por solución en la ferrita el silicio y del manganeso; como se explica en la Tabla 7.14.

			2	Cá	iculo de o	, por la ley di	e las mezdas			
	Familia		Fen	ita		r	Perlita		Po	nderado
	14	Intrinseco	Tamaño Grano ⁽¹⁾	∆05 ^Q	Total	Intrínseco	Tamaño Partícula ⁽¹⁾	Total	Calculado	Experimental
	1	280	130	20	430	1,000	271	1,271	490	469
	2	280	162	48	489	1,000	261	1,261	567	570
	5	280	142	68.	490	1,000	303	1,303	547	576
	3	280	146	126	552	1,000	244	1,244	628	685
	4	280	143	191	614	1,000	240	1,240	672	763
				Cá	iculo de ce	- nor la lev d	ie las mezclas			
	Familia	r	Fer	rita	000 00 01		Perlita	-	l Po	nderado
		Intrínseco	Tamaño Grano	۵۵,	Total	Intrinseco	Tamaño Partícula	Total	Calculado	Experimental
50	5NOA	150	130	20	300	100	271	371	300	231
	2	150	162	48	359	100	261	361	343	298
	1848 5 4 10 10	- 150	142	68	360	100	303	403	360	298
ALE	RE FLAMMA VEDIT S TIS	150	146	126	422	100	244	344	393	378
	4	150	143	191	484	100	240	340	447	442
		2		C	álculo des	. por la lev d	e las mezdas	¥.		<i></i>
	Familia	1				1			Po	nderado
5 (Fer	rita			Perlita -		Calculado	Experimental
			35	00			10.00		32.2	32.2
	2 /		35.	00			10.00		30.2	30.0
	5		35	.00			10.00		32.8	30.0
	3		35	.00			10.00		29.9	26.2
	/ 4		35	.00			10.00		30.5	26.2
		(1)Según ei	libro del ace	ro de Sollac ro de Sollac	;[24F]: Incre ;[24F]: Incre	mento de resista mento de resista	encia por tamaño encia por solució	degrancoo n∆cs,=32%	padicula Ac _b = Mat+83%Si	221d ^{9.5} ,
UNIVE	RSI		JA	UI	JNC	JMA	DE.	NU	EVU	LEO

Tabla 7.14: Explicación de las propiedades mecánicas de los aceros al silicio sin tratamiento térmico por la ley de las mezclas.

De manera similar al análisis de las pendientes es posible efectuar por la ley de las mezclas un cálculo que explique la resistencia última de las probetas correspondientes a los grupos estudiados al combinar la resistencia última de la ferrita con diferentes valores de resistencia última de la fase oscura y blanca, Tabla 7.15. Comparando esta información con la Tabla 7.12 se observa una tendencia equivalente entre las magnitudes de las pendientes y la de las resistencias mecánicas de las fases. Por ejemplo, para la fase blanca a mayor pendiente mayor resistencia y, en forma similar, para la fase oscura. Obviamente es necesario realizar más trabajo de investigación para comprobar la resistencia mecánica de cada fase con su correspondiente naturaleza: composición química y morfología.

			Ferri	a		Fase blanca	1.E	Fase oscura			Gu
Grupo	Nivel	Intrinseco	Tamaño de Grano ⁽¹⁾	۵۵s ^Ø	Total		Intrínseco	Tamaño de Partícula ⁽¹⁾	Total	Calculado	Experimental
	1C	280	127	20	427	2,600	1,600	252	1,852	756	600
4	5A	280	145	68	494	2,600	1,600	1,270	2,870	854	831
1	5B	280	157	68	506	2,600	1,600	364	1,964	667	777
	5C	280	162	68	511	2,600	1,600	391	1,991	841	837
	1D	280	156	20	456	2,600	1,200	139	1,339	917	581
2	20	280	164	48	492	2,600	1,200	220	1,420	709	795
	5D	280	190	68	538	2,600	1,200	128	1,328	852	782
~	1A	280	126	20	426	2,600	1,600	278	1,878	655	654
3	1B	280	116	20	417	2,600	1,600	214	1,814	665	630
-	38	280	144	126	550	2,000	2,000	696	2,696	801	797
6	30	280	151	126	557	2,000	2000	1,556	3,556	809	796
ONC	28	280	162	48	490	2,000	2,000	331	2,331	810	694
	3A	280	148	126	555	2,000	2,000	492	2,492	837	849
1504 A 1504	4A	280	157	191	628	2,000	2,000	984	2,984	841	935
VEDITA	2A	280	152	48	480	1,400	1,600	333	1,933	713	679
8 a	3D	280	172	126	578	1,400	1,600	382	1,982	805	829
$\neg \Omega $	4D	280	161	191	632	1,400	1,600	179	1,779	1,122	1,045
	4B	280	158	191	629	2,600	2,000	696	2,696	940	968
Xa	4C	280	D 161	191	632	2,600	2,000	964	2,984		946
	20	280 -	154	48	481	2,600	700	120	820	784	746

Tabla 7.15: Explicación de la resistencia última de los grupos de acero al silicio por la

ley de las mezclas.

(1).-Según el libro del acero de Sollar. Incremento de resistencia por tamaño de grano o patícula $\Delta c_{0}=220^{44}$ (2)-Según el Roro del actero de Sollaz, incremento de resistencia por solución Ac, = 32% An + 83% Si

Aplicar análisis de regresión múltiple a los Grupo 1, 2, 3, III y V resulta no conveniente por lo pequeño del tamaño de la muestra de cada grupo, sin proporcionar suficientes datos para elaborar el análisis de variancia. Sin embargo es posible aplicarlo al grupo IV, los resultados se encuentran en la Tabla 7.16.

Tabla 7:16: Análisis de regresión múltiple de las propiedades mecánicas de los aceros

Factor	σ02	συ	GK2	ευ	ε _t	8 12
Constante	-25.98	-347.64	-342.45	14.12	48.44	18.31
fitter	1,974.82	4,850.88	5,209.01	0.00	0.00	0.00
f famila	118.83	385.22	373.50	0.00	-11.16	0.00
d com	1,295.03	2,975.15	2,842.36	0.00	-66.86	-25.07
- 101AG	0.00	0.00	0.00	0.00	-1.44	-0.77
d _{osoura}	0.00	0.00	0.00	1.93	0.00	1.84
D ²	93.86	93.88	93.92	74.19	72.79	92.03
R ² ajustado	90.18	90.21	90.27	70.50	59.46	87.25

al silicio del grupo IV.

De estos resultados se desprende que las resistencias mecánicas, $\sigma_{0.2}$, σ_u y σ_{k2} , tienen una alta dependencia de la fracción volumétrica de la ferrita y de la fase blanca, martensita o austenita, así como también del tamaño de grano ferítico.

Con el propósito de contar con suficiente cantidad de datos para el análisis estadístico de correlación múltiple, se aplicó el método a todos los grupos de los aceros al silicio, Tabla 7.17. El tamaño de partícula de las fases no tiene influencia ya que su variación entre los diferentes ensayos no es muy marcada. Curiosamente, y posiblemente por la misma razón, la fracción de fase blanca no tiene influencia en la resistencia mecánica, $\sigma_{0.2}$ y σ_u . La relación $\sigma_{0.2} / \sigma_u$ presenta el máximo R² ajustado seguido por el de σ_u ambos arriba del 90%. En el nivel de 80% se encuentran $\sigma_{0.2}$ y σ_u x ε_t los demás están por debajo de este valor y no es conveniente considerarlos, en el Apéndice D se encuentra el detalle de este análisis.

Tabla 7.17: Factores y R² ajustada de correlación múltiple de las propiedades mecánicas de los aceros al silicio.

 $Coeficiente SID \sigma_{02} D \sigma_{k1} U \sigma_{k2} \sigma_{u} v \varepsilon_{u} D \varepsilon_{t} V \varepsilon_{k1} E \varepsilon_{k2} \sigma_{u} x \varepsilon_{t} \sigma_{02}/\sigma_{u}$

									•	
Constante	145148		2,785.80	2,731.75	49.59	245.86		67.72	247,737.00	0.46
f	-1.322.69	G	-2,392.45	-2,351.56	-51.19	-248.36	IGI	-1.39	-266,028.00	0.08
· dattia -	1727.07	tos	0.00	0.00	0.00	0.00	uto	0.00	0.00	2.26
fee	-1.330.11	pur	-2,313.42	-2,274.51	-44.78	-242.41	Ы	-71.20	-257,890.00	0.00
f	000	es	000	0.00	0.00	-214.65	ites	0.00	-154,497.00	0.00
l blanca	453.16	ien	-43268	-355.14	0.00	12.11	der	39.16	0.00	-0.30
% IVN % S	44.60	ufic	146.30	148.69	0.00	-3.58	mfic	1.84	0.00	-0.03
70 Ji Temperatura	0.32	y sı	0.58	0.42	0.01	0.02	JE S	0.01	31.01	0.00
d ⁰⁵	0.00	ha	0.00	0.00	1.30	1.17	ېل م	000	1,097.83	-0.01
d. ⁻⁰⁵	000	Ŷ	-603.13	0.00	0.00	0.00	ž	-76.47	0.00	0.00
d turne	0.00		0.00	aœ	0.00	0.00		000	0.00	000
-0314			0.00							22.273
R2	88.19		94.58	95.64	73.42	58.65		8230	86.28	96.34
R2 aiustado	82.28		91.87	93.97	65.83	32.34		73.45	81.00	94.94

En las Figuras 7.8 y 7.9 se encuentran la relación de la variable calculada y experimental para $\sigma_u y (\sigma_{0.2}/\sigma_u)$ observándose su alto nivel de correspondencia.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Figura 7.9: Relación del valor experimental vs calculado del $(\sigma_{0.2}/\sigma_u)$ de los aceros al silicio.

La Figura 7.10 muestra la comparación entre la deformación máxima uniforme, ε_u^c , utilizando la ecuación (1-34), (considerando ε_0 como el promedio de los ε_0 para la 1^a etapa en las muestras de 2 etapa y los ε_0 para la 2^a etapa en las muestras de 3 etapas de 0.010 y para σ_k/σ_u como el promedio correspondiente de 0.96) contra los valores de la deformación máxima uniforme experimental, ε_u^e para los aceros al silicio. En el Apéndice F se encuentra el desglose de los valores. Puede ser concluido que la ecuación (1-34) predice en forma aproximada los resultados obtenidos.

- Cabe mencionar que la relación σ_k/σ_u de 0.96 obtenida en este trabajo difiere del valor obtenido por J. Chen [13F] de 0.87.

7.3.3. Análisis de aceros al manganeso.

Si se observa la Tabla 7-5, de pendientes de las curvas ln ($d\sigma/d\epsilon$) vs. ln σ , el valor más pequeño de la pendiente de la primera etapa de los aceros tratados

térmicamente corresponde alrededor de -1.5, por lo que es posible concluir que dicho valor pertenece a la pendiente de la ferrita, tal como se encontró para la familia de aceros al silicio. Tomando esto en consideración y analizando el grupo 1 perteneciente a las probetas que no fueron tratadas térmicamente es posible explicar la pendiente de estas muestras utilizando la ley de las mezclas tal y como lo explica la Tabla 7.18.

experimental usando la ecuación (1-34) para aceros al silicio.

DIRECCIÓN GENERAL DE BIBLIOTECAS

Tabla 7.18: Determinación de la pendiente de la perlita de los aceros al manganeso sintratamiento térmico por la ley de las mezclas.

Familia		Fracción volumé	rica		Pendiente								
1 Call Lines	Forita	Fasehanca	Perlita	Ferrita	Fase blanca	Perlita	Quva						
	raila	1000 000 000		Calculada		Calculada	Calculada	Real					
	097	000	0.13	-1.03		-10.97	-233	-233					
1	0.07	0.00	0.08	-173		-11.05	-2.47	-2.47					
5	0.92	0.00	0.00	132		-10.00	-3 18	-3.18					
6	0.79	0.00	0.21	4 94		-11.09	203	-20					
4	0.88	0.00	0.12	-1.04	40.00	= (1.05	250	25					
2	0.66	0.03	0.31	-1.20	-40.80	-0.00(1)	~0.54	-33					
	de Cerrilie	1 5 6 v 4		-1.48		-10.78							

(1).- Lo más probable es bainita

122

El valor promedio de la pendiente de la ferrita oscila en -1.5 y el de la perlita alrededor de -11. Suponiendo que la bainita también se comporta de manera similar a la perlita y, conservando el orden de magnitud de dicho valor, es posible explicar por medio de la ley de mezclas, aplicada a tres fases, las pendientes de los otros grupos correspondientes a los que se les aplicó tratamientos térmicos, como se presenta en la Tabla 7.19.

110	Grupo	Nivel	F	nacción Volum	étrica		1-1	Pen	liente			
						S	Aupuesto de Fas	e		Pande	rado	
	304 K. 700 K. 200 K. 200						- 145		Calo	ulado	Experi	mental
ALE	RE FLAMMAM		1 testa	fitience	foscus	f _{festa}	f _{tilanca}	f _{oscura}	2	3	2	3
	VERITATIO	1B	78.6%	8.6%	12.8%	-1.5	-200	-11	-2.59	-19.85	-236	-17.88
	J I	58	86.0%	0.2%	13.7%	-1.5	-1200	-11	-2.80	-5.43	-226	-20.96
	NAT /	5C	85.5%	0.7%	13.8%	-1.5	-1200	-11	-2.80	-10.98	-217	-14.95
		10	85.5%	1.6%	12.8%	-1.5	-1400	-11	-2.69	-25.53	-260	-25.51
	XI-X>	5A	86.9%	1.6%	11.5%	-1.5	-1400	-11	-257	-24.86	-2.50	-32.07
ユ\		10	86.5%	1.3%	12.3%	-1.5	-1400	-11	-2.65	-20.15	-295	-20.69
		50	81.4%	1.2%	17.4%	-1.5	-1400	-11	-3.13	-20.12	-2.90	-19.92
		1 14	94.5%	0.0%	5.5%	-1.5	-800	-11	-202	-202	-381	-19.42
	04	60	07	Difici de m	cir (-1.5	-800	-11		ξ I	-3.72	-14.47
		40 -	70.0%	4.9%	25.1%	-1.5	-300	-11	-3.81	-18.50	-362	-18.57
		44	73.9%	34%	22.7%	-1.5	-300	-6	-2.47	-12.68	-2.67	-16.60
	5	4B	65.8%	85%	25.6%	-1.5	-200	-6	-2.53	-19.54	-2.88	-18.44
		64	77.7%	5.0%	17.3%	-1.5	-200	-11	-307	-13.15	-3.05	-10.68
	6	40	61.7%	9.9%	28.4%	-1.5	-200	-11	-4.05	-23.94	-271	-10.22
-	-	89	72.5%	7.8%	19.7%	-1.5	-80	-18	4.64	-10.84	-4.13	-8.00
	7	20	58.3%	97%	32.0%	-1.5	-80	-18	-6.64	-14.38	-4.47	9.63
		24	60.5%	54%	34.1%	-15	-120	-11	-4.66	-11.18	-4.56	-11.58
INTEXT		1/281	65.4%	113%	23.3%	-1.5	-120	1 1411 11	-3.54	-17.16	-4.81	-11.39
JINIVE	/ KOLE	1 m	72.5%	11.1%	16.4%	-1.5	-120	-18	-4.03	-17.41	-4.42	-16.00
	9	20	65 30/	12.2%	22.4%	-1.5	-120	-18	-5.02	-19.71	-4.64	-17.87

Tabla 7.19: Ley de las mezclas aplicada a las pendientes de los grupos de acero al manganeso

DIRECCIÓN GENERAL DE BIBLIOTECAS

• 3

El valor resultante de la pendiente de la fase blanca, correspondiente a la martensita y a la austenita asciende a una cantidad bastante alta de hasta -1400. Para poder comprobar este valor es necesario producir probetas con diferentes contenidos de C y aplicarles un tratamiento de temple normal para producir 100% de martensita y de esta manera poder efectuar su caracterización.

A diferencia de los aceros al silicio el uso del análisis de regresión múltiple aplicado a las muestras sin tratamiento térmico pertenecientes al grupo 0 no demuestra la justificación de la ley de las mezclas, porque se dispone de poca cantidad de datos, ya que la muestra de 1.9% de Mn posee una buena cantidad de martensita no habiendo sinergia con las otras cuatro. La Tabla 7.20 muestra el análisis incluyendo las cinco muestras:

	Factor	σ _{0.2}	σu	Eu	દ્ય
STON	Constante	-122.37	575.73	23.12	40.53
	% Mn	138.58		-4.21	-3.47
VERI	d oscura	979.51		23.99	11.37
	f ferrita		-227.55		
	d _{ferrita} -0.5		836.53	1	
	\mathbb{R}^2	98.70	97.63	99.15	98.50
	R ² ajustado	97.40	95.25	98.26	97.13

Tabla 7.20: Análisis de regresión múltiple de las propiedades mecánicas de los aceros al manganeso sin tratamiento térmico.

Para este análisis $\sigma_{0,2}$. ε_u y ε_t son funciones del contenido de Mn y del tamaño de partícula de la fase oscura, más no así el σ_u . DE NUEVO LEÓN

Considerando para la ferrita una resistencia a la cedencia intrínseca de la ferrita de 150 MPa, una resistencia última de 280 MPa y una deformación última de 35% [24F]; para la perlita una resistencia a la cedencia de 100 MPa, una resistencia última de 1,000 MPa y una deformación última de 10% [24F] es posible explicar el comportamiento mecánico de los aceros sin tratar por la ley de las mezclas al añadir a cada fase el efecto que tiene el tamaño de partícula y el efecto que tiene el endurecimiento por dilución en la ferrita el silicio y del manganeso; como se explica en la Tabla 7.21:

-				Cálo	ulo de cupor la	ley de las m	iezolas				
Familia		Fer	rita		Fase blanca	Periita			Ponderado		
	Intrinseco	Tamaño Grano ⁽¹⁾	∆05 ⁽²⁾	Total		Intrínseco	Tamaño Partícula ⁽¹⁾	Total	Calculado	Experimental	
1	280	138	52	471	2,600	800	256	1,056	568	566	
5	280	150	56	486	2,600	800	273	1,073	554	537	
4	280	200	79	559	2,600	800	289	1,069	640	630	
6	280	228	127	634	2,600	800	226	1,026	731	683	
2	280	245	118	643	2,600	800	247	1,047	836	721	

Tabla 7.21: Explicación de las propiedades mecánicas de los aceros al manganeso sin tratamiento térmico por la ley de las mezclas.

				Cála.	lo de o ₀₂ por la	leydelasm	rezdas			-	
Familia		Ferr	ita		Fase blanca		Perlita		Po	nderado	
NON	Intrínseco	Tamaño Grano	۵œs	Total		Intrínseco	Tamaño Partícula	Total	Calculado	Experimental	
	Familia 1 150 5 150 4 150 6 150 2 150 Familia 1 5 4 6 2	138	52	341	1,000	200	256	456	360	290	
5	150	150	56	356	1,000	200	273	473	370	370	
FLAMMAI	150	200	79	429	, 1,000	200 200	289 226	489 426	438	443	
6	150	228	127	504	1,000				485	448	
2	150	245	118	513	1,000	200	247	447	505	490	
	Î	E.		Laic		ey ce as m		-	Ponderado		
Fanilia		Fen	nita		Faseblanca		Perlita	Calculad		Experimental	
1		3	5		3	10			31	30	
5		У з	5		3		10		32	30	
4	4 35				3		10		31	28	
		3	5		3		10		29	23	
		-				10					

(1).-Según el libro del acero de Soliac (24F): Incremento de resistencia por tamaño de grano o partícula. Aos = 224

(2).-Seg

• •

(2).-Según el libro del acero de Sallac (24F): incramento de resistencia por schubión Ac. = 32%/Vn + 83%Si

De manera similar, al análisis de las pendientes es posible efectuar por la ley de las mezclas un cálculo que explique la resistencia última de las probetas correspondientes a los grupos estudiados al combinar la resistencia última de la ferrita con diferentes valores de esta propiedad de la fase oscura y blanca, Tabla 7.22. A diferencia de los aceros al silicio, aquí es más difícil de realizar una correspondencia en la tendencia de la magnitud de la pendiente y la de la resistencia mecánica de la fase. Obviamente es necesario realizar más trabajo de investigación para comprobar la resistencia mecánica de cada fase con su correspondiente naturaleza: composición química y morfología.

	Sere-			Ferri	ita		Fase blanca		Fase oscura	1	σu		
	Grupo	Nvel	Intrinseco	Tamaño de Grano	۵۵,	Total		intrin secco	Tamaño de Partícula	Total	Calculado	Experimental	
		1B	280	140	52	472	2,600	1,400	682	2,082	862	815	
3	1	58	280	171	56	507	2,600	1,400	315	1,715	678	684	
		5C	280	164	56	500	2,600	1,400	341	1,741	636	678	
	2	1C	280	183	52	515	2,600	1,400	291	1,691	700	739	
	4	5A	280	184	56	520	2,600	1,400	685	2,085	733	735	
	3	1D	280	144	52	477	2,200	1,400	350	1,750	655	843	
		5D	280	168	56	504	2,200	1,400	184	1,584	712	707	
	х 	1A	280	138	52	470	2,000	1,400	311	1,711	538	688	
	4	6D	280	264	127	671	2,000	1,400	964	2,384	1.11.21222	1,061	
	T	4D	280	252	79	610	2,000	1,400	492	1,892	1,000	966	
10	NQ	4A	280	205	79	564	2,000	1,000	696	1,696	869	825	
		4 B	280	212	79	571	2,000	1,000	402	1,402	905	859	
	SKY DO ARMA	6A	280	254	127	660	2,600	1,400	2,200	3,600	1,266	901	
ALER	E FLAMM	4 C	280	212	79	571	2,600	1,400	467	1,867	1,140	866	
1 V	RITATIS	68	280	251	127	658	1,600	2,000	492	2,492	1,096	1,107	
		20	280	230	118	628	1,600	2,000	302	2,302	1,258	1,125	
	hars	2A	280	216	118	614	1,800	1,400	351	1,751	1.066	1,029	
	8	28	280	215	118	613	1,800	1,400	328	1,728	1,008	1,077	
1 SA		60	280	225	127	632	1,800	2,000	696	2,696	1,099	1,125	
		20	280	263	118	661	1,800	2,000	271	2,271	1,162	1,128	

Tabla 7.22: Explicación de la resistencia última de los grupos de acero al manganeso por la ley de las mezclas.

(1).-Según el libro del acero de Sallac: Incremento de resistencia por tamaño de grano o partícula: Acq. = 224.0⁴²
(2).-Según el libro del acero de Sallac: Incremento de resistencia por solución Acq. = 324946 + 83%Si

No resulta conveniente aplicar análisis de regresión múltiple a los Grupo 1, III y IV por lo pequeño del tamaño de la muestra de cada grupo, sin proporcionar suficientes datos para elaborar el análisis de variancia. Sin embargo, es posible aplicarlo al grupo VII, los resultados se encuentran en la Tabla 7.23.

Tabla 7.23: Análisis de regresión múltiple de las propiedades mecánicas de los aceros al manganeso del grupo VII.

Factor	σ _{0.2}	συ	σ κ2	σ _{ki}	£ u	ε _t	862	8 k1
Constante	-193.65	63.44	-1.10	-164.17	12.61	13.04	12.62	4.91
% Mn	283.65	394.62	417.92	373.76	-6.04	-11.54	-3.44	0.27
f _{blanca} d _{itentia} -0.5 f _{oscura}	1,791.92	3,185.38	3,121.50	2,243.20	47.55	93.52	26.42	-3.06
R ²	85.51	96.16	93.11	87. 77	99.03	83.68	99.77	94.58
R ² aiustado	71.02	92.33	86.21	75.54	98.05	67.35	9953	89.15

De esta tabla se concluye que la resistencia mecánica depende del contenido de Mn y de la fracción volumétrica de la fase oscura mientras que la elongación depende del contenido de Mn y del tamaño de grano ferrítico.

En el análisis de correlación múltiple, mostrado en la Tabla 7.24, optimiza el coeficiente R² ajustado a su máximo valor. El tamaño de partícula de las fases no tiene influencia ya que su variación entre los diferentes ensayos no es muy marcado. Curiosamente, y posiblemente por la misma razón, la fracción de fase blanca no tiene influencia en la resistencia mecánica, $\sigma_{0.2}$ y σ_u . σ_u presenta el máximo R² ajustado de 90.74 seguido por la relación ($\sigma_{0.2}/\sigma_u$) con 70.37, y σ_{k2} con 70.26. En el nivel de 80% se encuentran $\sigma_{0.2}$ y $\sigma_u \times \varepsilon_t$, los demás están por debajo de este valor y no es conveniente considerarlos, en el Apéndice E se encuentra el detalle de este análisis.

Tabla 7.24: Factores y R² ajustada de correlación múltiple de las propiedades mecánicas de los aceros al manganeso.

			/								
	Coeficiente	σ	σ _{k1}	σκα	σ	Eu	٤1	8 kt	8 R	συχει	σ ₀₂ /σ _u
	Constante	-874.25	-550.52	163.12	164.77	53.63	61.21	-3.67	48.05	22,023.30	-0.97
•	freeza	-223.35	-645.57	0.00	0.00	0.00	0.00	4.44	0.00	17,488.00	0.00
	%C	1.654.82	1,305.18	-1,622.54	1,720.95	-57.49	-85.18	-7.53	-24.89	-79,849.60	0.73
		141.72	0.00	602.33	0.00	-3.64	-5.03	7.83	0.00	-10,957.90	0.17
UNI		A.00	-749.09	0.00	745.79	0.00	0.00	0.00	0.00	20,827.20	-0.87
	% Ma	165.63	292.74	359.37	72.14	-2.48	-5.39	0.40	0.00	-5,394.16	0.11
	% Si	0.00	0.00	0.00	466.83	8.70	10.21	0.00	0.00	26,374.90	0.00
	Temperatura	1.34	1.17	0.00	0.00	-0.04.	-0.03	0.00	-0.04	0.00	0.00
	d ascara	-38.19	-75.87	-102.39	-66.53	0.00	0.00	-0.12	0.00	0.00	0.00
	d menta -0.5	-436.15	0.00	0.00	710.52	0.00	0.00	0.00	0.00	0.00	-1.26
	di _{blanca} -0.5	0.00	0.00	90.68	25.24	0.00	0.00	-0.41	0.00	459.16	-0.04
алы ¹⁹⁶¹	R ²	79.02	93.24	79.56	94. 95	26.98	33.96	94.68	41.13	79.36	81.89
	R ² ajustado	66.79	88.73	70.26	91.74	0.00	10.38	89.36	33.70	66.22	70.37

En la Figura 7.11 se encuentran la relación de la variable calculada y experimental para $\sigma_u y (\sigma_{0.2}/\sigma_u)$ observándose su alto nivel de correspondencia.

Figura 7.11: Relación del valor experimental vs calculado del σ_u de los aceros al manganeso.

La Figura 7.12 muestra la comparación entre la deformación máxima uniforme, ε_u^c , utilizando la ecuación (1-34), (considerando ε_0 como el promedio de los ε_0 para la l^a etapa en las muestras de 2 etapa y los ε_0 para la 2^a etapa en las muestras de 3 etapas de 0.019 y para σ_k/σ_u como el promedio correspondiente de 0.96) contra los valores de la deformación máxima uniforme experimental, ε_u^c para los aceros al manganeso. En el apéndice F se encuentra el desglose de los valores. Puede ser concluido que la ecuación (1-34) predice en forma aproximada los resultados obtenidos.

Cabe mencionar que la relación σ_k/σ_u de 0.96 es igual para los aceros al Si y al Mn y difiere del valor obtenido por J. Chen [13F] de 0.87.

Figura 7.12: Comparación la deformación uniforme máxima entre ε_u^c calculada y ε_u^c experimental usando la ecuación (1-34) para aceros al manganeso.

Una posible razón de que los aceros al Mn sean más dificil de analizar que los al Si es la alta templabilidad que imparte el primero, por lo que es factible que las muestras sin tratar térmicamente de los aceros con alto Mn tengan bainita y martensita, ver Figuras 6.19 y 6.20.

7.3.4. Análisis de ambos aceros.

La Tabla 7.25 muestra los resultados del análisis de correlación múltiple para el R² ajustado máximo considerando ambas familias de aceros; al silicio y al manganeso. Se presentan sólo aquellas propiedades mecánicas que mostraron el más alto valor de R² ajustado. En este análisis hay más contraste en la magnitud de las variables metalográficas y, por lo tanto, es posible detectar más claramente la influencia de éstas en las propiedades mecánicas.

El más alto valor de R² ajustado lo presenta σ_u de 87.01% seguido por el de σ_{k2} de 79.30% y $\sigma_{0.2}$ posee un valor muy pequeño. Conviene mencionar que la determinación de $\sigma_{0.2}$ no fue del todo precisa pues en los ensayos mecánicos no hubo una carga de preajuste y es causa de incertidumbre en la determinación de la magnitud de esta variable, no así en el caso de σ_u y σ_{k2} que su magnitud la define el fenómeno de inestabilidad de la fluencia mecánica para la primera y el punto de quiebre de la gráfica $\ln(d\sigma/d\varepsilon)$ vs ln σ , para la segunda.

Tabla 7.25: Factores y R² ajustada de correlación múltiple de las propiedades mecánicas de ambas familias de aceros.

	Coeficiente	σ _{0.2}	σĸ₂	συ		
	Constante	4,172.95	567.58	5,124.11		
	foscura	-4,141.79	0.00	-4,606.04		
	%C	768.64	-2,547.06	786.60		
	f _{ferrita}	-4,022.40	0.00	-4,580.79		
	f _{blanca}	-3,463.27	0.00	-2,952.38		
	% Mn	-27.98	195.02	0.00	•	_
UNIVERSIDAE	% Si Temperatura	0.00 ^{19.48}	193.43 0.00	138.81 -0.37) LEÓ	N
	d oscura	-38.90	-85.21	-30.37	<u>8</u>	R
DIRECCIÓN	d _{ferrita} -0.5	800.35	619.67	1,423.73	AS	
	d _{blanca} -0.5	10.95	114.94	0.00		
* ~	R ²	57.27	84 .27	89.82		
12. dast stat	R ² ajustado	42.48	79.30	87.01		

Para $\sigma_u \mathbf{y} \sigma_{0,2}$ la fracción volumétrica de las tres fases juega un papel importante como lo fundamenta el modelo de la ley de las mezclas. Le sigue en influencia el tamaño de grano ferrítico, como lo establece el modelo de Hall & Petch.

Lista de figuras:

Figura 7.1a Representación ln ($d\sigma/d\epsilon$) vs. ln σ del grupo 0 aceros al silicio. Figura 7.1(a): Representación ln ($d\sigma/d\epsilon$) vs. ln σ del grupo 0 aceros al silicio. Figura 7.1(b): Representación ln ($d\sigma/d\epsilon$) vs. ln σ del grupo 4 aceros al silicio. Figura 7.1(c): Representación ln ($d\sigma/d\epsilon$) vs. ln σ del grupo 13 aceros al silicio. Figura 7.2(a): Relación de resistencias del grupo 0 aceros al silicio. Figura 7.2(b): Relación de resistencias del grupo 1 aceros al silicio. Figura 7.2(c): Relación de resistencias del grupo 2 aceros al silicio. Figura 7.2(c): Relación de resistencias del grupo 111 aceros al silicio. Figura 7.2(c): Relación de resistencias del grupo IV aceros al silicio. Figura 7.2(c): Relación de resistencias del grupo IV aceros al silicio. Figura 7.2(f): Relación de resistencias del grupo V aceros al silicio. Figura 7.3: Relación entre la pendiente (1-*m*), la constante ln *cm* y el porciento de silicio para el grupo 0.

Figura 7.4(a): Representación ln ($d\sigma/d\epsilon$) vs. ln σ del grupo 0 aceros al manganeso.

Figura 7.4(b): Representación ln ($d\sigma/d\epsilon$) vs. ln σ del grupo 1 aceros al manganeso.

Figura 7.4(c): Representación ln ($d\sigma/d\epsilon$) vs. ln σ del grupo 17 aceros al manganeso.

Figura 7.5(a): Relación de resistencias del grupo 1 aceros al manganeso.

Figura 7.5(b): Relación de resistencias del grupo III aceros al manganeso.

Figura 7.5(c): Relación de resistencias del grupo IV aceros al manganeso.

Figura 7.5(d): Relación de resistencias del grupo VII aceros al manganeso.

Figura 7.6: Relación entre pendiente (1 - m), la constante ln cm y el porciento de manganeso para el grupo 0.

Figura 7.7: Curvas de esfuerzo-deformación de una material suave, fase matriz m; un material duro, fase martensita α ' y el compósito de ambos.

Figura 7.8: Relación del valor experimental vs calculado del σ_u de los aceros al silicio.

Figura 7.9: Relación del valor experimental vs calculado del $(\sigma_{0.2}/\sigma_u)$ de los aceros al silicio.

Figura 7.10: Comparación la deformación uniforme máxima entre ε_u^c calculada y ε_u^e experimental usando la ecuación (1-34) para aceros al silicio.

Figura 7.11: Relación del valor experimental vs calculado del σ_u de los aceros al manganeso.

Figura 7.12: Comparación la deformación uniforme máxima entre ε_u^c calculada y ε_u^c experimental usando la ecuación (1-34) para acerso al manganeso.

Lista de Tablas:

Tabla 7.1: Pendiente (1-m) y constante ln cm para aceros al silicio.

Tabla 7.2: Reordenamiento de (1-m) y ln cm de acuerdo al grupo asignado aceros al silicio.

Tabla 7.3: Definición total de grupos aceros al silicio.

Tabla 7.4: Valor de la pendiente, de la constante y de R^2 de los distintos grupos de aceros al silicio.

Tabla 7.5: Pendiente (1-m) y constante ln cm para aceros al manganeso.

Tabla 7.6: Reordenamiento de (1-m) y ln cm de acuerdo al grupo asignado aceros al manganeso.

Tabla 7.7: Definición total de Grupos de aceros al manganeso.

Tabla 7.8: Valor de la pendiente, de la constante y de R^2 de los distintos grupos aceros al manganeso.

Tabla 7.9: Análisis cuantitativo metalográfico de los grupos de acero al silicio.

Tabla 7.10: Análisis cuantitativo metalográfico de los grupos de acero al manganeso.

Tabla 7.11: Determinación de la pendiente de la perlita de los aceros al silicio sin tratamiento térmico por la ley de las mezclas.

Tabla 7.12: Ley de las mezclas aplicada a las pendientes de los grupos de acero al silicio.

Tabla 7.13: Análisis de regresión múltiple de las propiedades mecánicas de los aceros al silicio sin tratamiento térmico. Tabla 7.14: Explicación de las propiedades mecánicas de los aceros al silicio sin tratamiento térmico por la ley de las mezclas.

Tabla 7.15: Explicación de la resistencia última de los grupos de acero al silicio por la ley de las mezclas.

Tabla 7.16: Análisis de regresión múltiple de las propiedades mecánicas de los aceros al silicio del grupo IV.

Tabla 7.17: Factores y R² ajustada de correlación múltiple de las propiedades mecánicas de los aceros al silício.

Tabla 7.18: Determinación de la pendiente de la perlita de los aceros al manganeso sin tratamiento térmico por la ley de las mezclas.

Tabla 7.19. Ley de las mezclas aplicada a las pendientes de los grupos de acero al manganeso.

Tabla 7.20. Análisis de regresión múltiple de las propiedades mecánicas de los aceros al manganeso sin tratamiento térmico.

Tabla 7.21: Explicación de las propiedades mecánicas de los aceros al manganeso sin tratamiento térmico por la ley de las mezclas.

Tabla 7.22: Explicación de la resistencia última de los grupos de acero al manganeso por la ley de las mezclas.

Tabla 7.23: Análisis de regresión múltiple de las propiedades mecánicas de los aceros al manganeso del grupo VII.

Tabla 7.24: Factores y \mathbb{R}^2 ajustada de correlación múltiple de las propiedades mecánicas de los aceros al manganeso.

Tabla 7.25: Factores y R² ajustada de correlación múltiple de las propiedades mecánicas

de ambas familias de aceros.

REFERENCIAS

[1F] Naresh C. Goel, Sandeep Sangal and Kris Tangri. A Theoretical Model for the Flow Behavior of Commercial Dual - Phase Steels Containing Metastable Retained Autenite: Part I. Derivation of Flow Curve Equations. Metallurgical Transactions A, Volume 16A, November 1985. pg. 2013-2021.

[2F] Naresh C. Goel, Sandeep Sangal and Kris Tangri. A Theoretical Model for the Flow Behavior of Commercial Dual - Phase Steels Containing Metastable Retained Autenite: Part II. Derivation of Flow Curve Equations. Metallurgical Transactions A, Volume 16A, November 1985. pg. 2023-2029.

[3F] K. Cho and J. Gurland. The Law of Mixtures Applied to the Plastic Deformation of Two-Phase Alloys of Coarse Micrustructures. Metallurgical Transactions A, Volume 19A, August 1988. pg. 2027-2040.

[4F] A. R. Marder. Deformation Characteristics of Dual-Phase Steels. Metallurgical Transactions A, Volume 13A, January 1982. pg. 85-92.

[5F] L. N. Pussegoda and W. R. Tyson. Modelling of a Dual - Phase Steel From Its Ferrite and Martensite Constituents. Canadian Metallurgical Quaterly, Volume 23, No.
3, 1984. pg. 341-347. UTÓNOMA DE NUEVO LEÓN

[6F] Zhonghao Jiang, Jingke Liu, Jianshe Lian. A new Relationship Between the Flow Stress and the Microstructural parameters for Dual Phase Steels. Acta Metall. Mater. Vol. 40 No. 7, 1992. pg. 1587-1597.

[7F] Olaf Maid, Winfried Dahl, Christian Strabburger und Wolfgang Müschenborn. Einflub der Gefügeparameter auf the mechanischen Eigenschaften von Dualphasen-Stahl. Stahl und Eisen 108 (1988) Nr 8, April. Pg. 355-364. [8F] A. Bhattacharyya, T. Sakaki, and G. J. Weng. The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dua-phase steels. Metallurgical Transactions A, Volume 24A, February 1993. pg. 301-314.

[9F] A. Bhattacharyya, and G. J. Weng. Theoretical calculation of the stress-strain behavior of dual-phase metals with randommly oriented spheroidal inclusions. Metallurgical Transactions A, Volume 27A, august 1996. pg. 2359-2365.

[10F] Yoshiyuki Tomita and Kunio Okabayashi. Tensile Stress - Strain Analysis of Cold Worked Metals and Steels Dual - Phase Steels. Metallurgical Transactions A, Volume 16A, May 1985. pg. 865-872.

[11F] D. A. Korzekwa, D. K. Matlock and G. Krauss. Dislocation Substructure as a Function of Strain in a Dual-Phase Steel. Metallurgical Transactions A, Volume 15 A, June 1984. pg. 1221-1228.

[12F] Yoshiyuki Tomita. Effect of Morphology of Second - Phase martensite on Tensile Properties of Fe - 0.1 C Dual Phase Steels. Journal of Materials Science 25 (1990). Pg. 5179-5184. CIÓN GENERAL DE BIBLIOTECAS

[13F] Z. Jiang, J. Lian and J. Chen. Stain Hardening Behavior and Its relationships to Tensile Mechanical Properties of Dual Phase Steel. Materials Sience and Technology, December 1992, Vol. 8. pg. 1075-1081.

[14F] Zhonghao Jiang, Zhenzhong Guan, Jianshe Lian. The Relationship Between Ductility and Material Parameters for Dual Phase Steel. Journal of materials Science 28 (1993). Pg. 1814-1818.

[15F] Zhonghao Jiang, Zhenzhong Guan, Jianshe Lian. Effects of Microstructural Variables on the deformation Behavior of Dual - Phase Steel. Materials Sience and Engineering A 190 (1995). Pg. 55-64.

[16F] Cochrane, Hal. Formable Dual Phase Steels. Engineering, Materials Science, Dissertation Abstracts International, Vol. 51, N° 3, September 1990. pg. 1442-1443.

[17F] A. Bag, K K Ray and E S Dwarakadasa. Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels. Metallurgical and Materials Transactions A, Volume 30A, May 1999. pg. 1193-1202.

[18F] Luis F. Ramos, David K Matlock and George Krauss. On the Deformation Behavior of Dual - Phase Steels. Metallurgical Transactions A, Volume 10A, February 1979. 259-261.

[19F] Thak Sang Byun, In Sup Kim. Tensile properties and inhomogeneous deformation of ferrite-martensite dual -phase steels. Journal of materials Science 28 (1993). Pg. 2923-2932. DIRECCIÓN GENERAL DE BIBLIOTECAS

[20F] S. R. Mediratta, V. Ramaswamy. Dependence of strain hardening exponent on the volume fraction and carbon content of martensite in dual phase steels during multistage work hardening. Journal of materials Science Letters 9 (1990). Pg. 205-206.

[21F] Según referencia [1F]. H. Fischmeister and B. Karlsson: Z. Metallkunde, 1977, volume 68 (5), pg. 311.

[22F] Según referencia [1F]. B. Karlsson G. Linden. Mat. Sci. Eng., 1975, volume 17. pg. 209.

[23F] Según referencia [1F]. I. Tamura, Y. Tomota, and H. Ozawa, Proceedings of the 3^{rd} international conference on the strength of metals and alloys. Cambridge, 1973, volume 1. pg611.

[24F] G. Béranger, G. Henry and G. Sanz. The book of steel. Sollac, 1996. pg. 181.

CAPÍTULO 8

CONCLUSIONES, RECOMENDACIONES Y LIMITACIONES

8.1. CONCLUSIONES.

La ley de las mezclas se ajusta perfectamente a los aceros al silicio y lo valida el análisis estadístico al mostrar que los factores que explican con mayor peso el $\sigma_{0.2}$, σ_u y ε_u es la fracción volumétrica de la ferrita y de la perlita. Esto es más difícil de comprobar en los aceros al manganeso. (ver comentario al final del punto 7.4.3)

Con la ley de las mezclas aplicada a las pendientes de las curvas ln ($d\sigma/d\epsilon$) vs. ln σ es posible calcular la pendiente de la perlita de los aceros sin tratamiento térmico suponiendo una pendiente de aproximadamente -1.5 para la ferrita, valor de la pendiente más pequeña mostrada en la primera etapa de los aceros con tratamiento térmico en ambos aceros. Suponiendo para la fase oscura un comportamiento similar al de la perlita, con la ley de las mezclas se puede explicar las pendientes de los grupos tratados térmicamente; ajustando el valor de la pendiente de la fase blanca.

También es posible utilizar la ley de las mezclas en la explicación de las resistencia última de los aceros tratados térmicamente.

Contrario a lo esperado la resistencia mecánica de los aceros al silicio no es función de la fase blanca ni del contenido de Si, este resultado debe ser revisado, sobre todo el análisis cuantitativo metalográfico. Sin embargo en los aceros al manganeso sí se muestra una influencia de la fase blanca y del contenido de Mn. sobre σ_{kl} y σ_{u} .

Al considerar ambas familias de aceros, al silicio y al manganeso, el análisis estadístico muestra que para σ_u y σ_{02} la fracción volumétrica de las tres fases juega un papel importante como lo fundamenta el modelo de la ley de las mezclas. Le sigue en influencia el tamaño de grano ferrítico, como lo establece el modelo de Hall & Petch.

Existe una muy alta relación entre el contenido de silicio y la pendiente (1-m) del análisis CJ modificado, así como también con la constante ln cm, para los aceros sin tratamiento térmico. Esto es similar para el caso de los aceros al manganeso.

La ecuación (1-34) muestra una mejor relación predictiva para la deformación máxima uniforme, ε_u^c en los aceros al silicio que en los de manganeso. Es importante mencionar que en ambos aceros la relación σ_k/σ_u se mantuvo en 0.96. DIRECCIÓN GENERAL DE BIBLIOTECAS

8.2. RECOMENDACIONES.

Es conveniente examinar las muestras metalográficas por microscopía electrónica y difracción de rayos X con el fin de diferenciar y precisar la fracción volumétrica de las fases y de este modo desarrollar un modelo matemático más confiable.

Como pasos siguientes a esta investigación es recomendable diseñar un experimento fraccionado, para limitar el número de muestras, dirigido al desarrollo de

un modelo matemático que involucre con más detalle los posibles fenómenos responsables del comportamiento mecánico-plástico de los aceros doble fase.

Es importante sensibilizar a la comunidad científica mexicana sobre la necesidad de enfocar los esfuerzos en este giro de investigación, pues en los últimos años la industria siderúrgica se ha estado enfrentando a una competencia de mercado internacional y no posee aún la tecnología apropiada para la fabricación de estos aceros.

8.3. LIMITACIONES.

. .

El proyecto de desarrollo de nuevos aceros originalmente fue dirigido al desarrollo de aceros doble fase resistentes a la corrosión aplicados a la fabricación de varilla para la construcción, por lo que no se le dio una marcada importancia en dirigir la experimentación a la obtención de resultados de propiedades mecánicas más precisas, utilizando quizás una máquina de ensayos mecánicos con mejores innovaciones tecnológicas capaz de reproducir la curva de esfuerzo-deformación de una manera automática y no manual como fue realizada en esta investigación; evitándose así el error de lectura humano. Además diseñando el experimento con probetas más pequeñas y con medios de temple más severos para garantizar una estructura sólo de ferrita-martensita.

La gran cantidad de muestras a analizar en esta investigación proporcionó un avance lento, limitando por el tiempo el uso de algunas técnicas de medición como microscopía electrónica y difracción de rayos X.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

ь Э

	Fer	rita	Perlita										
	Poligonal	Alargada	2022	Tamaño	10 	Tig	00	Distribución					
Muestra	-		Pequeña	Mediana	Grande	Gruesa	Fina	Homogénea	Heterogénea	Bandeada			
102-100v-esh	- <u>x</u>		¥				X						
141-200x-ssh	Ŷ		A		· · · ·	<u>├</u> †		· · · · · · · · · · · · · · · · · · ·					
1B3-200x-ssh	x						<u></u>						
1C2-100x-ssh	X		1. P.S.	<u> </u>				0 Te					
1D3-200x-ssh	X	1		-		5							
2P2-100x-ssh	X				X		X	X					
2A3-200x-ssh	X			1									
2B2-200x-ssh	X	· · · ·											
2C3-200x-ssh	X			1 A & A			1999						
2D2-200x-ssh		X											
3P3-100x-ssh	X		2 4	X			X	X		X			
3A1-200x-ssh	X												
3B3-200x-ssh	X		2			2 8							
3C1-100x-ssh	X												
3D1-200x-ssh		$\overline{\Lambda}$											
4P1-100x-ssh	X		5	X		1	X	X		X			
4A3-200x-ssh					722								
4B1-200x-ssh	VIOITA								<u> </u>				
4C2-100x-ssh	X								·				
4D3-200x-ssh		\sim	ALL'					-3		_			
5P2-100x-ssh	X			X			X	X		<u> </u>			
5A3-200x-ssh		$X \supset \Box$	0.				10						
5B2-200x-ssh	X	1											
5C1-200x-ssh													
5D2-200x-ssh	X							- J					

Descripción cualitativa de análisis metalográfico de aceros al silicio

				Martensita							
õ.		Татай	0	Fo	ma		Distribución				
Muestra - 0	Pequeña	Mediana	Grande	Poligonal	Alargada	Homogénea	Heterogénea	Bandeada	Alrededor Grano	Isla	
0	v 8 20					L			renta t		
1P2-100x-ssh										Ŷ	
1A1-200x-ssh	EKS	X		X						^	
1B3-200x-ssh		5			· O A · A					~	
1C2-100x-ssh			X(3 granos)	X	-	8	<u> </u>		↓		
1D3-200x-ssh			r			L				1	
2P2-100x-ssh	TR E) <u>N(i</u> E	NER		F B B		HCA-	<u>+</u>		
2A3-200x-ssh		• X _		X			<u> </u>			<u> </u>	
2B2-200x-ssh	X	X		<u>X</u>		X				<u>_</u>	
2C3-200x-ssh		X		X			X		<u> </u>	<u> </u>	
2D2-200x-ssh	Sec. Sec.						<u> </u>				
3P3-100x-ssh					2 						
3A1-200x-ssh			X	X			X	×		<u> </u>	
3B3-200x-ssh	X			<u> </u>	<u> </u>	X		X(semi)			
3C1-100x-ssh		X	·	X				X(semi)	<u> </u>		
3D1-200x-ssh			X	X	X	X				<u> </u>	
4P1-100x-ssh		8			8						
4A3-200x-ssh	X			X	X		X	X(somi)			
4B1-200x-ssh	n ^e	X			X		<u>↓ ×</u>			<u> </u>	
4C2-100x-sst			X		X		<u> </u>				
4D3-200x-ssh	1										
5P2-100x-sst	1									~	
5A3-200x-ssh		X		<u> </u>						<u> </u>	
5B2-200x-sst			X	<u> </u>		<u> </u>				<u> </u>	
5C1-200x-sst			X	800	X		×	1	1	×	
5D2-200x-sst	<u> </u>	X			X		X			<u> </u>	

				Bainita							
		Tamañ	0								
Muestra	Pequeña	Mediana	Grande	Homogénea	Heterogénea	Bandeada	Alrededor Grano Ferrita	Alrededor Grano Martensita			
1P2-100x-sshi						R.					
1A1-200x-ssh	X				X			X			
1B3-200x-ssh		X	M.C		X		X	194			
1C2-100x-ssh	1	X		d.	X		X				
1D3-200x-ssh	1		X (flor)	6	X		X				
2P2-100x-ssh											
2A3-200x-ssh	X	X		2	X		X	X			
2B2-200x-ssh	Х	X			X	X	X	X			
2C3-200x-ssh		Į.	X (flor)		X	Х	X				
2D2-200x-ssh		1	X (extra flor)	X			X				
3P3-100x-ssh							2. B				
3A1-200x-ssh	NVA										
3B3-200x-ssh		O		1			1				
3C1-100x-ssh	LAMMAN	X		1	X	X	X	_			
3D1-200x-ssh	ATIS /	X			X	X	X				
4P1-100x-ssh		(E)					10-10-10-10-10-10-10-10-10-10-10-10-10-1				
4A3-200x-ssh	0_/										
481-200x-ssh	X>			1.							
4C2-100x-ssh			X		X	x	X	_			
4D3-200x-ssh	$\mathcal{D}\mathcal{D}\mathcal{T}$		X (extra flor)		X	X	X				
5P2-100x-ssh		1/0/									
5A3-200x-ssh	X	VZZ			X			X			
5B2-200x-ssh		X			X			X			
5C1-200x-ssh			X (flor)		X		X				
5D2-200x-ssh	PTUU		X (extra flor)	X			X				

Descripción cualitativa de análisis metalográfico de aceros al silicio

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

ş e

Descripción cualitativa de análisis metalográfico de aceros al manganeso

	rer	111.5		Tamaãa Tama							
	Poligonal	Alargada		Tamaño		T	ipo		Distribución		
Muestra		6 · · ·	Pequeña	Mediana	Grande	Gruesa	Fina	Homogénea	Heterogenea	Bandead	
1P1-100x-ssh	x				x		X				
1A1-200x-ssh	X				X	X					
1B1-200x-ssh	X	_			5%				1		
1C1-200x-ssh	X			1							
1D1-200x-ssh	X										
2P2-200x-ssh	X			-	X	X			<u> </u>	<u> </u>	
2A3-200x-ssh	X										
B2-200x-ssh corregida	X										
2C3-200x-ssh	X								<u> </u>	<u> </u>	
2D2-400x-ssh	X										
4P3-200x-ssh	X				X	-	-		×		
4A3-200x-ssh	X								<u> </u>		
4B3-200x-ssh	X		100 100								
4C2-200x-ssh corregida	X	and the second sec	ŝ e				96.00	· · · · ·			
4D3-200x-ssh	X				L						
5P2-100x-ssh	X			X		1 	X	×			
5A1-200x-ssh	X										
5B3-200x-ssh	X									19973) P	
5C2-200x-ssh	M X	P_{λ}			1		•	<u> </u>			
5D1-200x-ssh	X	A					┝──╦──				
6P2-200x-ssh	X				X		X		<u> </u>	^	
6A3-200x-ssh	X									-	
6B1-200x-ssh corregida	X										
								0			
6C1-200x-ssh 6D1-200x-ssh	X					Aartensita					
6C1-200x-ssh 6D1-200x-ssh	X	Tamaño			orma	Aartensita		Distribució	n Alrededor		
6C1-200x-ssh 6D1-200x-ssh Muestra	X X Pequeña	Tamaño	Grande	Foligona	orma I Alargada	Aartensita omogêne	e Heterogéne	Distribució Bandeada	n Alrededor Grano Ferrita	Isla	
6C1-200x-ssh 6D1-200x-ssh Muestra	X X Pequeña	Tamaño Mediana	Grande	F Poligona	orma I Alargada	Aartensita omogénx	e Helerogène	Distribució Bandeada	n Alrededor Grano Ferrita	Isla	
6C1-200x-ssh 6D1-200x-ssh Muestra 1P1-100x-ssh	X X Pequeña	Tamaño Mediana	Grande	F Poligona	orma 1 Alargada	Aartensita omogéne	e Helerogéne	Distribució Bandeada	n Alrededor Grano Ferrita	Isla	
6C1-200x-ssh 6D1-200x-ssh Muestra 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh	Pequeña	Tamaño Mediana	Grande	F Poligona	n orma 1 Alargada	Aartensita omogéne	e Heterogéne	Distribució Bandeada	n Alrededor Grano Ferrita		
6C1-200x-ssh 6D1-200x-ssh Muestra 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh	Pequeña	Tamaño Mediana	Grande	F Poligona X X	n orma 1 Alargada	Aartensita omogéne	e Heterogéne	Distribució Bandeada	n Alrededor Grano Ferrita	Isla X X	
6C1-200x-ssh 6D1-200x-ssh Muestra 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1D1-200x-ssh	X X Pequeña	Tamaño Mediana	Grande	F Poligona X X X	n orma 1 Alargada	Aartensita omogène	Heterogéne	Distribució Bandeada	n Alrededor Grano Ferrita	Isla X X X	
6C1-200x-ssh 6D1-200x-ssh Muestra 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1D1-200x-ssh 2P2-200x-ssh	Pequeña	Tamaño Mediana	Grande	F Poligona X X X X X	n orma 1 Alargada	Aartensita omogéne	e Heterogène	Distribució Bandeada	n Alrededor Grano Ferrita	Isla X X X X	
6C1-200x-ssh 6D1-200x-ssh Muestra 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1D1-200x-ssh 2P2-200x-ssh 2P2-200x-ssh	Pequeña	Tamaño Mediana	Grande	F Poligona X X X X X	norma I Alargada	Aartensita omogéne X	Heterogéne	Distribució Bandeada	n Alrededor Grano Ferrita	Isla X X X X X	
6C1-200x-ssh 6D1-200x-ssh Muestra Muestra 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1D1-200x-ssh 2P2-200x-ssh 2A3-200x-ssh 2B2-200x-ssh	X X Pequeña	Tamaño Mediana	Grande	F Poligona X X X X X	Alargada	Aartensita omogéne X X	e Heterogéne	Distribució Bandeada	n Alrededor Grano Fernita	Isla X X X X X	
6C1-200x-ssh 6D1-200x-ssh Muestra Muestra 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1D1-200x-ssh 2P2-200x-ssh 2B2-200x-ssh 2B2-200x-ssh 2B2-200x-ssh	X X Pequeña	Tamaño Mediana	Grande	F Poligona X X X X	Alargada	Aartensita omogène X X X X	Heterogéne	Distribució Bandeada	n Alrededor Grano Fernita	Isla X X X X X	
6C1-200x-ssh 6D1-200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 22200x-ssh 2200x-ssh 2200x-ssh 2200x-ssh 2200x-ssh 2200x-ssh 2202-400x-ssh	X X Pequeña	Tamaño Mediana	Grande	F Poligona X X X X X X	Alargada	Aartensita omogéne X X X X X	Heterogéne	Distribució Bandeada	n Alrededor Grano Fernita	Isla X X X X X	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1D1-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2B2-200x-ssh 2D2-400x-ssh 2D2-400x-ssh 4P3-200x-ssh	X X Pequeña	Tamaño Mediana	Grande	F Poligona X X X X X X X	Alargada	Aartensita omogéne X X X X X	A Heterogéne	Distribució Bandeada	n Alrededor Grano Fernita	Isla X X X X X	
6C1-200x-ssh 6D1-200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 120x-ssh 2200x-ssh 2200x-ssh 2200x-ssh 2202-200x-ssh 2202-400x-ssh 202-400x-ssh 202-400x-ssh 4A3-200x-ssh		Tamaño Mediana	Grande	F Poligona X X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X	A Heterogéne	Distribució Bandeada	n Alrededor Grano Ferrita	Isla X X X X X X	
6C1-200x-ssh 6D1-200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 22200x-ssh 2200x-ssh 2200x-ssh 2202-200x-ssh 2202-200x-ssh 2202-400x-ssh 2202-400x-ssh 483-200x-ssh 483-200x-ssh		Tamaño Mediana	Grande	F Poligona X X X X X X X X X X	Alargada	Aartensita omogène X X X X X X X	Heterogéne	Distribució Bandeada	n Alrededor Grano Ferrita	Isla X X X X X X X	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 22200x-ssh 22200x-ssh 222-200x-ssh 222-200x-ssh 222-200x-ssh 222-200x-ssh 222-200x-ssh 222-200x-ssh 222-200x-ssh 483-200x-ssh 483-200x-ssh 483-200x-ssh	X X Pequeña X X X X X	Tamaño Mediana	Grande	F Poligona X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X	Heterogéne	Distribució Bandeada	n Alrededor Grano Fernita	Isla	
6C1-200x-ssh 6D1-200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 1200x-ssh 22200x-ssh 223-200x-ssh 223-200x-ssh 223-200x-ssh 2202-400x-ssh 2202-400x-ssh 4A3-200x-ssh 4A3-200x-ssh 422-200x-ssh 422-200x-ssh 422-200x-ssh 423-200x-ssh	X X Pequeña	Tamaño Mediana	Grande	F Poligona X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X	Heterogéne	Distribució Bandeada	n Alrededor Grano Fernita	Isla X X X X X X X X	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1C1-200x-ssh 1C1-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2A3-200x-ssh 2D2-400x-ssh 2D2-400x-ssh 4A3-200x-ssh 4A3-200x-ssh 4C2-200x-ssh corregida 4D3-200x-ssh 5P2-100x-ssh		Tamaño Mediana	Grande	F Poligona X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X	Heterogéne	Distribució Bandeada	n Alrededor Grano Fernita	Isla X X X X X X X X X X X X X X	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1C1-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2A3-200x-ssh 2D2-400x-ssh 2D2-400x-ssh 4A3-200x-ssh 4A3-200x-ssh 4A3-200x-ssh 4C2-200x-ssh 4C2-200x-ssh 5P2-100x-ssh 5P2-100x-ssh 5A1-200x-ssh	X X Pequeña	Tamaño Mediana	Grande	F Poligona X X X X X X X X X X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X X	Heterogéne	Distribució Bandeada	n Alrededor Grano Fernita	Isla X X X X X X X X X X X X X X X X	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1C1-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2D2-400x-ssh 2D2-400x-ssh 4B3-200x-ssh 4B3-200x-ssh 4B3-200x-ssh 5P2-100x-ssh 5P2-100x-ssh 5P2-100x-ssh 5B3-200x-ssh	X X Pequeña X X X X X X	Tamaño Mediana	Grande	Foligona X X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X X	Heierogéne	Distribució Bandeada X	n Alrededor Grano Fernita	Isla X X X X X X X X X X X X X X X X X X X	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1C1-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2B2-200x-ssh 2D2-400x-ssh 2D2-400x-ssh 4B3-200x-ssh 4B3-200x-ssh 4B3-200x-ssh 5P2-100x-ssh 5P2-100x-ssh 5B3-200x-ssh 5B3-200x-ssh 5B3-200x-ssh 5B3-200x-ssh 5C2-200x-ssh	X X Pequeña X X X X X X X X X X X X	Tamaño Mediana	Grande	Foligona X X X X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X	Heierogéne	Distribució Bandeada X	n Alrededor Grano Ferrita	Isla X X X X X X X X X X X X X X X X X X X	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1C1-200x-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2D2-400x-ssh 2D2-400x-ssh 2D2-400x-ssh 4B3-200x-ssh 4B3-200x-ssh 4B3-200x-ssh 5P2-100x-ssh 5P2-100x-ssh 5P2-100x-ssh 5B3-200x-ssh 5D1-200x-ssh 5D1-200x-ssh	X X Pequeña X X X X X X X X X X X X X X X X X X X	X X X	Grande	Foligona X X X X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X X X X	Helerogéne X X X X X X	Distribució Bandeada X	n Alrededor Grano Ferrita	Isla	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1D1-200x-ssh 1A1-200x-ssh 1A1-200x-ssh 1B1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2B2-200x-ssh 2D2-400x-ssh 2D2-400x-ssh 2D2-400x-ssh 4B3-200x-ssh 4B3-200x-ssh 4B3-200x-ssh 5P2-100x-ssh 5P2-100x-ssh 5P2-100x-ssh 5B3-200x-ssh 5D1-200x-ssh 5D1-200x-ssh 5D1-200x-ssh 5D1-200x-ssh 5D1-200x-ssh 5D1-200x-ssh	X X Pequeña X X X X X X X X X X X X X X X X X X X	Tamaño Mediana	Grande	Foligona X X X X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X X X	Helerogéne X X X X X X X X X X X X X	Distribució Bandeada X X	n Alrededor Grano Ferrita	Isla X X X X X X X X X X X X X X X X X X X	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1D1-200x-ssh 1A1-200x-ssh 1A1-200x-ssh 1B1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2B2-200x-ssh 2D2-400x-ssh 2D2-400x-ssh 2D2-400x-ssh 4B3-200x-ssh 4B3-200x-ssh 4B3-200x-ssh 5P2-100x-ssh 5P2-100x-ssh 5P2-100x-ssh 5D1-200x-ssh 5D1-200x-ssh 5D1-200x-ssh 5D1-200x-ssh 6P2-200x-ssh 6P2-200x-ssh 6A3-200x-ssh	X X Pequeña X X X X X X X X X X X X X X X X X X X	X X X	Grande	Foligona X X X X X X X X X X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X X	Heierogéne	Distribució Bandeada X X X	n Alrededor Grano Ferrita	Isla	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1P1-100x-ssh 1A1-200x-ssh 1B1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1C1-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2P2-200x-ssh 2B2-200x-ssh 2D2-400x-ssh 2D2-400x-ssh 2D2-400x-ssh 2D2-400x-ssh 2D2-400x-ssh 4B3-200x-ssh 4B3-200x-ssh 4B3-200x-ssh 5P2-100x-ssh 5P2-100x-ssh 5B3-200x-ssh 5D1-200x-ssh 5D1-200x-ssh 6B1-200x-ssh 6B1-200x-ssh corregida	X X Pequeña A A X X X X X X X X X X X X X X X X X	X X X X X	Grande	Foligona X X X X X X X X X X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X	Heterogéne	Distribució Bandeada X X X	n Alrededor Grano Ferrita	Isla	
6C1-200x-ssh 6D1-200x-ssh 6D1-200x-ssh 1D1-200x-ssh 1A1-200x-ssh 1A1-200x-ssh 1B1-200x-ssh 1C1-200x-ssh 1C1-200x-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2P2-20Dx-ssh 2B2-200x-ssh 2D2-400x-ssh 2D2-400x-ssh 2D2-400x-ssh 2D2-400x-ssh 4B3-200x-ssh 4B3-200x-ssh 4B3-200x-ssh 5P2-100x-ssh 5P2-100x-ssh 5P2-100x-ssh 5D1-200x-ssh 5D1-200x-ssh 5D1-200x-ssh 6B1-200x-ssh 6B1-200x-ssh 6B1-200x-ssh	X X Pequeña A A X X X X X X X A A A A A A A A A A	X X X X X	Grande	F Poligona X X X X X X X X X X X X X X X X X X X	Alargada	Aartensita omogéne X X X X X X X X X X X X	Heierogéne	Distribució Bandeada	n Alrededor Grano Ferrita	Isla	

	Bainita										
VIII CANADALISMAN		Tamaño		Distribución							
Muestra	Pequeña	Mediana	Grande	omogéne	eterogéne	Bandeada	Partícula	Alrededo Grano Martensita			
1P1-100x-ssh		-					35) 				
1A1-200x-ssh				1							
1B1-200x-ssh	X							X			
1C1-200x-ssh	X						X	X			
1D1-200x-ssh	X	Х		i star		-		X			
2P2-200x-ssh			-								
2A3-200x-ssh		X		1	X	X					
2B2-200x-ssh corregida	X				X	X					
2C3-200x-ssh		X			X	X					
2D2-400x-ssh		X			X	X					
4P3-200x-ssh				r.							
4A3-200x-ssh											
4B3-200x-ssh											
4C2-200x-ssh corregida	/ /	X			X	X		100 B			
4D3-200x-ssh	X				X		X				
5P2-100x-ssh											
5A1-200x-ssh	X			-	X			X			
5B3-200x-ssh		X		1	X	90 90	X				
5C2-200x-ssh		X			X		X				
5D1-200x-ssh		X		X			X				
6P2-200x-ssh											
6A3-200x-ssh	10/										
6B1-200x-ssh corregida	2							8			
6C1-200x-ssh	Z										
6D1-200x-ssh		I		1			104 - 1050				

VERSIDA

. ₹ =

Descripción cualitativa de análisis metalográfico de aceros al manganeso

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN BIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEON DIRECCIÓN GENERAL DE BIBLIOTECAS

. -

DIRECCIÓN GENERAL DE BIBLIOTECAS

÷

•2		2,972.2 -361.8	-2,539.1	132.0	-2,613.3	0.4					÷	94.107	91.830					
166	NTONOMA IE 88	2,785.8 -432.7	-2,313.4	146.3	-2,392.5	0.6	-603,1					94.584	91.870 (2)			-		
	ALERE FLAMMAM BOR	2,711.1	-2,195.2	147.3	-2,234.1	0.6	-711.6	-13.7				94.711	91.000					
	ultiple para obtene	2,704.107	-2,186.0	147.9	-2,226.8	0.6	-715.6	-13.6	-0.9			94.712	90.01 0	infianza.				7
	UNIVERSID	2,850.0	-2.335.5	147.6	-2,379.9	9.0	-704.6	-13.1	ę	-160.1	D]	E 11	88.760	o de nivel de co	no valor.		ÓN	R
	DIRECCIO	2,822.8	-2.295.2	148.1	-2.335.7	9.0	-733.4	-13.0	-1.5 -1.5	-132.3	-73.3	BT 14 BT	87.160	² aiustada con 99 %	ajustado con máxih	S		
		Constante	% Min f	S Si		Temperatura	d territa	d plance -0.5	d _{oscura}	f blance	% C	2	к R ² aiustado	(1) Valores azrilas: R	(2) Valores en líla: \mathbb{R}^2		×	

2,908.9 -346.7 -2,158.4 154.9 -2,144.7

92.933 90.910 (1)

.

166

į

-310.67 201.53

832.91 -37.02

167

167

91.771 90.125

144.85 -148.46 -103.69 -141.61 0.93 2.45 1.13 0.01 153.99 -150.75 -113.60 -157.84 1.09 0.01 1.08 3.10 7.61 166.53 -166.00 -120.46 13.66 1.19 1.06 4.16 -0.52 0.01 -131.45 -191.15 177.30 -181.91 25.01 1.28 0.01 1.02 DIREC 3.14 .

f fenta

f oscura

-58.43 -54.16

-51.19 49.59

44.78 1.30 0.01

1.41

67.91

60.458 72.088 -53.76 57.84 -59.11 0.01 0.93 1.42 Correlación múltiple para obtener su de los aceros al Si -142.33 137.25 -134.88 74.020 59.849 -86.13 1.26 1.22 0.01 75.194 57.831 75.526 53.770 76.041 49.088 76.501 42.930 -0.72 28.93 Temperatura R² ajustado d asoura Constante 6.9 9.6

d blenca

f blanca w Mn d territa

% Si

Ъ.

(1) Valores azules: \mathbb{R}^2 ajustada con 96 % de nivel de confianza.

68.222

61.867

73.424 65.830

(2) Valores en lila: R² ajustado con máximo valor.

AS

168

Correlación múltiple para obtener e, de los aceros al Si 32.344 (2) 58.985 253.13 -256.32 26,173 13.31 -3.85 -250.50 -219.00 0.02 9.84 250.18 -257.73 11.58 -3.95 -251.65 59.587 19.175 212.31 18.66 0.02 28.57 272.87 -287.24 55.314 -237.65 -278.87 0.000 11.35 -4.16 0.02 29.06 47.87 0.08 1.39

42.40 -26.45 10.20 -1.96 -22.71

-242.38 13.12 -2.14

> -242.41 -214.65

12.60 -3.00 -259.85

-3.58 12.11

-239.87

-243.49

0.02

0.02

260.88 -246.27

266.53 -267.02

245.86 -248.36

Temperatura R² R² ajustado d oscura d blanca -0.5 Constante d _{fentta} f oscura % Mn f blanca 0% f ferrita % Si

(1) Valores azules: R² ajustada con 91 % de nivel de confianza.

35,572 17.164

53.428 30.142

58.655

29.356 (1) 48.979

(2) Valores en Iila: R² ajustado con máximo valor.

•

0.677 0.392 -0.712 0.018 0.014 0.000 -0.765

170

170

82.302 73.452 (1 y 2)

	274,518.0 32.6	-295,447.0 -284 <u>.970.0</u>	-177,971.0		83.684 79.023 (1)	
	247,737.0 31.0	-266,028.0 -257.890.0	-154,497.0	1,097.8	86.278 81.000 (2)	
TONOMA SE	238,989.0 25.7	-251,892.0 -244.771.0	-157,838.0	887.6 743.2	86.825 80.237	
	240,782.0 25.8	-254,293.0 -247.172.0	-160,578.0	900.9 740.3 4,521.1	86.853 78.486	œ.
	234,449.0 26.6	-249,009.0 -241,719.0	-152,680.0	961.1 804.7 12,732.6 -1,295.0	86.908 76.434	de confianz
	235,262.0 26.2	-250,218.0 -242,928.0	-152,830.0	971.4 760.4 14,693.5 -1,245.7 1,980.0	86.912 73.824	1% de nivel táximo valor.
DIRECCIÓN	253,013.0 26.8	-2/3,183.0 -264,126.0	172,502.0	952.1 607.0 29,164.7 -1,438.5 9,918.9 83.6	86.320 66.678	ustada con g
	Ū		a.∎9			azules: R² aj en líla: R² aj,
	Constante Temperatur.	f oscura f ferrita	f blanca	d eccura -0.5 % Si % Mn d ferrita -0.5 d bitanca -0.5 d bitanca -0.5	R² R² ajustado	(1) Valores ((2) Valores (

171

۰,

171

Correlación multiple para obtener σ_{yp} / σ_u de tos aceros al Si 96.803 94.678 0.342 2.675 -0.310 -0.043 -0.008 0.070 0.320 0.358 0.257 3.193 -0.312 -0.047 96.996 94.326 -0.008 -0.009 0.518 0.037 0.331 0.228 3.200 -0.320 -0.048 97.051 0.026 -0.008 0.472 0.349 0.000 97.053 0.143 3.181 -0.047 -0.007 -0.009 0.000 -0.321 0.120 0.434 0.457 0.091 Temperatura R² ajustado d otcura -0.5 Constante d blanca d territa % Cv % Wu f oscura f blanca % Si f femita

0.487 2.290 -0.317 -0.030 -0.025

0.458 2.261 -0.301 -0.031 -0.013

0.396 2.461 -0.297 -0.035

0.080

0.075 0.183

(2) Vatores en lita: R² ajustado con máximo valor.

ž

94.937 (2) 91.240 (1)

93.187

96.343

96.532 94.798

172

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

. .

174	TONOMA
R	ALERE FLAMMAM VERITATIS
RSIL	
UNI	VERSIDA

a e

	VERSIDÆ DIRECCIÓ	relación múltip	le para obten	ALERE FLAMMAM VERITATIS	tceros al Mn	
Constante f	-958.98 -290.04	-943.87 -265 23	-831.63 -286 71	-874.25 -223.35	-821.68 -249.78	-880.69
f ferrita	181.68	175.34	156.22	141.72	157.32	100.84
Temperatura	1.44	1.42	1.29	1.34	1.14	1.23
% C	2104.07	2033.37	1805.61	1654.82	1795.89	1840.55
% Mn	201.14	189.14	170.82	165.63	133.89	104.27
d oscura -0.5	-41.97	-43.15	-42.17	-38.19	-47.27	-33.27
d ferrita	-577.83	-564.18	-491.14	-436.15		
d blanca -0.5	-16.57	-15.95	-7.68			
f blanca	-286.16	-278.07				
% Si	-33.67					
R²	80.733	80.704	79.874	79.025	76.789	71.791
R ² ajustado	56.649	61.408	63.773	66.789 (2)	60.076 (1)	61.716

(1) Valores azules: \mathbb{R}^2 ajustada con 90 % de nivel de confianza. (2) Valores en lila: \mathbb{R}^2 ajustado con máximo valor.

AS

ÉÓ

	-379.71 -192.73	243.51 245.21	0.96 0.91	-66.85 -75.95	-630.55 -708.26	3 1,339.27						91.208 88.471	2) 86.812 84.278 (1						
UTONOM IR	-550.52	292.74	1.17	-75.87	-645.57	1,305.18	-749.09					93.236	88.727 (;						
ALERE FLAMMAM VERITATIS	-513.18	271.57	1.01	-86.25	-691.23	1,453.02	-857.43	420.88				94.057	88.857						
pie optioner c	-242.47	258.28	0.63	-95.41	-735.77	1,214.20	-798.81	630.37	22.97			94.643	87.500	nfianza.					
INIVERSIDAGO	-246.52	264.21	0.64	-94.86	-751.08	1,246.56	-806.56	624.87	22.73	-16.79	DE	94,647	85.011	de nivel de co	lo valor.	[]	ΕÓ	N	(F
DIRECCIÓN	-444.46	273.06	0.68	-94.13	-592.44 E	1,263.06	-654.83	592.68	22.79 E	-30.12 B	169.87 1	94.649	81.271	R ² alustada con 92 %	R ² ajustado con máxim	S			
	Constante	% Mn	Temperatura	d oscura -0.5	f oscura	%C	f blanca	d lentia -0.5	d blanca	% Si	f fertta	R²	R ² ajustado	(1) Valores azules:	(2) Valores en lila:				

1

-48.55 358.59

-103.81

76.01

709.21

177

\S

	40.80	-0.03										16.653	2.022 (1)						
	45.36	-0.03	-43.08									28.361	19.933						
	40.34	-0.03	-45.49	1								35.278	23.143						
NUTONOM I	43.01	-0.03	-56.93 0.4 <i>5</i>	a. 13 -1.76								40.047	24.060						
ALERE FLAMMAN VERITATIS	53.63	-0.04	-67.49	-2.48	-3.64							46.199	26.984 (2)						
	54.94	-0.04	-69.49	-5.13	-5.63	8.67			A			49.066	25.558						
ple para obt	55.02	-0.04	-71.29	97.61 4.81	-5.76	8.68	4.24					49.352	19.807	a 17a					
UNIVERSIDAND	52.72	-0.0 4	-68.38	4.12	-5.67	8.47	-6.71	0.33	1]	DF	Ē	49.779	13.255 A	ator.		Æ	Ż	J	
DIRECCION	52.74	-0.04	-68.43	4.12	-5.67	8.46	-6.71	0.33	0.07	BII	Bİ	49.779	4.581	máximo va	AS			(R
• 3= ==	44.59	-0.02	-98.88	18.02	-8.00	16.82	-5.95	0.78	7.00	0.10		61.487	13.345	ajustatua con justado con					
	Constante	Temperatura	% C	% VI	f femilia	f oscura	d ferrita	d oscura	f blanca	d blanca		R²	R ² ajustado	 Valores azules. K Valores en lila: R² a 					

	× 2	DIRECCIC		tiple para obtaner	ALERE FLAMMAN VERITATIS				ti
	,)N	D						
Constante	-0.0300	-0.0350	-0.0415	-0.0367	0.0011	0.0285	0.0349	0.0349	0.0270481
d blanca	-0.0045	-0.0045	-0.0045	-0.0041	-0.0037	-0.0038	-0.0040	-0.0038	-0.00471075
f tentra	0.0694	0.0736	0.0793	0.0783	0.0661	0.0396	0.0327	0.0312	0.0337829
%C	-0.0717	-0.0708	-0.0711	-0.0753	-0.0775	-0.0789	-0.0749	-0.0717	
d oscura	-0.0010	-0.0010	-0.0009	-0.0012	-0.0015	-0.0012	-0.0007		
% Mn	0.0043	0.0047	0.0048	0.0040	0.0029	0.0015			
f oscura	0.0366	0.0402	0.0460	0.0444	0.0304				
Temperatura	0.0000	0.0000	0.000	0.000					
d territa -0.5	-0.0108	-0.0117	-0.0127						
f blanca	-0.0092	-0.0056							
% Si	0.0006	31]	DF						
2	05 160	Base	05 121	04 270	00 100	80 777	87 005	86 A73	R1 708
К R ² aiustado	90,100 83.088	86.464	88.709	89.359 (2)	32. 132 86.340	83.313	83.193	82.782 (1)	78.764
(1) Visionae azulae: R ² s	ainstada con 06	and an inter da	Confianza						
(1) Valores en Illa: R ² a	iustado con má	tximo valor.	V						
		CA	0						
		S	L]						
			ĒĆ						
)N						
			R						

	0.4805	41.130 33.700 (2)
	0.4610 -0.0004 0.0100	41.768 30.100
INTONOM E	0.4686 -0.0004 -0.3176 0.0398 -0.0087	43.335 27,100
ALERE FLAMMAM VERITATIS	0.5182 -0.0004 -0.0648 -0.0202 -0.0372	22 400 22 400
	0.5360 -0.0004 -0.3759 -0.0790 -0.0238 -0.0678	44.607
nmuttiple para	1.2473 -0.0005 -0.4778 0.1085 -0.6942 -0.6268 -0.6268	48.049 14.900
UNIVERSIDAI	1.2530 -0.0005 -0.5022 -0.6806 -0.6806 -0.6806 -0.6806 -0.6806	NJ JEVO LEÓN R R R
DIRECCIÓN (GENERAL DE BIBI	LIOTE
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2925 -0.0005 -0.5070 0.1226 -0.1226 -0.1226 -0.1226 -0.1226 -0.1226 -0.1226 -0.1226 -0.1226	48.387 0.000 9 % de nivel svimo valor.
4 g ²⁰	0.7404 -0.0003 -0.7448 0.1297 -0.0417 -0.0417 -0.0509 -0.0646 -0.0646	61.791 7.200 ajustada con 99 ajustado con m
	Constante Temperatura % C % Mh f ente f ente d cours d tema 0.5 d tema 0.5 d tema	R² ajustado (1) Valores azules: R² (2) Vatores en Ilia: R²

0.4558 -0.0004

35.731 31.900 (1)

181

•

ALEREE FLAMMAM VERTIATIS VERTIATIS VERSID VERSID DIRECCIO UNIVERSI

• -

182

)]	Ι						
Constante	17,216.60 16,784	1.60 22,144.40	0 22,023.30	18,820.60	17,813.20	17,672.40	16,266.20	16,532.6(
f terrete	-10,741.10 -10,71	5.60 -11,121.2	0 -10,867.90	-7,067.92	-6,809.99	-6 ,678.74	-5,828,48	-6,468.53
% SI	25,117.20 24,949	9.40 25,578.10	0 26,374.90	18,434.20	18,434.70	13,267.70	12,943.00	13,347.10
f oscura	17,831.50 17,761	1.10 17,680.50	0 17,488.00	7,137.40	8,803.90	3,928.01	4,212.57	
с %	-77,744.20 -77,47	9.80 -79,418.2	0 -79,849.60	-33,457.10	-27,412.60	-18,295.60		
% Mn	-5,158.48 -5,005	5.50 -5,314.14	-5,394.16	-2,244.83	-1,879.38			
f blanca	20,985.50 20,686	3.30 21,846.50	0 20,827.20	9,301.01				
d blanca	453.69 423.0	65 519.47	459.16					
d oscura	288.01 313.	93 216.60	-					
Temperatura	5.41	6.28						
d ferrita	1191.97	D						
	IE))E						
R²	79.566 79.50	61 79.447	79.358	73.192	72.624	72.198	71.453	70.318
R ² ajustado	54.023 59.1	21 63.005	66.223 (2)	60.820	62.846	64.784	66.101	66.826 (1)
		U						
(1) Valores azules: I	₹ ² ajustada con 98 % c	de nivel de conf	ianza.					
(2) Valores en líla: F	² ajustado con máximo	o valor.						
	ĊA	0				×		
	S	L						
		Æ						
		ÍÒ						

UNIVERSIDA

, 1

2

i,

2	
2	
m	
5	
ö	
ē.	
Ö	
0	
So	
C	
σ	
ฮ	
-	
03	
6	
5	
č	
B	
ā	
0	
, TO	
Ø	
0	
<u>•</u>	
<u>a</u>	
Ħ	
Ē	
c	
0	
Q	

		_					
Constante	-0.867	-1.005	-0.988	-0.966	-0.841	-0.456	-0.039
Temperatura	0.002	0.002	0.002	0.002	0.002	0.001	0.001
d territa	-1.178	-1.304	-1.257	-1.261	-1.258	-1.053 .	-0.850
f teorita	0.232	0.234	0.176	0.173	0.151	0.127	
f blance	-0.920	-0.920	-0.922	-0.866	-0.670	-0.472	
% Mn	0.178	0.204	0.131	0.112	0.102	0.073	
d blance	-0.042	-0.044	-0.039	-0.039	-0.033		
% C	1.221	1.307	0.882	0.732			
% SI	-0.184	-0.255	-0.064				
f oscura	-0.256	-0.253					
d oscura	-0.016	E					
		N					
R²	85.011	84.118	82.304	81.892	79.772	75.746	67.303
R ² ajustado	66.275	68.236	68.148	70.369 (2)	69.658 (1)	67.084	65.456
	E ^d enico ² O		ind do one	ficers.			

Valores azules: R⁻ ajustada con B/ % de nivel de
 Valores en lila: R² ajustado con máximo valor.

ÆÓ

.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Análisis de ϵ_{u} calculada para aceros al silicio

Muestra	Nivel		£*		Eg		Eu colcularia		6.95	σ.		σ	G
		1	2	1	2	3		· a copositionaliz	1	OK.	2	o u calculate	~u experiumai
P1-2	No-25 °C		-	0.008			0.217	0.900	-			100	
A1-2	A-751 °C		0.138	0.000	0.124		0.156	0.322			637	400	469
B1-3	B-787 °C		0.133	0.002	0.119		0.150	0.140			609	634	634
C1-3	C-822 ℃		0.138	0.000	0.124		0.152	0.140			505	624	624
D1-3	0.0% SI-D		0.118	-0.010	0.097		0.132	0.100			080	597	605
0.4% Si sin tratamiento	No-25 °C	8		0.010	0.001		0.740	0.300	27.	275-5	330	580	571
2A-3	A-765 °C	0.049	0.105	-0.010	0.003	0.083	0.235	0.300	504		65A	572	570
2B-2	B-802 °C	0.050	0 134	-0.010	0.010	0.007	0.140	0.131	324		000	007	6/9
20-3	0.4% Si -C	S. S. State and	0.120	0.004	0.008	0.007	0.152	0.100	485		7001	100	034
20-2	D-875°C	0.047	0 109	0.010	0.035	300.0	0.133	0.140	504		763	802	768
0.7% Si sin tratamiento	No-25 °C			0.015	4.425	0.000	0.123	0.122	901		129	143	F70
5A-3	A-775 °C		0.160	0.008	0 147		0.172	0.300	č.		844	970	924
5B-1	B-814 °C		0 133	0.002	0 122		0.1/2	0.174			760	700	777
50-1	C-852 °C		0 136	0.002	0.124		0.140	0.157			732	100	927
50-2	0 7% Si-D		0.106	0.008	0.026		0.127	0.137			750	705	792
1.2% Si sin tratamiento	No-25 °C			0.008	0.000	6	0.107	0.151	-		100	600	695
3A-3	A-789 °C	0.057	0 164	0.002	0.025	0 120	0.192	0.202	665		810	851	849
3B-3	B-828 °C	0.049	0 152	-0.005	0.014	0.116	0.193	0.174	500		765	\$11	747
3C-1	C-867 °C	0.046	0.157	-0.005	0.014	0.115	0.109	0.101	505		767	801	700
3D-3	D-905%	0.048	0 143	0.002	0.016	0.110	0.130	0.151	551		707	937	820
2 0% Si sin tratamiento	No-25 °C		U.1.1	0.002	0.010	0.172	0.110	0.100	301		151	766	757
44-1	A-814 %	0.0440	0 137	0.002	0.019	0 100	8,170	0.161	643		200	042	035
2B-1	B-855 %	0.0434	0 154	0.002	0.017	0.100	0.213	0.204	575		2030	974	968
40.2	C-896 %	0.0430	0 173	0.002	0.017	0 110	0.222	0.207	550		807	050	046
40-3	D-9379C	0.0400	0.141	0.002	0.022	0.105	0.170	0.166	671		1 000	1.049	1045
Muestra	Nivel	σ⊮/σu	6	1-m	72		m		٤	calcut	ida]	
				2	3	1	2	3	^ε θ pros (σ _k /σ _u) _{pros}	m= 0.1 n=0.1	96		
P1-2	No-25 °C		-2.24			3.24						1	
A1-2	A-751 °C	0.97	-2.26	-30.12		3.26	31.12			0.118	3		
B1-3	B-787 °C	0.97	-2.34	-31.25		3.34	32.25			0.112	2	1	
C1-3	C-822 ℃	0.98	-2.57	-35.51		3.57	36.51		1	0.093	3		
D1-3	0.0% SHD	0.96	-2.28	-19.35		3.28	_ 20.35 _			0.169	,		
0.4% Si sin tratamiento	No-25 °C	41. 27-	-2.46			3,46							_
2A-3	A-765 °C	0.95	-1,90	-2.71	-16.55	290	∆ 3 .71	17.55	F V	0.170	2	EON	
28-2 VI V L/IV	B-802 °C	0.94_	-1.57	-2.86	-11.82	257	3,86	12,82		0.195			
2C-3	0.4% Si -C	0.95	-2.47	-17.04	-	3,47	18.04			0.176	5		R
2D-2	D-875°C	0.98	-2.56	-4.92	-34.94	3.56	5.92	35.94		0.070) 1 1	4	<u>U</u>
0.7% Si sin tratamiento	No-25 °C	та	-2.54	1.444	DAT	3.54			h	اسما		1	
5A-3) R	A-775 °C	0.985	-2.51 -	-39.31	KAI	3.51	40.31	$\exists 0 $	I H.(0.084	NS-	1	
58-1	8-814 °C	0.980	-2.47	-37.66		3.47	38.66			0.089	\sim		
5C-1	C-852 °C	0.982	-2.61	-38.22	3	3.61	39.22			0.085	2	I	
5D-2	0.7% Si-D	0.955	-3.07	-18.67		4.07	19.67		I	0.144	(4	
1.2% Si sin tratamiento	No-25 °C	121220	-2.66		44.00	3.00	2.00	16 90		0 17	5		
3A-3 · -	A-789 °C	0.96	-1,30	-2.96	-14.80	2.30	3.50	13.00	1	0.172	2		
38-3	B-828 °C	0,94	-1.19	-2.41	-12.00	2.19	3.91	11.00		0.21	7		
3C-1	C-867 ℃	0.95	-1.44	-2.50	-10.99	2.44	3.50	11.99		0.40			
3D-3	D-905°C	0.95	-1.59	-2.72	-14.25	2.04	3.12	13.23		0.164	•	1	
2.0% Si sin tratamiento	No-25 °C		-2.91	9.05	14 65	2.31	8 06	15.65		0 170	1		
4A-1	A-814 °C	0.95	-1.42	-3.05	- 14.00	2.76	3.71	8.41		0 23	5		
48-1	8-855 °C	0.92	-1.34	-2.11	7 02	2 20	3.61	8.92		0.234	5		
40-2	C-896 °C	0.94	-1.29	-2.01	-1.92	250	455	15 52		0 15	3		
40-3	D-937°C	0.96	-1.59	-3.00	-14.52	2.359	4.50	1.4.44	1			-	

Muestra	Nivel	1	Ek	-	80		Eu calculada	Eu extremental	G 4	2	Ou calculada	Tu experimental
u .		1	2	٦	2	3			1	2		v experimental
P1-2	0.4% Mn sin tratamiento	200		0.020			0.320	0.300			575	FRE
A1-1	0.4% Mn-A	0.071	0.166	-0.030	0.028	0.134	0.182	0.174	531 0185	670	603	689
B1-3	0.4% Mn-B	0.111		0.004	0.092	1992-1122-0	0.145	0 131	785 1973	075	820	815
C1-3	0.4% Mn-C	0.051	0.127	-0.005	0.005	0,110	0.148	0.148	545 8111	715	729	720
D1-2	0.4% Mn-D	0.041	0.112	0.005	0.011	0.094	0 140	0.140	599 9215	816	951	843
P5-2	0.7% Mn sin tratamiento	1	24	0.000			0.288	0.300	000.0210	010	541	537
A5-1	0.7% Mn-A	0.052	0.147	0.002	0.011	0.132	0.163	0 166	511	716	732	735
B5-3	0.7% Mn-B	0.141		-0.004	0.120	(01,01,7 1	0.165	0 166	858	930	681	684
C5-2	0.7% Mn-C	0.129		-0.004	0.103		0.165	0 148	852 5993	1.066	689	678
D5-1	0.7% Mn-D	0.055	0.138	-0.006	0.008	0.114	0.162	0 157	525	682	704	702
P4-3	1.2% Mn sin tratamiento			0.023	1000		0.277	0.278			634	630
A4-3	1.2% Mn-A	0.050	0.152	0.008	0.026	0.126	0.183	0.180	507,7585	791	826	825
B4-3	1.2% Mn-B	0.045	0.141	0.004	0.021	0.117	0.169	0.166	546,8834	827	861	859
C4-3	1.2% Mn-C	0.044	0.166	0.002	0.018	0.117	0.206	0.199	509.6614	815	860	856
D4-1	1.2% Mn-D	0.049	0.107	0.015	0.031	0.089	0.140	0.122	684,1527	929	980	966
P6-2	1.8% Mn sin tratamiento			0.023			0.262	0.231			706	683
A6-1	1.8% Mn-A	0.049	0.160	0.004	0.023	0.113	0.198	0.191	573	862	906	901
B6-2	1.8% Mn-B	0.051	0.146	0.010	0.032	0.081	0.192	0.174	750	1.062	1,128	1,107
C6-3	1.8% Mn-C	0.048	0.150	0.010	0.030	0.112	0.171	0.174	771	1.094	1,122	1,125
D6-1	1.8% Mn-D	0.049	0.162	0.009	0.028	0.121	0.186	0.182	696	1.032	1.063	1.061
P2-2	1.9% Mn sin tratamiento			0.023			0.243	0.239			729	721
A2-3	1.9% Mn-A	0.044	0.141	0.008	0.026	0.090	0.170	0.157	733	1,021	1,057	1.042
B2-2	1.9% Mn-B	0.047	0.148	0.008	0.029	0.092	0.173	0.157	771	1,069	1,101	1,077
C2-3	1.9% Mn-C	0.044	0.148	0.012	0.030	0.087	0.181	0.166	743	1,097	1,143	1,125
D2-2	1.9% Mn-D	0.044	0.111	0.011	0.029	0.086	0.139	0.131	812	1,094	1,139	1,128

Analisis de ε_u cal	culada para	aceros a	l manganeso
---------------------------------	-------------	----------	-------------

Muestra	Nivel	α⊮αu		1-m			m		E _u calculada	
			1	2	3	1	2	3	ε _{0 prom=} 0.019	
		7			/				(σ _k /σ _a) _{prom} ≃ 0.96	8
P1-2	0.4% Mn sin tratamiento		-2.33		()N	3.33	AD)		HV()	F.(
A1-1	0.4% Mn-A	0.98	-1.04	-3.81	-19.42	2.04	4.81	20.42	0.139	
B1-3	0.4% Mn-B	0.95	-2.36	-17.88		3.36	18.88		0.188	
C1-3	0.4% Мл-С	0.97	-1.94	-2.60	-25.51	2.94	3.60	26.51	0.141	
D1-2	0.4% Mn-D	0,96	-2.32	-2.95	-20,69	3.32	3.95	21.69	TTC/0.153 C	
P5-2	0.7% Mn sin tratamiento	NT A	-2.47			3,47	L DI	DLIG	ILCAD	
A5-1	0.7% Mn-A	0.98	-1.88	-2.50	-32.07	2.88	3.50	33.07	0.118	
B5-3	0.7% Mn-B	0.97	-2.26	-20.96		3.26	21.96		0.174	
C5-2	0.7% Mn-C	0.95	-2.17	-14.95		3.17	15.95		0.216	
D5-1	0.7% Mn-D	0.97	-2.03	-2.90	-19.92	3.03	3.90	20.92	0.158	
P4-3	1.2% Min sin tratamiento		-2.93		-	3.93				
A4-3	1.2% Mn-A	0.957	-1.16	-2.67	-16.60	2.18	3.67	17,60	0.183	
B4-3	1.2% Mn-B	0.961	-1.25	-2.88	-18.44	2.25	3.88	19.44	0.166	
C4-3	1.2% Mn-C	0.948	-1,31	-2.71	-10.22	2.31	3.71	11.22	0.224	
D4-1	1.2% Mn-D	0.948	-1.50	-3.62	-18.57	2.50	4.62	19.57	0.146	
P6-2	1.8% Mn sin tratamiento		-3.18			4.18				1
A6-1	1.8% Mn-A	0.95	-1.36	-3.05	-10.68	2.36	4.05	11.68	0.206	
B6-2	1.8% Mn-B	0.94	-1.40	-4.13	-8.00	2.40	5.13	9.00	0,189	
C6-3	1.8% Mn-C	0.97	-1.53	-4.42	-16.00	2.53	5.42	17.00	0.142	
D6-1	1.8% Mn-D	0.97	-1.45	-3.72	-14.47	2.45	4.72	15.47	0.163	
P2-2	1.9% Mn sin tratamiento		-3.54			4.54	1.00		10 A 10 A	
A2-3	1.9% Mn-A	0.97	-1.79	-4.56	-11.58	2.79	5.56	12.58	0.160	
B2-2	1.9% Mn-B	0.97	-1.67	-4.81	-11.39	2.67	5.81	12.39	0.156	
C2-3	1.9% Mn-C	0.96	-1.42	-4.47	-9.63	2.42	5.47	10.63	0.171	i.
D2.2	1 0% Ma D	0.96	-1 61	-4 64	-17.87	2.61	5.64	18.87	0.131	

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Temperatura del Billet de aceros al Si en cada Pase

1							
	Pase	Azul	Azul	Verde	Verde	Blanco	Blanco
		(2.0 % Si)	(2.0 % Si)	(1.2 % Si)	(1.2 % Si)	(0.6 % Si)	(0.6 % Si)
	1	1,140	1,123	1,140	1,118	1,077	NR
	2	1,123	1,143	1,136	NR	1,140	1,134
	3	1,122	1,143	1,134	1,117	1,139	1,154
	4	1,134	1,142	1,133	NR	1,138	1,153
	5	1,133	1,142	1,133	1,133	1,138	1,139
	6	1,132	1,141	1,132	NR	1,137	1,133
	7	1,132	1,141	1,142	NR	1,136	1,139
	8	1,131	1,141	1,142	NR	1,136	NR
	9	1,130	NR	1,142	1,147	1,134	NR
	TO 10	991	1,051	1,056	1,030	1,034	NR
		990	1,050	1,054	1,030	NR	1,060
	ALERE 12 AMMAN	1,000	1,050	1,054	1,030	1,030	1,035
	13	1,000	1,050	1,054	NR	1,029	NR
S	14	1,000	898	883	854	836	820
X	A _{c1}	\rightarrow	74	7	50	74	40
B	Aca	597	78	94	14	9	29
	· · · · · · · · · · · · · · · · · · ·		1.000				
KAL .							
K	Pase	Gris	Gris	Amarillo	Amarillo	Rojo	Rojo
	Pase	Gris (0.4 % Si)	Gris (0.4 % Si)	Amarillo (0.4 % Si)	Amarillo (0.4 % Si)	Rojo (0.0 % Si)	Rojo (0.0 % Si)
	Pase 1	Gris (0.4 % Si) 1,128	Gris (0.4 % Si) 1,161	Amarillo (0.4 % Si) 1,148	Amarillo (0.4 % Si) 1,111	Rojo (0.0 % Si) 1,076	Rojo (0.0 % Si) 1,131
	Pase 1 2	Gris (0.4 % Si) 1,128 1,110	Gris (0.4 % Si) 1,161 1,130	Amarillo (0.4 % Si) 1,148 1,152	Amarillo (0.4 % Si) 1,111 1,076	Rojo (0.0 % Si) 1,076 1,162	Rojo (0.0 % Si) 1,131 1,164
UNIV	Pase 1 2 ER3SII	Gris (0.4 % Si) 1,128 1,110 1,165	Gris (0.4 % Si) 1,161 1,130 1,161	Amarillo (0.4 % Si) 1,148 1,152 1,158	Amarillo (0.4 % Si) 1,111 1,076 1,160	Rojo (0.0 % Si) 1,076 1,162 1,142	Rojo (0.0 % Si) 1,131 1,164 1,156
UNIV	Pase 1 2 ER3SII 4	Gris (0.4 % Si) 1,128 1,110 1,165 1,157	Gris (0.4 % Si) 1,161 1,130 1,161 1,151	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,148	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151
UNIV	Pase 1 2 ER3SII 4 5	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,115	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,148 1,148 1,155	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 . 1,140	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127
UNIV	Pase 1 2 ER3SII 4 DIR ⁵ EC(Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,115 1,155	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,148 1,148 1,155 1,157	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,140 1,096	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134
UNIV	Pase 1 2 ER3SII 4 0IR5 6 7	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,115 1,155 1,081	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143 1,156	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,158 1,148 1,155 1,157 NR	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146 1,130	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,140 1,096 1,126	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134 1,143
UNIV	Pase 1 2 ER3SII 4 0 R5 6 7 8	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,115 1,155 1,081 NR	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143 1,156 NR	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,148 1,148 1,155 1,157 NR 1,130	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146 1,130 NR	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,143 1,140 1,096 1,126 NR	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134 1,143 NR
UNIV	Pase 1 2 ER3SII 4 0 R5 C 6 7 8 9	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,157 1,155 1,081 NR NR	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143 1,156 NR 1,120	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,158 1,148 1,155 1,157 NR 1,130 1,130	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146 1,146 1,130 NR 1,120	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,140 1,096 1,126 NR 1,109	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134 1,143 NR 1,113
UNIV	Pase 1 2 8 3 1 4 5 6 7 8 9 10	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,155 1,081 NR NR 1,025	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143 1,156 NR 1,120 1,129	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,158 1,148 1,155 1,157 NR 1,130 1,130 1,065	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146 1,130 NR 1,120 1,032	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,143 1,140 1,096 1,126 NR 1,109 1,000	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134 1,143 NR 1,113 1,005
UNIV	Pase 1 2 3 3 4 5 6 7 8 9 10 11	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,155 1,081 NR 1,025 1,064	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143 1,156 NR 1,120 1,129 1,023	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,155 1,155 1,157 NR 1,130 1,130 1,065 1,050	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146 1,146 1,130 NR 1,120 1,032 NR	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,143 1,096 1,126 NR 1,109 1,000 1,014	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134 1,143 NR 1,113 1,005 1,007
UNIV	Pase 1 2 8 3 1 4 5 6 7 8 9 10 11 11 12	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,155 1,081 NR NR 1,025 1,064 NR	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143 1,156 NR 1,120 1,129 1,023 1,046	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,155 1,157 NR 1,130 1,130 1,130 1,065 1,050 1,040	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146 1,130 NR 1,120 1,032 NR 1,050	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,140 1,096 1,126 NR 1,109 1,000 1,014 NR	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134 1,143 NR 1,113 1,005 1,007 1,051
UNIV	Pase 1 2 3 3 4 5 6 7 8 9 10 11 12 13	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,155 1,081 NR 1,025 1,064 NR 1,039	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143 1,156 NR 1,120 1,129 1,023 1,046 1,000	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,155 1,155 1,157 NR 1,130 1,130 1,065 1,050 1,040 1,030	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146 1,146 1,130 NR 1,120 1,032 NR 1,050 1,020	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,143 1,096 1,126 NR 1,109 1,000 1,014 NR 944	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134 1,143 NR 1,113 1,005 1,007 1,051 1,011
UNIV	Pase 1 2 3 3 4 5 6 7 8 9 10 11 12 13 14	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,155 1,081 NR 1,025 1,064 NR 1,039 850	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143 1,156 NR 1,120 1,129 1,023 1,046 1,000 857	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,157 1,157 NR 1,130 1,130 1,130 1,065 1,050 1,040 1,030 842	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146 1,130 NR 1,120 1,032 NR 1,050 1,020 836	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,140 1,096 1,126 NR 1,109 1,000 1,014 NR 944 853	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134 1,143 NR 1,113 1,005 1,007 1,051 1,011 850
UNIV	Pase 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ac1	Gris (0.4 % Si) 1,128 1,110 1,165 1,157 1,155 1,081 NR 1,025 1,064 NR 1,039 850	Gris (0.4 % Si) 1,161 1,130 1,161 1,151 1,146 1,143 1,156 NR 1,120 1,129 1,023 1,046 1,000 857	Amarillo (0.4 % Si) 1,148 1,152 1,158 1,155 1,157 NR 1,130 1,130 1,065 1,050 1,040 1,030 842	Amarillo (0.4 % Si) 1,111 1,076 1,160 1,163 1,146 1,146 1,146 1,130 NR 1,120 1,032 NR 1,050 1,020 836	Rojo (0.0 % Si) 1,076 1,162 1,142 1,143 1,143 1,096 1,126 NR 1,109 1,000 1,014 NR 944 853	Rojo (0.0 % Si) 1,131 1,164 1,156 1,151 1,127 1,134 1,143 NR 1,113 1,005 1,007 1,051 1,011 850

.

				(0)			
	Pase	Amarillo	Amarillo	Negro	Negro	Blanco	Blanco
	2.5	(0.44 % Mn)	(0.44 % Mn)	(0.7 % Mn)	(0.7 % Mn)	(0.9 % Mn)	(0.9 % Mn)
	1		1,280	1,230	1,260	1,220	1,230
	2	1,250	1,230	1,230	1,250	1,230	1,200
	3	1,219	1,210	1,290	1,240	1,220	1,220
	4	1,200	1,200	1,220	1,220	1,185	1,210
	5	1,190	1,200	1,180	1,220	1,180	1,210
	6	1,157	1,185	1,160	1,200	1,170	1,190
	7	1,160	1,170	1,160	1,190	1,165	1,190
	8	1,085	1,095	1,080	1,110		1,170
	9	1,088	1,070	1,040	1,090	*	1,170
	10	1,038	1,050	1,020	1,050	1,020	1,060
	TYP	1,018	1,000	970	1,020	960	1,060
					0.00	945	1,020
T	13 ITATIS	AM			2	920	900
S	14	800	_ 800	800	800	789	800
RS	Act	7:	32	7	28	7	31
E	Aca	8	51	8	56	8	42
		G I I I I I I I I I I I I I I I I I I I		1	and the second se		
E	Pase	Verde	Verde	Rojo	Rojo	Azul	Azul
	Pase	Verde (1.2 % Mn)	Verde (1.2 % Mn)	Rojo (1.8 % Mn)	Rojo (1.8 % Mn)	Azut (1.9 % Mn)	Azul (1.9 % Mn)
	Pase	Verde (1.2 % Mn) 1,200	Verde (1.2 % Mn) 1,240	Rojo (1.8 % Mn) 1 ,190	Rojo (1.8 % Mn) 1,220	Azul (1.9 % Mn) 1,180	Azul (1.9 % Mn) 1,225
	Pase	Verde (1.2 % Mn) 1,200 1,190	Verde (1.2 % Mn) 1,240 1,200	Rojo (1.8 % Mn) 1,190 1,180	Rojo (1.8 % Mn) 1,220 1,080	Azul (1.9 % Mn) 1,180 1,165	Azut (1.9 % Mn) 1,225 1,220
	Pase 1 2 3	Verde (1.2 % Mn) 1,200 1,190 1,190	Verde (1.2 % Mn) 1,240 1,200 1,200	Rojo (1.8 % Mn) 1,190 1,180 1,175	Rojo (1.8 % Mn) 1,220 1,080 1,080	Azul (1.9 % Mn) 1,180 1,165 1,165	Azul (1.9 % Mn) 1,225 1,220 1,222
UNI	Pase 10 2 3 / E4 SI	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185	Verde (1.2 % Mn) 1,240 1,200 1,200 1,200	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075	Azul (1.9 % Mn) 1,180 1,165 1,165 1,160	Azut (1.9 % Mn) 1,225 1,220 1,222 1,215
UNI	Pase 10 2 3 7 E 4 S 5	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,155	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075 1,075	Azul (1.9 % Mn) 1,180 1,165 1,165 1,160 1,155	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200
UNI	Pase 10 2 3 4 5 5 6	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,178	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178 1,176	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,155 1,150 1,150	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075 1,075 1,070	Azul (1.9 % Mn) 1,165 1,165 1,165 1,160 1,155 1,155	Azut (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170
UNI	Pase 10 2 7 4 5 5 016 6 7	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,178 1,160	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178 1,176 1,160	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,155 1,150 1,150 1,145	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075 1,075 1,070 1,060	Azul (1.9 % Mn) 1,180 1,165 1,165 1,165 1,155 1,155 1,150	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170 1,168
UNI	Pase 10 2 3 7 E 4 S 5 5 0 II 6 7 C 8	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,170 1,178 1,160 1,140	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178 1,176 1,160 1,160	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,155 1,150 1,150 1,145 1,140	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075 1,075 1,075 1,070 1,060 1,040	Azul (1.9 % Mn) 1,165 1,165 1,165 1,160 1,155 1,155 1,150 1,148	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170 1,168 1,035
UNI	Pase 10 2 3 7 2 4 5 5 5 6 6 7 6 7 8 9	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,178 1,160 1,140 1,130	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178 1,176 1,160 1,160 1,150	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,155 1,150 1,150 1,145 1,145 1,140 1,138	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075 1,075 1,075 1,070 1,060 1,040 1,035	Azul (1.9 % Mn) 1,180 1,165 1,165 1,165 1,155 1,155 1,150 1,148 1,120	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170 1,168 1,035 1,030
UNI	Pase 10 2 3 7 E 4 S 5 5 0 I 6 7 8 9 10	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,178 1,170 1,178 1,160 1,140 1,130 1,010	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178 1,176 1,160 1,160 1,150 1,030	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,155 1,150 1,145 1,140 1,138 1,040	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075 1,075 1,075 1,070 1,060 1,040 1,035 1,000	Azul (1.9 % Mn) 1,180 1,165 1,165 1,165 1,155 1,155 1,155 1,150 1,148 1,120 1,020	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170 1,168 1,035 1,030 1,000
UNI	Pase 10 2 3 7 E 4 S 5 5 0 I 6 7 8 9 10 11	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,178 1,160 1,140 1,130 1,010 950	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178 1,176 1,160 1,160 1,160 1,150 1,030	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,155 1,150 1,150 1,145 1,145 1,140 1,138 1,040 1,035	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075 1,075 1,075 1,070 1,060 1,040 1,035 1,000 990	Azul (1.9 % Mn) 1,180 1,165 1,165 1,165 1,155 1,155 1,150 1,150 1,148 1,120 1,020 1,015	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170 1,168 1,035 1,030 1,000 970
UNI	Pase 10 2 3 7 E 4 S 5 6 E 0 7 8 9 10 11 11 12	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,178 1,160 1,140 1,130 1,010 950 950	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178 1,176 1,160 1,160 1,150 1,030 1,030 990	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,150 1,150 1,145 1,140 1,138 1,040 1,035 980	Rojo (1.8 % Mn) 1,220 1,080 1,075 1,075 1,075 1,070 1,060 1,040 1,035 1,000 990 955	Azul (1.9 % Mn) 1,180 1,165 1,165 1,165 1,155 1,155 1,150 1,150 1,148 1,120 1,020 1,015 970	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170 1,168 1,035 1,030 1,000 970 938
UNI	Pase 10 2 3 7 4 5 5 7 6 7 8 9 10 11 12 13	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,178 1,160 1,140 1,140 1,130 1,010 950 950 930	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178 1,176 1,160 1,160 1,160 1,150 1,030 1,030 990 950	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,155 1,150 1,150 1,145 1,140 1,138 1,040 1,035 980 970	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075 1,075 1,075 1,070 1,060 1,040 1,035 1,000 990 955 900	Azul (1.9 % Mn) 1,180 1,165 1,165 1,165 1,155 1,155 1,150 1,150 1,148 1,120 1,020 1,015 970 965	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170 1,168 1,035 1,030 1,000 970 938 0
UNI	Pase 10 2 3 4 5 5 6 7 8 9 10 11 12 13 14	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,185 1,170 1,178 1,160 1,140 1,130 1,010 950 950 950 930 800	Verde (1.2 % Mn) 1,240 1,200 1,200 1,190 1,178 1,176 1,160 1,160 1,160 1,150 1,030 1,030 990 950 800	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,150 1,150 1,145 1,140 1,138 1,040 1,035 980 970 800	Rojo (1.8 % Mn) 1,220 1,080 1,075 1,075 1,075 1,070 1,060 1,040 1,035 1,000 990 955 900 800	Azul (1.9 % Mn) 1,180 1,165 1,165 1,165 1,155 1,155 1,150 1,150 1,148 1,120 1,020 1,015 970 965 800	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170 1,168 1,035 1,030 1,000 970 938 0 800
UNI	Pase 1 2 3 7 4 5 5 6 7 8 9 10 11 12 13 14 Ac1	Verde (1.2 % Mn) 1,200 1,190 1,190 1,185 1,170 1,178 1,160 1,140 1,140 1,130 1,010 950 950 950 930 800	Verde (1.2 % Mn) 1,240 1,200 1,200 1,100 1,178 1,176 1,160 1,160 1,160 1,150 1,030 1,030 990 950 800	Rojo (1.8 % Mn) 1,190 1,180 1,175 1,155 1,155 1,150 1,145 1,140 1,138 1,040 1,035 980 970 800	Rojo (1.8 % Mn) 1,220 1,080 1,080 1,075 1,075 1,075 1,070 1,060 1,040 1,035 1,000 990 955 900 800	Azul (1.9 % Mn) 1,180 1,165 1,165 1,165 1,155 1,155 1,150 1,150 1,148 1,120 1,020 1,015 970 965 800 7	Azul (1.9 % Mn) 1,225 1,220 1,222 1,215 1,200 1,170 1,168 1,035 1,030 1,000 970 938 0 938 0 800

Nota: Laminación defectuosa se debio a que la guía en el castillo desbastador se movio *Se recalento por segunda ocasión de ese pase en adelante

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Familia 1 Si Nivel D

Familia 2 Si Nivel C

Familia 5 Si Nivel D Familia 2 Si Nivel D (no se comporta igual) UNIVERSIDAD AUTÓI EO DIRECCIÓN GENERAL DE BIBLIOTECAS

Ataque con LePeral del grupo 2 al silicio 200x

Familia 5 Si Nivel B

Familia 5 Si Nivel C

Ataque con LePeral del grupo 5 al silicio 200x

Familia 4 Si Nivel B

Familia 4 Si Nivel C

DIRECCIÓN GENERAL DE BIBLIOTECAS

Ataque con LePera del grupo 9 al silicio 200x

Familia 2 Nivel A

Ataque con LePeral del grupo 10 al silicio 200x

Familia 3 Si Nivel A

Familia 3 Si Nivel B

Familia 2 Nivel B

Ataque con LePera del grupo 11 al silicio 200x

Ataque con LePera del grupo 10 al manganeso 200x

Familia 5 Nivel D

Ataque con LePera del grupo 11 al manganeso 200x

Ataque con LePera del grupo 12 al AL DE BIBLIOTECAS manganeso 200x

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Ataque con LePera del grupo 13 al manganeso 200x

Ataque con LePera del grupo 14 al manganeso 200x
1. Nombre : Carlos Javier Lizcano Zulaica 2. Dirección ; Santa Carina 1321, Col. La Purísima Guadalupe, N. L., México. Fecha de Nacimiento : 3. 24 de julio de 1951. Lugar de Nacimiento : 4. Monterrey, N. L., México. Edad : 5. 49 años. 6. Estatura : 1.78 mts. 7. Peso: 85 Kg. 8. Nacionalidad : Mexicano. 9. Estado Civil : Casado. 10. Religión : Católico. 11. Datos de familiares : Parentesco Nombre Fecha de Nacimiento Ocupación Padre Luis Lizcano Cavazos 31 de Octubre de 1910 Finado Madre Andrea Zulaica de Lizcano 18 de Noviembre de 1912 Finada Esposa Laura Elena Wong de Lizcano 13 de Diciembre de 1950 Ama de casa Hijo Carlos Javier Il Lizcano W. 23 de Agosto de 1982 Estudiante Hijo Israel Lizcano Wong 29 de Julio de 1983 Estudiante 12. Formación Académica: Escuela o Compañía Formación Período Escuela Monumental Nuevo León Primaria 1957 - 1963 Escuela Secundaria # 1 Secundaria 1963 - 1966 (Andrés Osuna) Preparatoria # 1, Colegio Civil Bachilleres 1966 - 1968 F.I.M.Ė., U.A.N.L. Licenciatura 1968 - 1973 F.I.M.E., U.A.N.L. Maestria 1974 - 1996 en Ciencias Carl Duisberg Centrum Idioma Alemán 1976 Hoesch Huetenwerke A.G. Alto Horno, 1976 Convertidor BOF. Colada Continua, Rolado Caliente y Rolado Frío Kloeckner Huetenwerke A.G. Convertidor BOF, 1976 Colada Continua,

Convertidor BOF,

Colada Continua.

1977

Peine Salzgitter Huetenwerke A.G.

CURRICULUM VITAE

201

13. Idiomas:

Inglés	60%
Alemán	60%

14. Desempeño Laboral :

Puesto	Empresa	Período
Ingeniero de procesos	Fundidora Monterrey, S.A.	De 1974 a 1978
Jefe de Área	Fundidora Monterrey S.A.	De 1978 a 1980
Jefe de Departamento	Ramírez Celada y Asociados	De 1980 a 1981
Jefe de Departamento	HYLSA S.A. de C.V.	De 1981 a 1985
Especialista en Acerías	HYLSA S.A. de C.V.	De 1985 a 1990
Consultor en Acerías	HYLSA S.A. de C.V.	De 1990 a la Fecha

15. Docencia : Catedrático en F.I.M.E de U.A.N.L. en las asignaturas de :

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

SOUS OF OVEN * LUDES