

UARL

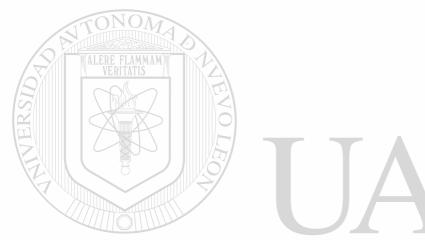
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

TM Z5853 .M2 FIME 1982 F8 Ej.2

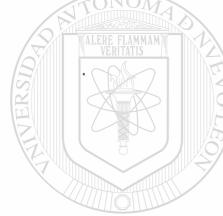
85: MP

Z .



UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN GENERAL DE BIBLIOTECAS

UANL


UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

ENSAYOS MECANICOS
EN METALES

TESIS

UNIVERSIDAD AMAESTRO EN ÇIENÇIAS EN LINGENIERIA MECANICA DIRECCIÓN GENERAL PRESENTA

FELIPE FUENTES ESPINOZA

MONTERREY, N. L.

MARZO DE 1982

UNIVERSIDADA UTÓNOMA DE NUEVO LEÓN ®
DIRECCION GELERAL DE BIBLIOTECAS

162081

A mi (s)

Dios

Padres: Pablo + y Ma. del Socorro

Hermanos: Antonio, Martha Alicia y Rosa Elena

Esposa: Ma. Leticia Góngora Martínez

Hijos: Felipe y Pablo Eduardo Amigo: José Estrada Rodríguez

Maestros:

Porque han contribuido en gran parte a mi formación y actual realización.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

ING. FELIPE FUENTES ESPINOSA.

A los estudiantes de F.I.M. con admiración y respeto.

Por ser hombres y mujeres, com prometidos con su ideal, con-cientes de su potencial y facultades naturales. Que asisten día con día a esta Facultad, buscándo su realización profesional.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

PRUEBAS MECANICAS EN METALES

CONTENIDO

	1 METALES	
	1.1 ESTRUCTURA DE LOS METALES	1
	1.2 FORMACION DE GRANO	
	1.3 SOLIDIFICACION EN METALES Y ALEACIONES	2 3 5
	1.4 PROPIEDADES DE LOS METALES	5
	II PRINCIPIOS DE ENSAYOS	
	2.1 ENSAYE DE MATERIALES	7
	2.2 SIGNIFICADO DE LOS ENSAYOS	8
/	2.3 DISEÑO DE ENSAYOS	8
	2.4 AGENCIAS ESTANDARIZADORAS	9
	III MEDICION DE LA CARGA, EL LARGO Y LA DEFORMACION	
VERSI	3.1. INTRODUCCION	11
Z	3.2 PIVOTES	11
田田田	3.3 MEDICIONES DE CARGA	12
	3.4. MAQUINAS DE ENSAYE	14
	3.5 MAQUINAS DE ENGRANE Y TORNILLO	15
	3.6 MAQUINAS HIDRAULICAS	16
//	3.7 AJUSTE DE LA VELOCIDAD	18
	3.8. PARTES DE LA MAQUINA UNIVERSAL	19
	3.9 CALIBRACION DE MAQUINAS DE ENSAYE	22
	3.10- MEDICION DE LA LONGITUD	25
	3,11- MICROMETROS	27
UNI	3.12- MEDICION DEL CAMBIO DE LONGITUD: UEVO LE	0N
	DEFORMIMETROS MECANICOS	31
	3.13- REGISTRADORAS DE ESFUERZOS-DEFORMACIONES	31
	3.14- DEFORMIMETROS DE LECTURA A DISTANCIA	32
	3.15- LA RELACION DE CAMBIO ENTRE;	
	DEFORMACION Y RESISTENCIA	32
	3.16- CALIBRADORES INTEGRALES DE ALAMBRE DE	
	RESISTENCIA	33
	IV ESTANDARES DE PRUEBA	
	4.1 ESTANDARES DE PRUEBA	35
	V ENSAYO ESTATICO DE TENSION	
	5.1 INTRODUCCION	36
	5.2 PROBETAS DE TENSION	36
	5.3 PROBETAS ESTANDAR	37
	5.4 DISPOSITIVOS DE MONTAJE	39
	5.5 REALIZACION DE ENSAYOS	41

	5.6 OBSERVACIONES DE ENSAYO	43
	5.7 ESFUERZO-DEFORMACION VERDADEROS	49
	5.8 RECUPERACION	49
	5.9 EFECTOS DE LAS VARIABLES IMPORTANTES	50
	5.10- VELOCIDAD DE APLICACION DE CARGA	51
	5.11- FORMATOS	51
	J. II- TORING OF	12 m
	VI ENSAYO ESTATICO DE COMPRESION	
	6.1 INTRODUCCION	58
	6.2 REQUERIMIENTOS PARA PROBETAS DE COMPRESION	58
	6.3 PROBETAS ESTANDARES	59
	6.4 CAMAS Y BLOQUES DE APOYO	59
	6.5 REALIZACION DE LOS ENSAYOS	60
		61
	6.6 OBSERVACIONES DE ENSAYO	
	6.7 REPORTE	62
	VII ENSAYO DE CORTE	
	7.1. OBJETIVO Y APLICABILIDAD DEL ENSAYO DE CORTE	64
	7.2 EL ENSAYO DE CORTE DIRECTO	64
101	WALERE FLAMMAND	=/, 3
	VIII. ENSAYO DE TORSION	
	8.1 ENSAYO DE TORSION	66
3/11/11	8.2 OBSERVACIONES DE ENSAYO	67
5		
5////	IX ENSAYO DE FLEXION .	
	9.1. COMPORTAMIENTO DE LOS MATERIALES SOMETIDOS A	.
151	PLEXION	72
1	9.2 PROBETAS PARA ENSAYOS DE FLEXION	72
	9.3 APARATOS PARA ENSAYOS DE FLEXION	72
	9.4 REALIZACION DE LOS ENSAYOS DE FLEXION DE LAS	12
		77
	VIGAS 9.5 OBSERVACIONES DEL ENSAYO	74 74
	9.6 PRESENTACION DE DATOS MA DE NUEVO LE	EON4
	9.0,- PRESENTACION DE DATOS	2 O 1 7 M
	X ENSAYO DE DOBLADO	(I
	X ENSAYO DE DOBLADO 10.1- DOBLADO EN METALES AL DE BIBLIOTECAS	
	10.1- DOBLADO EN METALES	77
	10.2- FORMATO	78
	XI ENSAYOS DE DUREZA	
	11.1- INTRODUCCION	80
	11.2- DUREZA ELASTICA	80
	11.3- RESISTENCIA AL CORTE O ABRASION	81
	11.4- RESISTENCIA A LA IDENTACION	83
	a) PRUEBA O ENSAYO DE DUREZA BRINELL	84
	b) PRUEBA O ENSAYO DE DUREZA ROCKWELL	90
	c) PRUEBA O ENSAYO DE DUREZA VICKERS	95
	THE CONTRACT OF THE CONTRACT O	98
	d) PRUEBA O ENSAYO DE MICRODUREZA	90
	11.5- EXACTITUD DE CUALQUIER PRUEBA O ENSAYO DE DU-	98
	REZA DE IDENTACION	70
	11.6- VENTAJAS Y DESVENTAJAS DE LOS DIFERENTES TI- POS DE PRUEBAS	101
	FUS DE FRUEDAS	101

	11.7 FORMATO	102
	XII ENSAYO DE IMPACTO	
	12.1 INTRODUCCION	108
	12.2 EL ENSAYO DE CHARPY PARA METALES	109
	12.3,- ENSAYO DE IMPACTO EN TENSION	110
	12.4 ENSAYO DE CHARPY A BAJAS TEMPERATURAS	111
	12.5 ENSAYO DE IZOD	111
	12.6 MAQUINAS DE IMPACTO	111
	12.7 FORMATO	113
	XIII ENSAYOS DE FATIGA	
	13.1 INTRODUCCION	119
	13.2 MAQUINAS PARA ENSAYOS A LA FATIGA DE LOS MATERIALES	120
	13.3 PROCEDIMIENTO GENERAL	122
	13.4 DESARROLLO DE LAS ROTURAS POR FATIGA	126
	13.5 FORMATO	128
E	XIV ENSAYO DE DUCTILIDAD	
	14.1 INTRODUCCION	130
	14.2 MAQUINA DE DUCTILIDAD	130
3/1111	14.3 PROCEDIMIENTO DE PRUEBA	130
3/11/11	14.4 TIPOS DE ENSAYO	130
3	a) ENSAYO OLSEN-ERICHSEN	130
5\\\\\	b) ENSAYO DE COPA PROFUNDA	132
	c) ENSAYO DE COPA CONICA FUKUI	134
	d) PRUEBA DEL AGUJERO EXPANDIDO	134
1	14.5 FORMATO	134
		/
	APENDICE	
	XV TABLAS DE CARACTERISTICAS GENERALES	136
INI	15.1 ESPECIFICACION AISI-SAE PARA ACEROS	136
	15.2 FACTORES DE CONVERSION	138
	15.3 EQUIVALENCIAS DE DUREZA	139
	15.4 PROPIEDADES DEL ACERO AL CARBON Y ALEADOS PARTE I ROLADOS EN CALIENTE, NORMALIZADOS Y	142
	RECOCIDOS	142
	PARTE II TEMPLADOS Y REVENIDOS	143
	15.5,- PROPIEDADES TIPICAS DE ALGUNOS ACEROS INOXIDABLES	145
	15.6 PROPIEDADES TIPICAS DE LOS MATERIALES FERROSOS FUNDIDOS	146
	15.7 GRAFICA DE PROPIEDADES DEL ACERO 1040	149
	15.8 GRAFICA DE PROPIEDADES DEL ACERO 3140	150
	15.9 GRAFICA DE PROPIEDADES DEL ACERO 4340	151
	15.10- RELACION DUREZA Vs. ESFUERZO	152
	15.11- PROPIEDADES TIPICAS DE METALES FERROSOS FORJADOS (DULCES)	153
	15.12- PROPIEDADES TIPICAS DE ACEROS EN DIVERSOS TAMAÑOS	155 156
	15.13- PROPIEDADES TIPICAS DE ACEROS TRATADOS TERMICAMENTE	157
	15.14- PROPLEDAD DE RESISTENCIA A LA FATIGA DE LOS METALES	159
	15.15 PROPIEDADES TIPICAS DE ACEROS CEMENTADOS	160
	15.16- PROPIEDADES TIPICAS DE ALGUNOS METALES NO FERROSOS	

INTRODUCCION. - El uso extensivo de los estudios experimentales preliminares al diseño y construcción de nuevos elementos mecánicos o estructurales y el uso de procedimientos de en saye para control de procesos establecidos de manufactura y -- construcción, son hechos significantes y bien reconocidos de nuestro desarrollo técnico. Prácticamente todas las ramas de la ingeniería, especialmente aquellas que tratan con estructuras y máquinas, conciernen intimamente a los materiales, cuyas propiedades deben ser determinadas con ensayos. La producción masiva satisfactoria depende de la inspección y control de la calidad de los productos manufacturados, lo que implica un sis tema de muestreo y ensaye.

Para la inteligente estimación y el uso de los resultados de los ensayos, es importante para los ingenieros, aún para -- aquellos no ocupados en la labor de ensaye real, poseer una -- comprensión general de los métodos comunes de ensaye de las -- propiedades de los materiales, y de lo que constituye un ensa- yo válido. Aún más, al tratarse de las especificaciones y la aceptación de los materiales, la comprensión de las limitaciones impuestas por los métodos de ensaye e inspección es importante.

Los siguientes temas como: Estructura de los materiales, Técnica de ensaye, Principios físicos y mecánicos involucrados en el aparato y procedimiento de ensaye, Teoría de las medicio nes, Interpretación de los resultados, son básicos para el estudio del ensaye de materiales.

Conjuntamente con el avance de nuestro desarrollo tecnológico han surgido notables mejoramientos en los tipos más antiguos de materiales, muchos descubrimientos de otros nuevos, y una variedad de nuevos usos para todos éstos. Ellos han extendido el alcance del ensaye de materiales y han complicado su práctica. Sin embargo, los principios fundamentales involucra dos en la realización de ensayos válidos y confiables son comunes a todos los ensayos y constituye el propósito de este lizabro tratar estos principios por medio de la explicación de los métodos de ensaye ordinarios de los metales.

I.I.- ESTRUCTURA DE LOS METALES

Aunque los metales pueden existir como vapor, líquido o sólido, por lo general son usados en su forma sólida. Puesto que todas las sustancias están compuestas por átomos cada cual con sus características particulares, los mismos átomos existen, sea que el metal esté en su forma gaseosa, líqui da o sólida.

Todos los metales sólidos y muchos otros materiales son de naturaleza cristalina, y los átomos se alinean a sí mismos en un modelo geométrico ya solidificado. Este modelo de átomos forma la malla en el espacio del material. Las celdas unitarias de varias formas de mallas en el espacio aparecen en la Fig. 1.1. Afortunadamente, es factible hacer el análisis de un-material por medio de rayos X, determinando el tipo de su malla así como la distancia entre los átomos.

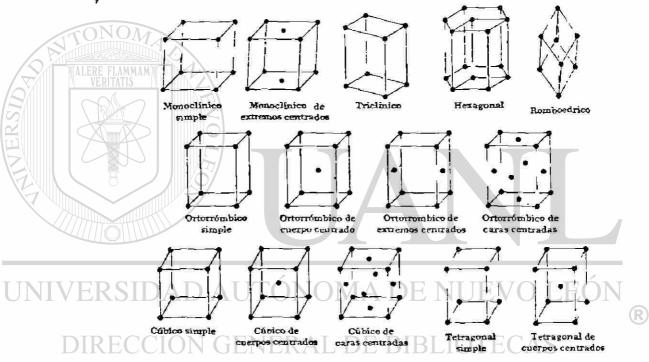


Fig. 1.1.- Retículas espaciales. Hay 14 Retículas típicas contínuas en tres dimensiones.

Algunos materiales sólidos, tales como el hierro, pueden tener más de una estructura de malla a diferentes temperaturas. Este tipo de cambio es llamado alotrópico.

Cualquier material que se presente en varias formas de cristales, se - le conoce como alotrópico o políformo, y dicho material podrá tener propiedades diferentes, características de cada estructura de malla. El hierro - tiene a la temperatura ambiente, una estructura de malla cúbica de cuerpo - centrado y se le llama hierro alfa. Cuando el hierro es calentado aproxima damente alrededor de 910°C, su estructura cambia a una malla de cara centra da y se convierte en hierro gamma. Esta transición es notada por cambios - en las propiedades eléctricas, por la absorción del calor y por las dimensiones. Si se somete a rayos X, el hierro mostrará otro espaciamiento diferente entre sus átomos. El estaño muestra una diferencia dramática en sus propiedades, debido a su naturaleza alotrópica. En su forma común, es de - un color blanco plateado, pero cuando se le somete a bajas temperaturas cam

bia gradualmente a gris.

La malla cúbica de cuerpo centrado tiene átomos en los vértices de un cubo y un átomo en el centro, ver Fig. 1.1. El hierro (alfa) a la temperatura ambiente, el cromo, molibdeno, vanadio y tungsteno son unos pocos de los metales más importantes con esta estructura de malla.

La malla cúbica de cara centrada, tiene átomos en los vértices de un - cubo y un átomo en el centro de cada cara, ver Fig. 1.1. Hierro (gamma) a temperatura elevada, aluminio, plata, cobre, oro, níquel, plomo y platino - son ejemplos de estas estructuras de malla.

La malla hexagonal compacta, estructura que está geométricamente descrita en la Fig. 1.1. Los metales berilio, cadmio, magnesio y titanio tienen estructura hexagonal.

Las propiedades de un metal se pueden predecir, hasta cierto grado, -por el tipo de estructura de su malla. La estructura hexagonal compacta, indica generalmente que ha perdido su ductilidad y se hace cada vez más frá
gil cuando se le dobla o labra en máquina. Los materiales con malla cúbica
de cara centrada, son por lo general más dúctiles.

La estructura de malla de una aleación, no es de fácil predicción. --Cualquier elemento añadido a un metal puro altera el tamaño de la malla y dependiendo de la aleación formada, cambiará el tipo de aquélla. Los áto-mos del elemento añadido podrán toma el lugar de ciertos átomos en el metal solvente o en el metal puro. La aleación resultante se conoce como una 50lución sólida sustitucional. El latón, una aleación de cobre y zinc, es un ejemplo. Cuando los átomos del elemento añadido se acomodan a sí mismos -dentro de espacios (intersticios) entre los átomos del solvente, la aleación es llamada una solución sólida intersticial. El carbono en el hierro es un ejemplo. Los compuestos intermetálicos se forman cuando ciertos meta les se alean y la estructura de malla se hace muy compleja. Tales compuestos funden a temperatura fija y tienen mayor conductibilidad y ductilidad pero más alta resistencia y dureza que una aleación con estructura de malla de cara centrada, de cuerpo centrada o estructura de malla hexagonal. Ejem cobre-magnesio y estaño-antimonio.

VIVIL2.- FORMACION DE GRANO NOMA DE NUEVO LE

Cuando un metal solidifica, los átomos se acomodan a sí mismos geométricamente. La formación inicial de la malla en un líquido que solidifica da lugar a un núcleo para los cristales que van a crecer en forma ordenada; esto es, mantendrán su modelo de malla y cada malla sucesiva irá creciendo con la precedente. Muchos de estos núcleos se forman en un líquido a medida que comienza la solidificación, pero la dirección en la cual queda orien tado el núcleo inicial es al azar. La Fig. 1.2.A, ilustra esquemáticamente la forma de crecimiento de los cristales. Cuando un cristal se pone en con tacto con otro de diferente orientación, cesa el crecimiento de ambos cristales y la superficie donde ellos concurren, irregular en naturaleza, forma parte de un límite de grano.

La mayoría de los cristales no se desarrollan uniformemente y en cambio progresan con más rapidez en una dirección que en otra. Como el crecimiento de los cristales avanza, los cristales frontales se ramifican en for ma de árbol. Dicho crecimiento se llama dendrítico, y la formación de cristales es llamada dendríta. El crecimiento es casi siempre desigual con las ramas de la dendrita engrosando, o formándose nuevas ramas a medida que progresa la solidificación.

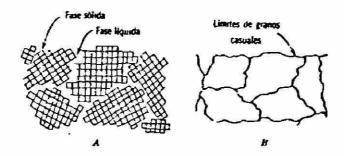


Figura 1.2.- Crecimiento de los cristales para formar granos. A, crecimiento de los cristales. B, granos.

La Fig. 1.2.B, muestra el desarrollo completo de los límites de grano - de diferentes cristales. Los granos de un metal pueden ser estudiados va- - liéndose de una grande amplificación, después de que el material ha sido ata cado con un ácido conveniente, para hacer que se destaquen los límites.

El tamaño de grano de un metal depende, sobre el promedio de velocidad que fue enfriado y la extensión y naturaleza del calentamiento o enfriamiento sufridos en el proceso de trabajo. Un metal con granos finos o pequeños puede tener resistencia superior y como una dureza comparada al mismo metal con granos grandes. Esto es porque, con los átomos juntos es más dificil -que se presente una "interferencia deslizante" en la estructura de malla - cuando una fuerza deformadora es aplicada. Los materiales de grano grande están caracterizados por ser de fácil maquinado, poseer mejor habilidad a en durecerse por tratamiento térmico, conductividad térmica y eléctrica supe- rior. Aunque los metales de grano grande pueden endurecerse más uniformemen te durante el tratamiento térmico, los materiales de grano fino son menos ap tos a la ruptura cuando son calentados. Pueden agregarse algunos aditivos para asegurar un predeterminado tamaño de grano. El aluminio por ejemplo, puede ser agregado al acero para promover granos finos. El tamaño de grano deseado es usualmente un compromiso dependiendo sobre las propiedades previs tas.. En el caso de latón el cual se usa para la fabricación de cartuchos, un grano grande permite en este caso el formado más facilmente, pero una superficie fina y resistente son proporcionadas con un grano fino.

La buena dureza, como el tamaño de grano están afectadas por la aplicación de temperatura del metal. El apagar la flama al metal caliente desde una temperatura elevada puede por ocasión endurecerlo, y al enfriarlo lentamente se puede conseguir en el exterior de la pieza su próxima suavidad. El recocido, con una referencia es enfriamiento lento del metal desde una tempe ratura elevada, y es usada para reblandecer, agregar tenacidad, eliminar esfuerzos e incrementar la ductilidad de los metales.

1.3. - SOLIDIFICACION DE METALES Y ALEACIONES

Los metales puros solidifican de manera única, como queda indicado por la Fig. 1.3. El líquido se enfría al punto en el cual el primer núcleo se forma. Desde el momento que principia la solidificación hasta que se comple ta, no cambiará la temperatura de la mexcla sólido-líquido. Una vez que la solidificación ha concluido, desciende la temperatura con respecto al tiempo

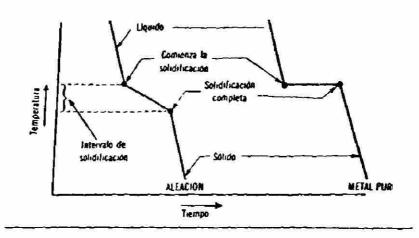


Figura 1.3.- Curva temperatura-tiempo para un metal y aleación.

Cuando otros elementos se añaden a un metal puro para realzar sus propiedades, la combinación es llamada aleación. El latón es una aleación de cobre y zinc, el bronce una aleación de cobre y estaño y el acero una aleación de hierro y carbono. Por consiguiente, el número de aleaciones es infinito, siendo difícil la predicción de sus propiedades y características.

Aún cuando los metales puros solidifican a temperatura constante, las aleaciones no lo hacen así, lo cual se demuestra en la Fig. 1.3. El prime núcleo se forma a una temperatura mucho mayor que aquella a la cual tiene lugar la completa solidificación. Este cambio en la temperatura a medida que progresa la solidificación, causa en el sólido que se va a formar un cambio en su composición química debido a que cada elemento en una aleaciór tiene sus propias peculiaridades con respecto a la temperatura.

El diagrama de equilibrio muestra de que manera una aleación forma lo que se llama una solución sólida; esto es, un sólido que es en efecto una solución de dos o más materiales. Existen muchos tipos de diagramas de - -

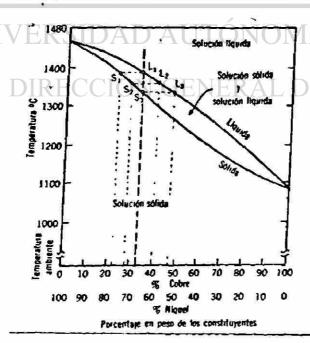


Figura 1.4.- Diagrama de equilibrio para aleaciones cobre-níquel.

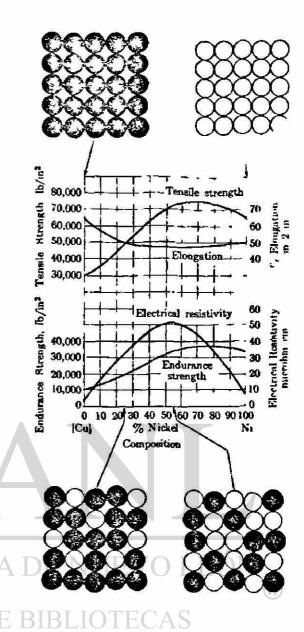
equilibrio, dependiendo de las ale aciones involucradas, pero una de las más simples y más usadas es la aleación de cobre y níquel, mostra da en la Fig. 1.4.

compone de 67% de níquel y 33% de cobre. Este metal resiste la corrosión del agua salada y se usa para envasar bebidas y alimentos.

Este tipo de diagrama permite al ingeniero determinar los constituyentes de la aleación, así como algunas otras propiedades de solución sólida restante. La Fig. 1.5 muestra la forma como varian las propiedades físicas y mecánicas de las aleaciones cobre-níquel, conrespecto a los dos metales. Es in teresante saber que las monedas de 5 cts. o níquel contienen 75% de cobre y 25% de níquel.

Figura 1.5. - Variaciones de las propiedades típicas al cambiar la composición de las aleaciones comerciales
cobre-níquel. Los esquemas de la distribución atómica muestran la dís
torsión producida en la red por la formación de la solución solida.

1.4.- PROPIEDADES DE LOS METALES


De lo anterior expuesto concluimos que las propiedades de los metales dependen de:

La estructura cristalina.- que queda definida por la composición -- química o el tratamiento térmico.

El tamaño de grano. - que queda definido por el tratamiento; térmico mecánico o químico.

La función principal de los materiales de ingeniería, consiste en desarrollar resistencia, rigidez y durabilidad adecuadas al servicio para el cual fueron concebidos. Estos requerimientos definen en gran parte las propiedades que los materiales deben poseer y, por lo tanto, determinar a grandes rasgos la naturaleza de los ensayos efectuados en esos materiales.

Una clasificación parcial de -las propiedades de los materiales de ingeniería se ofrece en la Tabla siguiente.

CLASIFICACION DE LAS PROPIEDADES DE LOS MATERIALES DE INGENIERIA

CLASE	PROP I EDAD	CLASE	PROPIEDAD
Físicas	Dimensiones, forma Densidad o gravedad es- pecífica Porosidad Contenido de humedad Macroestructura Microestructura	Mecánicas	Resistencia Tensión, compresión, cortante, y flexión estática, impacto, y tenacidad Rigidez Elasticidad, platicidad. Ductilidad, fragilidad
			Dureza, resistencia al desgaste

prode leainas. las. imer ne da lión

al<u>e</u> de la tr<u>a</u>

10

ia -

3 ite iti 10

> u-.5

de

de in de

			•
	Oxido o composición com pleja	Térmicas	Color específico Expansión
Químicas	Acidez o alcalinidad		Conductividad
•	Resistencia a la corro- sión o la interperie,		
	etc.	Eléctricas y magnéticas	Conductividad Permeabilidad magnéti- ca
	Acción hidroabsorvente o hidrorepelente	magae er cab	Acción galvánica
-3.00	Contracción y dilatación debidas a cambios de	Acústicas	Transmisión del sonido Reflexión del sonido
Fisicoqu <u>í</u> micas	humedad		Calor
		Opticas	Transmisión de la luz Reflexión de la luz
FONOIA			Welleviou at 16 10

En general la determinación de cualesquiera o todas estas propiedades puede constituir el tema del ensaye de ingeniería. Sin embargo, la mayor parte de la labor del laboratorio de ensaye de materiales ordinario se relaciona con las propiedades mecánicas. Esta labor frecuentemente es llamada "ensaye mecánico". Como el factor principal en la vida y el desempeño de las estructuras y las máquinas es la carga aplicada, la resistencia es de su ma importancia; un requerimiento inicial de cualquier material de ingeniería es una resistencia adecuada. Es su más amplia aceptación el término hesistencia puede suponerse que se refiere a la resistencia a la falla de una pieza completa de material, una pequeña parte de ella, o aún la superficie. El criterio de la falla puede ser ya sea la ruptura o la deformación excesiva.

El conocimiento completo del comportamiento de un material dado involucraría el estudio de todas sus propiedades bajo un muy amplio rango de condiciones, mas la realización de los ensayos exhaustivos necesaria para obtener información completa usualmente no sería necesaria o económicamente viable.

ciones, mas la realización de los ensayos exhaustivos necesaria para obtener información completa usualmente no sería necesaria o económicamente viable. El problema, pues, consiste en recabar datos acerca de esas propiedades que puedan influir en el valor económico y la servicialidad de un material, o un producto hecho de un material dado, para un propósito dado. La eficiencia relativa de un material para un uso específico depende del grado al cual las propiedades pertinentes estén presentes. Para algunos usos, una propiedad puede ser muy deseable, mientras que para otros usos pueden ser indeseables o aun peligrosa.

11. - PRINCIPIOS DE ENSAYOS

2.1. - ENSAYE DE MATERIALES

El ensaye de los materiales puede efectuarse con uno de tres objetivos como meta: (1) aportar información rutinaria acerca de la calidad de un producto-ensaye comercial o de control; (2) recabar información nueva o mejor acerca de materiales conocidos o desarrollar nuevos materiales-investigación de materiales y labor de desarrollo; o (3) obtener medidas exactas de las -- propiedades fundamentales o constantes físicas-medición científica. Estos - objetivos deben discernirse claramente para empezar ya que ellos generalmente afectan el tipo de equipo de ensaye y medición a usar, la deseada precisión de la labor, el carácter del personal a emplear, y los costos involucra dos.

El ensaye comercial se preocupa, principalmente, ya sea por la verifica ción de la aceptabilidad de los materiales bajo especificaciones de adquisición o por el control de la producción o fabricación.

Los propósitos comunes de la investigación de materiales son (1) arribar a un nuevo entendimiento de los materiales conocidos, (2) descubrir las propiedades de materiales nuevos, y (3) elaborar normas de calidad o procedimientos de ensayo significativos.

- Aunque muchas investigaciones son de naturaleza más o menos rutinaria, también hay muchas que demandan una gran variedad de ensayos y mediciones, - requieren la apreciación de todas las fases del problema general, y plantean exigencias extremas de la habilidad del ingenio, y los recursos del experimentador si el éxito ha de lograrse.

La meta de lo aqui llamado ensaye científico es la acumulación de un -acervo de información ordenado y confiable acerca de las propiedades funda-mentales y útiles de los materiales, con la mira final de aportar datos para
el análisis exacto del comportamiento estructural y el diseño eficiente. La
labor de este tipo demanda, sobre todo, cuidado, paciencia y precisión.

Por conveniencia, se puede diferenciar entre los ensayos de campo y los ensayos de Laboratorio. Debido a las condiciones de trabajo difíciles o aza rosas, la interferencia; las limitaciones de tiempo, y las condiciones climaticas variables, los ensayos realizados en el campo usualmente carecen de la precisión de ensayos similares efectuados en el laboratorio; sin embargo, el desempeño del trabajo laboratorial no garantiza necesariamente la precisión. Ciertos tipos de ensayos, como, por ejemplo, el análisis de criba de la grava, puede ser realizados con la misma exactitud por un inspector en la obra que por un técnico en el laboratorio. Por otra parte, algunos ensayos no --pueden realizarse en el laboratorio, de modo que la cuestión del campo con--tra el laboratorio no es pertinente.

Debà advertirse de paso que el ensaye a base de modelos, el interés por el cual la crecido marcadamente en años recientes, frecuentemente demanda la satisfacción de un número de exigentes requerimientos para lograr resultados válidos.

Con respecto a la utilizabilidad de un material o una parte después del ensaye, os ensayos pueden clasificarse como destructivos o no destructivos. Los ensavos para determinar la resistencia última naturalmente implican la destrucción de la muestra. Como no puede ensayarse así un lote completo, surgen la problemas para obtener una indicación confiable de la resistencia del lote mediante el uso de un número de muestras suficiente, así como de mantener dentro de límites razonables el costo del material para muestras. Para productos terminados resulta deseable utilizar ensayos no destructivos si es posible.

magnéti-

ìa

CO

. sonido onido

la luz luz

dades ayor --: relaımada -• de' -de su niería esis-na pie. ∍. ET siva. -ulovi condi tener ble. que o un cia llas

dad -

oles

Nuestros conceptos de las propiedades de los materiales están usualmen te idealizados y sobre-simplificados. En realidad, nosotros no determina-mos las propiedades, en el sentido de que derivemos algunos valores inmutables que describan definitivamente el comportamiento del material. Más bien obtenemos solamente medidas, indicaciones o manifestaciones de las propieda des descubiertas en muestras de materiales ensayados en ciertos grupos de circunstancias.

Las medidas que obtenemos dependen de las condiciones de ensayo, las -cuales incluyen la manera en que la muestra se toma y prepara, así como de los procedimientos particulares involucrados al realizar el ensayo. Por lo tanto, una implicación del "significado de los ensayos" tiene que ver con - la confiabilidad de los ensayos para arrojar medidas de las propiedades que deban determinar.:

El significado real de cualquier ensayo reside en el grado al cual nos capacita para predecir el desempeño de un material en servicio. Un ensayo puede tener significado en una de dos maneras: (1) puede medir adecuadamente una propiedad que sea suficientemente básica y representativa para que los resultados de los ensayos puedan utilizarse directamente en el diseño, o (2) el ensayo, aun cuando sea muy arbitrario, sirve para identificar los materiales que la experiencia ha comprobado que arrojan un desempeño satisfactorio.

Un hecho sobresaliente a advertir en un estudio de los datos de ensayo detallados y en los resultados de las investigaciones en general, es la variación de las medidas cuantitativas de las propiedades dadas. Esto puede deberse parcialmente a la carencia de precisión absoluta de las operaciones de ensaye, pero también a la variación real de una propiedad dada entre las muestras. Nuestros materiales no son homogéneos; dentro de ciertos límites su composición puede estar gobernada enteramente por el azar, de modo que una descripción de su comportamiento puede descansar en gran medida sobre una base estadística.

2.3.- DISEÑO DE ENSAYOS

Las siguientes observaciones que influyen en el diseño de ensayos se extrajeron de un antiquo manual del U.S. Bureau of Standards (Departamento de Estandarización de los Estados Unidos de Norteamérica) sobre el ensaye de materiales. Una medida adecuada de una propiedad dada resulta posible cuando (1) la propiedad puede ser definida con suficiente exactitud, (2) el material es de composición o pureza conocidas, (3) las condiciones existentes son normales o conocidas, (4) los métodos experimentales son teóricamen te correctos, (5) las observaciones y sus reducciones se hacen con el cuida do, y (6) el orden de exactitud de los resultados se conoce. Este ideal ra ramente se alcanza, pero cuando se propugna los resultados pasan de la etapa cualitativa a la cuantitativa y se les denomina constantes porque las re determinaciones no darán resultados sensiblemente diferentes. Los resultados aproximados se mejoran sostenidamente a medida que se inventan instru-mentos y métodos más precisos. El grado de exactitud a alcanzar se convier te en una cuestión muy práctica en un laboratorio de ensaye. El tiempo y la labor involucrados en los ensayos pueden muy bien aumentar fuera de proproción a medida que los límites de exactitud lograble se acercan. Para la determinación de las constantes físicas o las propiedades fundamentales de los materiales, el grado de exactitud buscado puede ser el máximo. En tersualmen uminanmutalás bien opieda s de

las no de 'or lo con s que

l nos
ayo
menue ño,
los
tis-

ayo vade nes las les

. .

minos generales el grado de exactitud propugnado debe ser aquel que sea estrictamente bueno para el propósito en cuestión.

2.4.- AGENCIAS ESTANDARIZADORAS

Como la normalización tiene una influencia tan importante en los méto-dos de ensaye ordinarios, resulta deseable para el ingeniero poseer alguna - familiaridad con la naturaleza y las publicaciones de las agencias que han - promulgado algunas de las especificaciones de los materiales extensamente -- usados y los métodos de ensaye.

La labor de normalización incluye en general (1) el desarrollo de los métodos de ensayo para los materiales, (2) el establecimiento de definiciones normales, (3) la formulación de especificaciones de materiales y (4) la formulación de prácticas recomendables que influyen en varios procesos de utilización de materiales. Los comités encargados del desarrollo de las especificaciones estudian primeramente los materiales en sus campos respectivos y fomentan la necesaria investigación sobre la cual debe basarse la labor de normalización. En los comités que estudian materiales que posean importancia comercial, la política generalmente consiste en mantener el equilibrio entre los representantes de los intereses del productor y del consumidor.

Después de la terminación de los estudios que involucran los métodos de ensaye, la nomenclatura, y los requerimientos, se desarrolla una norma pro-puesta y presenta en una junta del comité que tenga jursidicción sobre los materiales del campo particular en cuestión. Si se consigue la aprobación en esta junta y también más tarde mediante la votación por carta de todo el comité, se publica la norma propuesta para información en un informe del comité en la segunda junta anual de la sociedad. Si es aceptada por los miembros de la sociedad en esta junta, se publica el método de especificación o ensayo en forma tentativa cuando menos durante un año para provocar la críti ca. Después de la debida consideración de los comentarios recibidos, el comité puede recomendar que la especificación tentativa se adopte como norma Cada norma, antes de su adopción, debe recibir la debida aprobación en voto por carta solicitado de todos los miembros de la sociedad. Las modificaciones de las normas pueden ser consideradas en cualquier momento por el comité permanente competente. Las modificaciones deben publicarse tentativamente antes de que puedan ser incorporadas a una norma. Las normas pueden ser retiradas en cualquier momento mediante la acción apropiada.

La Asociación Norteamericana de Normas fue organizada en 1918 por la -- ASCE, ASME, AIMME, AIEE, y ASTM para proveer un medio para la industria. Las organizaciones técnicas, y los departamentos gubernamentales para trabajar - conjuntamente en el desarrollo de normas industriales nacionales aceptables para todos los grupos y otros mediante el cual las agencias normativas pudie ran coordinar sus labores e impedir la duplicación del esfuerzo. Según un - método, las ASA Standards (Normas de la ASA) se desarrollan y aprueban de -- una manera muy similar a la de la ASTM.

Aunque muchos de los grandes organismos del gobierno federal han publicado sus propias especificaciones "normales", quizá las de mayor interés general sean las desarrolladas por el Departamento de Comercio actuando especialmente a través del National Bureau of Standards (Instituto Nacional de - Normas); aquellas desarrolladas por el U.S. Bureau of Reclamation (Instituto Norteamericano de Reclamación) y el US. Engineer Department (Departamento de Ingeniería de los Estados Unidos); y las publicaciones de los Ordnance and Material Departments of the U.S. Army and Navy (Departamentos de Ordenanza y Material del Ejército y de la Armada de los Estados Unidos).

Para usos especializados, muchas especificaciones de alcance nacional han sido patrocinadas por sociedades técnicas particulares. La Society of -Automotive Engineers (Sociedad de Ingenieros Automotivos) ha desarrollado -una serie inclusiva de especificaciones para aceros, incluyendo las aleaciones. El útil métodó de designación de los aceros de la SAE es ampliamente usado en la industria. El American Petroleum Institute (Instituto Norteamericano del Petróleo) ha desarrollado especificaciones generalmente aceptadas relacionadas con el cable metálico. El American Concrete Institute (Institu to Norteamericano del Concreto) ha desarrollado un útil grupo de especificaciones relacionadas con la construcción de concreto. El American Bureau of Shipping (Instituto Naval Norteamericano) ha adoptado "Rules for Building -and Classing Steel Vessels" (Reglas para la Construcción y Clasificación de Naves de Acero). La American Association of State Highway Officials (Asocia ción Norteamericana de Agencias Estatales de Caminos) publica "Standard Specifications for Highway Materials and Methods of Samplign and Testing" (Espe cificaciones Normales para el Muestro y ensaye de Materiales para Caminos). Un gran número de estas normas son idénticas con Normas ASTM correspondien-tes.

Aunque la American Society for Metals (Sociedad Norteamericana para los Metales) no es una agencia normativa, se le debe mencionar como una de las sociedades técnicas importantes interesadas en el desarrollo de los metales y la determinación de sus propiedades y características. El Metal Handbook (Manual de Metales), publicado por esta sociedad, constituye una utilísima compilación de información y cubre todas las fases del tema de los metales

UANL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

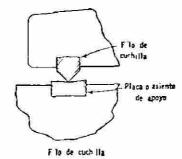
DIRECCIÓN GENERAL DE BIBLIOTECAS

III. - MEDICION DE LA CARGA, EL LARGO, Y LA DEFORMACION - APARATOS DE ENSAYE COMUNES

3.1. - INTRODUCCION

En el ensaye mecánico la mayoría de las mediciones en última instancia tienen que ver con la determinación del esfuerzo y de la deformación. Aunque la comparación directa con pesos y distancias conocidos frecuentemente es usada como el nedio para determinar la fuerza y la longitud. En general, una variedad de principios y fenómenos físicos es empleada en los numerosos tipos de aparatos utilizados para determinar la carga y la deformación. Ade más de los dispositivos mecánicos que multlipican o magnifican los cambios de carga y longitud, existen instru entos que aprovechan los fenómenos tales como la elasticidad, la reflexión de la luz, la interferencia de las ondas de luz, la resistencia eléctrica, el magnetismo, la inductancia y las vibraciones sónicas.

Para controlar la exactitud de los datos numéricos, es necesario conocer el error o el límite de error, de las mediciones contribuyentes. El --error (es decir, la diferencia entre un valor observado y lo que se cree que es el valor verdadero) en las lecturas indicadas de un instrumento de medición es normalmente determinado por un proceso de calibración.


Intimamente relacionadas con la exactitud de un instrumento están la -sensitividad y la lectura mínima del instrumento. La sensitividad se expresa
en términos del menor valor de la cantidad a medir correspondiente al cual hay una respuesta en el dispositivo indicador del instrumento de medición; un instrumento que requiera un cambio de magnitud relativamente grande en el
objeto que esté siendo medido para poder accionar el instrumento se dice que
carece de sensitividad. La lectura menor es el valor más pequeño que puede
leerse en un instrumento que posea una escala graduada.

3.2.- PIVOTES

En cualquier dispositivo que emplee palancas, ya sea una máquina de ensaye, una báscula, o un deformímetro, los pivotes son importantes detalles. Es necesario que operen con un mínimo de fricción y sin movimiento perdido y que mantengan una posición constante (brazo de palanca). Aún más, deben ser diseñados de modo que sean estables y permanezcan alineados bajo carga.

En las máquinas de ensaye que utiliza un sistema de pesaje a palancas, los pivotes son usualmente "filos de cuchilla" de acero endurecido en los -- cuales dos superficies pulidas se encuentran a un ángulo de 90° para producir una línea recta, la cual es el borde de apoyo. En los instrumentos pequeños, el ángulo entre las superficies que se encuentran en el borde de apoyo es frecuentemente mucho menor de 90°. La placa de apoyo o asiento del filo de cuchilla como la que se muestra en la Fig. 3.1, la cual usualmente se hace de acero endurecido, también posee superficies pulidas que se encuen- -- tran en un ángulo obtuso un poco menor de 180°.

Figura 3.1.- Pivotes

En las máquinas de ensaye la carga comprensiva admisible por pulgada li neal sobre los filos es de aproximadamente 7,000 lb, aunque se han usado valores de apoyo de 11 000 lb/plg.

3.3.- MEDICIONES DE CARGAS

En los párrafos siguientes se describen algunos de los métodos para medir las cargas en la práctica del ensaye de materiales. Varios de estos métodos pueden usarse solos o en combinación con otros más.

Pesos. Cuando pesos de magnitud conocida se usan directamente como medio de aplicación de carga, también sirven para medir la carga. El procedidamiento es de aplicación limitada.

Pesos con palanca de longitud constante. Por medio de una palanca horizontal los brazos de la cual son de longitud fija, pero no necesariamente -- igual, una carga dada en un brazo puede equilibrarse mediante alguna combinación de pesas en el otro brazo. Este principio se usa algunas veces para poner un sistema de pesaje a palancas dentro de un tango de cargas deseado, pero como el proceso de equilibrar agregando continuamente pesas separadas es lento, rara vez se usa sólo en las máquinas de ensaye. Por supuesto, por lo general, se le emplea en básculas de pesaje del tipo de "balanza".

Pesa con palanca variable. Para propósitos de ensaye uno de los más -utiles principios de pesaje es el de la romana, mediante la cual la carga -aplicada al brazo corto es equilibrada, por una pesa de magnitud constante colocada en el punto apropiado en el brazo largo. El brazo largo, o palanca
graduada de la báscula, está graduada para indicar la carga correspondiente
a la posición de la pesa móvil (ocacionalmente llamada viajera, contrapeso,
o pesa corrediza) (véase la Fig. 3.2a. Otra forma, del principio de palanca
variable es el péndulo ilustrado en la 3.2b. El método de pesaje de carga de la romana requiere la operación manual para lograr el equilibrio; por otra parte, el método pendular combinado con el uso de una báscula adecuada
es autoindicativo.

La carga real a equilibrar por medio del dispositivo elemental de pesaje, a menudo se reduce o disminuye gradualmente de una carga dada mediante un sistema intermedio de palancas compuestas o múltiples. Esto es necesario cuando se han de medir grandes cargas para poder mantener el dispositivo de pesaje dentro de proporciones convenientes y útiles.

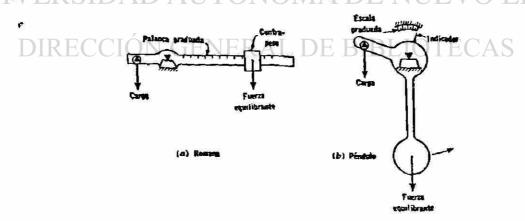
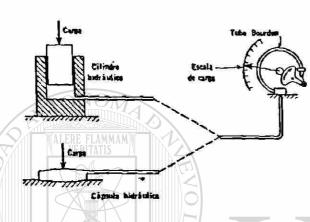



Figura 3.2.- Pesaje con palama variable

Dispositivos hidráulicos. Las presiones de líquidos comúnmente se miden por medio de manómetros o tubos Bourdon. Un manómetro es simplemente un tubo de vidrio, por lo general, colocado en forma vertical, en el cual un lí quido (digamos el mercurio) puede elevarse hasta un nivel tal que puede equi librar la presión aplicada; el nivel del líquido se lee en una escala gradua da. Es obvio que el manómetro está limitado a la medición de presiones relativamente bajas de modo que su uso para grandes cargas requeriría un dispositivo de transmisión intermedia para rebajar la carga.

El tubo Bourdon es esencialmente un tubo metálico curvado con un extremo cerrado que tiende a enderezarse cuando la presión se aumenta en el líqui
do del tubo. En el calibrador Bourdon usual el movimiento del extremo del tubo es magnificado mecánicamente para hacer girar un indicador por una esca
la, como se indica esquemáticamente en la Fig. 3.3. La exactitud del calibrador Bourdon ordinario puede ser considerablemente afectada por los camhios de temperatura, la histéresis y la fricción de sus partes móviles.

va-

ne-

né-

ne-

1i-

po pe s

ica e

а

a

a-

io

e

JN

11

Figura 3.3.- Pesaje por medio de presión hidráulica

La carga, a pesar, puede ser transmitida hidráulicamente, mediante el uso ya sea de un cilindro y pistón hidráulicos o una cápsula flexible cerrada, los dos de las cuales se muestran esquemáticamente en la Fig. 3.3.

Pueden usarse dispositivos hidráulicos interconectados con diferentes - áreas de pistón en lugar de un sistema de palancas intermedio para rebajar - la carga, y el pequeño pistón puede hacer que accione un dispositivo de pesa je pendular o de romana; éste es precisamente el inverso del principio del - gato hidráulico usual.

El cilindro hidráulico posee dos marcadas desventajas al ser usado en - sistemas de pesaje de cargas: la fuga del líquido en pistones holgadamente - ajustados y la variable fricción sobre el pistón cuando se usan empaques. - La fricción puede reducirse mediante el uso de cilindros equipados con pisto nes cuidadosamente pulidos y empalmados, y puede reducirse aún más haciendo girar el pistón durante la operación de la unidad; sin embargo, estos dispositivos no eliminan cabalmente las dificultades, y así complican la fabricación del aparato.

Dinamómetros. En general, los dinamómetros son una clase de dispositivos por medio de los cuales la generación o transmisión de la potencia puede ser medida. Debido a que la medición mecánica de la potencia, por lo general, se reduce a la determinación de una fuerza (conjuntamente con otras cantidades), el término dinamómetro es a menudo aplicado a instrumentos autosuficientes de medición de cargas (usualmente portátiles).

Muchos dinamómetros (en el sentido restricto de un instrumento de medición de cargas) utilizan la deformación o deflexión de un miembro elástico como base para determinar la fuerza aplicada al dispositivo, aunque la presión desarrollada en una cápsula hidráulica también ha sido utilizada como base para indicar la fuerza aplicada. En uso, se inserta un dinamómetro en el circuito de fuerzas y la fuerza a medirse (o una fracción conocida de la

fuerza a medirse) es transmitida a través del dinamómetro. Por medio de la calibración bajo fuerzas conocidas, la deflexión del elemento elástico puede convertirse directamente a términos de fuerza transmitida usando una escala debidamente graduada o aplicando un factor de calibración a las deflexiones indicadas.

En el ensaye de los materiales se usan comúnmente dos tipos de dinamóme tros. Un tipo es la balanza de resortes hecha con un resorte helicoidal - apretadamente devanado, el cual puede usarse en forma directa para medir las cargas sobre un pequeño ejemplar o usarse en combinación con un sistema de - palancas múltiples o transmisión hidráulica. Algunos dispositivos elásticos tienen calibradores de alambre de resistencia eléctrica montados permanentemente sobre ellos para medir las deformaciones de modo que puedan servir como dinamómetros.

3.4.- MAQUINAS DE ENSAYE

Dos partes esenciales de una máquina de ensaye son (1) un medio para -aplicar carga a una probeta y (2) un medio para equilibrar y medir la carga
aplicada. Dependiendo del diseño de la máquina, estas dos partes pueden estar completamente separadas o superpuestas. Además de estos aspectos bási-cos, hay una variedad de partes o mecanismos accesorios, tales como dispositivos para agarrar o apoyar la pieza de prueba, la unidad de fuerza, los con
troles, los registros, los indicadores de velocidad y amortiguadores de retroceso o choque, la carga puede aplicarse por medios mecánicos, mediante el
uso de mecanismos de engrane y tornillo, caso en el cual las máquinas son -llamadas de "engrane y tornillo" o "mecánicas". Cuando la carga es aplicada
por medio de un gato o prensa hidráulicos, el dispositivo es llamado "máquina hidráulica". La fuerza puede proveerse manualmente o por medio de alguna máquina motriz (por lo general, un motor eléctrico) a una bomba o una cadena de engranes, dependiendo del diseño de la máquina y su capacidad.

Algunas máquinas son diseñadas para un solo tipo de ensayo, como una máquina de tensión hecha para ensayar cadenas y alambre; y otras hechas únicamente para ensayos compresivos. Sin embargo, si una máquina es diseñada para ensayar probetas en tensión, compresión y flexión, es llamada "máquina de ensaye universal". También hay máquinas especiales para torsión, dureza impacto, resistencia, flexión en frío y otros ensayos.

Dos tipos principales de máquinas universales motorizadas son ahora de uso común en los EE.UU.: (1) las máquinas de engrane y tornillo son dispositivos de pesaje de palancas múltiples y contrapeso móvil o péndulo o con dispositivos electrónicos de medición de cargas y (2) las máquinas hidráulicas, las cuales en los tipos más precisos utilizan la cápsula Emery y un tubo de Bourdon modificado, o un tubo de Bourdon en combinación con un resorte isoelástico o un dispositivo electrónico, para medir e indicar la carga.

En una máquina mecánica la carga ordinariamente es aplicada a una probe ta a través de un "puente móvil" (véase la Fig. 3.4.). En el caso de una -- probeta en tensión la carga es soportada por un "puente fijo", el cual puede sin embargo, ubicarse en cualquiera de varias posiciones. En un ensayo compresivo o flexión transversal la carga es soportada por la mesa de trabajo - de la máquina. En las máquinas de engrane y tornillo del tipo de palanca, el puente fijo o la mesa transmiten entonces la carga al sistema de pesaje de - palancas compuestas. En un máquina hidráulica la carga es ordinariamente -- aplicada por medio del movimiento del pistón del sistema hidráulico, el cual está conectado ya sea a la mesa de la máquina, o a un puente móvil. El mecanismo para medir la carga puede originarse ya sea en las porciones fijas o en las móviles de tales máquinas.

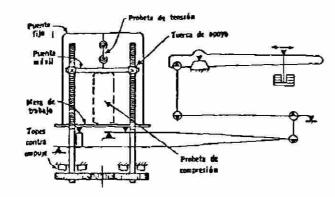


Figura 3.4.- Diagrama esquemático de una máquina de ensaye con engrane y tornillo. El puente móvil siempre desciende durante un ensayo.

La maquina hidráulica ofrece un medio para lograr capacidades muy grandes. La máquina más grande, usada solamente para compresión, es la de - - - 10 000 000 lb de la Oficina Nacional de Normas (National Bureaur of Standards)

Un número de máquinas universales con el rango desde 1 000 000 hasta 5 000 000 lb está en uso. En años recientes, las máquinas hidráulicas de ca pacidad ordinaria han alcanzado mucha aceptación. En la máquina hidráulica moderna la carga puede ser aplicada rápidamente y fácilmente con poco ruido o vibración, y con un buen control del ritmo de carga. Las máquinas hidráulicas más baratas que utilizan la presión en el cilindro de carga como una indicación de la carga sobre la probeta pueden resultar susceptibles e inexac titudes mayores, pero las mejores de ellas, especialmente aquellas que incor poran la cápsula Emery, pueden ser muy exactas.

Algunos de los requerimientos generales para las máquinas de ensaye son

los siguientes:

1.- La exactitud requerida debe obtenerse en todo el rango de carga; or dinariamente se requiere que los errores sean menores del 1%, pero 0.5% o me nos es deseable.

2.- Debe ser sensitiva a los cambios ligeros de carga.

3.- Las mordazas del puente deben esta alineadas.

4.- Los puentes móviles no deben oscilar, torcerse o moverse lateralmente.

5.- La aplicación de la carga debe ser uniforme, controlable y capaz de un considerable rango de velocidades.

6. - Debe estar libre de vibraciones excesivas.

7.- El mecanismo de retroceso debe ser adecuado para absorber la ener-gía de ruptura, de las probetas que se quiebren súbitamente para evitar da-ños a la máquina al cargársele a toda capacidad.

8.- Debe ser susceptible a la manipulación y al ajuste fáciles y rápi--

dos y debe permitir el fácil acceso a las probetas y defomimetros.

Ocacionalmente, los registradores de esfuerzo-deformación autográficos o semiautográficos se usan. Los dispositivos de sujeción, los dados de apoyo, montaje y los soportes para las probetas se describen en conexión con -los ensayos a los cuales son aplicables.

3.5.- MAQUINAS DE ENGRANE Y TORNILLO

En algunas máquinas universales un mecanismo de engrane y tornillo impulsado por un motor acciona el puente móvil, el cual transmite la carga a través de la probeta directamente a la mesa o al puente fijo y luego indirec
tamente a la mesa de trabajo. La carga sobre la mesa puede a su vez equilibrarse por medio de un sistema de palancas múltiples que elimina la palanca
graduada al larguero de la balanza y el contrapeso, según se muestra esquemá
ticamente en la Fig. 3.4; sin embargo, algunas máquinas de engrane y tornillo construidas recientemente, miden la carga mediante un sistema de péndulo

con e-el i --; ada jui-

ju--

ca-

a de a

5

me

as

;05 [e-

ga

es-

i --

a má icapaa de , im

de losil dis cas, loe-

probe
na -puede
comajo a, el
de -te -cual
l mejas o

de lectura directa. el principio del cual está ilustrado en la Fig. 3.2b. - Uno de los tipos más nuevos de máquinas mecánicas de ensaye difiere de todos los demás en que la carga se mide por medio de una celda de carga universal SR-4 que acciona electrónicamente el indicador de carga.

En algunas máquinas de ensaye los tornillos mismos giran dentro de tuer cas de apoyo montadas en el puente móvil como se muestra la Fig. 3.4., en -- otras máquinas los tornillos están fijados al puente móvil, y las tuercas de apoyo están en los engranes debajo de la mesa de trabajo. Cualquiera de los dos sistemas sirve satisfactoriamente para mover el puente.

Se usan máquinas con dos, tres o cuatro tornillos. Las máquinas de dos tornillos están bien adaptadas para los ensayos de tensión y transversales, pero cuando se usan para ensayos de compresión, debe tenerse cuidado de colo car la probeta en el plano de los tornillos y a la mitad de la distancia entre ellos, para evitar la flexión de los tornillos. La probeta no queda tan accesible en las máquinas de tres y cuatro tornillos como en aquellos de sólo dos tornillos, pero las primeras no resultan fácilmente dañadas por la excentricidad accidental o las cargas excéntricas.

3.6.- MAQUINAS HIDRAULICAS

Los aspectos principales de dos tipos de máquinas hidráulicas se mues-tran diagramáticamente en la Fig. 3.5.

En elitipo A, la carga es aplicada por un prensa hidráulica y es medida por la presión desarrollada dentro del cilindro hidráulico. El pistón principal, por lo general, se ajusta y empalma cuidadosamente, para reducir la fricción del pequeño pistón usado en el sistema de medición, el segundo de ellos se hace girar durante la operación de la máquina. En el diagrama mostrado, la carga es finalmente medida por un dispositivo pendular, aunque se usa en tubo Bourdon en algunas máquinas.

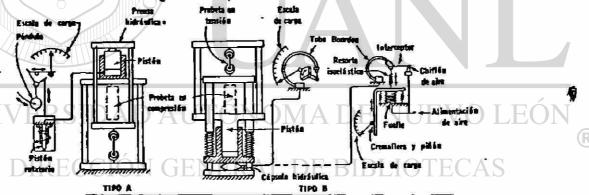


Figura 3.5.- Aspectos esenciales de dos tipos de máquinas de ensaye hidráulicas.

En las máquinas de tipo 8, la carga es aplicada por una prensa hidráuli ca independientemente del sistema de medición, el cual es accionado por una cápsula hidráulica. En algunas máquinas, tales como la mostrada en la Fig. 3.6, un movimiento muy ligero del extremo del tubo Bourdon acciona unidades electrónicas que a su vez accionan el indicador de cargas. En otras máquinas el uso directo del tubo Bourdon ha sido reemplazado por un mecanismo, no perando según el método "nulo", indicado a la derecha de la Fig. 3.5. En este método, un ligero movimiento del extremo del tubo Bourdon mueve al interceptar sobre él un chiflón de aire y permite que la presión del aire del chiflón y, por lo tanto, del fuelle decrezca. Los resortes de la izquierda y la derecha del fuelle aplastan a éste y alargan el resorte isoelástico (un

resorte de módulo constante), el cual está fijado al extremo del tubo Bourdon Este movimiento restaura al interceptor sobre el chiflón de aire a su posi-ción original y acciona la manecilla sobre la balanza de carga. Este método contrarresta la bien conocida desventaja del tubo Bourdon ordinario, a saber que no arroja una relación rectilinea entre la presión y el movimiento del extremo.

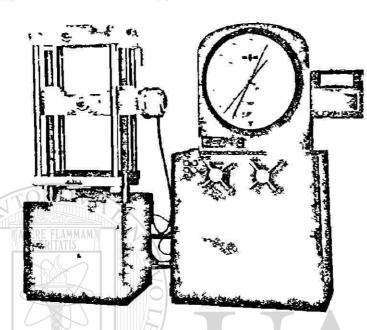


Figura 3.6.- Máquina universal hidráulica con - transductor mecánico-elec trico conectado al extremo de un tubo Bourdon. -Capacidad 60,000 Kg.

En las maquinas mas modernas, el sistema de medición de la carga es por medio de dispositivos isoelásticos que traducen la señal de presión en señal eléctrica, la cual a su vez es amplificada para mover el servomecanismo de la aguja indicadora de carga, ó a un contador de display, ó a una microprocesado ra que mueve un graficador x-y. La ventaja de los dispositivos isoelásticos es que el control es más exacto y más rápido. La desventaja es la lentitud - con que responden los elementos mecánicos a los cuales están interconectados, y el dispositivo transductor deberá estar aislado de polvo, ruido o de campos electromagnéticos. Ver figúra 3.7 y 3.8.

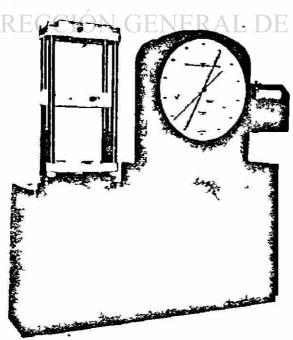


Figura 3.7.- Maquina univer sal hidráulica - con dispositivo isoelástico para tradución de la presión - capa cidad 30,000 Kg.

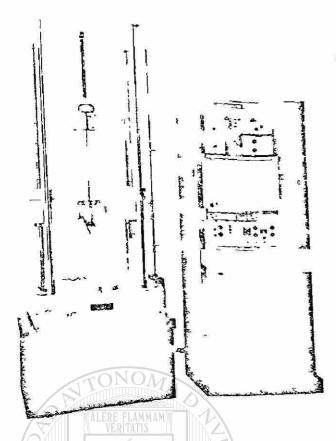


Figura 3.8. - Máquina Universal - con circuitos de estrado sólido, lectúra digital, graficador x-y, control de velocidad - capacidad 6,000 Kg.

La Lyoría e l.s q i s n l s estún quip das con dos o más arú u las indicadoras de cargas para servir a difer ntes rangos de carga o ll van una carátula con una áscara que puede hacerse girar para exponer grupos diferentes de cifras y así permitir que la carátula única sirva para varios rangos de carga. Se usan mecanismos de medición de carga adecuados para cada rango de carga de modo que las cargas pequeñas puedan observarse con una precisión comparable a aquella para las cargas grandes.

3.7.- AJUSTE DE LA VELOCIDAD

Los mecanismos propulsores para las máquinas de ensaye de engrane y -tornillo usualmente se hace que accione el puente a cuatro o más velocidades Las diversas velocidades pueden obtener se por medio del uso selectivo de dife rentes razones para engranaje, de va-rias velocidades de motor fijas, o pro pulsiones electrónicamente controladas que permitan el uso de cualquier velocidad de ensaye deseada, (Fig. 3.9). -En la mayoría de las máquinas hidráuli cas modernas, cualquier velocidad de aplicación de carga deseado puede obte nerse mediante el uso de una velocidad de bombeo apropiada o un ajuste valvu-

lar que controle el flujo de aceite de la bomba al cilindro de carga. En esas máquinas, la velocidad de carga es frecuentemente controlada mediante el uso de un brazo o disco regulador auxiliar en la carátula indicadora de carga; para aplicar la carga a la velocidad deseada, el operador ajusta el regulador para que funcione a la velocidad dada y luego los controles del motor o de la bomba para lograr que el indicador de cargas se ciña al regulador.

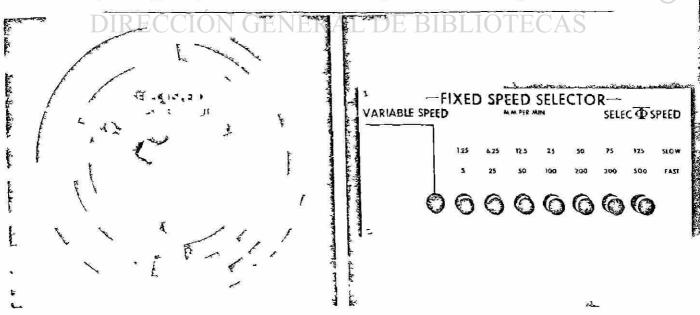
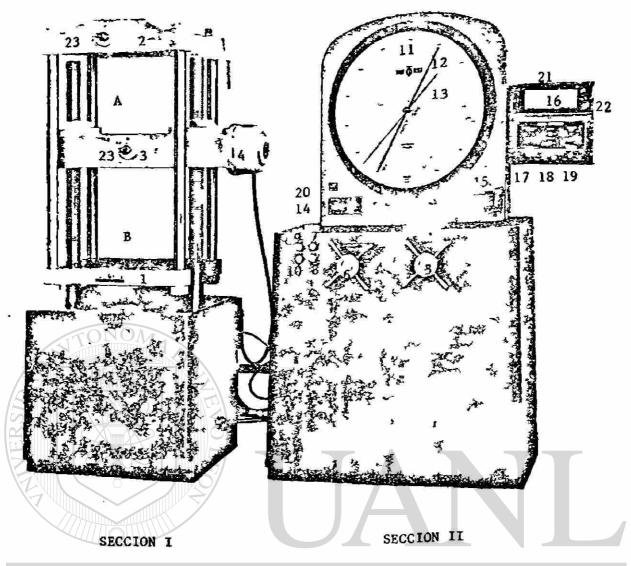



Figura 3.9.- Selector de veloc dad de aplicación de carga.

Figúra 3.10.- MAQUINA UNIVERSAL

3.8.- PARTES DE LA MAQUINA UNIVERSAL

Son las que se enuncian en seguida. Ver figura 3.10.

Sección LE CSección de Pruebas RAL DE BIBLIOTECAS

Sección II Sección de Control

- 1.- Pistón de carga
- 2.- Cabezal móvil
- 3.- Cabezal fijo

s

D

ST

- 4.- Motor de cabezal fijo
- 5. Válvula de carga
- 6.- Válvula de descarga
- 7.- Botón de encendido para la bomba
- 8.- Botón de apagado para la bomba
- 9.- Botón para elevar el cabezal fijo
- 10.- Botón para bajar el cabezal fijo
- 11.- Carátula indicadora de lecturas
- 12.- Aquia motora
- 13.- Aguja indicadora
- 14.- Selector de rangos
- 15.- Ajuste a cero de los rangos

16. - Graficador

17. - Selector de amplificador de deformación

18. - Botones de calentamiento y encendido del graficador

19.- Ajuste a cero de la deformación

20. - Celda de carga

21.- Vástago de carga

22. - Tambor de deformaciones

23. - Manivela para mordazas de tensión en placas

A. - Zona de tracción

B. - Zona de compresión

Bajo 0 - 1,500 Kgr. 2.5 Kgr. por división

Rangos Medio 0 - 15,000 Kgr. 25 Kgr. por división Alto 0 - 60,000 Kgr. 100 Kgr. por división

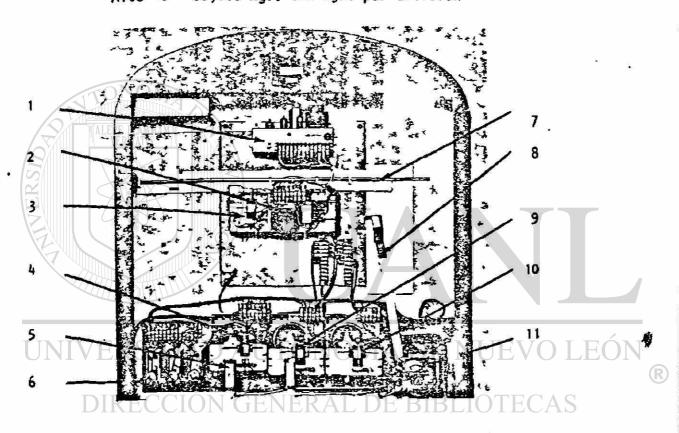


Figura 3.11.- Partes internas de la Sección de Control. (Superior).

l. _ Amplificador

2.- Servo Mecanismo

3, - Balance del Motor Transductor

4.- Transductor del Rango Bajo

5.- Válvulas de Seguridad

6.- Ajustes de Cero

7.- Mecanismo para el Graficador

8.- Posicionador de la Carátula

9.- Transductor de Rango Medio

10. - Transductor de Rango Alto

 Selector de rango, incorporada a una válvula hidráulica, escala de medición y a un Switch eléctrico.

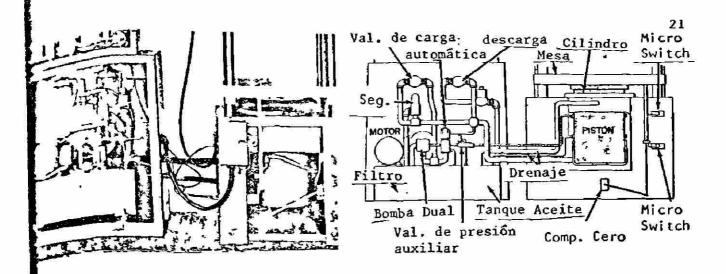


Figura 3,12.- Partes Internas de la Sección de Control. (Infe--rior).

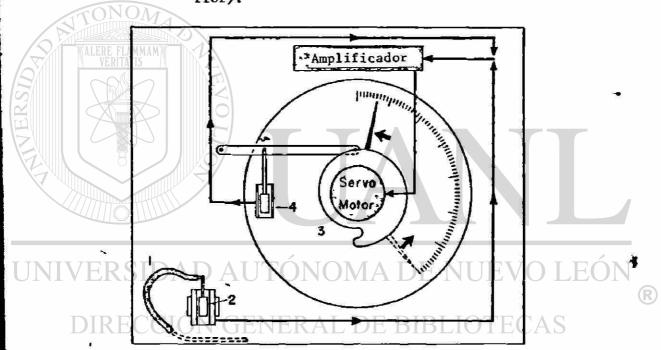


Figura 3.13.- Circuíto de las seña les hidráulicas hasta el indicador de carga.

INDICACION DE CARGA

Los sistemas indicadores de carga, son compuestos por un balanceador de nulos, el cual es accionado por un tubo Bourdon que mide e indica electrónicamente la señal proporcional de la carga aplicada al espécimen.

Refiriéndonos a la figura 3.13. La presión hidráulica desarrollada sobre el espécimen de prueba es aplicada al tubo Bourdon (1), moviéndose hacia arriba produciéndo una señal positiva de voltaje en el transductor diferencial (2), la cual es amplificada y enviada al servo motor (3).

Al girar el motor indicará un punto en la carátula, para que esto suceda se acopla al servo motor una leva y varilla acoplada a un transductor (4) cuyo movimiento de acuerdo a la figura nos producirá una señal negativa, la cual es mandada al amplificador, cuando las señales son opuestas y de igual intensidad se produce un balance nulo, quedândo la aguja que es movida por el servo motor, en un punto fijo indicándo en la carátula la carga aplicada al espécimen en ese instante.

SHECC DOAD

LINCT ROUND ACAN

LINCT ROUND

SHECC DOAD

LINCT ROUND

SHECC DOAD

LINCT ROUND

SHECC DOAD

LINCT ROUND

SHECK DOAD

LINCT ROUND

SHECK DOAD

SHECK D

231!% DIFigura 3.14. Panel de Control de Estado Sólido TECAS

Ep los últimos años se ha desarrollado altamente la electrónica a tal - grado que las máquinas universales más modernas están gobernadas por circuí tos de estado sólido, que lógicamente nos dán más velocidad a respuestas, - más precisión en la medición; en la figúra 3.14 se muestra un display donde se marca la carga, los botones para seleccionar rango de carga con sus ajus tes a cero, botones de encendido y apagado, botones de velocidad de aplicación de carga, etc.

3.9.- CALIBRACION DE MAQUINAS DE ENSAYE

, Tres métodos comúnmente usados para calibrar las máquinas de ensaye - - son: (1) el uso de pesas solas, (2) el uso de palancas y pesas y (3) el uso de dispositivos de calibración elásticos (ASTM E 4).

Cuando pueden usarse, las pesas normalizadas constituyen un medio de ca libración simple. La pesa usual es unidad de 50 lb. Tales pesas frecuente mente se fabrican con una exactitud del 0.01 lb o menos, más cercano por comparación con una norma conocida. Las solas pesas resultan únicamente adecuadas para usarse con máquinas de ensaye de tipo vertical que acciona el mecanismo de medición mediante una presión descendente sobre la mesa. El uso de pesas está limitado por el espacio disponible sobre la mesa de la máquina y el número de pesas disponible; frecuentemente veinte pesas de 50 lb, un total de 1,000 lb, se usan. En casos especiales, pesas normalizadas que pesan 10 000 lb, se han usado.

El rango sobre el cual las pesas calibradas pueden usarse, puede aumentarse mediante el uso de un par de palancas, las cuales usualmente se hacen con una razón de palanqueo de 10:1, de modo que 20 pesas arrojan una carga efectiva de 10,000 lb. Un arreglo común de éstas así llamadas "palancas de comprobación" se muestra en la Fib. 3.15. Para calibrar máquinas de ensayo horizontales, palancas angular de "manivel" (palancas cuyos dos brazos quedan en ángulo recto) ocacionalmente se usan. La razón de palanqueo de cualquier sistema de palancas debe determinarse por medio de un ensayo de carga más bien que por la medición directa de los brazos de la palanca.

Las limitaciones generales del uso de las pesas, o de las palancas con pesas, son que resultan inconvenientes para transportarse y solamente pueden usarse para un rango de carga relativamente pequeño, usualmente menos que el rango de carga útil de las máquinas de ensayo de capacidad intermedia y gran de.

Probablemente, el método de calibración más simple y común para las máquinas de mayor capacidad consiste en el uso de un dispositivo de calibra-ción elástico, el cual a su vez consiste de un miembro, o miembros del metal elástico, combigado con un mecanismo para indicar la magnitud de la deformación bajo la carga. Dos formas de este dispositivo son: (1) una barra de acero junto con un deformimetro acoplado y (2) un "anillo de calibración", el cual es un aro o anillo de acero combinado con algún tipo de indicador de deflexión. La barra de acero es adecuada principalmente para usarse en tensión, aunque algunas barras se usan en compresión.

Los dispositivos de aros o anillos son hechos ya sea en compresión o tensión. Un anillo de calibración para -- usarse en compresión está ilustrado en la Fig. 3.16. Una carga compresiva -- acorta el diámetro vertical y este cambio es medido por micrómetro. Con este cambio y los datos de calibración para el anillo, la carga aplicada puede desterminarse. Los anillos de calibración de esta clase son adquiribles en capacidades haste de 300 000 lb, pero las barras de compresión tienen capacidad has ta de 3 000 000 lb, las cuales están -- equipadas con calibradores de deforma--

JUI

nde

ju

us

≱ C ≥nt

r

P

na

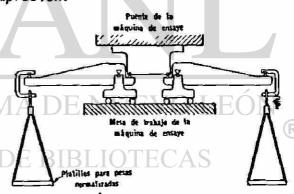


Figura 3.15.- Palancas de comprobación (ASTM E 4).

ción electrónica, son adquiribles en la Oficina Nacional de Normas. Asimismo, para calibrar máquinas muy grandes en compresión, varios anillos o barras de calibración pueden usarse paralelamente.

A continuación aparecen tres importantes requerimientos de un dispositivo de calibración elástico (ASTM E 74):

- 1.- Debe ser construido de tal manera que su exactitud no resulte afectada por el manejo y la transportación y que las partes susceptibles de dañarse o removerse puedan reemplazarse sin disminuir la exactitud del dispositivo.
- 2.- Debe estar provisto de conexiones o portacojinetes construidos, de tal manera que la exactitud del dispositivo en uso, no resulte afectada por imprefecciones en las conexiones o los portacojinetes.

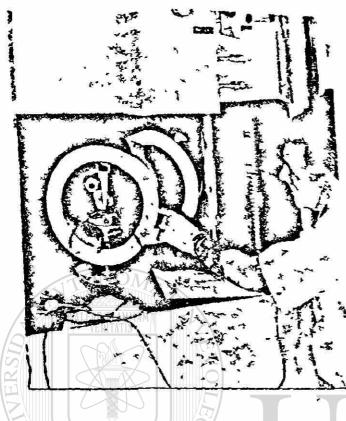


Figura 3.16. Anillo de calibración para usarse en compr<u>e</u> sión.

3.- Debe calibrarse en combinación con el deformimetro que haya de usar con él y el deformime-tro debe usarse en el mismo rango que la cubierta por la calibración

Debe tenerse cuidado de minimizar cualesquiera cambios de temperatura durante el uso de un dispositivo de calibración elástico. Aún más, la temperatura real en el momento de usarse y de su propia calibración debe conocerse ya que las propiedades elásticas del material cambian con la temperatura. En general, la lectura de un dispositivo del tipo de anillo cambia en aproximadamente 0.015% por cada cambio de temperatura de, un grado Fahrenheit de lo normalizado.

Debe distinguirse entre la ca Libración de máquinas de ensaye, o el procedimiento para determinar - la magnitud del error en las caragas indicadas, y lo que la ASTM -- (ASTM E 4) llama la verificación - de las máquinas de ensaye. La verificación se preocupa por averiguar si los errores quedan o no -- dentro de una amplitud admisible - especificada, e implica la certificación de que una máquina cumple -

con los requerimientos de exactitud estipulados. La "variación permisible", o máximo error admisible de carga indicada de una máquina de ensaye, es degrata. El "rango de carga" es la amplitud de las cargas indicadas para la cual la máquina dá resultados dentro de la variación permisible especificada. El rango de carga admisible debe consignarse en cualquier certificado de verificación. Se recomienda no usar ninguna corrección en máquinas probadas y encontradas "exactas" dentro de los límites prescritos (ASTM E 4).

Se especifica que las correcciones de calibración no deben aplicarse a - las cargas indicadas para obtener valores dentro del rango de exactitud reque rida. Obviamente esto implica que la máquina debe ajustarse o modificarse -- hasta que la calibración demuestre que está dentro de los límites especificados. Las calibraciones subsecuentes que establecen el hecho de que los errores quedan dentro de los límites prescritos se llaman verificaciones.

El ajuste de máquinas que llevan una pesa equilibrante, o un péndulo se logra fácilmente cambiándo el peso de estos elementos. Para las máquinas hidráulicas que llevan un resorte isoelástico, el ajuste se logra cambiándo su largo efectivo, para aquellas que utilizan un calibrador eléctrico en el extremo del tubo Bourdon, el ajuste se logra en la conexión del tubo; para aque llas provistas de un calibrador de cargas simple en el tubo Bourdon, el ajuste debe hacerse en el enlace del calibrador.

Los cambios de temperatura no afectan la exactitud de una máquina mecánica, pero sí tienen un ligero efecto en todas las máquinas hidráulicas que utilizan un tubo Bourdon. Sin embargo, para los cambios de temperatura normales los errores así introducidos, por lo general, ascienden a menos de aproximada mente o.1%.

Con pocas excepciones notables, la operación consiste en tomar mediciones lineales cuantitativas se reduce en última instancia a la toma de lecturas en una escala graduada, y lo segundo consiste esencialmente en estimar - la posición de alguna marca (línea, manecilla o similar) a lo largo de la escala. Para obtener una estimación exacta, es necesario eliminar el paralaje lo cual usualmente se hace de una de dos maneras, por "coincidencia tangencial" o el uso de principio de la "escala de espejo". En el primer método, se hace que la marca quede en el plano de las graduaciones escalares. Una forma de dispositivo de espejo se muestra en la Fig. 3.17. Cuando el alambre o manecilla parece coincidir con su imágen, la línea de visión por el -alambre es perpendicular a la escala y al espejo.

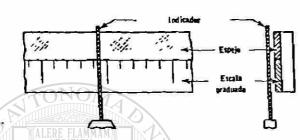


Figura 3.17.- Dispositivo de escala de espejo.

En el caso más simple, la posición de una marca a lo largo de una escala se obtiene estimando la distancia desde una graduación adyacente. La mínima lectura de una escala depende del espaciamiento de las marcas de gradua ción, y siempre que sea posible es deseable estimar décimos de divisiones. — Para un mayor refinamiento al leer las fracciones de una división se puede usar un vernier.

Un vernier sencillo de lectura directa, quizá el tipo más común, se -muestra en la figura 3.18. Una distancia igual a nueve divisiones de la escala se divide en diez divisiones iguales en el vernier. Entonces cada divi
sión del vernier equivale a nueve décimos de una división de la escala. Por
lo tanto, si la primera marca del vernier después de la marca del cero o in-

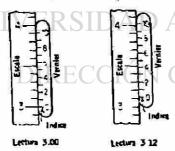


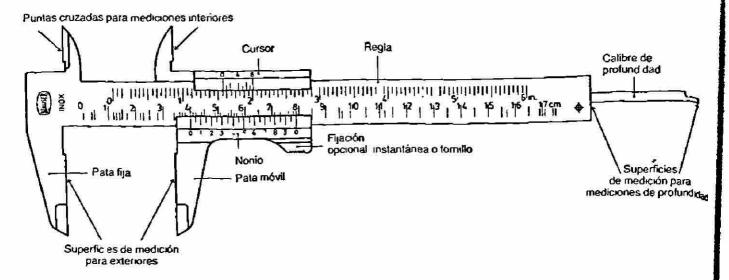
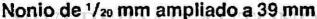
Figura 3.18.- Vernier directo

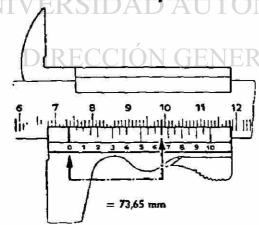
dice coincide con cualquier marca de la escala, el índice queda un décimo de división más allá de
la marca escalar precedente; si la segunda marca
del vernier coincide, el índice queda dos décimos
de división más allá de la marca escalar preceden
te; etc.

Existen vernieres para los diferentes sistemas métricos y con diferentes precisiones, los -- más modernos traen adaptado en el cursor una cará tula de lectura (ver figura 3.19) ó sistema de -- displey digital.

Figura 3.19.- Vernier con carátula integral

in ue si inti les ada


Figura 3.20 .- Partes del Vernier.

En la figura 3.20, se muestran las diferentes partes que componen a un -Vernier para medición de: interiores, exteriores y profundidad.

La medición de una distancia entre dos puntos puede hacerse directamente por comparación con una escala o cinta graduada de acero. La distancia entre las superficies opuestas de un objeto sólido comúnmente se determina mediante el uso de un calibrador, la separación de las puntas del cual puede medirse directamente con una escala. Para distancias pequeñas, el uso directo de la escala graduada arroja resultados de exactitud limitada, porque la mínima lec tura práctica de una escala simple vista es aproximadamente de 0.01 pig. Se recurre entonces a un micrómetro (es decir, un medidor de distancias pequeñas) para realizar mediciones más finas.

En seguida se muestran diferentes mediciones con los vernieres para dife rentes amplitudes.

a) División principal;

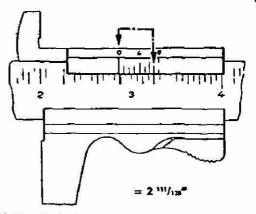
La raya del nonio marcada con 0 se encuentra entre las rayas 73 y 74. Lectura = 73 mm

b) División del nonlo:

La primera raya sin numeración después de la raya marcada con 6 coincide con una raya de la división principal

- 6 10 + 1/20 Resultado total = 73 + 0.6 + 0.05= 73,65 mm

Nonio de 1/128"


Explicación de la graduación de la regla

Pulgada dividida en 16 partes

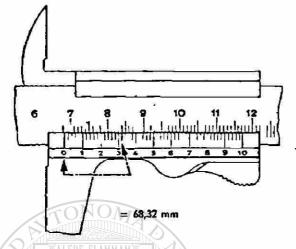
Se cuenta: 1/16", 2/16" = 1/2", 3/16", 4/16", = 1/4" etc.
En relación con el nonio los valores deben ser ampliados por 8.

Explicación del nonio

Nonio dividido en 8 partes, 1 parte por 1/a más corta que la divisio la regla. Posibilidad de lectura 1/11": 8 = 1/128"

a) División principal:

La raya del nonio marcada con 0 se encuentra entre 214/16" y 2 Lectura = 213 16"


b) División del nonlo:

La sept ma raya coincide con una raya de la división principa

= 7/128" Resultado total - 211/16" + 1/126"

- 2111 125"

Nonio de 1/50 mm

e) División principal:

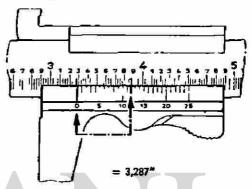
La raya del nonio marcada con 0 se encuentra entre las rayas 68 y 69. Lectura = 68 mm

b División del nonio:

La primera raya sin numeración después de la raya marcada con 3 coincide con una raya de la división principal

= 1/10 + 1/80 Resultado total = 68 + 0.3 + 0.02- 68,32 mm

Nonio de 1/1000" ampliado a 1,225"


Explicación de la graduación de la regla

Pulgada dividida en 40 partes Se cuenta. 25/1000", 50/1000", 75/1000" etc. Expresión en decimales 0,025" etc.

Para facilitar la lectura cada cuarta raya es más larga y prevista de números 1, 2 etc. hasta 9. Las rayas más largas indican 1/10 = 100 1000", por lo tanto 0,100", 0,200" etc.

Explicación del nonio

El nonio tiene 25 partes. Cada quinta raya está numerada

 a) División principal: La raya del nonio marcada con 0 se encuentra entre 3,275" y 3,300"; Lectura 3,275'

b) División del nonio:

La duodécima raya coincide con una raya de la división principal

= 12/1000" Resultado total = 3,275" + 0,012"

= 3.287"

UNIVERSIDAD AUTÓNOMA I

DIRECCIÓN GENERAL DE BIBLIOTECAS

3.11.- MICROMETROS

En principio, un micrómetro es simplemente un instrumento para obtener una indicación amplificada de las distancias pequeñas. En muchos micróme-tros la distancia es, de hecho, recorrida por alguna parte móvil, y el movi miento resultante es amplificado y medido. La determinación de las distancias mayores que la amplitud de movimiento del dispositivo micrométrico requiere que las mediciones se hagan con respecto a algún punto fijo cuya posición se conozca exactamente.

Vicrómetro de tornillo.- Quizá la forma más simple de micrómetro es el de tornillo. Una ilustración común del micrómetro de tornillo se encuentra en el calibrador micrométrico ordinario, mostrado en la figúra 3.21. Ahí el tornillo generalmente lleva 40 cuerdas por pulgada (paso de la cuerda = 0.025 plg), y el cañón tiene 25 divisiones, de modo que 1/25 de vuelta arro ja un movimiento del husillo (y una lectura correspondiente) de 0.001 plg. Los micrómetros de tornillo más precisos se hacen graduados hasta 0.0001 -plo, para ofrecer una mínima lectura práctica de 0,00001 plo, el rango de recorrido del husillo en los calibradores micrómetros es usualmente de no más de 1 plq, pero esos dispositivos son adquiribles para medir longitudes

DOT 8 divis

I para

ohine

1 -

ite

:re

ite

а

ec

ias,

fe

e

1

6" y 2

ncip

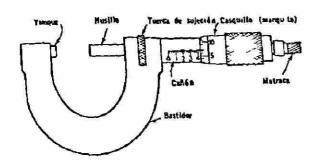
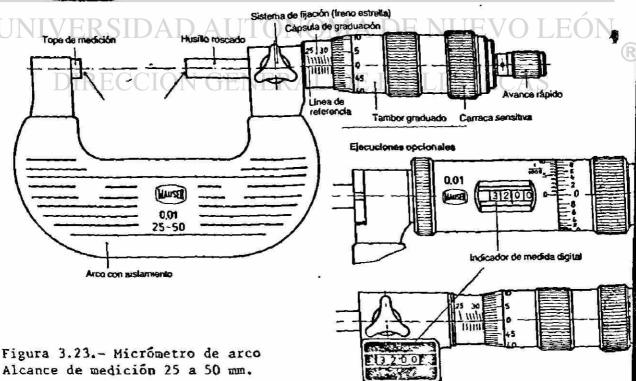


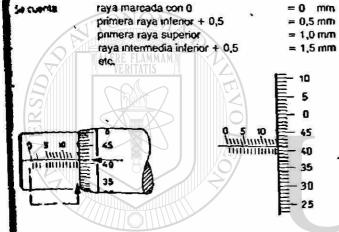
Figura 3.21. - Calibrador micrómetro de tornillo.


de 2 pies o más.

En muchos usos del micrómetro de tornillo, el extremo del husillo o tor nillo debe entablar contacto con la pieza de referencia a la cual las mediciones se estén haciendo. Es necesario algún método para controlar la presión de contacto si han de obtenerse resultados consistentes. El calibrador micrómetro para mecánicos (véase las figúras 3.20 y 3.21), frecuentemente es tá equipado con un trinquete de resorte que se suelta con una presión de con tacto definida.

Los últimos desarrollos de los micrómetros en la actualidad vienen integrados con un indicador de medida digital directo, como se muestra en la figúra 3.22. En la figúra 3.23 se muestran las diferentes partes de un micrómetro de arco con dos diferentes tipos de ejecuciones opcionales, mostrándo los indicadores de medida digital integrados.

Figura 3.22.- Micrómetro con indicador de medida digital.


N crómetros con paso de rosca del husillo de 0,5 mm ectura 0,01 mm

cocción: Una vuelta del husillo varia el resultado de medición en a medición en en el munición mon ó 0,5 mm.

a carsula intenor (cápsula de división) está graduada con 2 x 25 as La graduación inferior, separada de la superior por la línea de sayance cero, esta desplazada hacia la derecha en 0,5 mm.

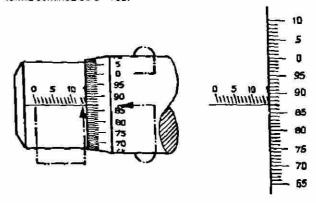
as wer el resultado de medición hay que tener en cuenta lo siguiente:

A traya marcada con 0 sigue inmediatamente la raya inferior, la cual raca 0.5, y luego la raya superior indicando 1 mm etc.

Ejemplo de lectura: El tambor exterior ha dejado pasar una raya remor después de la 13º raya supenor, en el mismo tambor exterior a 41º raya coincide con la línea cero.

Resultado:

1


n-

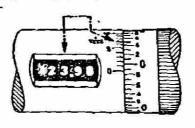
Medida en la cápsula de división 13 rayas superiores raya inferior visible = 0,50 mm medida en et tambor exterior 41 rayas = 0,41 mm

Resultado de medición 13,91 mm

Micrómetros con paso de rosca del husillo de 1 mm, lectura 0,01 mm

Explicación: Una vuelta del husillo varía el resultado de medición en / 1 mm. Por lo tanto, se puede leer a primera vista 0,1 y 0,01 mm en forma continua de 0 100.

Ejemplo de lectura: El tambor avanzó hasta la raya 13º de la cápsula de división, en ese punto la raya 87º del tambor graduado coincide con la finea de referencia cero.


Resultado: Medida en la cápsula de división 13 rayas ≈ 13,00 mm.

Medida en el tambor graduado 87 rayas ≈ 0,87 mm.

Resultado de medición 13,87 mm.

Micrómetros con contador digital, paso de rosca del husillo de 0,5 mm, lectura 0,001 mm

Explicación: El resultado de la medición a partir de 0,01 mm se lee directamente en la ventanilla, la cual está cerrada con una lupa de aumento para la ampliación de los números El anillo de división numerado adyacente en el cabezal de medición sólo tiene función de control. La lectura de 0,001 mm se realiza libre de paralaje con ayuda del nonio adicional.

Ejemplo de lectura:

Medida indicada en el contador

Medida en el nonio la septima raya del nonio coincide
con una raya del anillo de d'visión

Resultado de medición:

23,987 mm

Micrómetro de carátula. Un tipo de micrómetro extensamente usado en la actualidad es el de carátula o "indicador de carátula". En estos instrumentos, el movimiento del husillo acciona una palanca o un engranaje, el cual a su vez acciona una manecilla en una carátula graduada. El indicador de carátula posee la gran ventaja de ser autoindicativo.

El mecanismo interno de una forma de indicador de carátula (Ames, Federal, Starrett), el cual utiliza trenes o cadenas de engranes, se muestra en la figúra 3.24. Debe advertirse que en este dispositivo la cremallera propulsa un piñón, el cual a su vez acciona un engrane. Esto es lo contrario de la

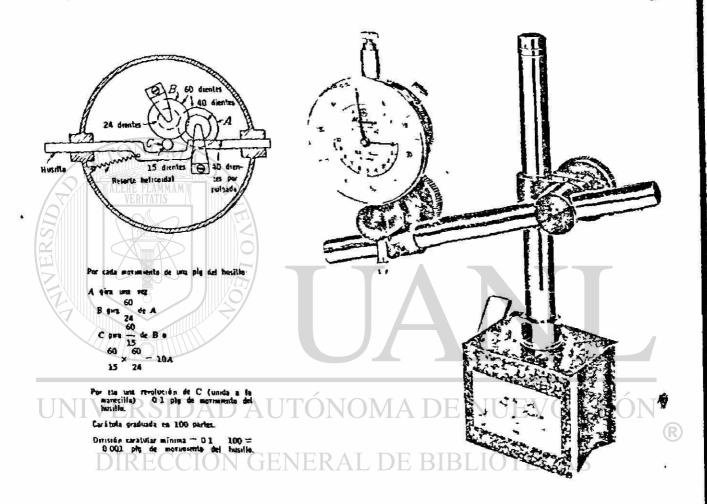


Figura 3.24.- Vista exterior e interior del micrometro de carátula. Mecanismo típico de indicador de carátula. (Amex, Federla, Starrett).

operación ordinaria del tren de engranes y torna importante la fricción de apoyo de manera que, en las mejores calidades de indicadores de carátula, se usan rodamientos enjoyados. En el indicador de carátula ordinario, la división más pequeña de la carátula corresponde a un movimiento del husillo de 0.001 plg, que arroja una mínima lectura estimada de 0.001 plg. Sin embargo se pueden obtener indicadores graduados de 0.0001 plg. Para un indicador fijado en posición, el movimiento del husillo se usa para medir una deformación u otro valor como el grueso, la altura, etc. Estos indicadores se construyen para varios rangos de movimiento del husillo, siendo una amplitud común 0.2 plg; sin embargo, amplitudes de 1/2 o hasta i plg, son adquiribles. Sobre cualquier amplitud considerable, la mayoría de los indicadores de este

e

tipo son confiables hasta una o dos divisiones de la carátula. Sobre una am plitud restricta, sin embargo, o por calibración puede lograrse que arrojen rediciones exactas hasta un valor correspondientes quizás a un quinto de división.

3.12. MEDICION DEL CAMBIO DE LONGITUD: DEFORMIMETROS MECANICOS.

Un deformímetro ha sido definido como cualquier instrumento que mida la deformación. La deformación puede ser un cambio de longitud resultante de * las deformaciones lineales, puede ser la deflexión de viga, o puede ser una torsión angular como en una flecha.

La mayoría de los instrumentos para medir deformaciones lineales se - aplican a la superficie de la pieza de ensayo —deformímetros de superficie. Para medir las fatigas internas, unos cuantos instrumentos de lectura a distancia, han sido desarrollados —ocacionalmente llamados "telémetros", o "deformímetros". La mayoría de los deformímetros permanecen fijados a la probe ta durante el curso de un ensayo, (ver figúra 3.25) pero ciertos instrumentos portátiles, algunos llamados "calibradores de deformación", pueden ser retirados de la probeta y aplicados nuevamente sólo cuando se ha de realizar una observación de la deformación. Dependiendo si ha de medir deformaciones por tensión o compresión, un instrumento puede ser denominado extensómetro o compresómetro.

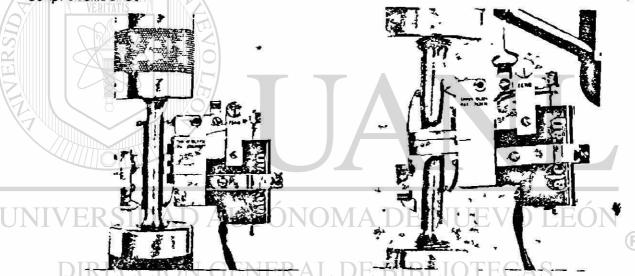


Figura 3.25.- Deformímetro mecánico eléctrico

Los puntos entre los cuales se miden las deformaciones se llaman puntos de calibración y la distancia inicial o nominal entre los puntos de calibración es llamada distancia de calibración o longitud de calibración. La medición de la deformación total no depende de la longitud de calibración si se usa un dispositivo de tipo micrométrico.

3.13.- REGISTRADORAS DE ESFUERZOS-DEFORMACIONES.

Algunas máquinas de ensaye están equipadas con grabadoras autográficas de esfuerzo y deformación, las cuales automáticamente trazan un diagrama de esfuerzo y deformación. En un tipo, el deformímetro eléctrico fijado a la - probeta lleva una palanca de acción por deformación que mueve un núcleo dentro de la bobina eléctrica de un transformador en miniatura. El movimiento del núcleo es transmitido electrónicamente a un transformador similar que -- acciona un servomotor que hace girar el cilindro de la grabadora. La aquia

accionada por la carga y el cilindro accionado por la deformación controlan los dos movimientos necesarios para trazar el diagrama de esfuerzo y deforma ción. Ver figüra 3.26.

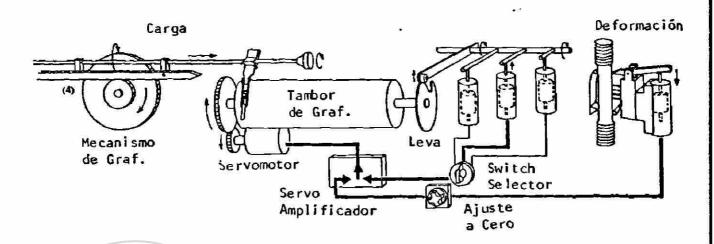


Figura 3.26.- Circuito del graficador de esfuerzo-defor mación.

3.14. - DEFORMIMETROS DE LECTURA A DISTANCIA

Para muchos propósitos, los deformimetros de lectura a distancia son deseables, y aun necesarios. Por ejemplo, cuando un gran número de deformíme-tros están ubicados en diferentes partes de una estructura de ensayo, es conveniente tomar lecturas en algún instrumento central. Cuando las deformaciones hayan de observarse hasta el punto de ruptura, bajo cargas pesadas, es -prudente que los observadores permanezçan a una distancia que ofrezca seguri-Cuando hayan de determinarse deformaciones en una posición inaccesible, como en el interior de una presa de concreto o el interior de un recipiente presionizado, un instrumento de lectura a distancia es necesario. Cuando las deformaciones debidas a esfuerzos rápidamente fluctuantes hayan de medirse, un deformimetro de lectura a distancia conectado a un dispositivo de grabación puede usarse. Muchos de los deformímetros de lectura a distancia son -del tipo de resistencia eléctrica.

3.15. - LA RELACION DE CAMBIO ENTRE DEFORMACION Y RESISTENCIA.

Lord Kelvin descubrió que la resistencia eléctrica de un alambre dado es una función de la deformación a la cual sea sometido, las deformaciones por tensión usualmente aumentando la resistencia y aquéllas por compresión dismi-Para la labor de calibración de la deformación es común expresar el cambio de deformación en función del cambio de resistencia, dando una ra-zón denominada sensitividad a la deformación o factor de calibración K. Este factor de calibración K = ΔR/R ÷ ΔL/L, donde ΔR representa el cambio de resis tencia en la resistencia de calibración total R, y AL es el correspondiente cambio de longitud en el largo total L del conductor. La deformación e en mi cropulgadas por pulgada = $\Delta R/RK$.

La sensitividad a la deformación es marcadamente influenciada por el ti-

po de alambre de resistencia, como se muestra en la Tabla 3.1.

Los diversos puntos a considerar en la selección de un alambre de resistencia, según el orden de su importancia son (1) el factor de calibración, -mientras más alto mejor; (2) la resistencia, mientras más alta mejor; (3) el coeficiente de temperatura de resistencia, mientras más bajo mejor, de modo -

TABLA 3.1. - ARAC R SI AS . 105 AI 'DRES DE RESISIENCIA

re c mercial l alambre	Corp sic'n	S nsitividad a l a deformación	Conficiente de temperatura de resistencia	
. uniquel	80% Ni, 20% Cr	2.0	Alto	
sumina un noe, Copel, o	4% Ni; 12% Mn; 84% Cu	0.47	Muy bajo	
Corstantana	4 % Nî, 55% Cu	2.0	Despreciable	
° oelästico	36% Ni; 8% Cr; 0.5% Mo	3,5	Alto	
\quel	Ni	-12.1	Inestable	

que el calibrador no sea demasiado sensitivo a la temperatura; (4) el coeficiente de expansión lineal, mientras más bajo mejor; (5) el comportamiento - terroeléctrico, o la tendencía a generar una f.e.m. térmica en las conexio-es, mientras más baja mejor; (6) las propiedades físicas, el alambre blando fácil de conformar y soldar es preferible al duro y tenza; y (7) el comportamiento de histéresis, indeseable.

De las clases de alambre mostradas en la Tabla 3.1, el alambre del tipo Advance es preferido para la mayoría de los calibradores pues posee un factor de calibración suficientemente bueno, un coeficiente de temperatura de resistencia despreciable, y se trabaja fácilmente. Para mediciones dinámicas, cuando un alto coeficiente de temperatura de resistencia no es de mucha importancia, es deseable usar alambre isoelástico debido a su alta sensitivi dad a la deformación. Esto arroja una mayor productividad, requiere menos amplificación para los instrumentos de medición, y se traduce en un costo de instrumentación menor. Algunos calibradores se hacen grabando delgadas láminas de hojas metálicas para producir la configuración equivalente de los calibradores de alambre.

3.16.- CALIBRADORES INTEGRALES DE ALAMBRE DE RESISTENCIA

Un calibrador usual y comercial de alambre de resistencia usado en los Estados Unidos es fabricado por la Baldwin-Lima-Hamilton Corp. y es conocido como calibrador SR-4. Algunos de los tipos comunes se muestran en la figúra 3.27. En nuchos casos los elementos sensitivos se componen de un tramo continuo de alambre doblado para formar un serpentín de modo que todas las vuel tas queden en el mismo plano. Luego este alambre es cementado a un material portador de papel u otro tipo. En otros casos los elementos sensitivos se hacen con un tramo continuo de alambre envuelto en un patrón helicoidal alre dedor de un núcleo delgado y plano de papel. Este elemento sensitivo se coloca luego entre dos cubiertas de papel para protección. Los tramos de calibración varían desde 1/8 a 8 plg o más, pero esta amplitud no es adquirible en todos los tipos de calibradores.

Las ventajas sobresalientes de los calibradores integrales de alambre - de resistencia eléctrico, comparados con los calibradores mecánicos, son:

- 1.- Facilidad de instalación.
- 2.- Exactitud relativamente alta.
- Sensitividad ajustable (cambiando el incremento del amplificador -usado).
- 4.- Indicación a distancia (tornando posible la observación de las de-formaciones en puntos distantes e inaccesibles).
- 5.- Tramos de calibración muy cortos.

6.- Medición de la deformación en la superficie del miembro de ensayo.
7.- Reacción a la deformación dinámica.

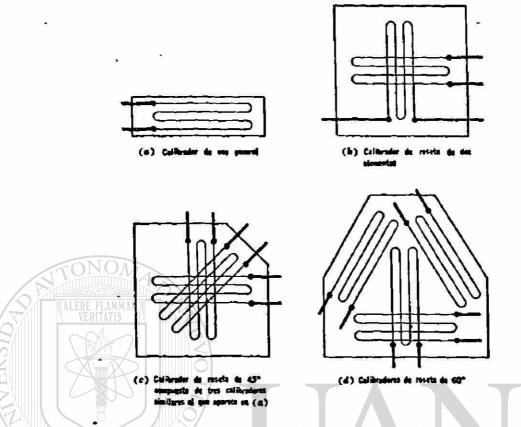


Figura 3.27.- Tipos principales de calibradores con alambres de resistencia eléctrica.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

IV. - ESTANDARES DE PRUEBA

Estos son las condiciones en que se realizarán los ensayos; procurándo semejar lo más posible, las condiciones reales de trabajo de la pieza o siquiéndo una serie de normas estandarizadas.

En los ensayos intervienen tres factores a saber: medio ambiente, probeta, máquina ensayadora; en donde se controlará diversas condiciones, que

sa enumeran a continuación:

- A.- Medio ambiente.- Se controlará: temperatura, presión, humedad, con taminación.
- B.- Probeta.- Se controlará: dimensiones, superficie, forma, material, condición interna.
- C.- Máquina ensayadora.- Se controlará: precisión, capacidad de carga, velocidad de aplicación de carga, adaptabilidad de accesorios, sen sibilidad, móvil o fija, calibración, forma de ensayar.

fijado lo anterior y aunado a la capacidad de la persona que realice - el ensayo se obtendrán óptimos resultados en cuanto a la característica me-cánica que deseamos medir.

UANL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

V .- ENSAYO ESTATICO DE TENSION

5.1.- INTRODUCCION

El término ensayo de tensión, usualmente se usa para referirse a ensayos en los cuales una probeta preparada es sometida a una carga monoaxial gradualmente creciente, (es decir, estática) hasta que ocurre la falla. En un ensayo de tensión simple, la operación se realiza sujetándo los extremos opuestos de la pieza de material y separándolos, produciéndo un alargamiento.

Con excepción de algunas piezas de ensayo arbitratiamente formadas, ~- las probetas son cilíndricas o prismáticas en su forma y de sección trans-- versal constante a lo largo del tramo dentro del cual las mediciones se to-man.

Cuando se realizan debidamente en probetas adecuadas, este ensayo, entre todos los demás, se acerca más a la evaluación de las propiedades mecánicas fundamentales con el diseño como finalidad, aunque debe advertirse reque las propiedades tensionales no son necesariamente suficientes para permitir la predicción del desempeño de los materiales bajo todas las condiciones de carga. Cuando se emplean métodos de ensayo normales, los resultados constituyen criterios adecuados de la calidad de los materiales por medio de los cuales se ha logrado acumular suficiente experiencia para proveer la certeza de que un nivel de calidad dado significa un comportamiento satis-factorio en servicio.

Los ensayos apropiadamente conducidos en partes representativas pueden ser valiosos para indicar directamente el desempeño de tales partes bajo -- cargas en servicio. Los ensayos adecuados de probetas o partes montadas so metidas a tratamientos específicos pueden ser utiles para evaluar cuantita- tivamente el efecto de esos tratamientos.

El uso de los ensayos de tensión no está limitado a la determinación - de las propiedades del material en forma de probetas preparadas (conformadas). Los ensayos de tamaño completo de los materiales manufacturados, las piezas fabricadas, y los miembros estructurales se realizan comúnmente. La variedad de las piezas elaboradas y los miembros de tamaño real, a los cuales los ensayos de tensión pueden aplicarse, es muy amplia; por ejemplo: -- tramos seleccionados de alambre, varilla, tubería, barras de refuerzo, cables de alambre, barras tensoras, cadena para anclas, ganchos para anclas, articulaciones remachadas y soldadas.

5.2.~ PROBETAS DE TENSION

Las probetas para ensayos de tensión se hacen en una variedad de formas. La sección transversal de la probeta es redonda, cuadrada, o rectangular. Para los metales, si una pieza de suficiente grueso puede obtenerse de tal manera que pueda ser fácilmente maquinada, se usa comúnmente una probeta redonda; para láminas y placas en almacenamiento usualmente se emplea una probeta plana. La porción central del tramo es usualmente (aunque nosiempre), de sección menor que los extremos para provocar que la falla ocurra en una sección donde los esfuerzos no resulten afectados por los dispositivos de sujeción. La nomenclatura típica para las probetas de tensión se indica en la Figúra 5.1. El tramo de calibración es el tramo marcado so bre el cual se toman las mediciones de alargamiento.

La forma de los extremos debe ser adecuada al material, y tal, que - - ajuste debidamente en el dispositivo de sujeción a emplear. Los extremos - de las probetas redondas pueden ser simples, cabeceados, o roscados. Los - extremos simples deben ser suficientemente largos para adaptarse a algún ti

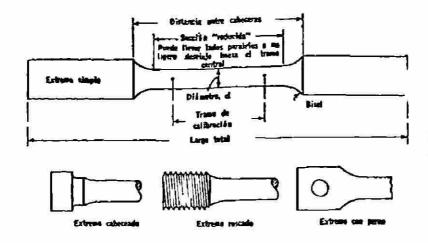
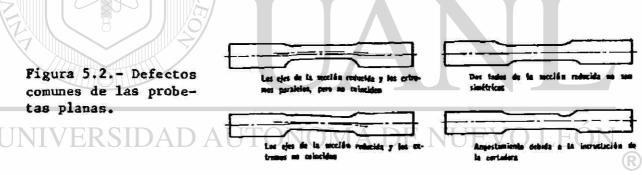



Figura 5.1.- Probeta t<u>f</u> pica de tensión.

po de mordazas cuneiformes. Las probetas rectangulares generalmente se hacen con extremos simples, aunque éstos ocasionalmente pueden ser cabeceados o contener un orificio para aplicar presión con perno.

La transición del extremo a la sección reducida debe hacerse por medio de un bisel adecuado para reducir la concentración del esfuerzo causada por el cambio brusco de sección; para los materiales quebradizos, esto es parrticularmente importante.

Una probeta debe ser simétrica con respecto a un eje longitudinal a to da su longitud, para evitar la flexión durante la aplicación de la carga. - La figura 5.2, ilustra los defectos comunes en la preparación de probetas - planas.

DIRECCIÓN GENERAL DE BIBLIOTECAS

5.3.- PROBETAS ESTANDAR

0

15

a

ÞΠ

50

--

as

La

19-

a-s,

11--

ingu

e -

(ea

no -

OCU-

S DOT

ón -

0 50

xos -

.os ~ in ti

pro

Las dimensiones de varias piezas de ensayo normalizadas, con las tolerancias permisibles se dan en la Figura 5.3.

La probeta de tensión redonda para metales dúctiles ASTM Estándar mostrada en figüra 5.3a fecuentemente se hace de 0.505 plg. de diámetro paratener una área seccional exactamente de 0.200 plg². Pueden utilizarse probetas más pequeñas, siempre y cuando el tramo de calibración sea de cuatro veces el diámetro de la probeta. Si se hace un adelgazamiento, la diferencia de diámetro entre los extremos y el centro del tramo de calibración, no debe exceder de 1% aproximadamente. Las probetas tomadas de placa y secciones planas se muestran en las figúras 5.3b y 5.3c. Las ligeras variantes de estos tipos de probetas pueden encontrarse en varias especificaciones —particulares.

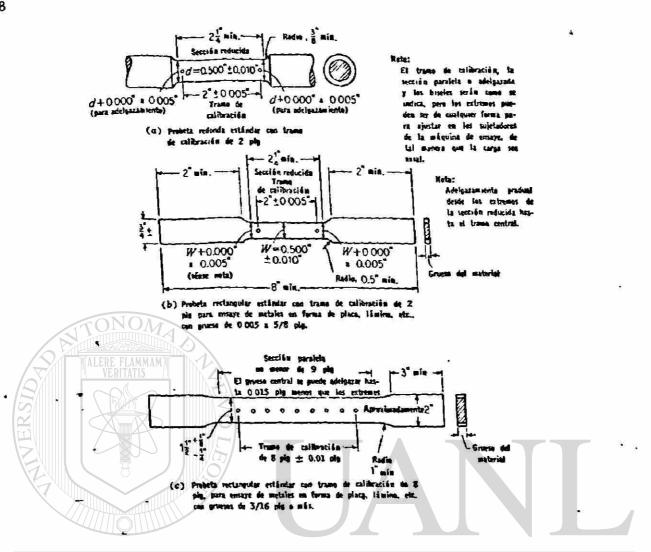
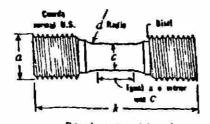



Figura 5.3.- Formas normalizadas según la ASTM de probetas para ensayos de tensión de metal - (dúctil) (ASTM E 8).

La forma de la probeta ASTM Estándar para el hierro fundido se muestra en la figúra 5.4. Se usan tres tamaños, cuyas principales dimensiones se - muestran en la figura

Probets 5 Probeta C 11 a 14 c C.500 0.750 1.25 d, sia. 1.30 1.00 2.00 k, sin. 3,75 4 CO 6<u>3</u>

Figura 5.4.- Probeta redonda para ensayos de tensión ASTM Están dar para hierro fundido (ASTM E 8, A 48). La probeta ASTM Estándar para matrices metálicas fundidas es de 0.25 - plg. de diámetro y lleva una barra de 3 plg. de radio y un tramo de calibra ción de 2 plg. Por lo demás, es semejante a la probeta mostrada en la figura 5.3a.

Las probetas provenientes de barras, varillas o alambres, usualmente - tienen el área seccional completa del producto que representan. Cuando resulta práctico, el tramo de calibración debe tener cuatro veces el diámetro de la probeta, aunque para tamaños de 1/4 plg. y menores, se usa frecuentemente un tramo de calibración de 10 plg. Los ensayos de tensión de cable de alambre se realizan sobre tramos cortados de cable comercial. Los extremos se sujetan en moldes especiales rellenados con cinc, que haya sido vertido en estado de derretimiento alrededor de los extremos aplanados del cable, (véase la figúra 5.5).

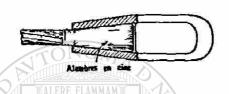


Figura 5.5.- Molde para cable de alambre.

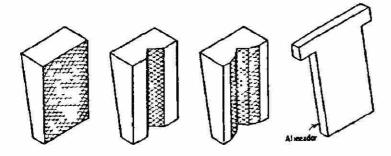
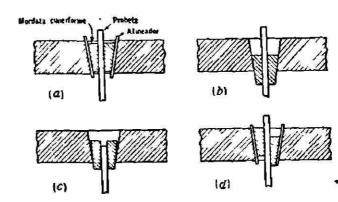
Los tubos pequeños (de 1 plg. o menos) se ensayan a pleno diámetro. Se insertan tapones metálicos de ajuste apretado, en los extremos, hasta una profundidad suficiente para permitir que los sujetadores abracen la probeta sin cau sar el colapso del tubo. Los tapones no deben extenderse hasta aquella parte de la probeta sobre la cual se mide la longitud (ASTM E 8). Para los tubos mayores que no pueden enyarse a plena sección, las probetas longitudinales — usualmente se cortan, aunque las probetas trans versales son ocacionalmente permitidas (ASTM A 106).

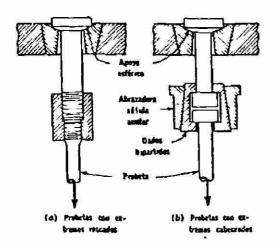
5.4.- DISPOSITIVOS DE MONTAJE

La función del dispositivo de montaje es transmitir la carga desde los puentes de la máquina de ensaye hasta la probeta. El requerimiento esencial del dispositivo de montaje es que la carga sea transmitida axialmente a la probeta; esto implica que los centros de acción de las mordazas estén alineados al principio y durante el progreso del ensayo, y que no se introduzca ninguna flexión o torsión por la acción, o una falla en la acción de las mordazas. Además, por supuesto, el dispositivo debe estar adecuadamente di señado para soportar las cargas y no debe aflojarse durante un ensayo.

Las mordazas, ilustradas en la figura 5.6, son un tipo común de dispositivo de montaje. Resultan satisfactorias para ensayos comerciales de pro betas de metal dúctil de longitud adecuada, porque una ligera flexión o tor sión no parece afectar la resistencia y el alargamiento de los materiales dúctiles. No puede hacerse ningún ajuste para impedir la flexión al usar mordazas de esta clase. Las mordazas del tipo de cuña son usualmente satis factorias para usarse con materiales quebradizos, porque la acción presio-nante de las mordazas tiende a causar la falla en o cerca de las mordazas. Las caras de las mordazas que tocan la probeta se hacen ásperas o estriadas para reducir el deslizamiento; para las probetas planas las caras de las -mordazas son también planas, y para las probetas cilíndricas, las mordazas llevan una ranura en V de tamaño adecuado. El ajuste se hace por medio de tablillas o alineadores, de modo que el eje de la probeta coincida con el centro de los puentes de la máquina de ensaye y las mordazas queden apropia damente ubicadas en la cabecera. Las posiciones correctas e incorrectas de los sujetadores se ilustran en la figúra 5.7.

Donde resulta necesario asegurar una alineación más exacta, lo que es muy importante en ensayos de materiales quebradizos, algún tipo de articulación o unión universal se usa en los dados en ambos extremos; usualmente es


Figura 5.6.- Mordazas cu neiformes para ensayos de tensión de metales.

un arreglo de asentamiento esférico o de perno (denominado enlace "autoalineante"). Un dibujo esquemático de un dispositivo que utiliza cojinetes es
féricamente asentados en los cabezales de la máquina de ensaye, se muestra
en la figura 5.8 (ASTM E 8). La distancia entre los cojinetes esféricos de
be ser tan grande como sea posible. Esos dispositivos no siempre son caba
mente efectivos; obviamente, los asientos esféricos no se ajustan fácilmente si no estan debidamente lubricados, y pueden "atascarse" con cargas altas independientemente de la lubricación.

Diferentes tipos de conectores para sujetar rápida y adecuadamente probetas; cilindricos con extremos roscados o cabeceados, se ilustran en la figura 5.9. Para láminas y alambres estan los sujetadores templin (figura -- 5.10) y los sujetadores para alambre se muestran en la figura 5.11.

'Figura 5.8.- Soportes esféricamente asentados (ASTM E 8).

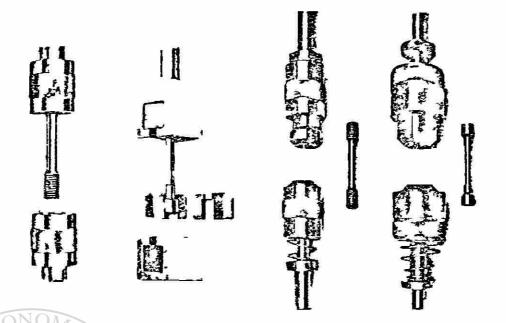


Figura 5.9.- Diferentes tipos de conectores entre tre probeta y aditamento.

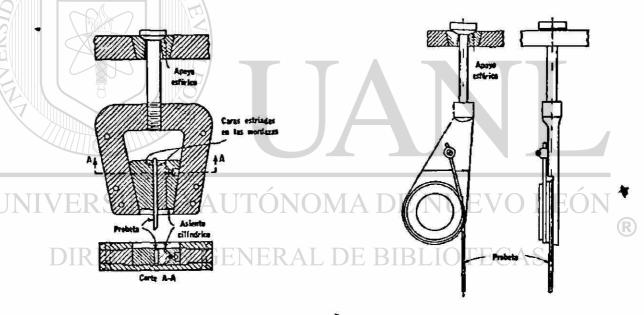


Figura 5.10. - Soportes Templin.

Figura 5.11.- Dispositivo de control para el ensaye de alambre.

5.5.- REALIZACION DE ENSAYOS

Previamente a la aplicación de cargas a una probeta, sus dimensiones se miden. Ocasionalmente, se puede requerir el peso unitario, requiriendo determinaciones de peso y volumen. Las mediciones lineales se hacen con báscu la, separadores y escala, o micrómetros, dependiendo de la dimensión a determinar y la precisión a alcanzar. En el caso más simple, solamente el diámetro o el ancho y el grueso de la sección crítica se miden. Las dimensiones seccionales transversales de las probetas metálicas deben ordinariamente tomarse con una precisión de aproximadamente 0.5%. Excepto para diámetros pequeños y láminas delgadas, las mediciones hasta 0.001 plg. satisfacen este —

≥n-

requerimiento. En las probetas cilíndricas, las mediciones deben hacerse so bre los diámetros cuando menos, mutuamente perpendiculares.

Si han de tomarse mediciones de alargamiento, el tramo de calibración - es marcado o trazado. Sobre probetas de metal dúctil de tamaño ordinario, - esto se hace con un punzón de centros; pero sobre láminas delgadas, o material quebradizo, deben usarse rayas finas. En cualquier caso, las marcas de ben ser muy ligeras para no dañar el metal, influyendo así en la ruptura. - Cuando se debe realizar mucho trabajo, se usa ocacionalmente una perforadora con punzón doble o múltiple. Resulta conveniente poner las probetas redondas en un bloque en forma de V al marcar los puntos de calibración. Cuando se usa un tramo de calibración de 8 plg. en probetas de acero, las marcas se hacen con 1 plg. de separación.

Antes de usar un máquina de ensaye por primera vez, el operador debe fa miliarizarse con la máquina, sus controles, sus velocidades, la acción del - mecanismo de carga y el valor de las graduaciones del indicador de carga. - Antes de poner una probeta en una máquina debe comprobarse que el dispositivo de carga de la máquina dé la indicación de carga cero y se hagan los ajustes si fuere necesario.

Cuando se coloca una probeta en una máquina, el dispositivo de sujeción debe revisarse para cerciorarse de que funcione debidamente. Si se usan topes o guarniciones para impedir que las mordazas se boten de los dados al -- ocurrir una falla súbita, los topes deben fijarse en posición. La probeta debe colocarse de tal manera que resulte conveniente para hacer observacio-- nes en las líneas de calibración.

Si se ha de utilizar un extensómetro, el valor de las dívisiones del indicador y la relación de multiplicación deben determinarse antes de colocar el extensómetro sobre la probeta. Debe colocársele centralmente sobre la probeta y alinearse debidamente. Cuando se usan extensómetros del tipo de collares, el eje de la probeta y el del extensómetro deben hacerse coincidir. Después de sujetársele en posición la barra espaciadora (en caso de existir) se retira y los ajustes se revisan. Frecuentemente una pequeña carga inicial se coloca sobre la probeta antes de poner el extensómetro en posición de cero.

La velocidad del ensaye no debe ser mayor que aquella a la cual las lec turas de carga y otras pueden tomarse con el grado de exactitud deseado, y - v si la velocidad de ensaye ejerce una influencia apreciable sobre las propiedades del material, el ritmo de deformación de la pieza de ensayo debe que-dar dentro de límites definidos, aunque los estudios han indicado que pueden ser razonablemente amplios.

Con frecuencia la carga se aplica rápidamente a cualquier velocidad con veniente, hasta la mitad de la resistencia a la cedencia o el punto de cedencia especificados, o hasta una cuarta parte de la resistencia a la tensión especificada, cualquiera que sea menor. Arriba de este punto la carga es -- aplicada según la velocidad especificada.

Sobre el punto de cedencia de los metales dúctiles, se permiten velocidades más altas porque la variación de la velocidad no parece tener tanto -- efecto sobre la resistencia última, como sobre la resistencia a la cedencia; el alargamiento, sin embargo, es sensitivo a la variación de la velocidad a altas velocidades de carga.

Para ensayos que involucren mediciones extensométricas la carga se aplica ya sea en incrementos, la carga y la deformación se leen al final de cada incremento, o se aplica continuamente a una velocidad lenta (generalmente a velocidades dei puente, que varían desde 0.01 hasta 0.05 plg/min), y la carga y la deformación se observan simultáneamente. El segundo método se concidera preferible.

Después de que la probeta ha fallado, se le retira de la máquina de ensaje, y si se requieren valores de alargamiento, los extremos rotos de una probeta se juntan y se mide la distancia entre los puntos de referencia con
una escala o un separador hasta el 0.01 plg. más cercano. El diámetro de la
sección más pequeña se puede calibrar preferiblemente con un separador micro
atrico equipado con un huso puntiagudo y un yunque o tas, para determinar la reducción del área. Debe emplearse el mismo grado de precisión que se ha
ya usado para medir el diámetro original.

5.6. - OBSERVACIONES DE ENSAYO

Las observaciones hechas durante un ensayo se registran de alguna manera apropiada, separada, antes de iniciar el ensayo. La identificación de -las marcas y la información similar pertinente se anotan. Las dimensiones original y final, así como las cargas críticas, se registran al observarse.
Si las mediciones extensométricas se hacen manualmente, se lleva una bitácora de las cargas y las deformaciones correspondientes.

Algunas máquinas de ensaye están equipadas con un aditamento automático para trazar el diagrama de esfuerzo y deformación. Se anotan, la caracterís tica de la fractura y la presencia de algunos defectos. También se anotan - las bitácoras, las condiciones del ensayo, particularmente el tipo del equipo usado y la rapidez del ensaye. Las deformaciones, esfuerzos, porcentaje de elongación y reducción del área se calculan sobre la base de las dimensiones originales. Una bitácora y un diagrama esfuerzo-deformación preparadas con ellos, se muestran en la figúra 5.12. La bitácora contiene casi toda la información pertinente de un ensayo de tensión.

Las propiedades que se pueden determinar con una prueba de tension se -

explican en seguida:

5

٦

ņ

r.

<u>:C</u>

3-

213

00

i -

a;

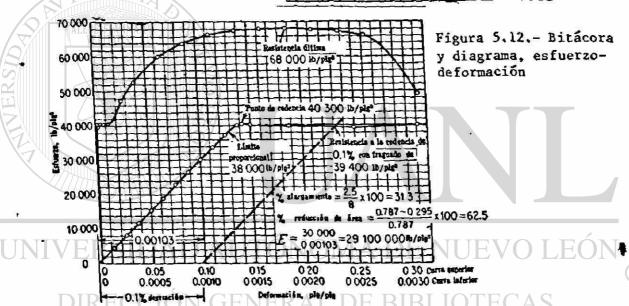
, li

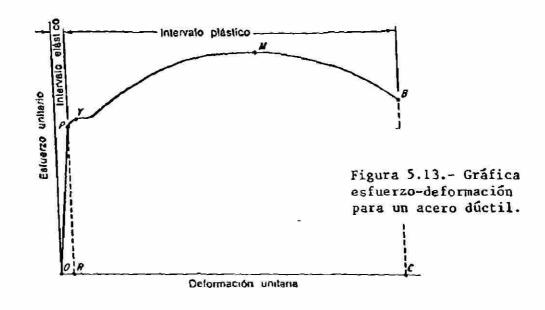
ıda

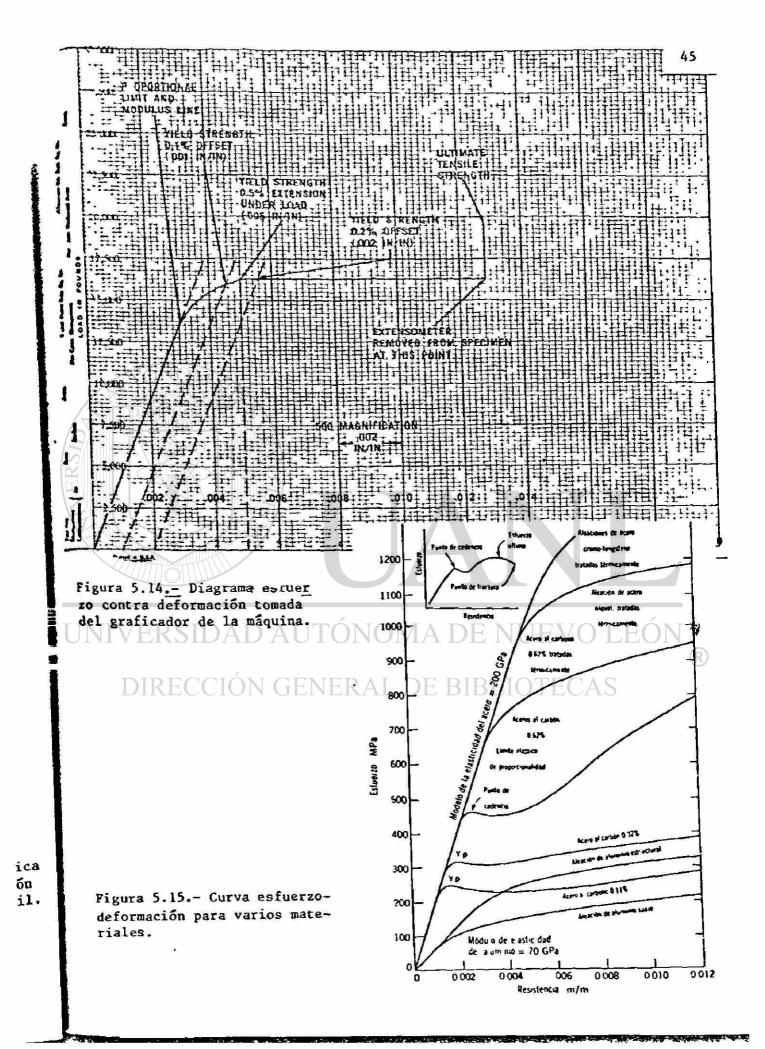
а

35-

nci


Limite proporcional. - Para muchos materiales estructurales se ha encontrado que la parte inicial de la gráfica esfuerzo-deformación puede ser aproximada por la recta OP de la figuras 5.13 y 5.16 En este intervalo, el esfuerzo y la deformación son proporcionales entre sí, de manera que cualquier incremento en esfuerzo resultará de un aumento proporcional a la deformación El esfuerzo en el límite del punto proporcional P se conoce como límite de proporcionalidad.


Límite elástico.— Si se retira una pequeña parte de la carga aplicada sobre la pieza a prueba, la aguja del extensómetro regresará a cero, indicán do que la deformación producida por la carga es elástica. Si la carga se aumenta continuamente, se libera después de cada incremento y se revisa el extensómetro, entonces se alcanzará un punto en que la aguja no regresará a cero. Esto indica que ahora el material tiene una deformación permanente; por tanto, el límite elástico puede definirse como el esfuerzo mínimo al que ocurre la primera deformación permanente. Para la mayoría de los materiales estructurales, el límite elástico tiene casi el mismo valor numérico que el límite de proporcionalidad.


Punto de cedencia o fluencia.- Conforme la carga en la pieza a prueba - aumenta más allá del límite elástico, se alcanza un esfuerzo al cual el mate rial continúa deformándose sin que haya incremento de la carga. El esfuerzo en el punto Y de la figüra 5.13 se conoce como punto de cedencia o fluencia. Este fenómeno ocurre sólo en ciertos materiales dúctiles. El esfuerzo puede disminuir realmente por un momento, resultándo en un punto de cedencia superior y en otro inferior. Como el punto de cedencia es relativamente fácil - de determinar y la deformación permanente es pequeña hasta el punto de cedencia, constituye un valor muy importante de considerar en el diseño de muchas partes para maquinaria cuya utilidad se afectaría si ocurriera una gran deformación permanente. Esto es válido sólo para materiales que exhiban un --

BITACORA

Material	5	Atero Male	Carps. 1b (1)	ratular	Eafon 90, 16 plg ³	Delor- ple/ple	Carga,	lects- n esca- lu, pla	Extens. Mo. Mo ples	Delur- marión pla/pla	
Murca o zámero		A 618	3 410	0 002	4 330	0 000125	31 800	010	40 400	0.0125	
Longitud total de la prob	els, pig	18 5	6450	0.004	8 200	0.000250	37 200	0.20	47 300	0.0250	
Longitud extra culacerus	plg	11 2	9 160	0.006	11 640	0.000375	41400	6 30	52 600	0 0375	
Tramo de calibración,	ple	8.00	12 370	0 000	15 720	0 000500	47 200	0.50	60 000	0.0625	
Difmetro de los estre	mos, plg	1 25	14 830	0 010	18 860	0 000625	50 200	070	63 800	0.0875	
Dissetro de la mocida	reducida, pig	1.001	19 020	0,012	22 900	0.000750	52 200	0.90	66 300	0 1125	
Alargamento se 8 pi	e. pie	2 50	20 780	0 014	26 40	00087	53 100	1.10	67 500	0.1375	
Diametro de la secció	se niptureda, ple	0613	53 64	0 016	50 00	0 001000	53 400	1 30	67 900	0 1625	
Velocidad de la mi- erde	Delurmació o de	0.05	26 37	0 016	33 50	0.00112	5 53 500	1 50	68 00	0,1875	
	Cod-beis	0.5	29 25	0 0 020	37 20	0 0 00125	53 30	1.70	67 70	0 5155	
Notas:		53	31 60	0 0 02	2 40 20	0 00137	5 53 00	0 190	67 30	0.237	
(1) Máquina Olica de 40 000 lb (No. 12) (2) Extentómetro caratular lederal con multi- plicador de 3 (No. 41).			31 71	0 0 02	3 40 30	0 0 0014	4 52 00	0 2.10	66 10	0 0 262	
			31 52	0 0 02	4 40 0	0 0015	38 80	0 250	4930	0 0.312	
			31 39	0 0 03	0 39 9	00018	8	Roptore (3)			
			31 10	0.04	0 395	00 0 0025	0	- 10 10 10 10 10 10 10 10 10 10 10 10 10			
(3) Fractura de como y cráter de tres cuartos que grano fino at contro, sedono en el borde.		316	0 0 0	0 402	00 0 0031	2					
			31 6	50 00	15 40 2	00 0 004	9				
Alargamenta en cada pultada: 8 20, 0 22, 0 25, 0 35, 0.78, 0 27, 0 23, 0 20			0 317	00 0 10	00 40 3	00 0 006	25				

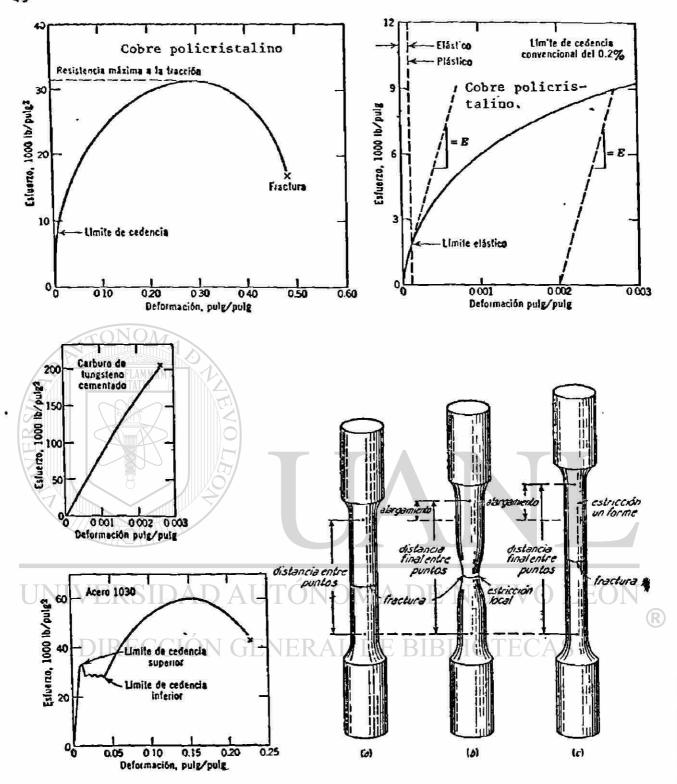
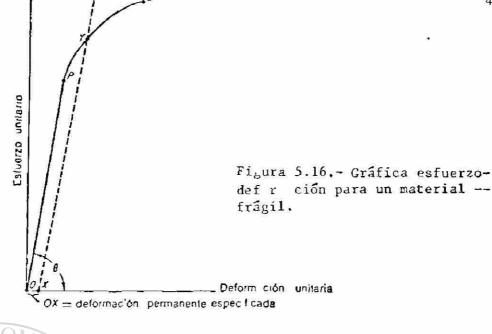



Figura 5.15.- (Continuación). Diagramas de esfuerzo contra deformación para el cobre policristalino, Carburo de Tungsteno Cementado, Acero -- 1030. Tipos de rotura por tracción: a) material frágil, con estricción y alargamiento prácticamente nulos; b) material dúctil, con estricción localizada antes de la rotura; c) materia dúctil, con alargamiento y estricción uniformes antes de la rotura.

punto de cedencia bien definido.

Resistencia de cedencia o fluencia.- La mayoría de los materiales no ferrosos y los aceros de alta resistencia no tienen un punto de cedencia definido. Para estos materiales, la máxima resistencia útil corresponde a la resistencia de cedencia, que es el esfuerzo al cual un material exhibe una desviación limitante especificada de la proporcionalidad entre el esfuerzo y la deformación. Por lo general, este valor se determina por el "método de la deformación permanente especificada". En la figúra 5.16, la deformación especificada OX se marca sobre el eje de la deformación. En seguida, se traza la línea XW paralela a OP, localizándo de esta manera el punto Y y la intersección de la línea XW con el diagrama esfuerzo-deformación. El valor del esfuerzo en el punto Y i dica la resistencia o fluencia. El valor de la deformación permanente especificada está generalmente entre 0.10 y 0.20% de la lon gitud calibrada. (ver figúra 5.14).

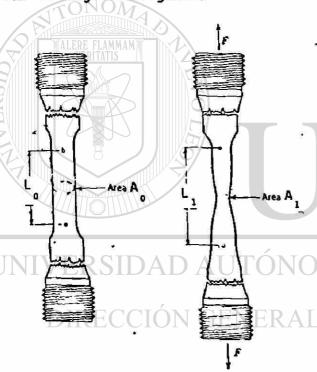
Resistencia Lúmite. - Conforme aumenta la carga aplicada sobre la pieza a prueba, el esfuerzo y la deformación se incrementan, como lo indica la porción de la curva YM (fig. 5.13) para un material dúctil, hasta que se alcanza el esfuerzo máximo en el punto M; por tanto, la resistencia límite o la resistencia de tensión es el esfuerzo máximo desarrollado por el material, basado en el área transversal original. Un material frágil se rompe cuando es llevado hasta la resistencia límite (punto B de la figúra 5.16), en tanto que el material dúctil continuará alargándose.

Resistencia a la ruptura. - Para un material dúctil, hasta el punto de re sistencia límite, la deformación es uniforme a lo largo de la longitud de la barra. Al esfuerzo máximo, la muestra experimenta una deformación localizada o formación de cuello y la carga disminuye conforme el área decrece. Esta -- elongación en forma de cuello es una deformación no uniforme y ocurre rápidamente hasta el punto en que el material falla (figúra 5.17). La resistencia a la ruptura (punto B, figúra 5.13), determinada al dividir la carga de ruptura entre el área transversal original, es siempre menor que la resistencia límite. Para un material frágil, la resistencia límite y la resistencia de ruptura coinciden.

Dictilidad. - La ductilidad de un naterial se determinará a partir de la

cantidad de deformación que les es posible soportar hasta que se fractura. - Esta se determina en una prueba de tensión mediante dos mediciones:

Elongación. Se determian juntando, después de la fractura, las partes de la muestra y midiendo la distancia entre las marcas puestas en la muestra antes de la prueba,


Elongación (por ciento) =
$$\frac{L_{\chi} - L_{0}}{L_{0}}$$
 x 100

donde:

 L_1 = longitud de la medida final,

 L_0 = longitud de la medida original, generalmente 2 plg.

Al reportar el porcentaje de elongación, debe especificarse la longitud de la medida original, ya que el porcentaje de elongación variará de acuerdo con la longitud original.

Espec men antes del jalón

Espécimen después del jalón

Figura 5.17. Muestra tensia antes y después de que el material falle.

Reducción en Erea. - Esta también se determina a partir de las mitades rotas de la muestra bajo la tensión, midiendo para ello el área transversal mínima y con la fórmula:

Reducción en área (porcentaje) ≈

$$\frac{A_0 - A_1}{A_0} \times 100$$
donde

A₀= area transversal original A₁= área transversal final

Môdulo de elasticidad o módulo de Young.— Considérese la porción — recta de la curva esfuerzo-deformación. La ecuación de una línea recta es y = mx + b, donde y es el eje vertical (en este caso, es (uerzo) y x el eje horizontal (en este caso, deformación). La intercepción de la recta con el eje y es b, y en este caso es cero, ya que la recta pasa — por el origen. La pendiente de la —

recta es m. Cuando se despeja m de la ecuación, la pendiente es igual a y/x. De esta manera, se puede determinar la pendiente de la recta dibujando un -- triángulo rectángulo cualquiera y encontrando la tangente del ángulo θ (figú ra 5.13), que es igual a y/x o es fuerzo/de formación. La pendiente es real-mente la constante de proporcionalidad entre esfuerzo y deformación cuando - se está abajo del límite de proporcionalidad y se conoce como módulo de elas ticidad o módulo de Vounq.

El módulo de elasticidad, indicación de la rigidez de un material, se mi de en libras por pulgada cuadrada; por ejemplo, el módulo de elasticidad del acero es 30 millones de lb/plg² aproximadamente, en tanto que el del alu ninio es 10 millones de lb/plg². Por ende, el acero es aproximadamente tres veces más rígido que el aluminio. El módulo de elasticidad es una propiedad muy útil de la Ingeniería y aparecerá en fórmulas relacionadas con el diseño de vigas y columnas, en las que la rigidez es importante, figura 5.15

5.7. - ESFUERZO-DEFORMACION VERDADEROS

La prueba convencional de tensión descrita antes dará valiosa información hasta aproximarse y llegar al punto de cedencia. Más allá de este punto, los valores de esfuerzo son fictícios, ya que el área transversal realese reducirá considerablemente. El esfuerzo verdadero se determina al dividir la carga entre el área transversal existente a esa intensidad de carga. La deformación real se determina al dividir el cambio en longitud entre la longitud inmediatamente precedente. El diagrama esfuerzo-deformación reale (figúra 5.18) dá información útil concerniente al flujo plástico y la fractura de metales.

5.8. - RECUPERACION

Es posible dividir el diagrama esfuerzo-deformación en dos partes, como se muestra en la figúra 5.13). La parte a la izquierda del límite elástico puede definirse como intervalo elástico y la de la derecha como intervalo --plástico. El área bajo la curva en el intervalo elástico (área OPR) es una medida de la energía por unidad de volumen que puede absorber el material -- sin sufrir deformación permanente. Este valor se conoce como módulo de necu peración o nesilencia. La energía por unidad de volumen que puede absorber un material (el área bajo la totalidad del diagrama esfuerzo-deformación) -- hasta el punto de fractura se conoce como tenacidad. Esta es principalmente una propiedad del intervalo plástico, ya que sólo una pequeña parte de la -- energía total absorbida es energía elástica que puede recuperarse cuando se suprime el esfuerzo.

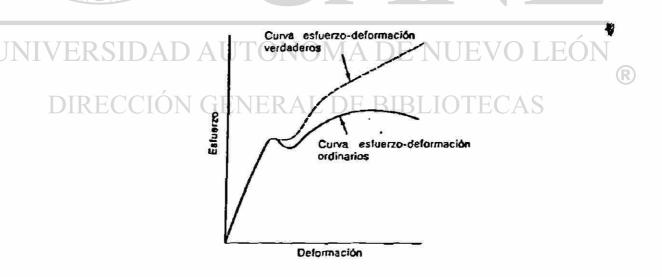
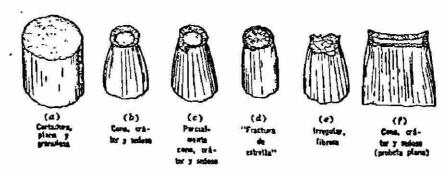



Figura 5.18, - Gráfica esfuerzo-defor mación verdaderos y esfuerzo-deforma ción convencionales para un acero -- dúctil.

Las fracturas por tensión pueden clasificarse en cuanto a forma, textura y color. Los tipos de fractura, en lo respectivo a la forma, son simétricos: cono y cráter, planos e irregulares. Varias descripciones de la textura son: sedosa, grano fino, grano grueso o granular, fibrosa o astillable, cristalina, vidriosa y mate.

Pigura 5.19. - Fracturas típicas por tensión de los metales.

ta fractura puede presentarse fuera del tramo de calibración o cerca de la curva, cuando esto suceda deberá aplicarse las fórmulas que se indiquen en la figura 5.20.

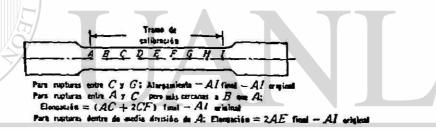


Figura 5.20. - Determinación del alargamiento aproximado para rupturas, fuera del tercio medio del tramo de calibración.

5.9.- EFECTO DE LAS VARIABLES IMPORTANTES

Sobre un extenso rango de velocidades, la velocidad de carga tiene un efecto importante sobre las propiedades tensionales de los materiales. Las
resistencias tienden a aumentar y la ductilidad a disminuir con las veloci-dades aumentadas. Por ejemplo, ciertos ensayos han indicado que con una relación de velocidad de aproximadamente 14 000:1 el punto de cedencia del ace
ro suave aumentó más o menos un 30%. En general, el cambio de resistencia a
alargamiento parece variar aproximadamente según el logaritmo de la veloci-dad. El efecto parece ser más pronunciado para los materiales que poseen -puntos de fusión bajos, tales como el plomo, el cinc y los plásticos que para aquellos con puntos de fusión altos, como el acero. En el caso del efecto de las cargas muy lentamente aplicadas (ensayos de larga duración) es una
disminución de la resistencia contra la observada a velocidades de ensaye -normales.

Afortunadamente, investigaciones recientes han demostrado que sobre el rango de velocidades usadas en las máquinas de ensaye ordinarias los efectos de una variación de velocidad moderada sobre las propiedades tensionales de

5.10. - VELOCIDAD DE APLICACION DE CARGA

Una velocidad de aplicación de carga, es especificada para no incurrir - en graves errores. Sí dicha aplicación de carga es muy rápida, la prueba podría ser de impacto y no una prueba estática, como se necesita. Si la velocidad es lenta, tardaríamos demasiado tiempo en efectuar una prueba completa. Así pues, para cada material hay cierta velocidad de aplicación de carga, dependiendo esta de sus propiedades.

La velocidad del ensayo no debe ser mayor que aquella a la cual las lecturas de carga y otras pueden tomarse con el grado de exactitud deseado y si la velocidad de ensayo ejerce una influencia apreciable sobre las propiedades del material, el ritmo de deformación de la pieza de ensayo debe quedar dentro de límites definidos.

No hay datos disponibles en qué basar cualquier regla simple para la velocidad de aplicación de carga, aunque un factor puede determinarse en forma de porcentaje de velocidad de aplicación de carga de la manera siguiente:

% V.A.C. = $\frac{\sigma esp. \ X \ Ai \ X \ 100}{Rango de la máquina}$

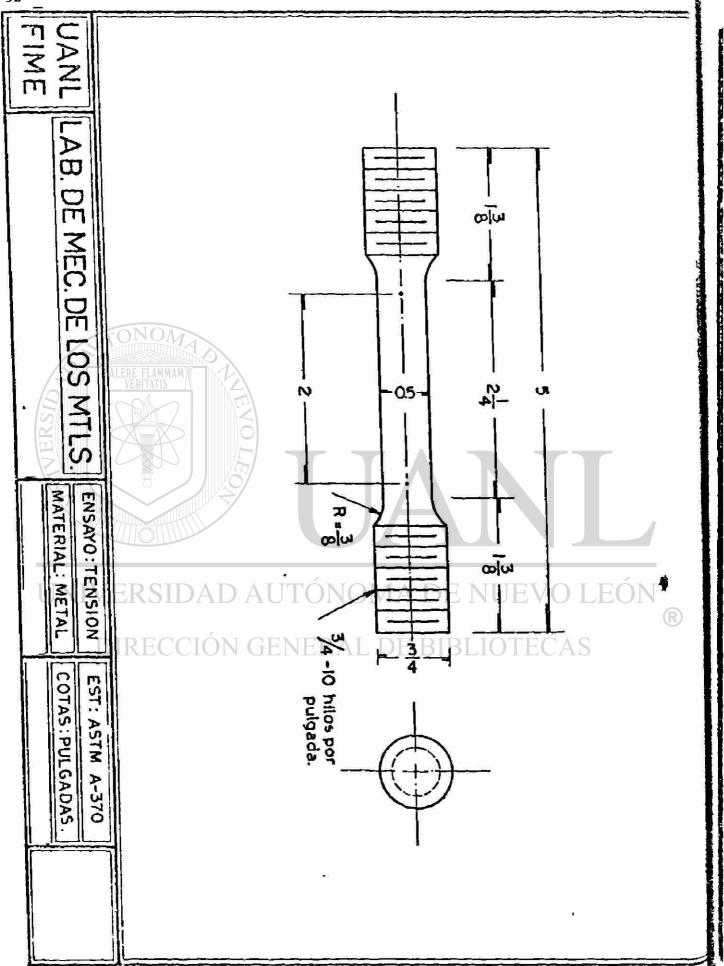
donde:

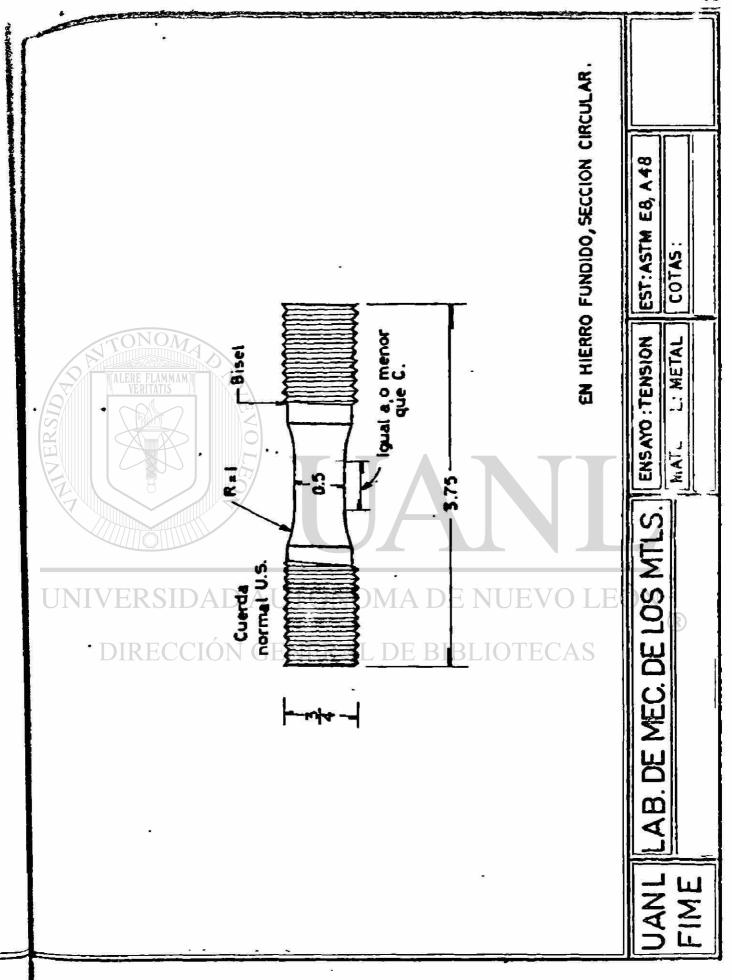
Ai = Area inicial de la probeta

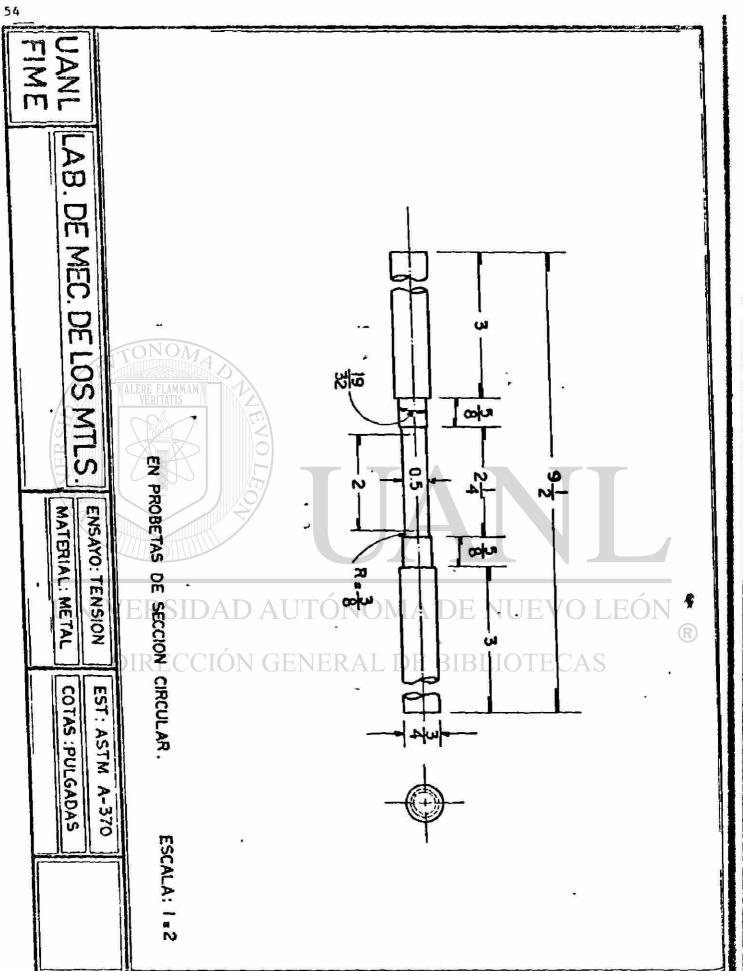
MATERIAL

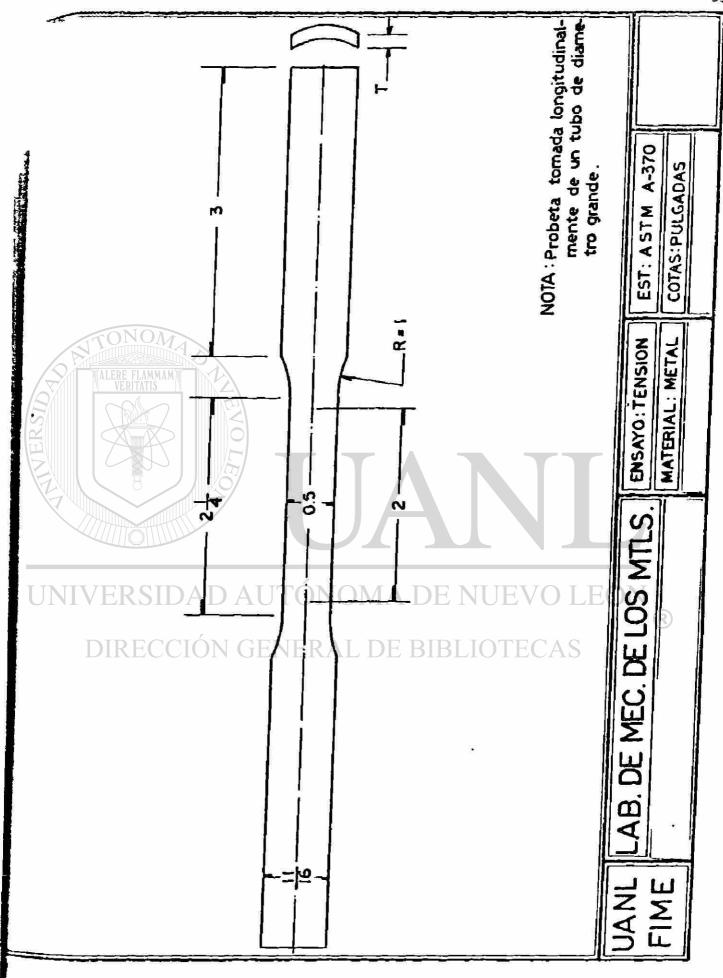
ESFUERZO ESPECIFICADO

Los esfuerzos especificados para los materiales más comunmente utilizados en ingeniería se dan a continuación:


	(oesp.)
 BRONCE	600 Kg./Cm²./min.
LATON	2500 Kg./Cm²./min.
FIERRO VACIADO	600 Kg./Cm ² ./min.
ACERO MINERO	4000 Kg./Cm ² ./min.
ACERO COMERCIAL	3000 Kg./Cm ² ./min.
COLD ROLLED	3000 Kg./Cm ² ./min.
ALUMINIO	3000 Kg./Cm²./min. 3000 Kg./Cm²./min.


5.11.- FORMATOS


A continuación se presenta una serie de dibujos a escala para diferentes probetas estándares según la ASTM, usadas para el ensayo de tensión. Se mues tra también el formato del reporte para dichos ensayos.


cela i i a i i i i i a i i i i a

el tos de

LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA Tel.- 52-57-88 y 76-22-64

CARACTERISTICAS DEL ENSAYO DE TENSION EN METALES

REALIZADO POR
PRUEBA N°
ESTANDAR
MATERIAL
LONGITUD INICIAL cm.
DIAMETRO INICIAL
AREA INICIAL cm. 2
LONGITUD FINAL cm.
DIAMETRO FINAL cm.
AREA FINALcm. ²
VOLUMEN cm. 3 RANGO Kg.
CARGA DE CEDENCIA Kg.
CARGA MAXIMA
CARGA DE FRACTURA Kg.
ESFUERZO DE CEDENCIA Kg/cm ²
ESFUERZO MAXIMO Kg/cm ²
ESFUERZO DE FRACTURA
MODULO DE ELASTICIDAD Kg/cm ²
RESILENCIA ELASTICA UNITARIA Kg-cm/cm ³ TECAS
RESILENCIA ELASTICA TOTAL Kg-cm.
TENACIDAD UNITARIA Kg-cm/cm ³
TENACIDAD TOTAL Kg-cm
\$ REDUCCION DE AREA \$
\$ ELONGACION DE LONGITUD \$
TEXTURA DEL GRANO
TIPO DE FRACTURA
ESFUERZO ESPECIFICADO Kg/cm ² /min
VELOCIDAD DE APLICACION DE CARGA- \$
•

MONTERREY, N.L. FECHA.

6.1.- INTRODUCCION

El término ensago de compresión usualmente se usa para referirse a ensagos en los cuales una probeta preparada es sometida a una carga monoaxial -- gradualmente creciente (es decir, estática) hasta que ocurre la falla. En - un ensago de compresión, se logra sometiéndo una pieza de material a una carga en los extremos que produce una acción aplastante.

Con excepción de algunas piezas de ensayo arbitrariamente formadas, las probetas son cilíndricas o prismáticas en su forma y de sección transversal constante a lo largo del tramo dentro del cual las mediciones se toman. Las probetas en compresión quedan limitadas a una longitud tal que el flambeo de bido a la acción columnar no constituya un factor. Así (con ciertas excepciones), se hace un intento para obtener una distribución uniforme del esfuer zo directo sobre secciones críticas normales a la dirección de la carga. El logro de estas condiciones ideales está limitado por la forma y su fidelidad de la pieza de ensayo, por la efectividad de los dispositivos de sujeción y apoyo, y por la acción de la máquina de ensaye.

Aunque, por lo que respecta al sentido y a la dirección del esfuerzo, - la compresión es meramente lo contrario de la tensión, existen varios factores que toman el ensayo de tensión, o compresión más deseable en un caso específico. Los más importantes de estos factores son los siguientes:

1. La dificultad de aplicar una carga verdaderamente concéntrica o - - axial.

2.- El carácter relativamente inestable de este tipo de carga en contraste con la carga tensiva. Existe siempre una tendencia al establecimiento de esfuerzos flexionantes y'a que el efecto de las irregularidades de ali neación accidentales dentro de la probeta se acentúa a medida que la carga prosigue.

3.- La fricción entre los puentes de la máquina de ensaye o las placas de apoyo y las superficies de los extremos de la probeta debido a la expansión lateral de ésta. Esto puede alterar considerablemente los resultados que se obtendrían si tal condición de ensayo no estuviera presente.

4.- Las áreas seccionales, relativamente mayores de la probeta para ensayo de compresión para obtener un grado apropiado de estabilidad de la pieza. Esto se traduce en la necesidad de una máquina de ensaye de capacidad relativamente grande o probetas tan pequeñas y, por lo tanto, tan cortas que resulta difícil obtener de ellas mediciones de deformación de precisión adecuada.

6.2. - REQUERIMIENTOS PARA PROBETAS DE COMPRESION.

Para el esfuerzo uniforme de la probeta de compresión, una sección circular es preferible a otras formas. Sin embargo, la sección cuadrada o rectangular se usa frecuentemente.

La selección de la relación entre la longitud y el diámetro de una probeta de compresión parece ser más o menos un compromiso entre varias condiciones indeseables. A medida que la longitud de la probeta se aumenta, se presenta una tendencia creciente hacia la flexión de la pieza, con la consiguiente distribución no uniforme del esfuerzo sobre una sección recta. Se sugiere una relación entre altura y diámetro de 10 como un límite superior práctico. A medida que la longitud de la probeta disminuye, el efecto de la restricción friccional en los extremos se torna sumamente importante; asimis mo, para longitudes menores de aproximadamente 1.5 veces el diámetro, los planos diagonales a lo largo de los cuales la falla se verificaría en una --

probeta más larga intersectan la base, con el resultado de que la resistencia aparente se aumenta. Comúnmente se emplea una relación entre longitud y diámetro de 2 o más, aunque la relación entre altura y diámetro varíe para materiales diferentes. Para acomodar un compresómetro con la precisión deseada, con frecuencia es necesario usar una probeta relativamente larga.

Los extremos a los cuales se aplica la carga deben ser planos y perpendiculares al eje de la probeta o, de hecho, convertidos así mediante el uso de cabeceo y dispositivos de montaje.

Los tramos de calibración para mediciones de deformación deben preferiblemente ser más cortos que el largo de la probeta cuando menos el diámetro de la probeta.

6.3.- PROBETAS ESTANDAR

Las probetas para ensayos de compresión de materiales metálicos recomen dados por la (ASTM E 9) se muestran en la figúra 6.1. Las probetas cortas - son para usarse con metales antifricción, las de longitud mediana para uso - general y las largas para ensayos que determinen el módulo de elasticidad. - Las probetas para ensayos de compresión de lámina metálica deben cargarse en una plantilla que provee apoyo lateral contra el pandeo sin interferir con - las deformaciones axiales de la probeta. Los detalles de esas plantillas y las probetas correspondientes están cubiertos por la (ASTM E 9).

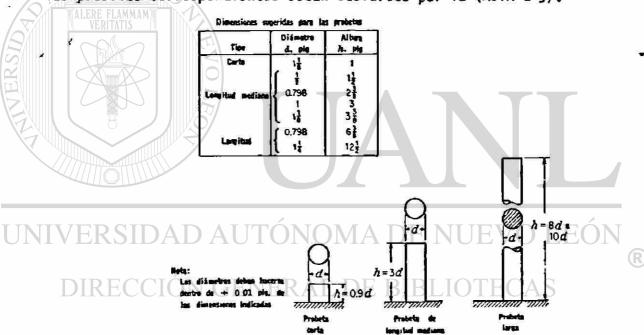


Figura 6.1.- Las probetas para ensayos de compresión de materiales metálicos de formas no similares (ASTM E 9).

6.4.- CAMAS Y BLOQUES DE APOYO

Los extremos de las probetas de compresión deben ser planas para no causar concentraciones de esfuerzos y deben ser perpendiculares al eje de la -- pieza para no causar flexión debida a la carga excéntrica.

Usualmente un extremo de la probeta debe apoyarse en un bloque o dado - esféricamente asentado. La figüra 6.2, muestra arreglos satisfactorios de - la probeta y del bloque. El objeto del bloque es contrarrestar el efecto de una pequeña falta de paralelismo entre el puente de la máquina y la cara ex-

sal; ar las al Las del p

fue

Eì

dad

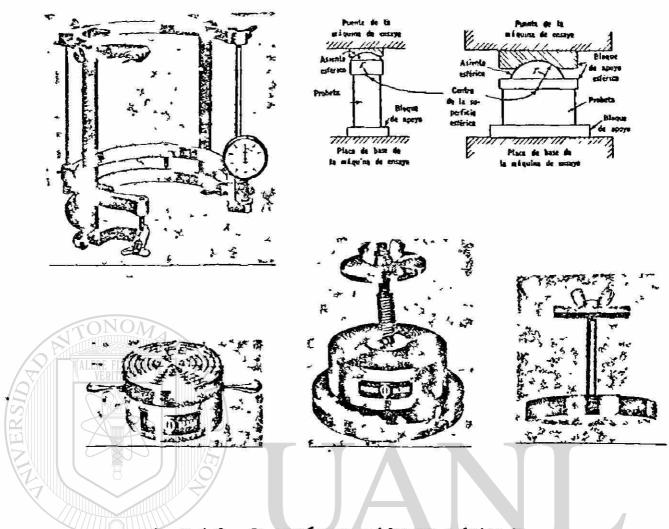
1 Y

to-

on-ienali ga -

los -

piedad -5 que


ade-

cirrec-

1 pro-

ondise
onsi
Se
rior
de le
ssimis

una

rigura 6.2.- Campresómetro y bloques o dados de apoyo planos y esféricos para ensayo de compresión.

trema de la probeta, confiriéndo a la probeta una distribución inicial de la carga tan pareja como sea posible. Es deseable que el bloque de apoyo esféricamente asentado, esté en el extremo superior de la probeta. Para que la resultante de las fuerzas aplicadas al extremo de la probeta no quede excéntrica con respecto al eje de la probeta, es importante que el centro de la superficie esférica de este bloque yazca en la cara plana que se apoya en la probeta, y que la probeta misma sea cuidadosamente centrada con respecto al centro de esta superficie esférica. Debido a la aumentada resistencia a la fricción a medida que la carga crece, el cojinete esféricamente asentado no puede confiarse en que se ajuste a sí mismo a la acción flexionante que pueda ocurrir durante el ensayo. En algunas condiciones de ensayo, el bloque de apoyo esféricamente asentado puede omitirse mientras que, en otras, dos de tales bloques pueden requerirse. El bloque debe tener un diâmetro Igual o ligeramente mayor que el de la probeta.

6.5.- REALIZACION DE LOS ENSAYOS

En los ensayos comerciales la única propiedad ordinariamente determinada es la resistencia a la compresión. Para los materiales quebradizos en -los cuales ocurre una fractura, la resistencia última se determina fácil y -- defir tivamente. Para aquellos materiales en los cuales no hay un fenómeno sing, ar que marque la resistencia última, se toman l'aites de deformación arbitrarios como criterios de resistencia.

En los ensayos para determinar la resistencia a 1 cedencia de los metales en compresión, los criterios usuales descritos en el Cap. 5, pueden - seguime.

as dimensiones deben determinarse con una precis in apropiada. Las - precisiones recomendadas para mediciones transversal seccionales en la labor ordinaria son las siguientes: metales, hasta el 0.01 plg. más cercano.

Al ensayar los metales, los extremos de la probeta y las caras de los bloques de apoyo deben limpiarse con acetona o cualquiar otro solvente adecuado inmediatamente antes del ensaye para quitar la grasa y el aceite que pudieran influir en la restricción friccional de las superficies extremales (ASTM E 9).

La velocidad de ensaye en compresión es todavía commente especificada en términos de la velocidad de marcha del puente morble, para materiales metálicos, con referencia E 9-33 T, de 1 a 3 plg. de largo, la máxima velocidad es de 0.05 plg por min; de 3 plg o más es de 0.11 plg por min.

6.6. - DBSERVACIONES DE ENSAYO

а

la l

Э

0

18-

La identificación, las dimensiones, las cargas críticas, las lecturas compresométricas (en caso de que hayan sido tomadas), el tipo de la falla, incluyendo los croquis, etc., se registran en una forma apropiada al tipo de ensayo y la extensión de los datos a tomar.

Les materiales quebradizos comúnmente se rompen y a lo largo de un -plano diagonal, o ya con una fractura en forma de cono (probetas cilíndri-cas) o pirámide (probetas cuadradas), ocasionalmente denominada fractura en
forma de reloj de arena (véase la figura 6.3.). El hiero fundido usualmen
te falla a lo largo de un plano inclinado, y el concreto exhibe una fractura
de tipo cónico. Tales fracturas son esencialmente fal'as por corte.

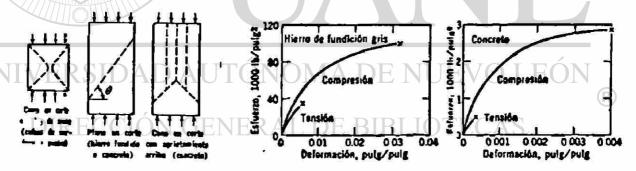


Figura 6.3.- Tipos de falla de los materilles quebradizos bajo cargas compresivas y sus gráficas de comportamiento.

los materiales dúctiles y plásticos con alguna teracidad protuberan la teralmente y adquieren forma de barril cuando se les corprime siempre y cuan do, por supuesto, la probeta no se doble o flambee. (ver figura 6.4.). Los materiales con ductilidad relativamente baja y las piezas endurecidas desarrollan ranuras superficiales paralelas al eje de carga cuando la falla se torna pronunciada.

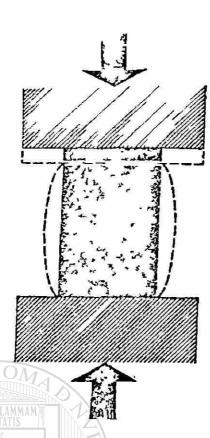


Figura 6.4.- Prueba de compresión en un material dúctil que muestra "abarrelamiento" debido a la fuerza de fricción en la superficie de contacto entre platinas y probeta.

6.7.- REPORTE

En todas las pruebas que se hagan deberán reportarse los datos iniciales en cuanto a dimensión y la historia termo mecánica de la pieza, de tal manera que después de hacer la prueba podemos corroborar los resultados de las características medidas.

En seguida se presenta un formato que pudiera servir como base para el informe de todos estos datos.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

15

LABORATORIO DF MECANICA DE LOS MATERIALES FAC. DE INGE ERIA MFCANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA FFL. - 52-57-88 y 76-22 64

· CARACTERISTICAS DEL ENSAYO DE COMPRESION EN METALES

	REALIZADO POR	
PRULBA N	0	
ESTANDAR		
MATERIAL		
LONGITUD	INICIAL	cm.
DI AMETRO	INICIAL	cm.
AREA INI	CIAL	cm ²
LONGITUD	FINAL	cm.
DIAMETRO	FINAL	cm.
AREA FIN	AL	cm ²
VOLUMEN		cm ³
RANGO		
CARGA DE	CEDENCIA	Kg.
CARGA MA	XIMA	Kg.
CARGA DE	FRACTURA	Kg.
ESFUERZO	DE CEDLNCIA	Kg/cm ²
ESFUERZO	MAXIMO	Kg/cm ²
ES FUERZO	DE FRACTURA	Kg/cm ²
MODULO D	E ELASTICIDAD	Kg/cm ² FVO I FÓN
RESI LENC	IA ELASTICA UNITARIA	Kg-cm/cm ³
	IA ELASTICA TOTAL	Kg-cm.
	DUNITARIA NERALIDE BI	Kg-cm/cm ³
	D TOTAL	Kg-cm
	ION DE LONG	8
	CION DE AREA	8
	DEL GRANO	
	FRACTURA	. 2
	ESPECIFICADO	
VELOCIDA	D DE APLICACION DE CAFGA	E
	MONTERREY, N.I.	FECHA

VII. - ENSAYO DE CORTE

7.1.- OBJETO Y APLICABILIDAD DEL ENSAYO DE CORTE

En el ensayo de corte directo ocasionalmente llamado ensayo de corte -"transversal", usualmente se procede a sujetar o apoyar un prisma del mate-rial, de tal modo que los esfuerzos flexionantes se minimicen a través del plano a lo largo del cual la carga cortante se aplique. Aunque el método -basta para una indicación de la resistencia al esfuerzo que puede esperarse
en remaches, pernos de palanca, bloques de madera, etc. Sin embargo, debido
a la flexión o la fricción entre las partes de la herramienta o a ambas, da
una aproximación de los valores correctos de la resistencia al corte. Los resultados de esa prueba dependen en un grado considerable de la dureza y el
filo de los bordes de las palancas endurecidas que descansan sobre la probeta. El ensayo de corte transversal posee la limitación adicional de ser com
pletamente inútil para la determinación de la resistencia elástica o del módulo de rigidez debido a la imposibilidad de medir las deformaciones.

7.2. EL ENSAYO DE CORTE DIRECTO.

Para el ensayo de corte directo de metales, usualmente se corta una barra en algún dispositivo que apriete una porción de la probeta mientras que la restante es sometida a carga por medio de dados adecuados. En la herramienta cortante del tipo Johnson, se usa una barra de sección rectangular -- aproximadamente de 1 por 2 plg o una varilla cilíndrica de aproximadamente 1 plg de diámetro. Como se muestra en la figúra 7.1, la probeta Á se sujeta a la base C. La fuerza aplicada a la herramienta de carga E rompe la probeta en corte simple. Si la probeta se extiende hasta B y tiende el puente entre dos dados V, queda sometido al corte doble. Los dados y la herramienta de - carga se hacen de acero templado para herramientas afiladas.

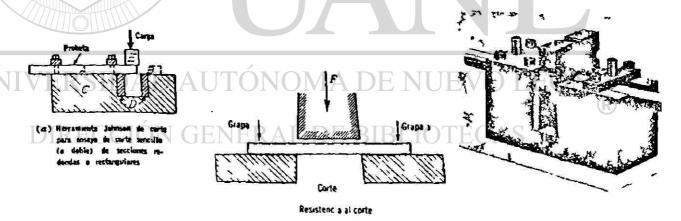


Figura 7.1.- Método y aditamento para ensaye de metales en corte directo.

Los ensayos de corte directo ordinariamente se hacen en máquinas de ensaye de compresión o tensión.

En el ensayo de corte directo, el dispositivo de ensaye debe sujetar la probeta firmemente y conservar la buena alineación, y la carga debe aplicar-se uniformemente en forma perpendicular al eje de la pieza. En un ensayo de corte simple, cuando se usa equipo similar al mostrado en la figúra 7.1, la probeta debe extenderse suficientemente por debajo de la herramienta de carga É para evitar los esfuerzos de opresión altos. Asimismo, en el ensayo de

corte doble la probeta B be empalmarse sobre el segurio dado D para evitar los altos esfuerzos opresivos. La velocidad del puente para aplicar la carga no debe exceder 0.05 plg por min. para metales.

En el ensayo de corte directo, el único valor crítico que puede obser-varse es la carga máxima P. Si A es el área sometida a la fuerza entonces la resistencia promedio al corte es tomada simplemente como P/A. La forma y textura de la superficie fracturada debe ser reportada.

A continuación se presenta un formato de presentación de datos:

LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA TEL. - 52-57-88 y 76-22-64

CARACTERISTICAS DEL ENSAYO DEL CORTE DIRECTO

TONOMA	REALIZADO POR:
PRUEBA No MATERIAL DIAMETRO AREA TOTAL CO CARGA MAXIMA ESFUERZO MAXI TIPO DE FRACT	MO Kg.
ERSIDAD .	AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN,	GENERAL DE BIBLIOTECAS MONTERREY, N.L. FECHA

FECHA

enar la caro de la caro de

e do а

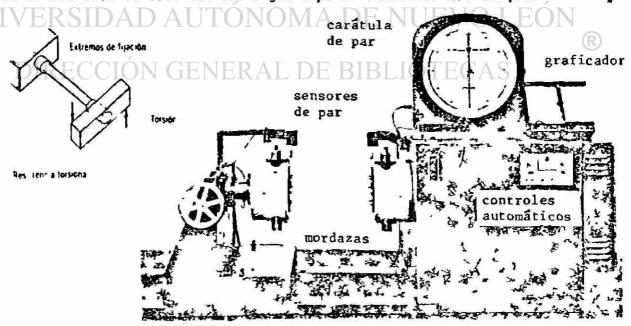
el

e-

COM nó-

bahе

ta it re


8.1. - ENSAYO DE TORSION

Los criterios principales para la selección de la probeta de torsión parece ser que (1) las probetas deben ser de tal tamaño que permitan que las mediciones de deformación deseadas se logren con exactitud adecuada, y (2) de tales proporciones que eliminen aquella porción de probeta sobre la cual se tomen las mediciones del efecto de los esfuerzos debidos a la sujeción de los extremos. Los extremos deben ser tales que puedan sujetarse y asegurarse sin desarrollar esfuerzos suficientemente localizados para causar la fatla en las mordazas. Ordinariamente las mordazas de los mandriles de la máquina adaptan la forma de bloques o transmisiones, algunos tipos de los cuales automáticamente aprietan según el torque es aplicado. Debe tenerse cuidado al sujetar la probeta para no introducir flexión. Usualmente se proven puntos de centrado en los mandriles de la máquina de torsión para la in serción en pequeños orificios de centrado a cada lado de la probeta; así la probeta puede centrarse exactamente en la máquina.

Es prácticamente imposible determinar la resistencia al corte hasta el límite proporcional de las fibras extremas de una probeta de torsión, sólida. Una delgada probeta tubular es preferible para la determinación de esta propiedad. Las probetas tubulares para determinaciones de la última resistencia al corte deben tener secciones cortas reducidas con una razón entre el largo de la sección reducida y el diámetro (L/D) alrededor de 0.5 y una razón entre el diámetro y el grueso (D/t) de aproximadamente 10 a 12.

Para determinaciones de la resistencia a la cedencia cortante y del módulo de rigidez, una probeta hueca que posea una longitud de cuando menos 10 diámetros y una razón entre el diámetro y el grueso de pared de aproximadamente 8 a 10, debe preferirse para su sección reducida.

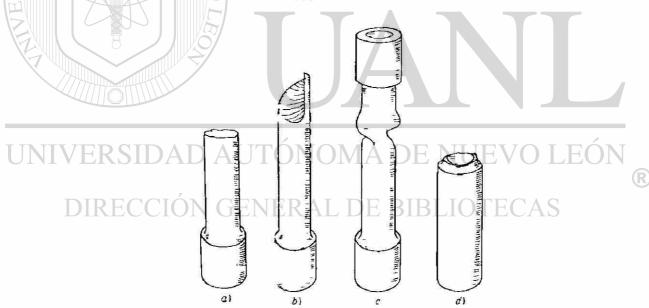
El ensayo de torsión de metales se realiza en una máquina especial de - ensaye, diseñada con este propósito. Una ilustración de un tipo de máquina de ensaye de torsión se muestra en la figúra 8.1. Un mecanismo propulsor -- adecuado mueve un mandril con mordazas dentadas y endurecidas, y el par aplicado es transmitido a través de la probeta a un mandril similar en el caberzal de medición lo cual acciona algún tipo de indicador del torque.

ribura 8.1.- Máquina para ensayar a torsión.- Control automático de avance, indicador de par, graficador de par Vs. ángulo de giro.

Se is n rios di p it // , randir la de ino la in n lar en una prieta de torsió. E ros di do s de tor ión o tri, itos ordinaria ente consisten en mollarin s suj sa la probita a na distancia o tramo de calibració de eparación di dos, con algún me io pra dedir el displaza iento ngulor lativo de los ollarines. En un tipo, un evernier a oplido a un collario se u ve alred dor de un circulo gradu do acoplado al otro collario, en con tipo se a plan e pejos a los collarios, y las observaciones se hicen con tel scopios y escalas.

La soción transversal de la probeta de torsión debe redirse harla 1 - parte en 1000, entro del l'ore proporci nal del aterial, la veloció del como del como

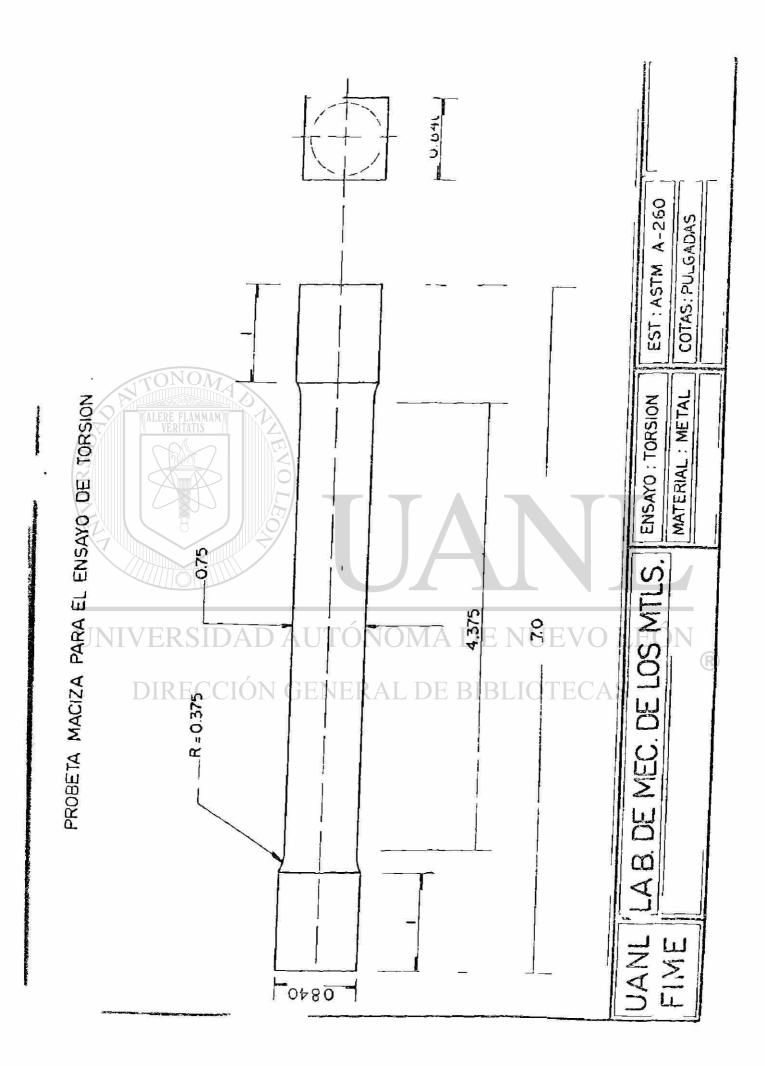
de h herse alcanzado el punto de ced noia.

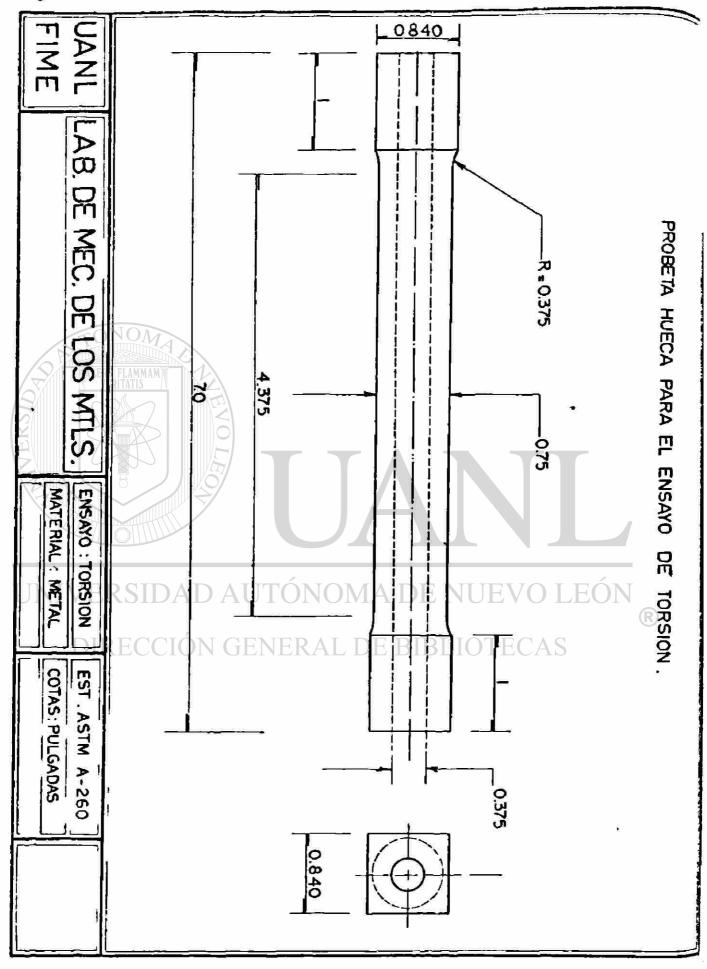

8.2. - OBSERVACIONES DE ENSAY;

Los tipos generales de mervaciones y registros de ensayos en torsión, son similares a los de los emayos de tensión y compresión.

La fractura por corte e: -, diferente de la de tensión o compresión; -

no hay reducción localizada %1 área o alargamiento.


Para los materiales que :e rompen en el ensayo de corte o torsión, la - ruptura en varillas sólida e: plana y normal al eje de la pieza, como se - muestra en la figura 8.2a. Para los aceros dúctiles, la fractura es upualmente de textura sedosa, y e eje alrededor del cual el torcido final se verificó, puede usualmente observarse.



- (a) Barr , en te material dúctil. Fracture recté, plane,
- (b) Bar- as a material q b d'zo Fractiura helicoidal.
- (C) Proof and to material of the Falls por flambon.

 d Proof and to after all till, sección conta reducida la tem lana, tran estal.

Figura : Tipos de falla en torsi'n.

LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA TEL. 52-57-88 y 76-22-64

CARACTERISTICAS DEL FNSAYO DE TORSION

	REALIZADO POR:_	
	PRUEBA No	
	ESTANDAR	
	MATERIAL	
	LONGITUD INICIAL c	im,
	DIAM. EXTERNO c	em.
),),	DIAM. INTERNO c	cm.
		en.
	AREA EFECTIVA	cm ²
	VOLUMEN c	cm ³
	RANGO K	g-
	CARGA DE CEDENCIA K	g.
	CARGA MAXIMA K	g.
	CARGA DE RUPTURA K	g.
	BRAZO DE PALANCA co	m.
Ţ	PAR DE CEDENCIAK	granievo i eón
١.	PAR MAXIMO K	g-cm.
	PAR DE RUPTURA K	g-cm.
	MOMENTO POLAR DE INERCIA	REIOTECAS
	,	g/cm ²
		g/cm ²
		g/cm ²
	MODULO DE ELASTICIDAD AL CORTE Kg	g/cm ²
	VELOCIDAD DE APLICACION DE CARGA	
	ANGULO MAXIMO DE DEFORMACION Gr	rados
	TIPO DE FRACTURA	
	•	

FECHA:

MONTERREY, N.L.

IX ENSAYO DE FLEXION

9.1. COMPORTAMIENTO DE LOS MATERIALES SOMETIDOS A LA FLEXION

Si las fuerzas actúan sobre una pieza de material de tal manera que tien da a inducir esfuerzos compresivos sobre una parte de una sección transversal de la pieza y los esfuerzos tensivos sobre la parte restante, se dice que la pieza está en flexión.

En las vigas en que la razón entre la longitud y el peralte es de aproxi adamente 10 o nás, las deflexiones por corte son suficientemente pequeñas — comparadas con las deflexiones por flexión para ser usualmente ignoradas en el ensaye práctico.

Los valores del límite proporcional determinados de los ensayos de vigas son generalmente más altos que los obtenidos de los ensayos de tensión o compresión, porque el relajamiento de las fibras extremas es ocultado por el - efecto sustentante de las fibras menos altamente fatigadas, más cercanas al - eje neutro.

9.2.- PROBETAS PARA ENSAYOS DE FLEXION

Para determinar el módulo de ruptura para un material dado, la viga bajo ensayo debe proporcionarse de tal manera que no falle por corte o deflexión - lateral antes de alcanzar su última resistencia a la flexión. Para producir una falla por flexión, la probeta no debe ser demasiada corta con respecto al peralte de la viga, e inversamente, si se desea la falla por esfuerzo cortante, el claro no debe ser demasiado largo. Los valores de L=6d a L=12d -- (dependiendo el valor real del material, de la forma de la viga y del tipo de cargado) en que L= largo y d= peralte, sirven como línea delimitante aproximada entre las vigas cortas de mucho peralte que fallan por corte y las largos de poco peralte que fallan en las fibras extremas.

Las probetas de hierro fundido son barras cilíndricas, vaciadas por separado, pero en moldes de arena de las mismas condiciones y tomados del mismo - crisol que los vaciados que representan. En la tabla 9.1, se dan tres tama; ños comunes de barras de ensayo. Ellas son ensayadas como vigas simples bajo carga central con claros que dependen del tamaño de la barra, tambien como -- son mostradas en la Tabla 9.1.

$\overline{}$	The second second		and the second second second second	The second secon		A SECOND TO SECOND	N. P. W.	The second second	
	THE A PLAN A	A 1	TAXABLO A	MADALLERA	DITT	DIDDIG	TATE	TIME AND	DE HIERRO
	IAKIA	4 I -	I AMANIIS	MIJEMALES	11111	BARRAS	LIBRO	HOVOVII	THE HIPKKIL
- //	A FEDRAL		LULUUU	TACKET THE PROPERTY.	~~	DIMINIO	1713	DITORIO	DO HILLOTTICO
			The second secon						

imensiones nominales, p		que controla ciados, plg	Distancia entre los apoyos, plg.	
	Diametro	Longitud		
U.50 o menos	0.875	15	12	
0.51 a 1.00	1.20	21	18	
1.01 o más	2.00	27	24	

^{*} Basada en la ASTM A 48

9.3. - APARATOS PARA ENSAYOS DE FLEXION

Los principales requerimientos de los bloques de apoyo y carga para ensayos de vigas son los siguientes: 1.- Deben tener una forma tal que permita el uso de un claro de largo - definico y conocido.

2.- Las áreas de contacto con el material bajo ensayo deben ser tales que las concentraciones de esfuerzo indebidamente altas (las cuales pueden causar aplastamiento localizado alrededor de las áreas de apoyo) no ocurran.

3.- Debe haber margen para el ajuste longitudinal de la posición de los apoyos de modo que la restricción longitudinal no pueda desarrollarse a medida que la carga progrese.

4.- Debe haber margen para algún ajuste lateral rotativo para acomodar las vicas que estén ligeramente torcidas de uno al otro extremo, de modo que no se inducirán esfuerzos torsionantes.

5.- El arreglo de las partes debe ser estable bajo carga.

Ur número de especificaciones describe detalladamente el tipo de apoyo a usar con los materiales particulares. Los aspectos principales de los - - arregles de apoyo representativos se muestran en la figura 9.1.

Achos ensayos de flexión se realizan en máquinas de ensayo universales, con los apoyos colocados sobre la base o una extensión de ella y el bloque - de carça sujetado al, o colocado bajo el cabezal movible. Sin embargo, para los ensayos de control de algunos materiales (por ejemplo, ensayos de fundición del hierro fundido y ensayos de campo del cemento), frecuentemente se emplean máquinas especiales de operación manual.

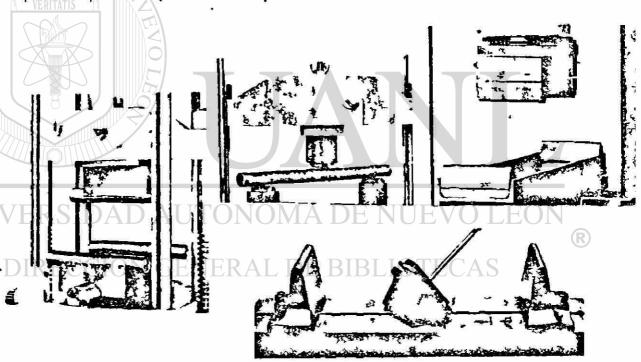


Figura 9.1.- Aspectos principales de los dispositivos de apoyo y carga para ensayos de vigas que indican el marçen para ajuste rotatorio longitudinal y lateral en los apoyos.

Los aparatos para medir la deflexión (flecha) deben diseñarse de tal mo do que el aplastamiento en los apoyos, el asentamiento de los apoyos y la de formac ón de los bloques de apoyo y carga o de las partes de la máquina, no introd zoan errores serios en los resultados. Un método para evitar estas fuentes de errores consiste en medir las deflexiones con referencia a puntos

tien rs-que

roxi s -en -

igas com---

pajo Sn -:ir > al

oxi | ---

ер<u>а</u> ю ъ-ајо

-

1-

sobre el eje neutro arriba de los apoyos. El arreglo típico se muestra en la figúra 9.2.

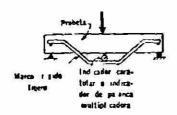


Figura 9.2.- Dispositivos para medir la deflexión.

En general, las deflexiones dentro del límite proporcional deben leerse hasta cuando menos - 1/100 de la deflexión en el límite proporcional; para deflexiones mayores deben leerse hasta cuando menos 1/100 de la deflexión al ocurrir la ruptura.

9.4. - REALIZACION DE LOS ENSAYOS DE FLEXION DE LAS VIGAS.

La realización de ensayos rutinarios de flexión es usualmente simple. Ordinariamente sólo el módulo de ruptura se requiere; éste se determi na de la carga al ocurrir la ruptura y las dimensiones de la pieza (claro y sección transversa) -

crítica) $\sigma = Mc/I$. Cuando el módulo de elasticidad es requerido, una serie de observaciones de carga y deflexión se hacen.

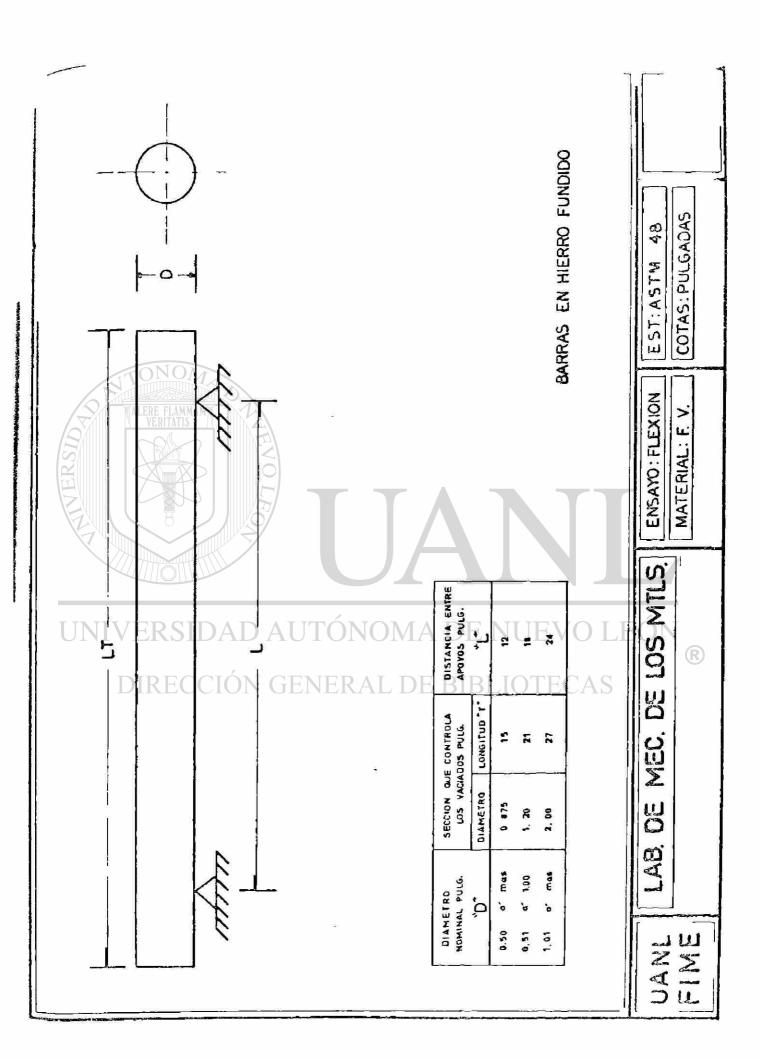
El montaje de apoyos y probeta debe colocarse centralmente en la máquina de ensaye y debe revisarse para cerciorarse de que estén debidamente alineados y puedan funcionar según se desee.

Para barras de flexión de hierro fundido, la carga debe aplicarse a una velocidad tal que la fractura se produzca en no menos de 15 seg. para la barra de 0.875 plg. de diámetro, 20 seg. para la de 1.20 plg. y 40 seg. para la de 2.0 plg. (ASTM A 48).

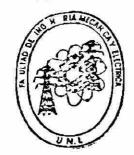
9.5. - OBSERVACIONES DEL ENSAYO

Los tipos generales de observación y registro de los ensayos en flexión son similares a aquellos de los ensayos de tensión y compresión.

Las condiciones bajo las cuales el módulo de ruptura se determina (tipo de probeta, longitud del claro, tipo y velocidad de carga, etc.), deben siem pre registrarse, ya que ellos afectan marcadamente los resultados.


Al computar el módulo de elasticidad de los datos de carga y de deflé-xión, el procedimiento más simple consiste en trazar un diagrama de carga y deflexión y de la pendiente cel diagrama computar las cargas y la deflexión para su sustitución en la fórmula de deflexión pertinente.

En los ensayos de vigas que no fallan por ruptura súbita, las indicaciones de la inminencia de la falla, tales como grietas, cedencia localizada, flambeo, etc., deben observarse cuidadosamente.


La forma de la sección transversal de una viga puede afectar apreciable mente la resistencia de la viga. Los ensayos de vigas de hierro fundido de una variedad de formas, pero de aproximadamente la misma área seccional demuestran que en general el misma de la módulo de elasticidad son más bajos para vigas que tençan una proporción relativamente mayor del área seccional concentrada cerca re las fibras extremas, como en el caso de una sección I, aunque las cargas de ruptura sean considerablemente mayores para tales secciones.

9.6.- PRESENTACION DE DATOS

El diagrama de la probe a estándar y el reporte de la prueba de flexión donde se incluyen los datos i·iciales, las condiciones de prueba y resultados se incluyen en seguida.

UNI

LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA TEL.- 52-57-88 y 76-22-64

CARACTERISTICAS DEL ENSAYO DE FLEXION

KCALI ZADU	PUR:
PRUEBA No	cm cm cm cm cm cm cm cm kg kg kg kg kg kg/cm² kg/cm² cm kg cm² cm² cm² cm² cm² cm² cm²
ESFUERZO MAXIMO DEFLEXION MAXIMA VEL. DE APLICACION DE CARGA NUCLEO ELASTICO NUCLEO PLASTICO	Kg/cm ² cm cm ² cm ² UEVO LEÓN
DEFLEXION DE RECUPERACION MOMENTO DE INERCIA	EMOTECAS
MONTERREY. N.L.	FECHA:

X.- ENSAYO DE DOBLADO

10.1.- DOBLADO EN METALES

Los ensayos de "doblado" (de los cuales el más común es el de "doblado" en frío) ofrecen un medio si ple, un tanto burdo, pero frecuentemente satisfactorio para obtener un índice de ductilidad. Escencialmente el ensa
yo consiste en doblar bruscamente una barra a un ángulo grande y notar si ocurre o no agrietamiento en la superficie exterior de la pieza doblada. Huchas veces se determina el ángulo de doblado al cual el agrietamiento se
inicia. La severidad del ensayo generalmente se varía usando tamaños diferentes de pernos alrededor de los cuales se hace el doblado.

Ocasionalmente se realizan ensayos de doblado para constatar la ductilidad para tipos particulares de servicio o detectar la pérdida de ductilidad bajo ciertos tipos de tratamiento. Así, los ensayos de doblado en frío que como el nombre lo implica, se hacen doblando un metal a temperaturas or dinarias, pueden servir para detectar un contenido demasiado alto del carbo no o fósforo o condiciones de rolado impropios en el acero. Los ensayos de doblado en frío son requeridos en las especificaciones para muchos aceros, particularmente aquellos en forma de varilla y placa, por ejemplo, barras para refuerzo del concreto (ASTM A 15, A 16), acero para remaches (ASTM A -141), acero estructural (ASTM A 7), placas de acero para recipientes de presión (ASTM A 285), etc. El ensayo de doblado se usa también frecuentemente para ensayar la ductilidad de las soldaduras.

TABLA 10.1. - REQUERIMIENTOS DE LOS ENSAYOS DE DOBLADO PARA BARRAS
DE REFUERZO PARA CONCRETO*

	Barras sencillas			Barras deformadas		
No. de designa- ción de la barra	Grado estruc tural	Grado inter- medio	Grado duro	Grado estru <u>c</u> tural	Grado inter- medio	Grado duro
Menor de 6	180° d = t	180° d = 2t	180° d = 4t	180° d = 2t	90° d = 3t	90° R
) 6, 7, 8 [() \	180° d = 4	90°] d = 2£	0 90° d = 4t	d = 3t	90° S d = 4t	90° d = 5t
9, 10, 11	180° d = t	90° d = 2£	90° d = 4t	180° $d = 4t$	90° $d = 5t$	90° d = 6t

NOTA: d = diámetro del perno alrededor del cual la probeta se dobla. t = diámetro de la probeta.

* Basado en la ASTM A 15.

El ángulo especificado de doblado y el tamaño del perno alrededor del cual la pieza se dobla sin agrietarse dependen del grado del metal y del tipo de servicio para el cual haya de usarse. En el caso de las barras de esfuerzo, para concreto, las cuales deben doblarse en frío en la obra, los requerimientos se muestran en la Tabla 10.1. Los requeririentos para el acero estructural se muestran en la Tabla 10.2, doblándose la probeta 180° en cada caso. Se requiere que una probeta de varilla para remaches se doble aplanándola contra sí misma.

TABLA 10.2.- REQUERIMIENTOS DE LOS ENSAYOS DE DOBLADO PARA ACERO ESTRUCTURAL*

Grueso del material, plg	Razón entre el diámetro del perro y el grueso de la probeta
3, 0 menos	1/2
Más de 34 hasta 1	1
Más de I hasta 11/2	11/2
Más de 116 hasta 2	214
Más de 2	3

Basado en la ASTM A 7

Los aspectos esenciales de los dos tipos de aparatos para doblado en -- frío se muestran, esquemáticamente en la figúra JO.J. En la máquina Olsen - el ángulo de doblado puede medirse.

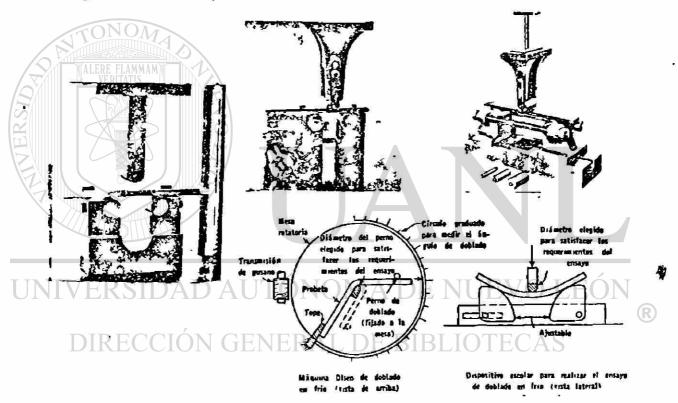


Figura 10.1.- Aparato de ensayo para doblado en frío.

10.2.- FORMATO

A continuación presentamos un formato donde se contienen los datos iniciales y los resultados de prueba por ensayo de doblado.

LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA TEL.- 52-57-88 y 76-22-64

CARACTERISTICAS DEL ENSAYO DE DOBLADO -

REALIZADO PO)R:
ANCHO ESPESOR DIAMETRO DEL PERNO	cm cm cm Kg
NIVERSIDAD AUTÓNOMA I	DE NUEVO LEÓN
MONTERREY, N.L. FE DIRECCIÓN GENERAL DE E	CHA: BIBLIOTECAS

11.1.- INTRODUCCION

Es difícil definir la propiedad de "dureza", excepto en relación con la prueba empleada en particular para determinar su valor. Debe tenerse en cuen ta que un número o valor de dureza no puede utilizarse directamente en trabajos de diseño, como se puede hacer con un valor de resistencia a la tensión, ya que los nú eros de dureza no tienen significado intrínseco.

La dureza no es una propiedad fundamental de un material, sino que está relacionada con las propiedades elásticas y plásticas. El valor de dureza - obtenido en una prueba determinada sirve sólo como comparación entre materia les o tratamientos. El procedimiento de prueba y la preparación de la muestra suelen ser sencillos y los resultados pueden utilizarse para estimar - otras propiedades mecánicas. La prueba de dureza se utiliza ampliamente para inspección y control. El tratamiento térmico o el trabajo efectuado en - una pieza metálica resulta generalmente en un cambio de dureza. Cuando se - establece el valor resultante de la dureza de un tratamiento térmico a un material dado por un proceso determinado, esa estimación proporcionará un méto do rápido y sencillo, (de inspección y control) para el material y proceso - partículares.

Las diversas pruebas de dureza se pueden dividir en tres categorías: Dureza elástica.

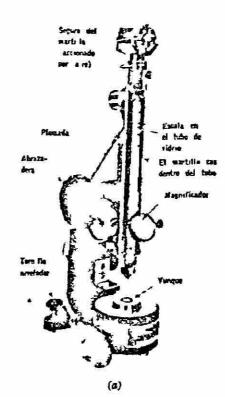
Resistencia al corte o abrasión, y Resistencia a la indentación.

11.2. - DUREZA ELASTICA

Este tipo de dureza se mide mediante un escleroscopio (figura 11.1), -- que es un dispositivo para medir la altura de rebote de un pequeño martillo con emboquillado de diamante, después de que cae por su propio peso desde -- una altura definida sobre la superficie de la pieza a prueba. El instrumento tiene por lo general un disco autoindicador tal que la altura de rebote - se indica automáticamente. Cuando el martillo es elevado a su posición inicial, tiene cierta cantidad de energía potencial. Cuando es liberada, esta energía se convierte en energía cinética hasta que golpea la superficie de - la pieza a prueba. Alguna energía se absorbe al formar la impresión, y el resto regresa al martillo, al rebotar éste. La altura de rebote se indica - por un número sobre una escala arbitraria tal que cuanto mayor sea el rebote mayor será el número y la pieza a prueba será más dura.

Esta prueba es realmente una medida de la resistencia del material, o -

sea, la energía que puede absorber en el intervalo elástico.


El aparato denominado esclerómetro o escleroscopio Shore (figura 11.1) está formado por un tubo de cristal de unos 300 mm. de altura, por cuyo interior cae un martillo que pesa 1/12 de onza (2,36 gr.), que es un cilindro de acero con una punta de diamante redondeada. La altura de caída es de 10" -- (254 mm.), y está dividida en 140 partes iguales.

El aparato se fija a la pieza que se va a ensayar con un pedestal que - lleva adecuado para este fin. Se aspira el martillo haciendo el vacío con - una pera, y una vez en la parte más alta, se deja caer. Al rebotar queda re tenido en su posición más alta, para hacer cómodamente la lectura.

El aparato se gradúa dividiendo en 100 partes la altura media del rebote en una pieza de acero duro templado y prolongando la escala en 40 divisio nes más, iguales a las anteriores, para poder realizar medidas en materiales extraduros.

Hay un modelo de esclerónetro que lleva una esfera donde queda registra

on la cneu raba está pa-(minstra patró

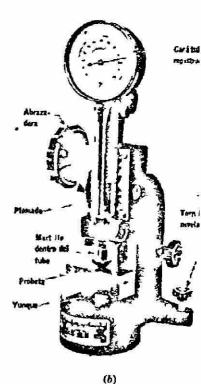


Figura 11.1.- (a) Escleroscopio de lectura directa y (b) escleroscopio de registro caratular

da la altura del rebote del martillo. La altura de caída en este aparato es sólo de 20mm.; pero como el martillo pesa mucho más (37 gr.), las cifras de dureza obtenidas son similares en los dos modelos de esclerómetros.

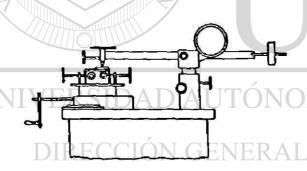
La ventaja del esclerómetro Shore es que no produce prácticamente ninqu na huella en el material ensayado, por lo que se utiliza para medir la dureza superficial de piezas terminadas, como cilindros de laminación, etc.

Es, por tanto, el único ensayo no destructivo, de todos los empleados para determinar la dureza.

11 3 - RESISTENCIA AL CORTE O ABRASION

Prueba de rayadura. - Esta prueba la ideó Friedrich Mohs. La escala cons ta de diez minerales estándar arreglados siguiendo un orden de incremento de dureza. El talco es el 1, el yeso el 2, etc., hasta el 9 para el corindón y el 10 para el diamante.

En la Tabla 11.1, se muestra la escala completa con una extensión de la misma.

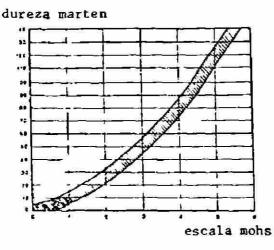

Si un material desconocido es rayado apreciablemente por el 6 y no por el 5, el valor de dureza está entre 5 y 6. Esta prueba no se ha utilizado mucho en Metalurgia, pero aún se emplea en Mineralogía. La principal es que la escala de dureza no es uniforme. Cuando la dureza de los minerales es -examinada por otro método de prueba de dureza, se encuentra que los valores están muy cercanos entre 1 y 9 y que hay gran diferencia en dureza no cubier tas entre 9 y 10.

El esclerómetro de Marten fue el primer aparato que se empleo para me-dir la dureza al rayado (figura 11 2).

sión, eria

	Escala de Mobs	Extensió	ón de la escala de Mohs*	P	
No de Mineral de referencia		No. de dureza	Mineral de referencia	Equivalente metalico	
		-			
1	Talco	1	Talco		
1 2 3	Yeso	2	Yeso		
3	Calcita	3	Calcita		
4	Fluorito	4	Flourito		
5	Apatita	5	Apatita		
5 6	Feldespato (ortoclasa)	6 7	Feldespato (ortoclasa)		
-		7	Sílice puro vítreo	ĺ	
7	Cuarzo	8	Cuarzo	Estílita	
7 8	Topacio	9	Topacio		
•		10	Granate		
		11	Circonia fundida	Carburo de tántalo	
9	Zafiro o corundo	12	Alúmina fundida	Carburo de tungsteno	
	1	13	Carburo de silicio	2007	
ONC		14	Carburo de boro		
10	Diamante	15	Diamante		

El ensayo Marten se basa en la medida de la anchura de la raya que produce en el material que se ensaya, al moverlo, una punta de diamante de forma piramidal y de ángulo en el vértice de 90°, con una carga constante y determinada.


Midiendo la anchura a de la raya en micras, se calculan las dure-zas Marten por la fórmula

 $\Delta M = 10,000$

Como orientación, damos la dure za Marten de algunos metales:

Plomo	HOTECAS-	16,8
Acero	dulce	73
Acero	duro	45

Figura 11.2. - Esclerómetro Marten, para medir la dureza al rayado.

En la figüra 11.3, se muestra una gráfica donde se compara las durezas Marten y la escala de Mohs.

Figura 11.3. - Equivalencia entre las durezas Marten y la escala de Mohs.

Prueba o ensayo de lima. - La pieza a prueba se somete a la acción de corte de una lima de dureza conocida, para determinar si se produce un corte visible. Las pruebas comparativas con una lima dependen del tamaño, forma y du reza de la lima; de la velocidad, presión y ángulo de limado durante la prueba; y de la composición y tratamiento térmico del material a prueba. La prueba generalmente se emplea en la industria como aceptación o rechazo de una - pieza.

En muchos casos, sobre todo con aceros para herramientas, cuando el acero se trata térmicamente, será suficientemente duro, tal que si se pasa una - lima por la superficie, ésta no se cortará. No es raro encontrar especificaciones de tratamiento térmico que digan simplemente "tratar térmicamente hasta que el material tome dureza a prueba de lima". Al pasar una lima por la - superficie, se puede examinar con rapidez un gran número de partes tratadas - térmicamente para determinar si el tratamiento ha sido satisfactorio.

Puede determinarse aproximadamente la dureza de un acero templado por me dio de una lima nueva o en Buen estado.

Si no "entra" la lima, su dureza será superior a 60 HRc (60 Rockwell-C), y si le "entra", sera inferior a 58 HRc (58 Rockwell-C).

Este ensayo puede considerarse încluído entre los que miden la dureza al rayado.

11.4. - RESISTENCIA A LA INDENTACION

Esta prueba generalmente es realizada imprimiéndo en la muestra, la que está en reposo sobre una plataforma rígida, un marcador o indentador de geome tría determinada, bajo una carga estática conocida que se aplique directamente o por medio de un sistema de palanca. Dependiêndo del sistema de prueba, la dureza se expresa por un número inversamente proporcional a la profundidad de la identación para una carga y marcador especificados, o proporcional a — una carga media sobre el área de mella. Los métodos comunes para pruebas de dureza por indentación se dán en la Tabla 11.2 y posteriormente se describen cada uno.

Proeba	Punta	Forma de per Vista later al	netración Yista superio	Carga	Fórmula para número de dureza
IRE(Esfera de 10mm de acero o carburo de tungsteno	ER DI	BBI	IOTI	$\frac{2P}{4D(D-\sqrt{D^2-d^2})}$
Vickers	Pirâmide de diaments	136	之 文学	P	NDV = 1.854P/d ₁ ²
Virrodureza Knoop	Firamide de diamante	i/b = 711 $b/t = 400$	1	Pa	$hDK = 142P/l^2$
C D	Cono de Gamants	1200 ×	(9)	60 kg 150 kg 100 kg	$ \begin{array}{c} R_A = \\ R_C = \\ R_D = \end{array} $ 100-500t
8 F G	Estera de ace a de ace a de a de	$O^{\tilde{\pi}}$	0	100 kg 60 kg 150 kg	$R_{B} = R_{F} = R_{G} = \begin{cases} 130-500t \end{cases}$
Ε	Esfera de acero de "Tdiameiro	•		100 kg	$R_{\varepsilon} = \int$

a) P- Lba o e sajo de 1 e.a "rí ll.- El pr b dor de d reza Brinell g ne ralme te consta de na pi nsa hidríulica verti al de operación anual, diseñada para forzar un marcador de bola d ntro de la stra (figúra 11.4).

En la figúra 11.5, se munstra la Équina y el microscopio usado en la pru ba.

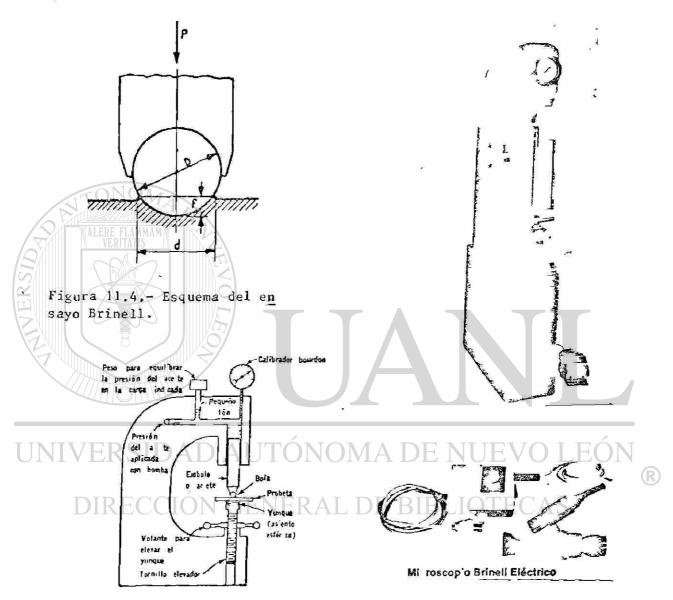


Figura 11.5.- Aspectos de la máquina Brinell. Aplica las cargas hidráulica ente, las cuales se regulan median te un válvula entre 500 y 3000 Kg. - El penetrador de bolilla tiene un movimiento vertical áximo de 25 mm. - La lectura debe hacerse con un micros copio como el nostrado.

El procedimiento estándar requiere que la prueba se haga con una bola - de 10 mm de diámetro bajo una carga de 3 000 kg para metales ferrosos a 500 kg para etales no ferrosos. Para metales ferrosos, la bola bajo presión es presionada dentro de la muestra a prueba por lo menos durante 10 seg; para - metales no ferrosos el tiempo es 30 seg. El diámetro de la impresión producida es medido por medio de un microscopio que contiene una escala ocular, - generalmente graduada en décimos de milímetro, que permite estimaciones de - hasta casi 0.05 mm.

El número de dureza Brinell (HB) es la razón de la carga en kilogramos al área en milímetros cuadrados de la impresión, y se calcula mediante la -- fórmula:

$$HB = \frac{L}{(\pi D/2)(D - \sqrt{D^2} d^2)}$$

donde:

L = carga de prueba, kg

D = diámetro de la bola, mm

d ⇒ diámetro de la impresión, mm

Por lo general no se necesita hacer el cálculo, ya que hay tablas para convertir el diámetro de la grabación observada al*número de dureza Brinell (consúltese la tabla 11.3).

El número de dureza Brinell cuando se usa la bola ordinaria está limita do a 500 HB aproximadamente. Conforme el material a prueba sea más duro, — hay tendencia a que el propio marcador de muescas se empiece a deformar y— las lecturas no serán exactas. El límite superior de la escala puede aumentarse al usar una bola de carburo de tungsteno en vez de una bola de acero— endurecido. En ese caso, es posible llegar a 650 HB aproximadamente.

La ASTM especifica que no deben aparecer marcas en la pieza sobre el la do opuesto a la indentación y también requiere que el grueso de la probeta sea cuando menos 10 veces mayor que la profundidad de la huella. Para satisfacer este requerimiento la dureza mínima para un grueso de probeta dado, de be ser la indicada en la Tabla 11.4.

Sin una indentación se hace demasiado cerca del borde de la probeta, és te puede ser demasiado grande y asimétrico. Si se hace demasiado cerca de uno anterior; puede resultar demasiado grande debido a la carencia de suficiente material sustentante o demasiado pequeño debido al endurecimiento por trabajo del material por la primera indentación. Sin embargo, los ensayos han demostrado que los errores pueden desestimarse si la distancia al centro de la huella desde el borde de la probeta o desde el centro de las huellas adyacentes es igual a o mayor que 2 1/2 veces al diámetro de la huella.

La superficie de la huella no es realmente esférica porque la bola sufre alguna deformación bajo carga y existe alguna recuperación de la pieza de ensayo cuando la carga es retirada. Así las indentaciones hechas con bolas de diferentes tamaños y cargas no son geométricamente similares. Sin em bargo, para ensayar probetas delgadas o pequeñas, algunas veces resulta nece sario realizar ensayos de dureza de Brinell con una bola de menos de 10 mm de diámetro. Tales ensayos (los cuales no deben considerarse como ensayos de oureza de Brinell normales) se aproximan a los ensayos normales más estre chamente si la relación entre la carga aplicada P en kilogramos, y el diámetro D de la bola, en milímetros, es la misma que en los ensayos normales.

Donde $P/D^2 = 30$ para carga de 3 000 kg y bola de 10 mm

TABLA 11.3.- RELACIONES APROXIMADAS DE MEDICIONES DE DUREZA PARA ACEROS

Brinell	. 3 000 K	g	딑		well, usai			1	Ī	
		2	dor		netrador eónica	ae diama	inte de	1	1	ii.
Diámetro, mm	Bola estándar	Bola de carburo de tungsteno	Vickers, marcador piramidal de diamante	C 150 KG	0 100 KG	₽ 09 ×G	Superficial 30 N	Escleroscopio	Mohs	Resutencia tensil, 1 000 lb/pulg'
. 235		682	737	61.7	720	82 2	79.0	84		
2 40	222	653	697	60 0	70.7	81.2	77.5	81		
2 45 2 50	* * *	627 601	667 640	58.7 57.3	69.7 68.7	80 5 79 8	76 3 75.1	79 77	80	323 309
255		578	615	56.0	67.7	79.1	73.9	75	• • •	297
260		555	591	54.7	66.7	78.4	72.7	73	7.5	285
2 65	0.	534	569	53 5	65 8	77 8	71.6	71		274
ALERE FLAMM2MO	1.1.	514	547	52.1	64.7	76. 9	703	70		263
VERITATIS 2.75	495	***	539	51.6	64.3	76.7	69.9	• •	• • • •	259
		495	528	51.0	63 8	763	69.4	68	***	253
2 80	{477 <u>/</u>	477	516 508	50 3 49 6	63.2 62.7	75 9 75 6	68.7 68.2	66	#***	247 243
	461		495	48 8	61 9	75.1	67.4			237
2 80 2 85 2 90		461	491	48 5	61.7	74.9	67.2	65	*****	235
2 90	5444	(4.4.	474	472	61 0	74.3	66 0		70	225
	VO/	444	472	47.1	60 8	74.2	65.8	63	# # # P	225
2 95	429	429	455	45.7	59.7	73.4	64 6	61	• • •	217
3 00	415 401	415 401	440 425	44 5 43 1	58 8 57 8	72.8 72.0	63 5 62 3	59 58	• · • · • ·	210 202
3 10	388	388	410	41 8	56 8	71.4	61.1	56		195
3 15	375	375	396	40.4	55.7	70.6	59 9	54	6.5	188
3 20	363	363	383	39 1	54.6	70.0	j58.7	52		182
325	352	352	372	37.9	53 8	693	57.6	-51	1	176 -
UNIVERSI330 A	341	341	360	36 6	52 8	68.7	56 4	V 50	J., C	170
3 35	331	331	350	35.5	51 9	68.1	55 4	48		166
3.40	321	321	339 328	34 3 33 1	51 0	67 5	54 3	47	900	160 155
DIREC3 45 I	311	311 302	319	32 1	50 0 49 3	66 9 66 3	53 3 52 2	46 45	6.0	150
3 55	293	293	309	30 9	483	65.7	51.2	43		145
3 60	285	285	301	29 9	476	65.3	503	42		141
3 65	277	277	292	288	45.7	64 6	49.3	41	• • • •	137
3 70	269	269	284	27.6	45 9	64.1	48 3	40		133
3 75	262	262	276	26 6	450	63 6	473	39		129
3 80	255	255	269	25 4 24 2	44 2 43 2	63 0 62 5	46 2 45.1	38	 55	126 122
3 85 3 90	248 241	248 241	261 253	22 8	42 0	61 8	43.1	37 36		118
3 95	235	235	247	21.7	41 4	61 4	42.9	35		115
400	229	229	241	20.5	405	608	41 9	34		111
V 10.00		सुर्वाचार्यात्रीयहर्ष		_ amazzar.	a tricili, i					-

R

TABLA 11.3.- RELACIONES APROXIMADAS DE MEDICIO NES DE DUREZA PARA ACEROS (Continuación).

	1	Brusell.	_	Reci	well, uq	do marca	dor o	1.3			T
		K.	Marcad	lor de	OE 4 2	ante de f	1	erficial			ns i ôr
	G.	<u> </u>	d aman	te cónico	4			···-	-		3
	Ostmetra, mm	Bola enteder	D ' 100 KG	.★ 60 KG	B 100 Kg Bola dc 1/16 de pulg	E 100 Kg Bola de 1/8 de puig	30 N Mercador de diamante cónico	30 T Bols de 1/16 Ge pule	Becknowoops	Mohe	Resistencia a la tensión, 1 000 15/puig
	4 05	223	40	60	97	9.8.6	41	80 5	33		108
	4 10	217	39	60	96		40	80.0	32	***	105
EON	4 15	212	38	59	95	2.818	39	79.0	31		102
	4 20	207	37	59	94	•••	38	78 5	31	***	100
111111111111111111111111111111111111111	4 25	202	37	58	93	110	37	78. 0	30		98
TALERE FL	4.30	197	36	58	92	110	36	77.5	29		96
VERIT	4 35	192	35	57	91	109	35	77.0	28	5.0	94
	4 40	187	34	57	90	109	34 33	76 0 75 5	28 27	* * *	92 90
1364	4 50	183 179	34	56 56	89 88	109 108	32	75 Q	27	• •	. 50 55
	4 55	174	()				3-	74.5			88
	4 60	170	33 1 32	55 55	87	107	30	74 0	26 26	L -	84
	4 65	166	32	54	86 85	107	30	73.5	25	**	82
	4 70	163	31	53	84	106	29	73 0	25		81
	4.75	159	31	53	83	106	28	72 8	24		79
	4 80	156	30	52	82	105	27	71.5	24		77
	4 85	153			81	105		71.0	23		76
	4 90	149	200	3.0	80	104		70 0	23	4.5	75
	4 95	146	i nelen		79	104		69.5	22		74
	5 00	143	•••		78	103	• •	69 0	22		72
VER	5.05 5.10	140	AU	TÓ	76 75	103	DH	68 0 67.0	21 21	\bigcirc 1	E 71 70]
	515	134	1		74	102		66 0	21		68
	5 20	131			73	101		65 0	20		66
DIDI	5 25	128			71 1	100	TATE	64.0	TEC		65
DIKE	5 30	126	QE:	NE	70	100	PIE	63.5	LEG	AS	64
	5 35	124			69	99		62 5			63
	5 40	121	*	303	68	98		62	l _e re.		62
	5 45	118		. 1	67	97		61	v a a		5
	5 50	116			65	36		≲ ≎ '			€
	5 55	114]		54	95	:	59			59
	5 60	112			63	95		58	-14		58
	5 55	109		• •	62	94		58	5.5	A (*)(*)	56
	5 70	107	• •	(i) (ii)	60	93	• •	57		•••	55
	5 75	105	·**	***	58	92		55	•:•	*(************************************	54
	5 80	183	**	••	57	91	# E	54	• •	•••	53

D

								10 A - 10 B
FTS A 12 T. A	72.001	TITE CO	100	TATA	T	0	TOTT A	FIL*
LABLA	11.4	UESO	E	INA	P	U	LIA	r i L

Fop or de la p beta, plg	M'n'mad zasg'n B'll palac lun es yo de Brin ll p de f cers gur'd d									
p teta, pig	Crade O kg	C a de 1 0 kg	Car a de 3 000 kg							
1/16	100	301	602							
1/8	50	150	301							
1/16 1/8 3/16	33	100	201							
1/4	25	75	150							
¹ / ₄ 5 16 ³ / ₈	20	60	120							
3/2	17	50	100							

P/D² = 15 para carga de 1 500 kg y bola de 10 mm
$$p/D^2 = 5$$
 para carga de 500 kg y bola de 10 mm

Como las indentaciones hechas por bolas de diferentes tamaños y cargas - no son geométricamente similares, es esencial que el tamaño de la bola y la - magnitud de la carga se consignen con el número de dureza, siempre y cuando - la carga de 3000 kg y la bola de 10 mm no hayn sido usadas.

Cuando se ha de medir la profundidad de la huella, la observacion se ha ce justamente después de que la carga se ha retirado. Un número de dureza se computa de la profundidad de la huella mediante el uso de la siguiente ecuación:

dande:

t = profundidad de la huella, en milímetros

D = diámetro de la bola, en milímetros

Sin embargo, la profundidad de huella observada t_1 (usualmente determina da del movimiento relativo del vástago de la bola y la probeta) y la profundi de real t correspondiente al diámetro de la huella t no coinciden, debido a la posible formación de un borde (figura 11.6a) o una depresión circundante - (figura 11.6b). Los materiales suaves co o el cobre y el acero suave muestran el efecto anterior, y los materiales duros tales como el acero al manganeso y algunos bronces desarrollan una depresión. Aunque la profundidad de -

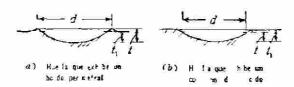


Figura 11.6.- Sccci nes transversales de las indentaciones en el nsayo de Brinell.

indentación observada \$\pi_1\$ parece ser una base lógica de comparación, no es la base del número de dureza de Brinell de acuerdo con la definición. Sin bargo, es posible stablecer para la l bor de c ntrol rutinaria ediante el ensayo, la relación entre la profundidad y el diámetro de la huella para cada clase de material en las dife entes etapas de dur za. Estas relació es p eden consignarse en u a gráfica o registrar

se en forma tabular de modo que los ensayos rutinarios rápidos en la producción masiva pueda lograrse que arrojen valores de Brinell normalizados.

El número de dureza Brineil seguido por el símbolo HB sin números sufijos indica condiciones de prueba estándar usando una bola de 10 mm de diámetro y una carga de 3 000 kg. aplicada de 10 a 15 seg. Para otras condiciones, el número de dureza y el símbolo HB se complementan por números que indican las condiciones de prueba en el siguiente orden: diámetro de la bola, carga y duración de la carga; por ejemplo 75 HB J0/500/30 indica una dureza àrinell de 75 medida con una bola de 10 mm de diámetro y una carga de 500 kg aplicada por 30 seg.

La duración de la carga es diferente para cada material como se muestra a continuación:

MATERIAL		T	IEMP	O
Hierros y aceros	10	а	30	segundos
Cobre, bronces y latones	30			-00
Aleaciones ligeras	60	а	120	11
Estaño y plomo				
Materiales muy blandos				**

Práctica de los ensayos Brinell. - El aparato más elemental consiste en una prensa, mediante la cual se aplica la carga correspondiente (figura 11.5). Después, por medio de una regla graduada o un microscopio provisto también - de un retículo graduado (figura 11.5), se mide el diámetro de la huella que la bola ha dejado en el material y, mediante la fórmula o la tabla, se halla el número Brinell.

Si la huella resulta ovalada, se toma la media de los diámetros extre--

Debe cuidarse especialmente al realizar el ensayo:

l°.- Que la superficie de la pieza esté limpia, sea perfectamente plana, normal al eje de aplicación de la carga y lo más homogénea posible.

2°.- Que el espesor de la pieza sea, por lo menos, doble del diámetro - de la huella.

3°. - Que la distancia del centro de la huella al borde de la pieza sea, por lo menos, cuatro veces el diámetro de la huella.

Como orientación, damos la dureza Brinell de algunos materiales:

	** *** ***
Acero de herramientas templado	B500 []
Acero duro (0,80% de carbono)	210
Acero dulce (0,10% de carbono)	110
Bronce	100
Latón	50
Aluminio	25 a 30

Relación entre la dureza Brinell y la resistencia. La resistencia de - un acero puede obtenerse, de una manera aproximada, multiplicando el número Brinell por un factor que varía según el material (Tabla 11.5). Esta fórmula es válida sólo para durezas hasta 400 Brinell.

TABLA 11.5.- FACTORES PARA EL CALCULO DE LA RESISTENCIA A LA TRACCION PARTIENDO DEL NUMFRO BRINELL

Acero	al carbono	0.36	
Acero	aleado	0.34	

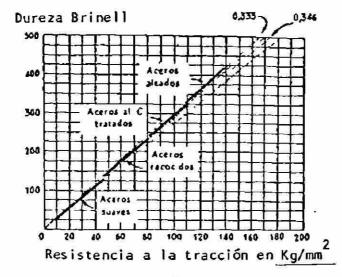


Figura 11.7.- Relación entre la dureza - de los aceros y su resistencia mecánica.

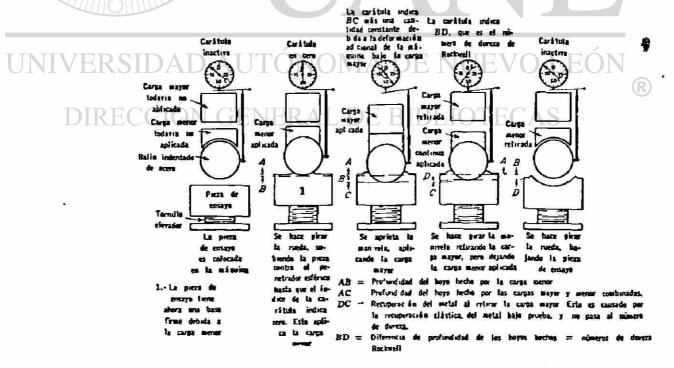
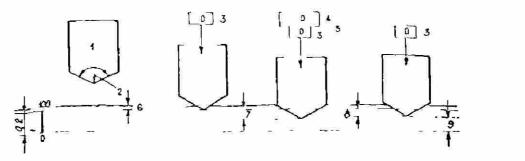
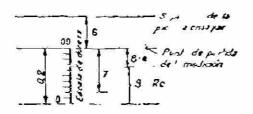
De acuerdo con esta fórmula, se ha confeccionado el gráfico de figúra 11.7.

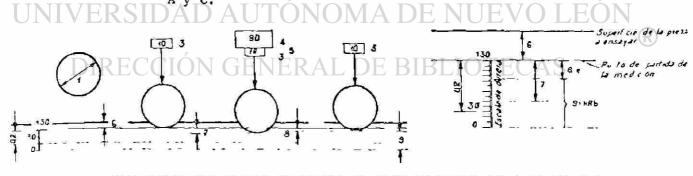
También puede obtenerse apro ximadamente el contenido del carbono de un acero, si se conoce la dureza Brinell, mediante la fórmu la:

$$% C = \frac{HB - 80}{141}$$

b) Prueba o ensayo de dureza -Rockwell.- En esta prueba de dure
za se utiliza un instrumento de lectura directa basado en el prin
cipio de medición de profundidad
diferencial (figúra 11.8). La -prueba se lleva a cabo al elevar

la muestra lentamente contra el marcador hasta que se ha aplicado una carga determinada menor. Esto se indica en el disco medidor o indicador digital, en la figúra 11.9, se muestran las partes y aditamentos de las máquinas usadas. Luego se aplica la carga mayor a través de un sistema de palanca de -carga. Después de que la aguja del disco llega al reposo, se quita la carga mayor y, con la carga menor todavía en acción, el número de dureza Rockwell es leído en el disco medidor. Como el orden de los números se invierte en el disco medidor, una impresión poco profunda en un material duro dará un número grande en tanto que una impresión profunda en un material blando dará un número pequeño.


Figura 11.8.- Procedimiento para usar el aparato de dureza Rockwell.

H*		OM ROCKWELL A	ROCK WELL C
,	CDC 1	Ingulo de la punta del diarrante = 180º	A gulo de la punta del diamente - 120°
2	VER	Rad o de redonderdo de la punta del cono . Q2mm.	Radio de redandesão de la pinha del cana : Q2 mm
3	Po	Carga p era = 10 Kgs	Carga preria - 10 Kgs
	P.	" adicional-50 "	- ad social: 140 -
5	A	- 10tal = 60 = (P: Po+Pd	" total = 450 - (P=Po+Pi)
5		re et ecton on la carga pierra (punto de part da de la medicion)	Penet econ con la ce ga prarie (punte de partido de la medicion)
7		Penetración total actuando la carga adicional	Penetracian total actuando la carga ad clonal
8	•	" pe manerte cespues de qu'es la C adic onal	* permanente depues de quitar la C adic chai
9	RRE	Duceza Rockwell A = 100-e	Dureza Rockwell C-100-e

Figura 11.8.- Esquemas de los ensayos Rockwell

V.		ROCKWELL B
1	D	Daneto de a boa : 46°
3	Po	Carga preria = 10 Kg
4	Pt	" 31 ond 90 °
5	P	* total 100 - (P - P3 + P)
s ·	1	Penetrac on con a carga presa (pu to de gari da de la ned con)
7	×	" I tal a luando la arga to nal
8	e	· pe no erro spresde quitar a conga ad c al
9	HRB	D e.a Ruck ell B 130.4

Figura 11.8.- F ue a del esso, o Rc kwell B.

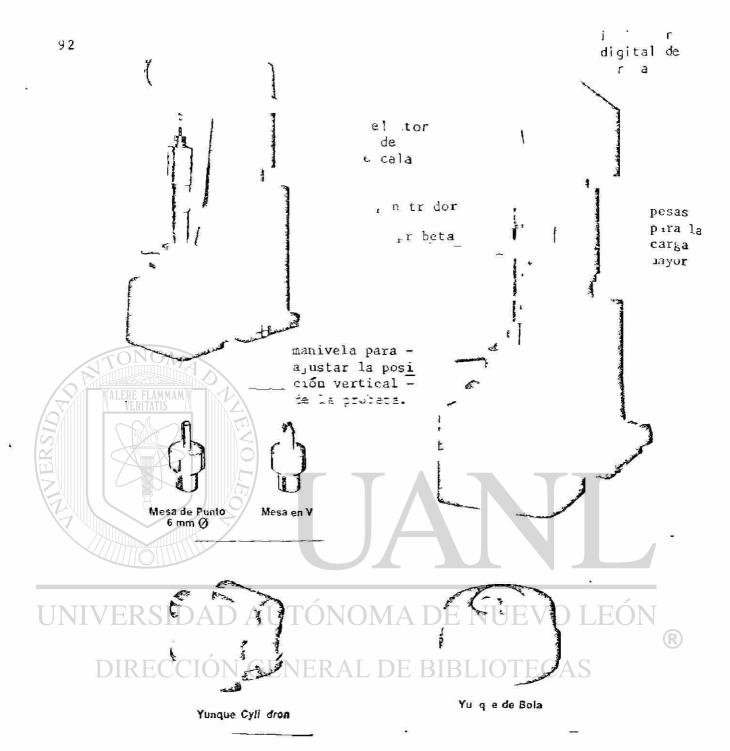


Figura 11.9.- Durô etros Wil on-Ro kwell digi tal y de carátula diferentes de adita entos de soporte.

Hay dos máquinas Rockwell: el probador normal para secciones relativamente gruesas y el probador superficial para secciones delgadas. La carga m or es de 10 kg en el pr bador rormal y de 3 kg en el pr bador s perficial.

Pued n utilizarse diversos marcadores de mu scas y argas y cada co bi nación determina na escala Rockwell esp cífica. Los marcadores de n escas in 1 yen bolas de acero duras de 1/16, 1/8, 1/4 y 1 2 de pul ada de diá etro y un ar dor cico de diamete de 20°.

General ente las cargas mayores son de 60, 100 y 150 kg en el probador normal y de 15, 30 kg en el probador superficial.

Las escalas Rockwell empleadas más comúnmente son la B, figúra 11.8 - - (marcador de bola de 1/16 plg y 100 kg de carga) y la C (marcador de diamante y 150 kg de carga) figúra 11 8, ambas obtenidas con el probador normal. - Debido a las muchas escalas Rockwell, el n´mero de dureza debe especificarse ediante el símbolo HR seguido de la letra que designa la escala y precedido de los números de dureza; por eje plo, 82 HRB significa una dureza de Rockwell de 82 medida en la escala B (bola de 1/16 de plg y 100 kg de carga). - In la tabla 11.6 aparecen las escalas de dureza Rockwell y algunas aplicacio nes típicas.

TABLA 11.6.- ESCALAS Y LETRAS DE PREFIJO DE LA DUREZA DEL ROCKWELL*

TONOM	Simbe escala letra prefi	r y de Penetrador	Carga mayor kg	Nume rales caratu lares	Anherstones Materia de Les assites
ALERE FLAMMA VERITATIS	Sit	Grupo unot Bola de 1 16 Plg	100	tolo	Aleaciones de cobre, aceros suaves, alea- ciones de aluminio, hierro maleable
VERITATIS))	Cono de dia-mante	150	negro	Acero, hierro fundido duro, hierro ma- leable perlítico, acero de alto endureci- miento superficial
		Grupo dos Cono de dismante	60	negro	Carburos cementados, acero delgado, acero de bajo endurecimiento superficial
	D	Cono de dia ante	100	negro	Acero delgado, acero de endurecimiento superficial mediano
	E	Bola de ¹g plg	100	rojo	Hierro fundido aleaciones de aluminio y magnesio, metales para rodamientos
UNIVERSI	F	Bola de	U ₆₀	rojo	Aleaciones de cobre templado, láminas merálicas delgadas y blandas
DIREC	ÇI	Bola de	150	юјю	Bronce fosforado cobre al berilio, hierro
	H	Bols de	60	rojo	Aluminio plomo, cine
_	K	Bola de 1 plg	150	roja	
	L	Grupo tres Bolz de 4 plg	60	rojo	
	М	Bola de	100		Materiales para rodamientos y otros ma- teriales muy delgados y o suaves. Use- se la bola mas pequeña y la arga mas
		Bola de	150	гозо	pes da que no arroje esfuerzo del yunque
		Bola de	60	гојо	
	S	Bola de	100 ,	- O(tr	
	v	Bola de	150	ojo	

TABLA 11.6.- ESCALAS DE DUREZA ROCKWELL

	Ficel		T po 3 ta	Carga	rka		la del uradur	
	*C 01		no el pele dor	en kg	ma or		Co scar to	APLICACIONES
		S ma	l ode dumante	10	60	Negro	Fuera	A eros n ir rados, flejes estira i s en fro hojas de afe lar Larburos netal cos (80 n. 98)
	В	•	li ia de 3 lb		100	Rojo	Destre	terros ut romo records de lajo e nie lo en C.
	C	٠.	Cn te		1.0	Negro	Fuera	Acer s ilwos Con dureza su pr ra 100 Nockwell Ho 20 Re
	ם		C o de d'ama te	Š	100	Vebro	Fuera	Aceros ceine itados.
	Ł		Hola Ge 1	_:]	100	Hojo	Dentro	Metales bis tos, como antifric- ción y plez is findidas,
	F	1	Bola de 130	•	60	•	•	Bronce recocido.
	G	(100	Bola de 11		150	•		Brance lastarosa y atros metales.
	В		Bola de .	•	60	•	100	Metales blandos, con poca bomo- gencidad, fundición de hierro.
	K		Bola de l		150		•	Metales duros, con poca homo- geneidad, fundición de hierro.
		44	liela de l	•	60			• •
ALERE	LAMMA	M	Nola de	•]	100	•		
VER	TATIS		Bola .	•]	150	•	•	
	H /	7.	Hola de 1/2	•	60	•	•	Metales muy blandos.
	s	5	Bola de 1	•	100	. 1	•	b 1
			Bola de 'a		150		•	
	15 N	5 per- ficial	Cons de diamonte :	3	15	• 1		Aceros nitrumdos, cementados y de hercamientas de gran dureza.
	30 %		Cons de diamante	•	30	•	7.	
	45.V		Cono de	• 1	43	,		
	15 T	•	Bola	• 7	13			Bronce, latón y acero blando.
	30-T	•	Bola de '/14"	•	30	•	•	
VER	45-T	DA	Boto de		45)N	IAI	DE NUEVO

El funcionamiento de la máquina debe ser verificado frecuentemente con bloques de prueba estándar proporcionados por el fabricante.

La manija de operación debe regresarse suavemente a su posición ini- - cial; golpear la manija para quitar la carga mayor puede producir un error de varios puntos en el disco de indicación. Se debe tener cuidado de asentar firmemente el yunque y el marcador. Cualquier movimiento vertical en - estos puntos resulta en un registro de una profundidad adicional en el medidor y, por tanto, en la lectura de dureza falsa.

Aparato de dureza superficial Rockwell. Este aparato es una máquina - para propósitos especiales, concebida especialmente para ensayos de dureza en que resulten posibles únicamente penetraciones someras y cuando se desee onocer la dureza de la probeta cerca de la superficie. Fue diseñado particularmente para ensayar el acero nitrurado, hojas para afeitar, trabajo - l'oeramente carburizado, y lámina de latón, bronce y acero.

El aparato "superficial" opera sobre el mismo principio que el aparato "ockwell regular, pero e plea rargas menor y mayor más ligeras y posee un sistema de medición de la profundidad más sensitivo. En lugar de la carga

TABLA 11.7.- ESCALAS ROCKWELL DE D REZA SUPERFICIAL

arg a	SIMBOLOS FSCALARES											
avor kg	Fscala N, cono de diamante	Fscala T, bola de 116 plg	Fs ala W, bola de 18 plg	Escala X, bola de 1 ₄ plg	Escala Y, bola de 1 ₂ plg							
15	15 N	15 T	15 W	15 X	15 Y							
30	30 N	30 T	30 W	30 X	30 Y							
45	45 N	45 T	45 W	45 X	45 Y							

* Basada en ASTM E 18

ranor de 10 Kg y las cargas mayores de 60, 100, 150 kg de Rockwell regular, el aparato superficial aplica una carga menor de 3 kg y cargas mayores de - 15, 30 o 45 kg. Un punto de dureza en la máquina superficial corresponde a una diferencia en profundidad de penetración de 0.001 mm.

Como el cono de diamante de estas máquinas superficiales está ideado - especialmente para usarse en trabajo "nitrurado" y la bola de acero de 1/16 plg para probar lámina "delgada", las letras N y T han sido seleccionadas - para estas dos designaciones escalares. Las escalas W, X y Y se usan para rateriales muy suaves. Aunque estas máquinas llevan un solo juego de graduaciones caratulares escalares deben usarse símbolos escalares como los - que se dan en la Tabla 11 7, para indicar el penetrador y la carga mayor - usados.

c) Prueba o ensayo de dureza Vickers. En esta prueba, el instrumento utiliza un marcador piramidal de diamante de base cuadrada con un ángulo incluido de 136° entre las caras opuestas (véase la figúra 11.9). El interva lo de carga está generalmente entre 1 y 120 kg. El probador de dureza Vickers funciona bajo el mismo principio que el probador Brinell, y los números se expresan en términos de carga y área de la impresión. Como resultado de la forma del marcador, la impresión sobre la superficie de la muestra será un cuadrado. La longitud de la diagonal del cuadrado es medida por medio de un microscopio equipado con un micrómetro ocular que contiene filos móviles, (figúra 11.10). La distancia entre los filos se indica en un contador calibrado en milésimas de milímetro. Por lo general, hay tablas o regráficas como la figúra 11 11 para convertir la diagonal medida al número de dureza piramidal Vickers (HV) o por medio de la fórmula:

$$HV = \frac{1854L}{d^2}$$

ر nde:

L = carga aplicada, en kg

d = longitud de la diagonal del cuadrado de la impresión, en mm.

Respecto a las cargas, son independientes de la dureza obtenida, pues la diago al resultará proporcional a la carga, y para un mismo material saldrá la misma dureza con cualquier carga. Sin embargo, se puede hacer constar la carga al designar la dureza.

Se utilizan cargas de 1 a 120 kg , siendo las más frecuentemente emplea das las de 1, 2, 3, 5, 10, 20, 30, 50, 100 ó 200 kg. La nás utilizada es - la de 30 kg.

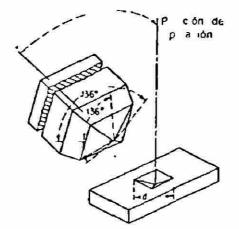
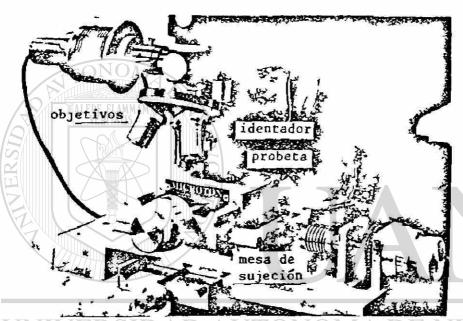



Figura 11.9.- Marcador piramidal de diamante Vickers.

Modelo MO con Sistema de indicación digital

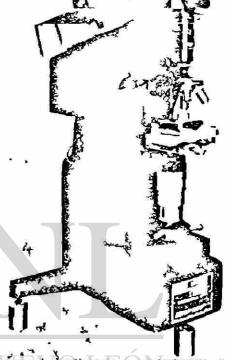


Figura 11.10.- Durómetro Vickers con microscopio e indicador digital integrado.

Respecto al tiempo que se ha de mantener la carga, oscila entre diez y treinta segundos, siendo el más empleado quince minutos.

La dureza se expresa por las letras H V, seguidas de dos cifras, una para la carga y otra para el tiempo. Por ejemplo, si la carga ha sido 30 -Kg. durante 15 segundos, se pone HV 30/15.

Como resultado de la latitud en las cargas aplicadas, el probador Vi-ckers es útil para medir la dureza de hojas muy delgadas, así como secciones pesadas,

Piezas pequeñas de precisión (relojes, electrónicas, etc.)

Superficies endurecidas superficialmente

Láminas y alambres de diámetros pequeños.

Dureza de los componentes de una microestructura.

Soldaduras.

Educación e investigación.

Las máquinas Vickers (figúra 11.10) son muy similares a las Brinell, y hay máquinas que se emplean para medir las durezas por los dos métodos, utilizando el pentrador adecuado.

NORMAS PARA EL ENSAYO VICKERS

la.- La superficie de ensayo debe estar pulida para que los resultados sean válidos.

2a.- Como regla general, el espesor de la probeta debe ser superior a -1,5 veces la diagonal de la huella.

3a.- En las probetas redondas debe aplicarse sobre el diamante una carga tan pequeña que la influencia de la curvatura (flecha) sobre la longitud de la diagonal sea inferior a 0,01 mm.

La diagonal de la diagonal d, debe medirse con una precisión de 0,001 - milímetros. Para longitudes superiores de 0,5 mm. es suficiente una precisión de 0,01. El valor de la diagonal tomado debe ser la media de las dos - diagonales.

La dureza para cifras inferiores a 25 debe darse redondeada a la décima y para cifras superiores, redondeada en unidades.

Figura 11.11.- Dureza Vickers en función de la -carga aplicada y diagonal de la huella.

dureza Vickers

VENTAJAS DEL METODO VICKERS

diagonal de la huella

1a. Las huellas Vickers son comparables entre si, y las cifras de dure za obtenidas, independientes de las cargas.

2a.- Con el mismo penetrador puede medirse una amplia gama de materiales, desde muy blandos hasta muy duros, llegándose hasta 1.150 Vickers, que equivaldrían aproximadamente a 780 Brinell, dureza que, como se sabe, no pue de obtenerse con Brinell directamente sin deformar la bola.

3a.- Puede medirse la dureza de piezas muy delgadas empleando cargas pequeñas, hasta espesores del orden de 0,05 mm.

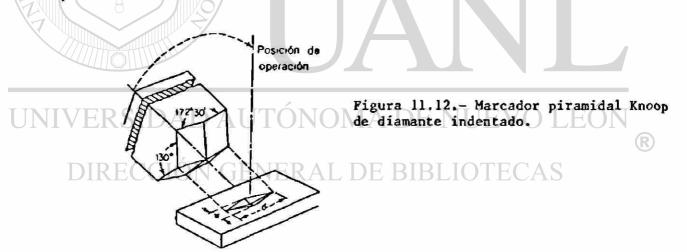
4a.- Puede medirse dureza superficial, dada la pequeña penetración del diamante, con cargas pequeñas, lo que permite comprobar, por ejemplo, el endurecimiento superficial de un material después de rectificado con piedra es meril.

5a - La escala Vickers es más detallada que la Rockwell, y así, por - - ejemplo, entre HRc 60 y HRc 66, las durezas Vickers que corresponden son 765 y 960, o sea, 32 unidades Vickers por cada unidad Rockwell.

6a.- Como es preciso examinar la huella, puede comprobarse en cada medición el buen estado del diamante, lo que no ocurre en el Rockwell, que debe examinarse expresamente el diamante de vez en cuando.

d) Prieba o ensago de microdureza. - Desafortunadamente, este término es en garoso ya que podría referirse a la prueba de pequeños valores de dureza - c ando en realidad significa el uso de impresiones pequeñas. Las cargas de prueba están entre 1 y 1 000 g. Hay dos tipos de marcadores empleados para la prueba de microdureza: la pirámide de diamante Vickers de base cuadrada - de 136°, descrita anteriormente y el marcador Knoop de diamante alargado.

El marcador Knoop (figúra 11.12) tiene forma piramidal que produce una impresión en forma de diamante, y tiene diagonales largas y cortas a una razón aproximada de 7:1. La forma piramidal empleada tiene incluidos ángulos longitudinales de 172°30¹ y ángulos transversales de 130°. La profundidad de impresión es como de 1/30 de su longitud. Como en la prueba Vickers, la diagonal más larga de la impresión es medida ópticamente con el ocular de un micrómetro de rosca. El número de dureza Knoop es el resultado de dividir la carga entre el área de la impresión. Por lo general se utilizan tablas para convertir la longitud diagonal medida al número de dureza Knoop (HK), o mediante la fórmula siguiente:


$$HK = \frac{14.229L}{d^2}$$

donde:

L = carga aplicada, en kg

d =longitud de la diagonal mayor, en mm.

La figura 11.13 muestra el probador de microdureza Tukon y algunos aditamentos de sujeción. En la tabla 11.8 aparecen algunas aplicaciones típicas de la prueba de dureza por marcación.

El dispositivo Tukon-Knoop o un dispositivo Wilson-Knoop, un tanto simi lar, es útil para ensayos de dureza de pequeñas partes tales como las de los relojes, materiales delgados, alambres pequeños, puntas de instrumentos cortantes, cristales sencillos o constituyentes de metales aleados, y capas superficiales y para explorar variaciones de dureza de áreas pequeñas como sobre el grueso de láminas delgadas o adjuntas a una superficie crítica.

11.5. - E'ACTITUD DE CUALQUIER PRUEBA O ENSAYO DE DUREZA DE INDENTACION

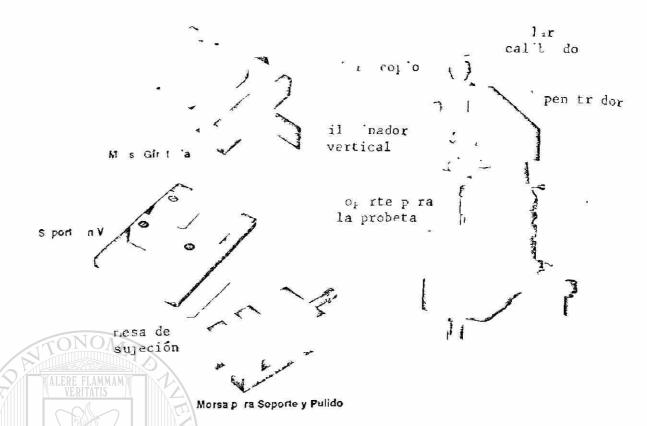
Algunos de los factores que influyen en la exactitud de cualquier prueba de dureza por indentación son: una uestra redonda menor de 1 plg de diá etro sin haber esmeril do una (plana, la lectura observada debe ajustarse por un factor de corrección apropiado (tabla 11.9).

TABLA 11.9.- CARTA WILSON DE CORRECCIONES CILINDRICAS Correcciones para trabajos cilíndricos (solo aproximadas) que se agregarán a los números Rockwell observados

Esta'us C. D. A	Diámetro de la muestra, pulg.												
2 2 2. , , -	Y4	Y.	42	₩.	٧.	7/0	1						
80	0.5	05	05	0	0	0	0						
70	10	1.0	0.5	0.5	0.5	0	0						
60	15	1.0	1.0	05	0.5	0.5	0.5						
50	25	2.0	1.5	1.0	10	0.5	0.5						
40	35	2.5	20	15	1.0	1.0	1.0						
30	50	3.5	25	20	1.5	1.5	1.0						
20	60	45	35	2.5	2.0	1.5	15						

Marcador	de	bola	dc	1/16	đc	pulg.

Escalas B. F. G		* I	D	iámelro	de la mu	estra, pu	lg.	4 F
IMAMA IS		Y.	Y _a	V ₃	%.	₹4	7/0	1
	100	3.5	25	15	15	10	10	0.5
/	90 <	4.0	30	20	1.5	15	15	10
▼	80	50	35	2.5	20	1.5	15	15
AI	70	60	40	3.0	25	20	20	1.5
$\lfloor \ \ \rfloor$	60	70	50	3.5	30	25	20	5.0
	50	80	5.5	40	35	30	25	20
	40 0	90	60	4.5	4.0	3.0	25	2 5


Localización de las impresiones, - Las impresiones deben estar al menos a 2 1/2 diámetros de distancia del borde de la muestra y separadas al menos 5 diámetros cuando se utilicen bolas para la prueba de dureza.

Uniformidad del material. - Si hay variaciones estructurales y químicas en el material, a mayor área de impresión más exacta será la lectura de dure za promedio. Para obtener una dureza promedio verdadera para el material, es necesario tomar muchas lecturas si el área de impresión es pequeña.

11.6. - VENTAJAS Y DESVENTAJAS DE LOS DIFERENTES TIPOS DE PRUEBAS

La selección de una prueba de dureza se determina generalmente por la ~ facilidad de realización y por la exactitud deseada. Como la prueba Brinell deja una impresión relativamente grande, está limitada a secciones de tamaño Sin embargo, esto constituye una ventaja cuando el material probado no es homogéneo. La superficie de la pieza a prueba cuando se efectúa una prueba Brinell no tiene que ser tan uniforme como la que se requiere en méto dos de prueba que producen impresiones menores; no obstante, usar un microscopio para medir el diámetro de la impresión no es tan conveniente como leer un disco medidor. Debido a la deformación de la bola de acero, la prueba --Brinell suele ser inexacta por encima de 500 HB. El intervalo puede aumen-tarse a 650 HB con una bola de carburo de tungsteno.

La prueba Rockwell es una operación rápida y sencilla. Como las cargas y los indentados o marcadores son menores que los utilizados en la prueba --Brinell, la prueba Rockwell puede emplearse en muestras más delgadas y pro-barse tanto los materiales más duros como los más blandos.

Fi_oura 11.13.- Pr bador de microdureza Tukon y tres .oportes de sujeción diferentes.

Condición del marcador de muescas. - El achatamiento de la bola de acero de un marcador producirá errores en el nú ero de dureza, en cuyo caso la bola de ser revisada frecuentemente para detectar cualquier deformación peranente y debe descartarse cuando ocurra tal deformación. Los marcadores de diamante deben revisarse en busca de cualquier señal de astillado.

Exactitud de la carga o esfuerzo aplicado.- El probador debe aplicar -- cargas dentro del intervalo establecido con errores mínimos. Las cargas ma- yores a la cantidad reco endada no deben utilizarse para obtener así pruebas exactas.

Carjas o esquenzas aplicados con impacto. Además de producir lecturas de dureza in xactas, el impacto a la carga puede dañar los marcadores de dia mante. El uso de un recipiente pequeño con aceite, controlado, asegurará la uniformidad, así como la continua operación del mecanismo de carga.

Condición de La superficie de la muestra. - La superficie de la muestra sobre la cual se va a tonar la lectura de dureza debe ser plana y representa tiva del material en buen estado. Cualquier orificio, costra o grasa debe el minarse por es merilado o pulido.

Es; es h de la mestra. La muestra debe ser suficientemente gruesa de modo que no aparezca alguna protuberancia sobre la superficie opuesta a la de la impresión. El espesor de la muestra recondado es de por lo menos diez veces la prifindidad de la ilpresión.

Furma de la restra. Se l gra ayor exactit dicia do la superficie a ru bales plana y expendicular al eje virtiral del in'nt dor. Una muestra
larga debe suj tar e cuad nte le tal for a que no se ladee. Una siperficie plina debe preparar e, si es posible, bre una muestra de for a cilín
drica y arse un yinq e en Vipara i pirtar la tra, a minos que e esmeri'm es planas paralel sin los pressibilidro, en cuyo caso se
un utilidro un yinque plino. Si na elia prima la dica Richaell n

_ABLA 11.8.- APLICAC NES J AS E LAS L AS DE EZA PR . AC ON

	e i			·
BINLL A 10 c if t all y as inclusion nes l adas. La m yor parte de las fi d'e' nes, inclusiendo el a ero, h'erro f nd do y aluminio. l a mayor parte de los frue ados.	P'es ach das. t'es como tes, p'las pra j es, lul s, tre s, pernos, e granes, pole , rul llos, pud res, pivetes, topes etc. Herramientas de corte, tales omo sierras, c hilas, cinceles, tijeras. Herrami ntas de frondo. Fui nes y frijados pulatos. Al mb e de d'imetro grande Contactos eléctricos. Hijas o partes plásticas. Partes cementadas. C rb ros ceme tados.	OCK VELL S P RI CIAL I S T.S 4 e la R Laell e 1: 'ar, ex pto 1 de e req re una , etrac ón m nos profunda, con o en: P rtes cem nta las delgadas, hasta de 0.010 p lg. Materiales del ados, hasta de 0 06 pulg. Ca buros cei e tados. Metales en polvo.	Is as q e p a la R · kwell y la R · l ell supe f al, excepto d de se req re más ex titud o menor penetración, o no en: Partes cen entadas delgadas, de 0 005 a 0 010 pulg. M teriales delgados, hasta de 0 005 pulg. Partes de a abado fino, con el fin de eviar una opera "n de re oción. Secciones delgadas, tales como t berías. Espe or del chapcado.	MIC 1 L FZA S pafices plat das. Real tos, olea, los, olea, loiz opiara. Lám as delg das y materiales muy delgados hosta de 0 0001 pulg. Para e tablecer los gradientes de e durecimiento Bietales y nateriles lominados, Partes o áreas muy peq eñas, como engranes de eloj, hordes de horramientas de certe, crestas de falces en e das, puntos pivate, etc. Materiales muy frágiles o quebradizos (indent dor de K cop), como silicio, germanio, vidrio, esmalte de dientes. Materiales opacos, claros o translúcidos. Metales en polvo. Para invistigar notage de un material.
			:-	n titige ics individuales de un

El probador Vickers es el más sensible de los probadores de dureza utilizados en la producción industrial. Tiene una sola escala continua para to dos los materiales y el número de dureza es virtualmente independiente de la carga. Debido a la posibilidad de usar cargas ligeras, pueden probarse secciones más delgadas que cualquier otra prueba de producción y la impresión cuadrada es la más fácil de medir con exactitud.

La prueba de microdureza es básicamente una prueba de laboratorio. Usar cargas muy ligeras permite probar partes muy pequeñas y secciones muy delgadas. Puede utilizarse para determinar la dureza de constituyentes individua les de la microestructura. Como a menor tamaño de la indentación el termina do de la superficie debe ser mejor, se necesita tener bastante más cuidado para preparar la superficie para la prueba de microdureza. Por lo general, la superficie se prepara mediante la técnica de pulido metalográfico.

Las ventajas principales del escleroscopio son las pequeñas impresiones que permanecen, la rapidez de la prueba y la portabilidad del instrumento; - sin embargo, los resultados tienden a ser inexactos, a menos que se tomen -- precauciones adecuadas.

El tubo debe estar perpendicular a la pieza a prueba, las piezas delgadas deben estar soportadas y afianzadas apropiadamente, la superficie que se va a probar debe ser más unfirme y lisa que para la mayoría de los otros métodos de prueba, y la punta de diamante no debe estar astillada o agrietada.

Conversión de los distintos números de dureza. La tabla 11.3 muestra la conversión de dureza aproximada entre las diversas máquinas probadoras de dureza. Estos datos generalmente se aplican a aceros y se han derivado de extensas pruebas de dureza en aceros al carbono y sus aleaciones, principalmente en aquellos que han sido tratados térmicamente.

11.7.- FORMATO

A continuación se presentan las probetas para los diferentes tipos de ensayo de dureza con sus tendencias mínimas, junto con un formato que pueda servir como reporte de los ensayos realizados.

LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA TEL.- 52-57-88 y 76-22-64

CARACTERISTICAS DEL ENSAYO DE DUREZA EN METALES METODO BRINELL.

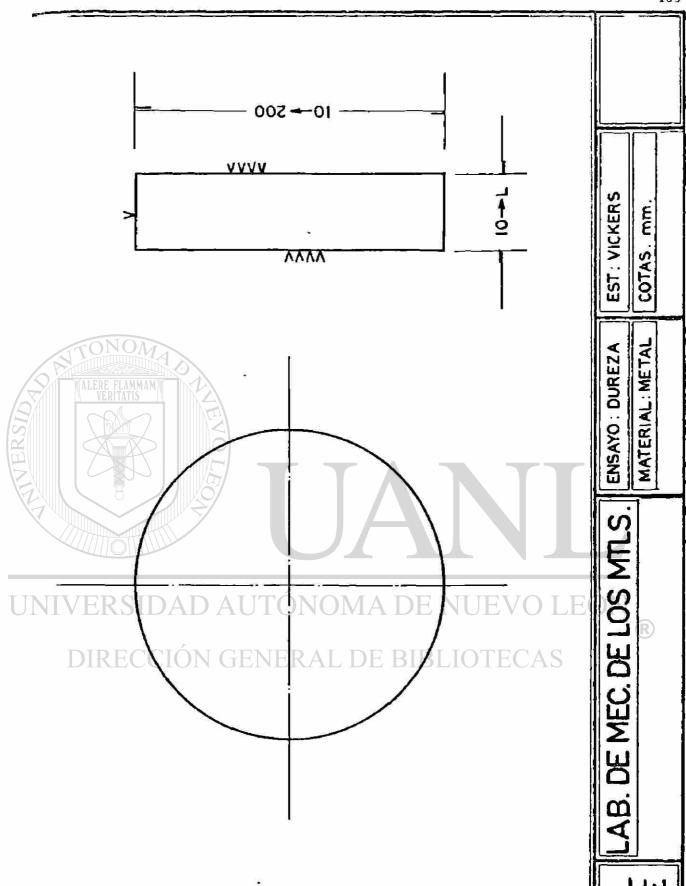
REALIZADO	POR:
PRUEBA No	
ESTANDAR	
MATERIAL	
DIAMETRO	
ESPESOR	СШ
IDENTADOR	
CARGA	kg

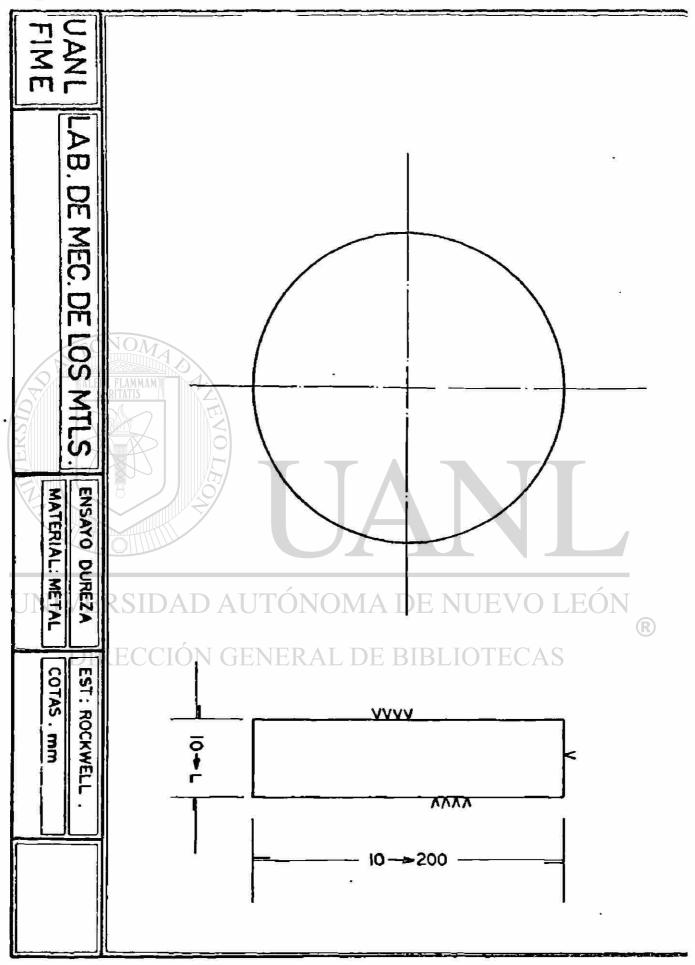
DIAMETRO DE LA HUELLA cm. FAC. DE CORRECCION No. DE DUREZA BRINELL	103
MONTERREY, N.L. FECHA:	
LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA TEL 52-57-88 y 76-22-64 CARACTERISTICAS DEL ENSAYO DE DUREZA EN METALES METODO ROCKWELL.	
REALIZADO POR:	· · · ·
PRUEBA No	
ENSAYO (SUP. O NORMAL)	
COLOR/ERSTDAD-AUTÓNOMA DE NUEVO LE IDENTADOR	ON (R
CARGA MENOR CCTÓN GENERAL DE kg. BLIOTECAS CARGA MAYOR	
PENETRACION MAX mm.	
PENETRACION PERMANENTE mm.	
RECUPERACION mm.	

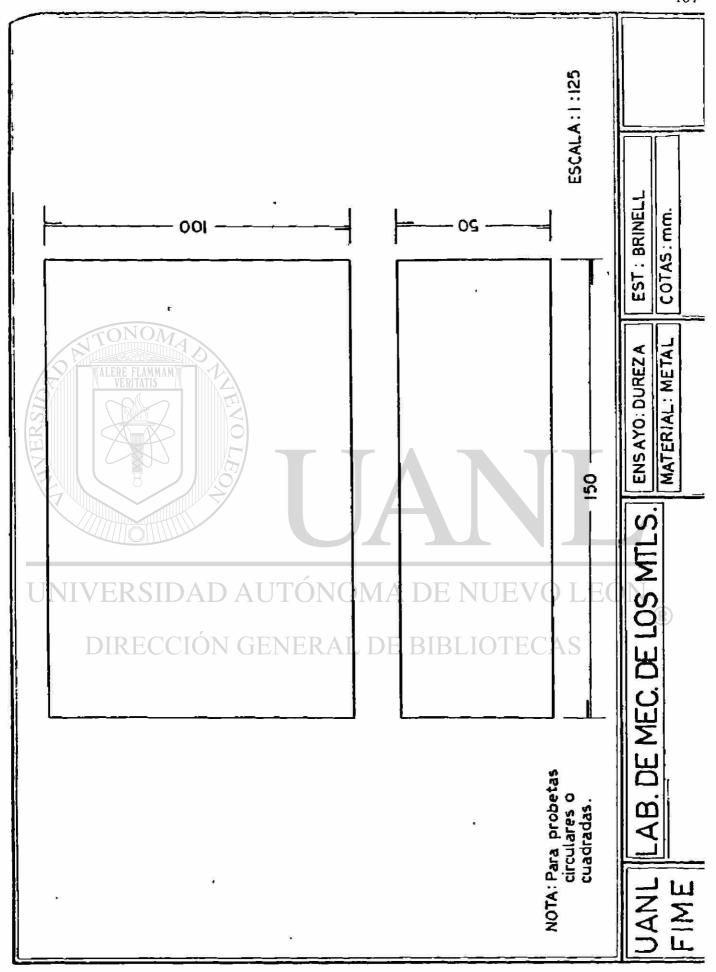
No. DE DUREZA ROCKWELL -----RANGO DE DUREZA -----

MONTERREY, N.L. FECHA:

LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA TEL.- 52-57-88 y 76-22-64


CARACTERISTICAS DEL ENSAYO DE DUREZA EN METALES METODO VICKERS.


₹ •	REALIZADO POR:	
PRUEBA No		
MATERIAL		
DIAMETRO	ст	
ESPESOR	сш	
CARGA	kg	
I DENTADOR		
DIAGONAL TRITATA	шт	
DIAGONAL 2	nn	
DIAG. PROMEDIO	mm	
No. DE DUREZA VICKERS	UAN	IL


MONTERREY, N.L. FECHA:

UNIVERSIDAD AUTONOMA DE NUEVO LEO

DIRECCIÓN GENERAL DE BIBLIOTECAS

12.1.- Introducción

Un tipo importante de carga dinámica es aquel en que la carga se aplica súbitamente como en el caso del impacto.

La mecánica del impacto involucra no solamente la cuestión de los es-fuerzos inducidos, sino también una consideración de la transferencia de -energía y la absorción y disipación de esa energía.

En el diseño de muchos tipos de estructuras y máquinas que deban recibir carga de impacto, la meta es proveer margen para la absorción de tanta energía como sea posible a través de la acción elástica y luego confiar en alguna clase de contención para disiparla. En tales estructuras la resisten cia (es decir, la capacidad energética elástica) del material es una propiedad significativa, y los datos de resiliencia derivados de la carga estática pueden ser adecuados.

Y sin duda los resultados de los ensayos de impacto han contribuido indirectamente al mejoramiento del diseño de ciertos tipos de partes, pero en general tales ensayos, cuando menos hasta la fecha, han demostrado ser de -significación limitada para producir datos de diseños básicos.

Existe pues una distinción a establecer entre los problemas que involucran, principalmente, la absorción de la energía elástica y los problemas para los que los datos sobre la capacidad energética al ocurrir la ruptura - sean pertinentes. Esta diferencia contribuye a una limitación básica de la aplicabilidad general de los resultados del ensayo de impacto ordinario.

Bajo carga a impacto, se han realizado determinaciones detalladas de -- las relaciones entre el esfuerzo, la deformación, la temperatura y el tiempo.

La prueba de impacto indica la sensibilidad a la prencia de muescas de un material, la cual resulta por la existencia de zonas de concentración de esfuerzos internos tales como, inclusiones en los límites de grano, fisuras internas y fases secundarias. Es también útil como una herramienta en producción, ya que permite la comparación de materiales manufacturados con — otros que han demostrado dar un servicio satisfactorio. Los aceros, al — igual que la mayor parte de otros materiales CCC, absorbe más energía al rom perse de modo dúctil que frágil; por ello, la prueba de impacto se emplea a menudo para valuar la temperatura de transición del estado dúctil al frágil que se observa a medida que disminuye la temperatura. La temperatura de — transición depende también de la geometría de la muesca en la probeta. Para materiales idénticos, cuanto más aguda la muesca, mayor será la temperatura aparente de transición. La figúra 12.1 muestra los resultados de pruebas de impacto para varios materiales.

No todos los materiales responden de la misma manera a las variaciones de velocidad de la aplicación de la carga; algunos materiales muestran lo -- que se denomina "sensitividad a la velocidad" en un grado mucho más alto que otros.

Para velocidades obtenidas con las máquinas de impacto ordinarias, se - obtiene una buena correlación entre los resultados de ensayos de tensión - - (sin ranuración) bajo carga de impacto y estática si el área bajo el diagrama de esfuerzo y deformación convencional se utiliza para calcular la energía hasta la ruptura.

Cada tipo de ensayo de impacto posee su propio campo de uso especializa do y su aplicabilidad depende en gran parte de la satisfactoria correlación con el desempeño bajo condiciones de servicio.

Al realizar un ensayo de impacto, la carga puede aplicarse en felxión, tensión, compresión, o torsión. La carga flexionante es la más común; la --

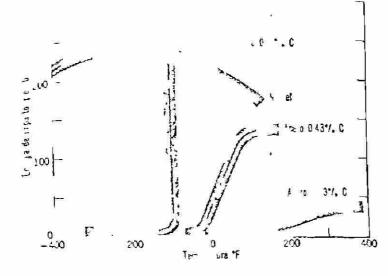


Figura 12.1. Re ultod s de prue las de i parto para varias aleacons, edidos a través de noirtervalo de te peratura.

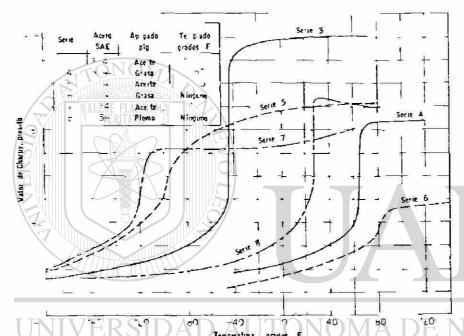
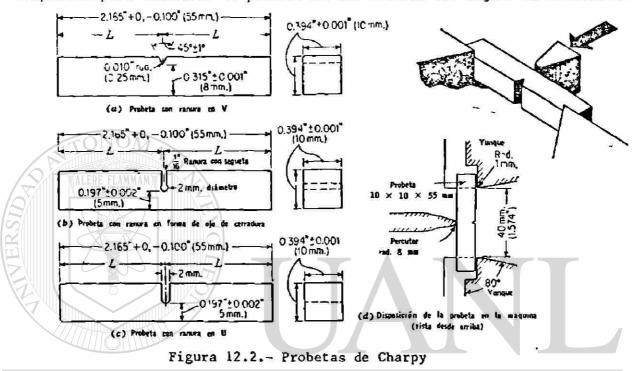


Figura 12.1.- Variación del rango de la tempera tura de transición para el acero en el ensayo - de Charpy.

carga tensiva es menos común; las cargas de compresión y de torsión se usan solamente en casos especiales.

Quizás los ensayos de impacto más co únmente usados para los aceros en este país sean los de Charpy e Izod, ambos de los cuales emplean el principio del péndulo. Ordinariamente, estos ensayos se hacen sobre pequeñas probetas ranuradas quebradas en flexión. En el ensayo de Charpy, la probeta es apoyada co o una viga simple, y en el de Izod se le apoya co o un voladizo.


Los procedimientos para los ensayos de Charpy e Izod en cuanto a su aplicación a los metales han sido normalizados (ASTM E 23), y la especificación formal de los límites de la resistencia al impacto ha sido hecha en el caso de los materiales para un número de productos tales como partes de avión, engranes de trinsmisión, partes para orugas de tractores, aletas para turbinas, muchos tipos de forj dos y t bo y placa de acero para servicio a baja te peratura.

12.2.- EL ENSAYO DE CHARPY PARA METALES

La probeta estándar para ensayos de flexión es una pieza de 10 por 10 -por 55 mm r un da como se nuestra en la fiúna 12.2a, (AS M E 23). Of os ta
ños se usan en casos e peciales. En unha procificaciones ciala se

requiere una ranura en forma de ojo de cerradura o de U, como se muestra en la figúra 12.2b y c. La probeta la cual se carga como una viga simple, se coloca horizontalmente entre los dos yunques, como se muestra en la figúra 12.2d, de modo que el percutor golpee el lado opuesto de la ranura a la mitad del claro. El péndulo es elevado hasta su posición más alta y sostenido por un tope ajustado para dar una altura de caída constante para todos los ensayos. Luego se le suelta y permite caer y fracturar la probeta.

En su movimiento ascendente el pendulo lleva el indicador de fricción sobre una escala semicircular graduada en grados o pie-libras. La energía - requerida para fracturar la probeta es una función del ángulo de elevación.

JNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

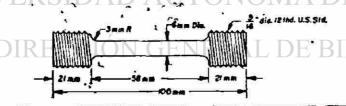


Figura 12.3.- Probeta de impacto de tensión.

12.3.- ENSAYO DE IMPACTO DE TENSION

Para los ensayos de impacto de tensión una probeta se sujeta al borde - posterior del péndulo. Cuando el péndulo cae, un martillo con forma de bloque fijado al extremo proyectante de la probeta golpea dos yunques extendidos, fracturándose la probeta al pasar el péndulo entre los dos yunques. Las probetas de tensión pueden ser sencillas o llevar una ranura circunferencial. - Un tipo de probeta sencillo tiene un diámetro de 6 mm; una probeta ranurada - correspondiente tiene un diámetro de 100 mm excepto en el arranque de la ranura que tiene 1 mm de ancho y 2 mm de profundidad, proporcionando un diámetro neto de 6 mm como para el primer tipo. El ensayo de tensión no ha sido norma lizado y no se usa mucho en la práctica comercial.

Los ensayos para determinar la resistencia al impacto de los metales a bajas temperaturas son comúnmente realizados sumergiendo las probetas en al gún líquido fresco en una vasija de boca ancha con, cuando menos, 1 plg de líquido arriba y abajo de las probetas. Para temperaturas desde la ambiente hasta —105° F, este líquido es usualmente alcohol o acetona, enfriado a la temperatura deseada mediante la adición de pequeños trozos de hielo seco. Para temperaturas más bajas el agente enfriador es usualmente nitrógeno líquido (—319°F), y el líquido para inmersión es usualmente alcohol hasta — —190°F, isopentano hasta —250°F, y el mismo nitrógeno líquido hasta —319°F.

Los termómetros adecuados para determinar la temperatura del enfriador son del tipo mercurial hasta -38°F, alcohol o tipos bimetálicos hasta -150°F, y termopares de cobre y constantan o termómetros del tipo de pentano para temperaturas más bajas.

Las probetas deben mantenerse a una temperatura por 15 min y la temperatura del baño debe mantenerse constante dentro de +0, -3°F durante los últimos 5 min antes del ensaye. El ensayo debe completarse dentro de 5 seg después de retirar la probeta del enfriador. Como se muestra en la figúra 12.4, a una temperatura de ensayo de -40°F, no ocurren ningunos cambios de temperatura apreciables dentro de 5 seg cuando se usa alcohol.

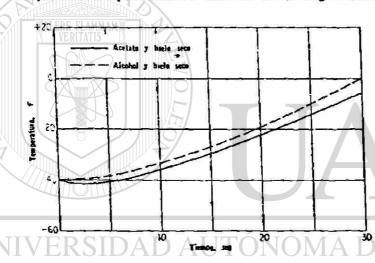


Figura 12.4.- Cambio de temperatura de las probetas de Charpy al retirarse del baño a - - -40°F.

12.5.- ENSAYO DE 1ZOD

El péndulo golpea la probeta, la cual se sujeta para fungir como un voladizo vertical de 10 por 10 mm de sección y 75 mm de largo que lleva una ra nura normal de 45° y 2 mm de profundidad. El montaje de la probeta y la posición relativa del percutor se muestran en la figúra 12.5. La elevación an gular del péndulo después de la ruptura de la probeta o la energía para frac turar la probeta se indica en una escala graduada por un indicador de fricción.

En el ensayo se rompen las probetas largas por las tres entalladuras, - girándo las caras y colocándo en la posición adecuada la entalladura que co- rresponda. El valor de la resiliencia es la media de las tres lecturas y se dá en pies-libras.

12.6. - MAQUINAS DE IMPACTO

Las máquinas de impactos ordinarias, tiene un péndulo oscilante de peso fijo, que es elevado a una altura estándar, dependiendo del tipo de muestra que se pretende probar (véase la figúra 12.6). A esta altura, con referen-

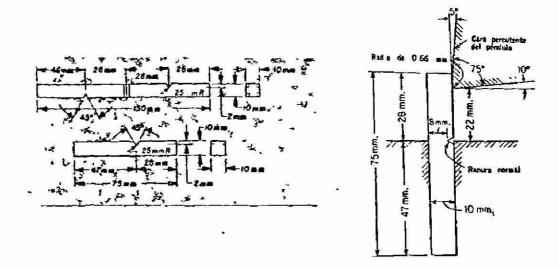


Figura 12.5.- Probeta de viga en voladizo y su montaje para el ensayo de Izod.

cia al tornillo de banco, el péndulo tiene una cantidad definida de energía potencial. Cuando el péndulo se libera, esta energía se convierte en energía cinética hasta que golpea a la muestra. La muestra Charpy se golpeará atrás de la muesca en V, en tanto que la muestra Izod, colocada con la muesca en V de cara al péndulo, se golpeará arriba de la muesca en V. En cualquier caso, una parte de la energía del péndulo se utilizará para romper la muestra, provocándo que el péndulo se eleve en el lado opuesto de la máquina a una altura menor que aquella con que inició su movimiento desde ese mismo lado de la máquina. El peso del péndulo multiplicado por la diferencia de alturas indicará la energía, generalmente en libras-pie, absorbida por la muestra, o sea la resistencia al impacto de la muestra con muesca. Sin embargo, esto último se tiene calibrado y graduado en una escala para cada tipo de prueba.

En el diseño de estas se ha incluido lo último en precisión, eliminándo la fricción del aire en el bástago del péndulo, sin sobrepasar 0.75% del rango total, haciendo este de una sola pieza, que está conectado a la colum na por medio de baleros cuya fricción no excede el 0.25% del rango total y a una base rígida para evitar desbalanceo por vibración.

Los aditamentos para las diversas pruebas se adaptan fácilmente, se -- adapta un freno magnético para el péndulo que se puede regular en tiempo, - para una pasada o más, un posicionador de ángulo del péndulo para bajas - - energías, el péndulo puede ser motorizado y automáticamente se puede regresar a la posición de inicio de prueba con un freno de posición, ahorrándo - con esto el tiempo de prueba.

El Dynatup es un instrumento que se acopla a sistemas de impacto y nos dá en un display la carga total y la energía absorbida por el especímen durante todo el proceso de impactación: desde el impacto inicial y la aceleración hasta el resto del pandeo plástico, iniciación de fractura y propagación de falla.

El instrumento Dynatup produce curvas de carga contra tiempo, y energía contra tiempo. dándo con estas mayor información a las propiedades dinámi-cas del especímen que fue probado pudiéndose leer: el esfuerzo de cedencia, la carga de fractura, ductilidad, iniciación de falla o propagación de energía, energía de corte y la energía de impacto total, etc.

La prueba actual memoriza el fenómeno y lo manda a un osciloscopio en

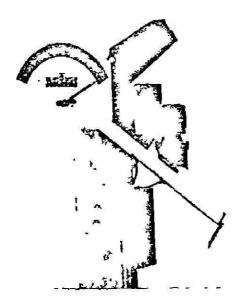


Figura 12.6.- Mecanismo de regreso motorizado del péndulo

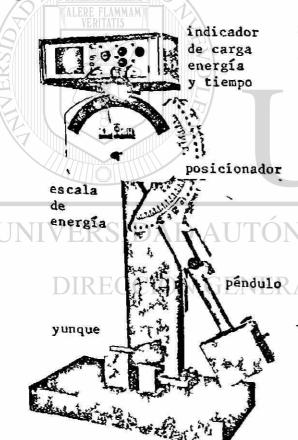


Figura 12.8. - Probador de impacto con el Dynatup integrado y con posicionador de bajo nivel de energía hasta .2 libra-pie y velocidades de caída de .4 pies por seg.

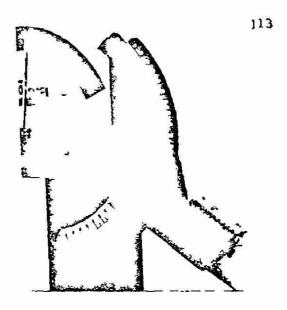
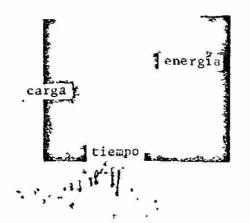


Figura 12.7.- Posicionador opcional para energías bajas.

el instante de impacto. (ver fig. 12.8).

La salida del puente calibrador es mandada a un registro por un puente dual almacenador del osciloscopio, durante pe queños intervalos de tiempo (de .1 a 1 - milisegundos) que es el contacto con el espécimen.


Las señales producidas durante este contacto pueden ser analizadas directa-mente mediante una señal análoga, del -historial del espécimen de carga contra
tiempo.

El procedimiento de prueba no inter fiere de ninguna forma en la medición de la energía de impacto.

La trayectoria es retenida en un os ciloscopio y almacenada en una fotogra-fía, para dar un récord permanente de --carga contra tiempo y energía contra --tiempo empleadas en el espécimen, o la -velocidad de impactación del péndulo, -- (ver figúra 12.9)

12.7.- FORMATO

A continuación presentamos un formato de las características del ensayo de impacto en metales, junto con un croquis de las probetas estándar para cada uno de los ensayos.

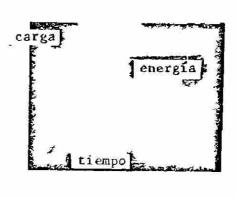
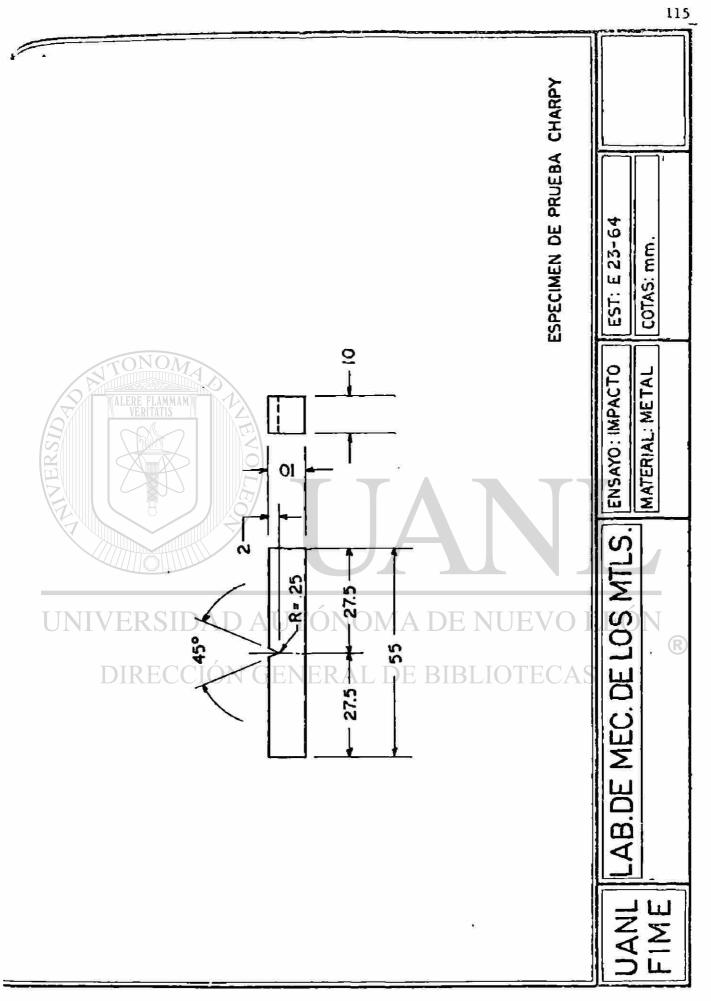
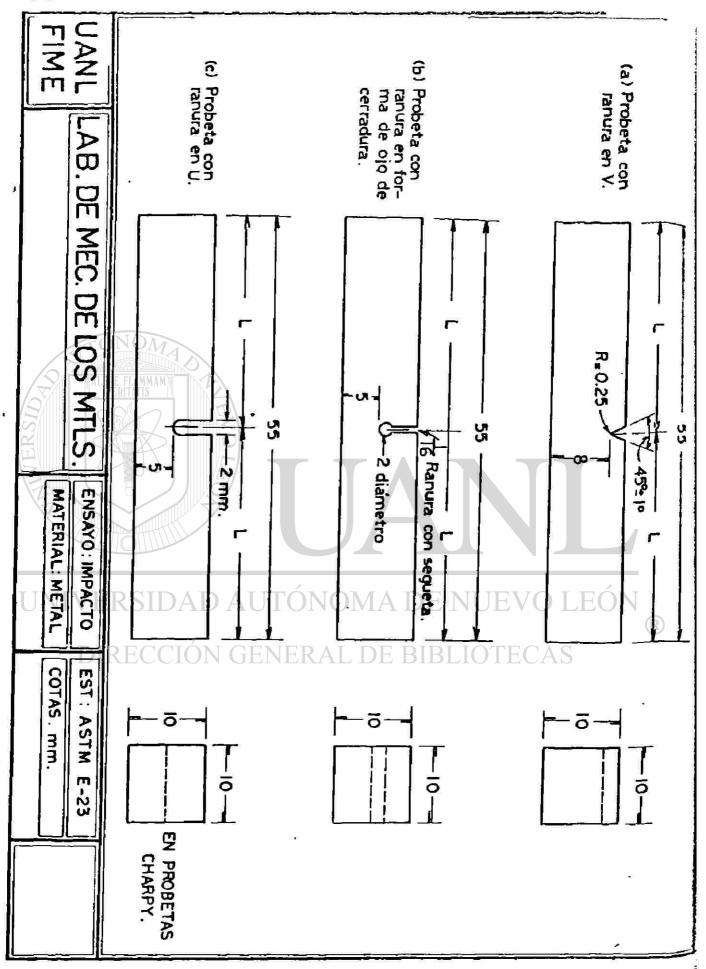
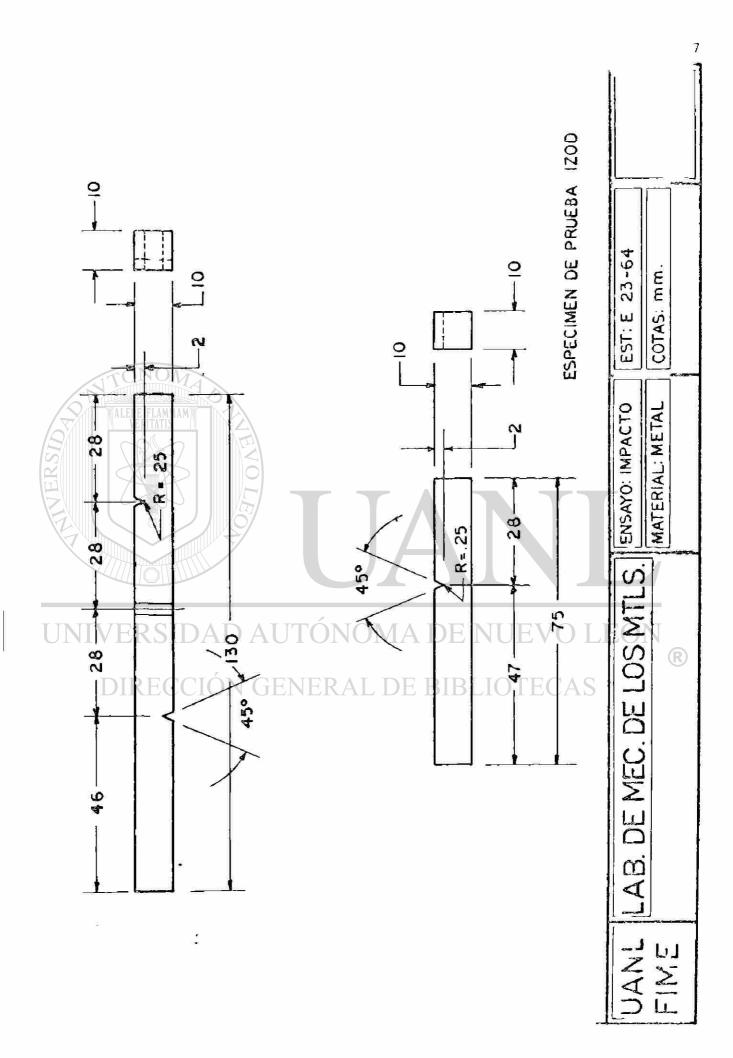


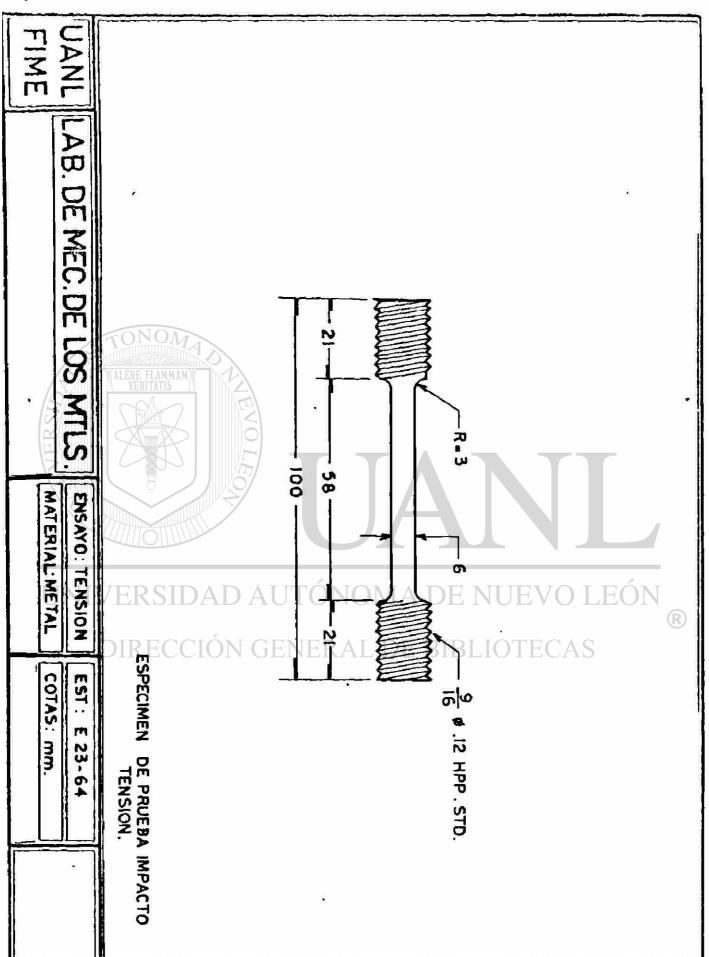
Figura 12.9.— Las dos gráficas fueron tomadas de un Dynatup y que se refiere a dos materiales que tienen la misma energía de impacto, donde es mayor en ductilidad (Fig. a), y el otro es altamente frágil (Fig b). Las propiedades pueden ser leídas aparentemente de la curva de carga. Las curvas también propor cionan otros datos interesantes respecto a la carga de la fractura dinámica.

LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA TEL.- 52-57-88 y 76-22-64


CARACTERISTICAS DEL ENSAYO DE IMPACTO EN METALES


REALIZADO POR;


PRUEBA NO. CTÓN GENERAL DE BIESTANDAR	RI IOTECAS
ESTANDAR	
TIPO DE ENSAYO	
MATERIAL	
TEMPERATURA DE PRUEBA	°C
CARGA MAXIMA	1 b
TIEMPO DE CONTACTO	seg
ENERGIA DE IMPACTO	lb-pie
TIPO DE FRACTURA	


ì	Ч	C	1	٧	Г	E	F	₹	H	(E	Υ	•	1	۷		L		
4	E.,	•	0.0			_				١.	_		•		٧.	-			

ECHA:	5		
L CITTE.			

13.1.- INTRODUCCION

La mayoría de los montajes estructurales quedan sometidos a la varia-ción de las cargas aplicadas, causando fluctuaciones de los esfuerzos en --las partes. Si los esfuerzos fluctuantes son de magnitud suficiente, aun -cuando el máximo esfuerzo aplicado sea considerablemente menor que la resistencia estática del material, la falla puede ocurrir cuando el esfuerzo se repite en un número suficiente de veces. Una falla inducida de esta manera es llamada "falla por fatiga".

Una clasificación de los tipos de esfuerzos "repetidos" se ofrece en - la Tabla 13.1. Además de designar el grado de variación del esfuerzo, la - clase del esfuerzo (tensivo, compresivo, o cortante) también debe estipular se para una definición completa de la condición del esfuerzo. Los esfuer-- zos pueden ser causados por cargas axiales, de corte, de torsión, de fle-- xión o por combinaciones de ellos. Para las determinaciones de las caracte rísticas de fatiga de los metales, uno de los tipos de carga repetida más - comúnmente usado es la flexión completamente invertida.

TABLA 13.1.- CLASIFICACION DE LOS TIPOS DE ESFUERZOS REPETIDOS

Al consignar los valores númericos de los esfuerzos, la clase del esfuerzo debe siempre designarse como tensión, compresión, o cortante. La clase del cargado debe asimismo designarse como axial, torsionante, cortante directo, o flexionante.

Tipo de var	iación del esfuerzo		enclatura para ango-telación	Nomenciatura para el esfuerzo media		
INIVERSIDADA (JT Ó legramoN	Esfuerzo máximo	Rango-relación	Esfuer- zo medio	Esfuerzo alternante	
Estuerzo sosteni-)E'B	FBLIOT	ECA	AS ⁰	
Esfuerzo pulsan- te, entre 61 y	吸過	σ 1	$0<\frac{\sigma_1}{\sigma_1}<1$	٥.	±σ.	
Esfuerzo pulsan- te entre σ, y 0		·,	$\frac{0}{\sigma_1} = 0$	#	±e.	
Parcialments invertido entre vi y () vi cuando vi < vi y de signo opuesto	是红山	Ø1	$-1 < \frac{\sigma_2}{\sigma_1} < 0$	0-4	±94	
Esfuerro comple- tamente inver- tido, entre s ₁ y s ₂ , cuando s ₂ - s ₁	ATA	σ,	$\frac{\sigma_z}{\sigma_1} = -10$	0	±0, = 0;	

Nota: e = (e, + e1)/2 y e - (e, - e2)/2, respetando los signos.

"Informe del Comité de Investigación de la ASTM sobre la Fatiga de los Metales"

Proc. ASTM, Vol. 37. Parte I, 1937.

La fatiga debe considerarse en el diseño de muchas partes sometidas a ciclos de esfuerzos tales como los ciqueñales de motores, pernos, resortes. dientes de engranes, aletas de turbinas, partes para automóviles y aviones, partes para motores a vapor y gas, rieles ferroviarios, cables de alambre. ejes para automóviles, y muchas partes para máquinas sometidas a cargado cíclico.

El esfuerzo al cual un metal falla por fatiga es aquí denominado resistencia a la fatiga. Se ha descubierto que para la mayoría de los materiales existe un esfuerzo limitativo abajo del cual una carga puede repetidamente aplicarse un número indefinido de veces sin causar la falla. Este esfuerzo limitativo es denominado límite de fatiga.

Cuando una pieza es sometida a una variación cíclica de esfuerzos, las partículas constitutivas tienden a moverse ligeramente con respecto una de otra. Este movimiento finalmente debilita algún minúsculo elemento, a tal grado que se rompe. En la zona de la falla se desarrolla una concentración de esfuerzos, este también se desarrolla en cambios bruscos de sección y con las sucesivas repeticiones del esfuerzo la fractura se extiende de este núcleo a toda la sección. Por esta razón las fallas por fatiga frecuentemente son denominadas "fracturas progresivas".

Las fallas por fatiga ocurren súbitamente sin ninguna deformación apreciable, y la fractura es burdamente cristalina como en el caso de una falla estática de hierro fundido o acero quebradizo.

Merece mencionarse, sin embargo, que ningún ensayo de fatiga para los metales ha sido normalizado por la ASTM, aunque ciertos tipos de máquinas. probetas y procedimientos son de uso común.

13.2. - MAQUINAS PARA ENSAYOS A LA FATIGA DE LOS HETALES

Las máquinas para realizar ensayos a la fatiga en ciclos de esfuerzos repetidos o invertidos pueden clasificarse de acuerdo con el tipo de esfuerzo producido:

- 1. Máquinas para ciclos de esfuerzo axial (tensión, compresión)
- 2.- Máquinas para ciclos de esfuerzo flexionante
- 3. Máquinas para ciclos de esfuerzos cortantes torsionales
- 4.- Máquinas universales para esfuerzo axial, de flexión, o de corte -torsional o combinaciones de ellos.

Todas las máquinas de ensaye de esfuerzos repetidos deben ir provistas de un medio para aplicar la carga a una probeta y medirla. Asimismo, debe proveerse un contador para registrar el número aplicado de ciclos y algún -dispositivo que, cuando la probeta se rompa, automâticamente desembrague el contador. Frecuentemente el dispositivo desembragador también se diseña para detener la máquina de ensaye misma.

Existen máquinas más sofisticadas que mediante microprocesadores pueden controlar todo el proceso de la prueba.

La maquina que se muestra en la figura 13.1 es una maquina universal -que usa un sistema de control de retro alimentación como se muestra en el -diagrama de blocks figúra 13.2, donde se explica el principio de control.

La fuerza, deformación o desplazamiento empezado sobre el espécimen de . prueba es medido y continuamente comparado con la señal de entrada de mando, la diferencia entre los valores medidos y los valores accesados es usado para darnos una señal continuamente corregida, donde la señal error y la diferencia es minimizada por una servo valvula. Un transducto puede ser usado como exitador y a la vez nos dá la señal respuesta que puede ser controlada, como la fuerza, la formación y el espécimen mediante la prueba.

El sistema mantiene la señal de entrada durante la prueba por un coman-

do contínuo donde una servo válvula que provee un control preciso durante - las pruebas estáticas o dinâmicas.

La prueba de fatiga y tensión o compresión puede ser realizada a diferentes tipos de cargas, con sus correspondientes amplitudes dependiendo de la condición de servicio simulado. En la figúra 13.3 se muestra el montaje de la probeta, la señal de entrada que sirve como comando y se muestra también la respuesta que se obtiene de usar materiales.

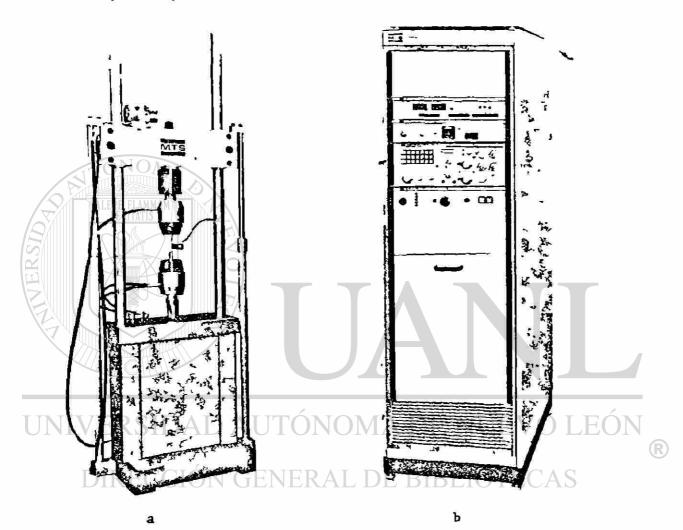


Figura 13.1.- Máquina universal de prueba para condiciones dinámicas, la a es la -- sección mecánica de prueba y la b es el - panel de control.

Respecto a las máquinas para medir la fatiga y esfuerzos flexionantes - como se muestran en la figura 13.4, donde la probeta es sometida con una bi- ga simplemente apoyada y giratoria, donde se puede ir variándo la carga concentrada, donde el número de vueltas de la vida de la misma.

Este tipo de ensayo es el mismo usado comúnmente y que puede proporcionar un perímetro comparativo para algunos de los diseños que se semejen y es ta condición, la probeta usada se muestra en la figúra 13.5 se usa también las probetas como bigas en cantilever (boladizo) con el mismo proceso de - prueba.

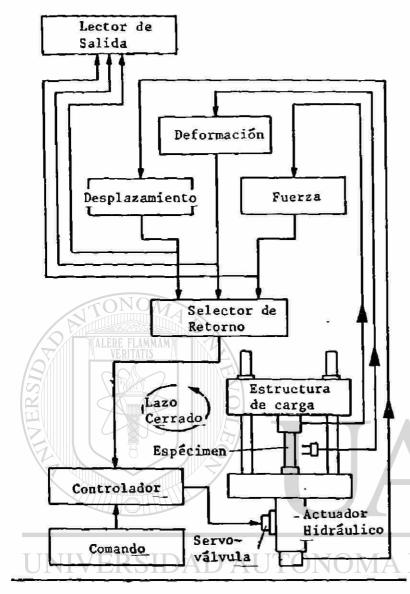


Figura 13.2. - Diagrama de blocks de la máquina para pruebas dinámicas.

Esto es ir variándo la maç nitud de la carga y registrándo el número de ciclos de vida por cada caso.

Para las máquinas de ensayos dinámicos y torsión se sigu algo similar a las ya descritas, pudiéndo existir comparaciones de esfuerzos para una probeta da da como son las axiales, flexionantes o torsionales.

13.3.- PROCEDIMIENTO GENERAL

Para determinar el límite de resistencia de un metal, es necesario preparar un número de probetas similares que sean re-presentativas del material. La 'primera probeta se ensaya a un esfuerzo relativamente alto de modo que la falla ocurra con un corto número de aplicaciones de esfuerzo. Las probetas sucesi-vas se prueban luego, cada una a un esfuerzo más bajo. El número de repeticiones requerido para producir la falla aumenta según el esfuerzo disminuve. Las probetas que se han sometido a es-fuerzos inferiores del límite de resistencia no fallarán. 🏖

Los resultados de los ensayos a la fatiga comúnmente se re gristran en diagramas en que los valores del esfuerzo se trazan como ordenadas y los del número de ciclos de esfuerzo hasta la fractura se trazan como abcisas.

Esos diagramas son denominados SN (S para esfuerzo, N para el número de ciclos). En general, los diagramas SN se dibujan utilizando un trazado semilo
garítmico como se muestra en la figúra 13.5, la cual representa los resultados para varios materiales típicos. Para todos los metales ferrosos ensayados, y para la mayoría de los metales no ferrosos, los diagramas SN son hori
zontales, tan aproximadamente como puede determinarse, para valores de N que
varían desde 1 000 000 hasta 50 000 000 de ciclos, indicando así un bien definido límite de resistencia. Los diagramas SN para el duraluminio y el metal monel no indican límites de resistencia bien definidos.

La resistencia a la fatiga de los metales varía de acuerdo con la conposición, la estructura granular, el tratamiento térmico, y el maquinado. La fatiga límite y las resistencias estáticas de unos cuantos metales representativos se muestran en la Tabla 13.2.

Resulta difícil realizar ensayos de esfuerzos repetidos de probetas bajo ciclos de tensión y compresión directas y alternas, debido a la posibilidad de que cualquier ligera excentricidad de carga puede causar esfuerzos --

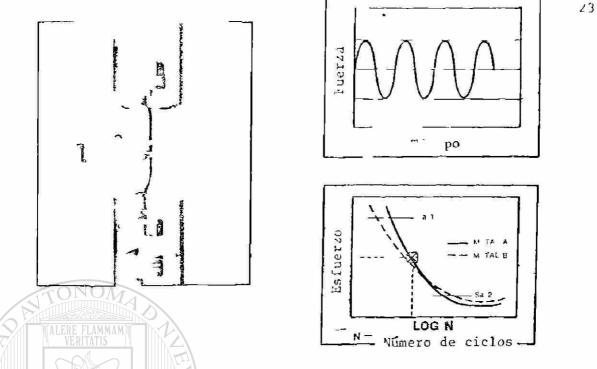


Figura 13.3.- a) ontaje de la probeta, b) señal de ref rencia de entrada, c) curva del c mportami nto de la pr beta.

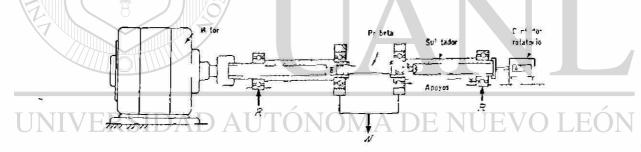
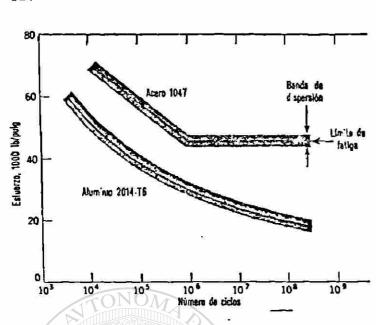



Figura 13.4. - Un tipo de máquina de ensaye de esfuerzo inv rtido con viga rotatoria.

flexionantes serios, y los esfuerzos intensamente localizados son suscepti-bles de ocurrir en las orillas de las probetas axial ente cargadas. Estas concentraci nes de esfuerzos en objetos sometidos a esf erzos repetidos s n de 'portancia considerable aun para los materiales dúctiles, aunque tienen muy po o efecto sobre la resistencia estática a la tensión. En general, los e sayos cuidad samente conducidos han demostrado que el límite de duración para c'clos de t' sión y - mpresión directas y alternas es prácti a ente el is o que el línite de duranión para ciclos de sfuerzos flexion tes inverti s.

El lí te de uración para o fu rz s ortantes sualmente se d termina de los sayos en tors ón ruletida o i virtida. La mayoría de estas determi aciones han sido r ali adas en a eros al a no y aleacio es de acero. Pa ra l s en ay s de l s acero al carb no la r - n ntre el l'ite de duracin n torsión inverti a y el l'it e d racin n flexión i v rtida e ha des-5 to qever a e 0.48 a 064, nun io e 0.5. Para las alea-s e a roaraón varía e 0.44 a 0.71, on un pedio e 0.58. La z'n pr dio para algu os tal s no fer s s es de 0.52.

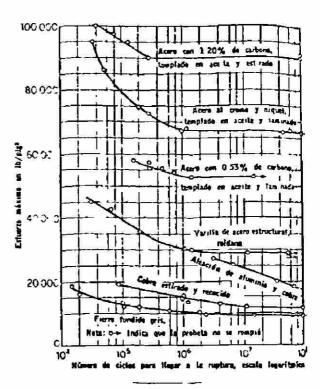
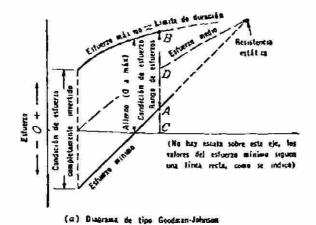



Figura 13.5.- Típicos diagramas SN para determinar el límite de duración de los metales sometidos a - esfuerzo flexionante invertido.

TABLA 13.2.- LIMITE DE DURACION Y RELACION DE DURACION DE VARIOS METALES

NIVERSI	DAD AUTÓNOMA	Resistencia a la tensión, estática lb/pigi	Limite de duración en flexión lb/plg ^a	Relación de duración
DIDEC	Acero, 0.18% de carbono, laminación en ca-	62 700	30 900	0.49
DIRE(Acero, 024% de carbono, templado y estirado	67 500	29 500	0 44
	Acero, 0 32% de carbono laminado en caliente	65 700	31 300	0.48
	Acero, 0 38% de carbono, templado y estirado	91 500	33 500	0 37
	Acero, 0.93% de carbono, recocido	84 100	30 500	0 36
	Acero, 1 02% de carbono, templado	200 400	105 000	0 51
	Acero al niquel, SAE 2341, templado	282 000	112 000	0 40
	Acero fundido, 0 25% de carbono, en ese estado	67 200	27 000	0 40
	Cobre, recocide	32 400	10 000	0 31
	Cobre, laminación en frío	52 000	16 000	0 31
	Latón 70-30, laminación en frio	73 200	17 500	0 24
	Aleación 2024 de aluminio, T36,	72 000	18 000	0.25
	Aleación de magnesio AZ63A	40 000	11 000	0.27

Para probetas de metal sometidas a esfuerzos repetidos que involucren - un rango de esfuerzos menor que la inversión completa, mientras menor sea el rango de esfuerzos, más alto será el límite de duración. El valor limitati- vo es, por supuesto, la resistencia estática. La naturaleza general de la - variación de la resistencia con el rango de esfuerzos se muestra en la sigúra 13.6. Se muestran tres métodos para representar los datos de la fátiga con el involucran la variable del rango en términos de esfuerzos. La figúra --

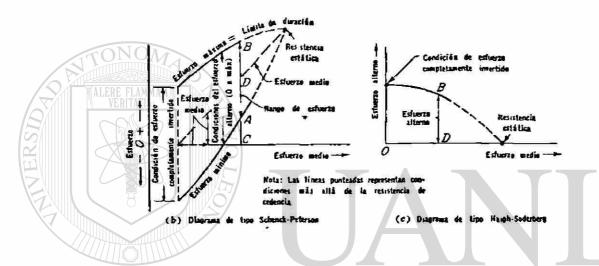


Figura 13.6.- Variación general de la resistencia con el rango de esfuerzos.

13.6a muestra el diagrama del tipo Goodman-Johnson en el cual el esfuerzo mi R nimo se traza para arrojar una línea recta (la escala horizontal carece de - significación), y el límite de duración correspondiente a cualquier esfuerzo mínimo se traza verticalmente arriba, arrojando la línea curva superior. El rango de esfuerzos se representa por medio de la ordenada vertical entre las líneas continuas superior e inferior, mientras que el esfuerzo medio se re-presenta por medio de la línea curva rayada. Así, para cualquier esfuerzo mínimo AC, el límite de duración es BC, el esfuerzo medio es DC y el rango de esfuerzos es AB.

La figura 13.6b, el diagrama Schenck-Peterson, se dibuja casi de la misma manera, excepto que la línea curva que representa los esfuerzos medios se traza como una línea recta a un ángulo de 45° con el eje horizontal. Esto, convierte en curva la línea del esfuerzo mínimo y permite que el eje horizon tal represente los esfuerzo medios a la misma escala que sobre el eje vertical.

La figura 13.6c, el diagrama Haigh-Soderberg, representa la mitad superior de la figura 13.6b, pero con la línea a 45° llevada a la posición horizontal que representa los esfuerzos medios. En este diagrama las ordenadas de la curva representan el máximo valor del esfuerzo alterno BD, el cual pue de aplicarse simultáneamente con un esfuerzo medio OD sin causar la falla ~- por fatiga. Para el propósito de estimar los valores de la resistencia a la

fatiga para su uso en el diseño, ha sido derivado un número de fórmulas, basadas en idealizaciones de los datos.

Los bruscos cambios de sección transversal definitivamente disminuyen - la resistencia nominal a la fatiga debido a la alta concentración del esfuer zo en tales transiciones. Los resultados de ensayos efectuados por Moore y Kommers, presentados en la Tabla 13.3, son típicos de los obtenidos por otros investigadores. Ellos demuestran que una ranura en V aguda puede reducir el límite nominal de duración de una probeta con flexión invertida aproximadamen te un 65%, aun cuando el área transversal seccional neta permanezca constante. En partes de máquinas reales, sonetidas a ciclos de esfuerzo invertido, cualquier cambio de sección brusco debido a agujeros, canales, ranuras, cuer das de tornillo y rebordes, debe recibir consideración especial. Sin embargo, el efecto de esos elevadores de esfuerzos no es tan serio como parecería por los resultados de los cómputos realizados con base en la teoría de la -- elasticidad o el análisis fotoelástico.

TABLA 13.3.- EL EFECTO DE LA FORMA DE UNA PROBETA DE ENSAYO SOBRE EL LIMITE DE DURACION NOMINAL.

Diámetro de la probeta en plg		Medios de reducción	Reducción del limite
En los extremos	Al centro	del diámetro	de duración nominal portentaje
O ID	0 275	Ranura con radio de 10 plg	0
0 40	0 275	Ranura con radio de 1 plg	5
0 40	0 275	Ranura con radio de ¼ pig	10
0.40	0.275	Reborde con rosca corra	25
040	0 275	Reborde cuadrado	50
0.40	0 275	Muesca de 90° en V	65

13.4.- DESARROLLO DE LAS ROTURAS POR FATIGA

En toda rotura por fatiga pueden distinguirse tres períodos: incubación,

fisuración progresiva y rotura.

En el período de incubación se inicia una fisura microscópica que generalmente no es visible a simple vista. En el período de fisuración progresiva, la grieta iniciada en el período de incubación se extiende y progresa - por la acción de los esfuerzos alterados y repetidos a que está sometido el metal. Y, por fin, en el tercer período, de rotura, el metal se rompe bruscamente, con escasa deformación del mismo. En realidad, los verdaderos períodos de rotura por fatiga son los dos primeros, pues en el tercero la pieza se rompe, porque su sección es ya insuficiente para resistir esfuerzos - normales, para los que estaba calculada con toda su sección intacta.

Figura 13.7. - Secciones de rotura por fatiga de probetas sin entalla, producida por flexión rotativa.

En el aspecto que presentan las secciones de piezas fracturadas por fatiga se distinguen perfectar nte dos zonas que corresponden a los dos últimos períodos descritos; una, de grano fino, que ha ido rompiéndose por fatiga, en el período de fisuración progresiva, y otrá zona, de grano grueso, de aspecto prillante, que es la sección de rotura instantânea final. En la zona de grano fino se distinguen a veces una serie de líneas que parece comó si hubiesen avanzado, concentricamente a partir de un punto de la superficie, que, por tener algun defecto y ser más debil, es de donde ha partido la primer fisura (figura 13.7a).

Si la pieza estaba ampliamente dimensionada, es decir, si los esfuerzos que resistía eran muy inferiores a su resistencia, la zona de graño fino es muy grande, y la del grueso, pequeña (figúra 13.7b). En cambio, si la pieza trabaja casi al límite de su resistencia, en cuanto se debilita al reducirse su sección, por una pequeña zona rota por fatiga, se rompe instantáneamente, siendo la zona de fractura de grano grueso muy grande (figúra 13.7c).

Generalmente, la iniciación de la rotura es súperficial, por algún punto descarburado, raya producida por el mecanizado o cambios bruscos de serción, progresando la grieta perpendicular a las líneas de fuerza (figúra -- 13.9).

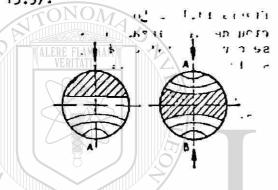


Figura 13.8.- Secciones de rotura por fatiga, de probetas sin entalla sometidas a esfuerzos de flexión intermitentes y alternados.

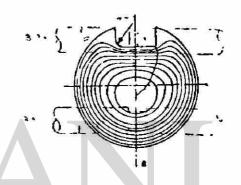


Figura 13.9:- Sección de rotura por fatiga de un eje con chavetero. La grieta se inicia en el ángulo no redondesdolo!

Influencia del acabado y forma de las piezas en fa rotura por fatiga. Se ha comprobado también que una pieza perfectamente acabado superficialmen te resiste mejor la fatiga que una con acabado basto. También se ha demostrado que una pieza que ha estado en servicio sometida a esfuerzos repetidos de magnitudes inferjores al límite de su fatiga, queda como "endurecida", pudiendo después resistir esfuerzos superiores a los que pudiera soportar pudiendo después resistir esfuerzos superiores a los que pudiera soportar al máximo calculado; aunquel sea momentáneamente y aunque no se hayá produci do ninguna fisura, reduce la capacidad del metal para soportar esfuerzos in feriores.

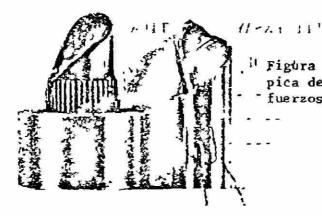
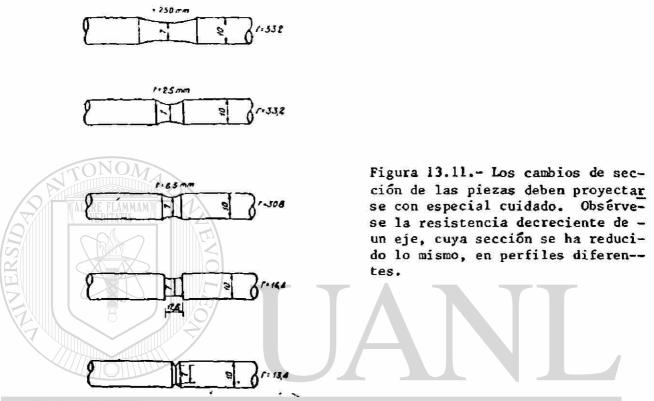



Figura 13.10. - Fractura en hélice típica de las roturas por fatiga con es fuerzos de torsión. Por otra parte, la for a de la pieza hace variar también el límite de - su resistencia de fatiga, y en las probetas de la figúra 13.11 puede apre-ciarse una reducción de resistencia de la última probeta con respecto a la primera hasta de un 40%, a pesar de mantener la misma sección. En general, todo cambio brusco de sección, los agujeros, los fileteados, las medias caras, las ranuras, las muescas, etc., disminuyen la resistencia del metal a la fatiga, siendo mayor la reducción cuanto más aguda sean las aristas o entrantes. En las figúras 13.7, 13.8, 13.9 y 13.10 se han representado tipos ue roturas producidas por diferentes clases de esfuerzos.

13.5.- FGRMATO

A continuación se presenta un formato que puede servir como reporte de la prueba donde se contienen todas las características del espécimen.

LABORATORIO DE MECANICA DE LOS MATERIALES
FAC. DE INGENIERIA MECANICA Y ELECTRICA
U.A.N.L. CD. UNIVERSITARIA
TEL.- 52-57-88 y 76-22-64

CARACTERISTICAS DEL ENSAYO DE FATIGA

REALIZADO POR:	
No. DE PRUEBA	
TIPO DE PRUEBA	
MATERIAL	

DIAMETRO MAYOR	plg
DIAMETRO MENOR	p1g
RADIO DE ACORDE	plg
LONGITUD TOTAL	p1g
LONGITUD DE PRUEBA	4 TO 100
TEMPERATURA DE PRUEBA	°F
NUMERO DE CICLOS	
ESFUERZO MAXIMO	psi
ESFUERZO MEDIO	psi
ESFUERZO MINIMO	psi
ESFUERZO DE CEDENCIA	psi
TIPO DE FRACTURA	

MONTERREY, N T FECHA:

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

XIV. - ENSAYO DE DUCTILIDAD

14.1.- INTRODUCCION

El ensayo de ductilidad es uno de los más utilizados y tiene por objeto conocer la aptitud de las chapas para ser conformadas por embutición, que es uno de los procesos más empleados por la industria moderna para la fabrica-ción de piezas para aviones, automóviles, etc.

La medida de la ductilidad es la altura que se deforma la lámina, cuando se le embute un punzón, hasta el momento en que se inicia la ruptura.

14.2.- MAQUINA DE DUCTILIDAD

La realización de los ensayos se efectuan en la probadora de ductilidad como la mostrada en la figura 14.1 cuyas componentes son:

Botones de control.- Los que controlan el encendido y apagado de la máquina.

Indicadores de carga. - Son dos, hasta 6,000 ó 30,000 lb. y mediante un selector se utiliza uno ú otros, tiene cada uno aguja motora e indicadora de

Control de presión de sujeción. - Se puede controlar y aplicar hasta - -3,000 lb. de presión en el espécimen, todo esto mediante un sistema hidráuli co independiente del sistema central, mediante un manómetro se indica, la -presión de sujeción aplicada.

Freno automático. - Con este circuíto se frena automáticamente el desa--

rrollo de la prueba, una vez que se inicie la ruptura en la probeta.

Embutido automático. - Con este control se obtiene que todas las pruebas se hagan a la profundidad predeterminada. Retornando automáticamente el penetrador a su posición original para inicio de la siguiente prueba.

Indicador de profundidad. - Carátula con dos agujas, una indicadora de máximos y la otra motriz. Miden la profundidad de deformación de las probe-

Control de velocidad. - Con este se controla la velocidad de aplicación de carga, según se desee en pulg/min.

Sección de prueba. - De metal endurecido y capacitado para admitir probe tas de diferente espesor, el cambio de los dados formadores es relativamente rápido. Figúra 14.2. 14.3.- PROCEDIMIENTO DE PRUEBA

Se colocan los penetrados requeridos según el ensayo, se amordaza la -probeta a la presión predeterminada, se selecciona el rango que se desee usar y la velocidad de aplicación de carga requerida. Se oprime el botón de inicio de prueba y el penetrador es empujado contra la probeta en las carátulas, se marcará la velocidad de aplicación de carga, la variación de carga y la profundidad de embutido, cuando se inicie la ruptura, el ensayo se puede fre nar, manual o automáticamente; posteriormente se retira la probeta de la sec ción de prueba.

14.4.- TIPOS DE ENSAYOS

Un ancho rango de tipos de ensayos de ductilidad, pueden desarrollarse de acuerdo a las necesidades, con solo cambiar los aditamentos correspondien tes. De los tipos más usados son:

a).- Ensayo Olsen-Erichsen.- Se emplea una bola de acero de 1" 6 20mm de diámetro para cada uno, figura 14.3. La forma de ruptura es por tensión radial presentando una grieta circular, figura 14.4, en ese instante se mide

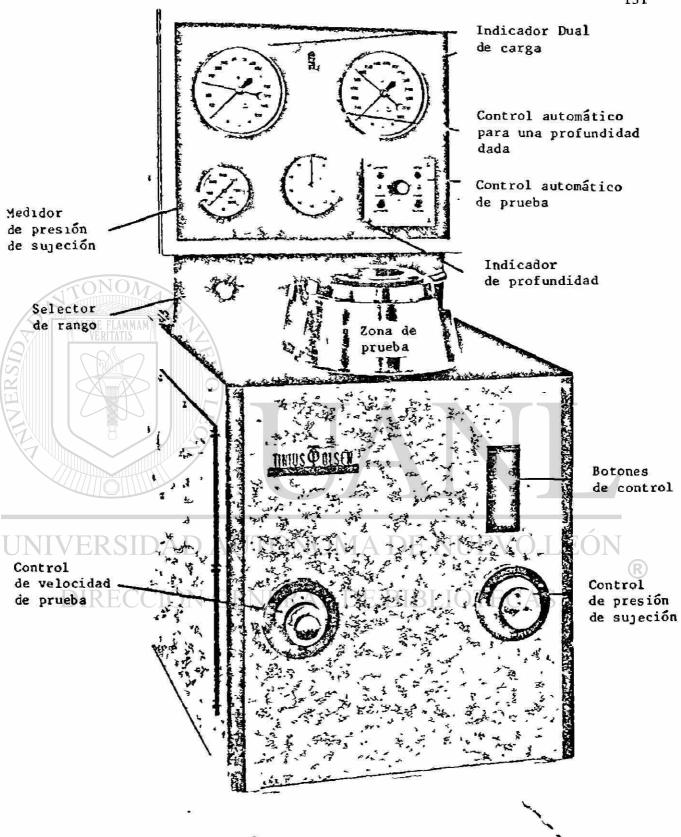


Figura 14.1.- Probadora de ductilidad para placas.

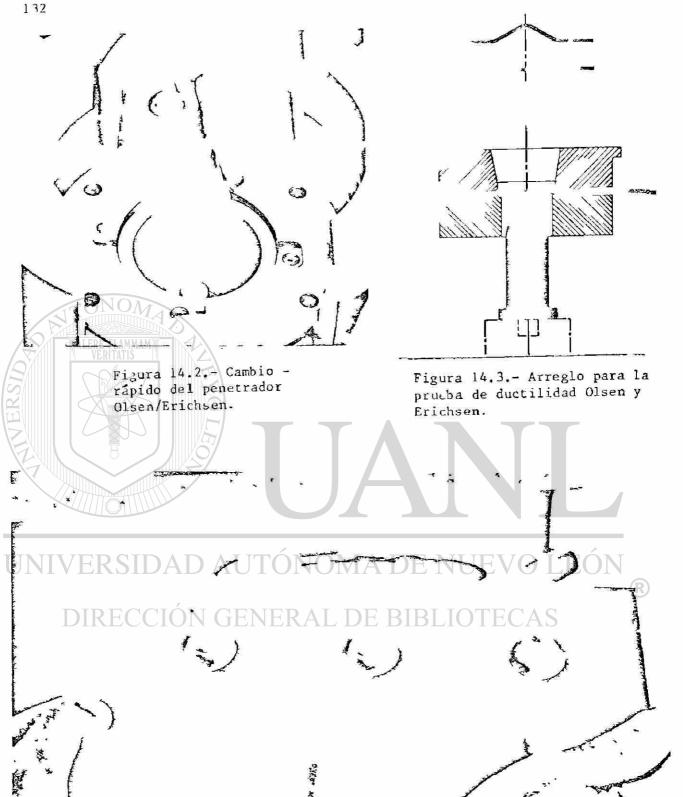


Figura 14.4.- Tipo de falla Ol n/Erick n.

'a profundidad b) Ers ye de via profuda. - La or beta es c'r ular con e p or s que von de 0.3 a ta 1.86 mm se l s dá fo a non port de circular de c bearl a ordiá tros de 19 ta 50 m. Figira 14.5.

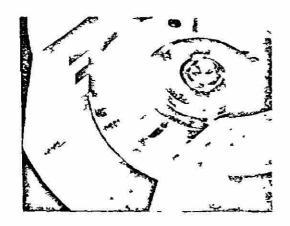


Figura 14.5.- Pentrador - para el ensayo de copa.

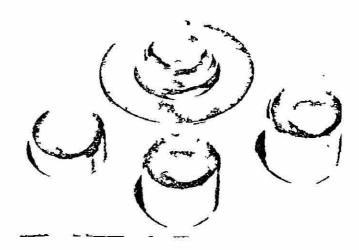


Figura 14.6.- Pruebas de copa - profunda para discos de 55 mm, 66 mm, 70 mm y 80 mm de diáme-- tro de una misma placa de acero de 0.059 pulgs.

Inicialmente se cortan una serie de placas circulares con diferentes - diámetros, pero el mismo metal, con un mismo penetrador se van probando cada una y se anota en cual diámetro se tiene máxima profundidad o copa perfecta. Figura 14.6.

El proceso de formado es afectado por diversos factores como; tipo de metal, tamaño y espesor de los discos, tolerancias entre los dados, presión de sujeción, velocidad de formado, presión o carga, tipo de lubricante, tamaño y forma del penetrador.

Se puede medir tambien cuanto es la razón máxima de formado, relacio-nando el diámetro y la altura de las copas formadas sucesivamente hasta tres
etapas contínuas en la figúra 14.7 se muestra el esquema y las probetas del
ensayo.

DIRECCIÓN GENERAL DE BIBLIOTECAS

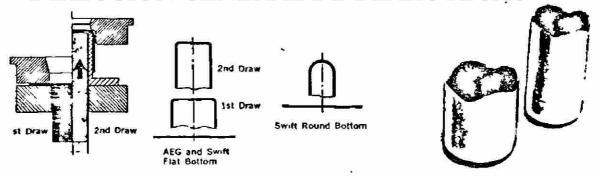


Figura 14.7.- Arreglo del embutido profundo de dos etapas y las probetas ensayadas.

c) Ensayo de copa cónica Fukui. - Para evaluar la formabilidad de los - metales que se usaran en estampados compuestos en este ensayo se involucra un penetrador cilíndrico de cabeza redondeada, el cual enpuja la placa contra un dado cónico, como se muestra en la figüra 14.8 se mide la profundi-dao, cuando aparece la grieta en la cabeza del cono.

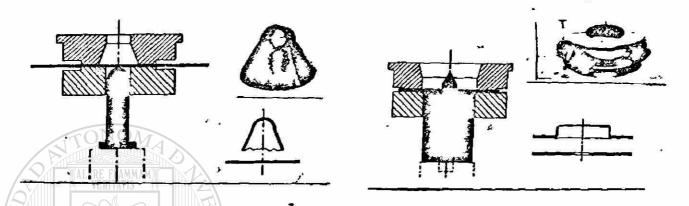


Figura 14.8.- Arreglo para el ensayo de copa cónica fukus con una muestra rota

Figura 14.9.- Arreglo para el ensayo de agujero expandido con una muestra rota.

d) Prueba del agujero expandido. - En este ensayo concurren en la acción de esfuerzos radial y tangencial, fenómeno que se presenta en muchos procesos de formado, mediante un penetrador cilíndrico con una saliente al centro de embute la probeta, figura 14.9, cuando una grieta aparece el ensayo se -- suspende y se mide la expansión del agujero, el cual es una medida de la formabilidad del metal.

14.5.- FORMATO

Se presenta a continuación un formato que pudiera servir como reporte de la prueba, donde se continen las características de la pieza antes y después del ensayo

LABORATORIO DE MECANICA DE LOS MATERIALES FAC. DE INGENIERIA MECANICA Y ELECTRICA U.A.N.L. CD. UNIVERSITARIA TEL.- 52-57-88 y 76-22-64

CARACTERISTICAS DEL ENSAYO DE DUCTILIDAD

	REALIZADO POR
	NO. DE PRUEBA ESTANDAR TIPO DE PRUEBA MATERIAL
J	NIVERSIDAD AÙTÓNOMA DE NUEVO LEÓN
	DIRECCIÓN GENERAL DE BIBLIOTECAS MONTERREY, N.L. FECHA:

XV.- T AS E ERISTI S . S 15.1. r ACI S A SI SAE PA A S

	15.1.	1	461	SAS	L SAE I	7A 4 5
		c	l'on	, %¹		Coptin,%1
. 01045	US	C	5 101	, 70		A I E S
A SI-SAE No.	No.	С	Mn i	ex (S ex	No. No. C Yn P S
N n esu						
						1. 8 G15 0 0.44 0, 2 1.10-1.40 0.040 m ax 0 050 m
M NGANE						1 51 G1 5 0 0 45 0 6 0.85-1.15 0 0 0m x 0 050-
1 5 ²	G 0		en værdet minderne	0.0-0	0 50	1 52 G1 20 0 7 0 5 1 0-10 0.0 0 max 0 0 mg
0:00°s			0 \$ 0.40	040	30	61 G1 0 0 55 0 5 0.75-1. 5 0 040 m-x 0 050 m
1003	G 30 (0.10 x	0 0-0 50	000	0 50	1. 6 G1 0 0 0 0.71 0 5-1.15 0 0.0 m x 0. 50 m
0 0			0 0-0 60	0.040	0 50	Fr o M chining Grd s
012	G 01 0		0 30~ 60	000	0c0 0	TI CHI CHIMING GI U S
015	G 0150		0 .30-0 6 0	0,040	0 050	R SULFUP Z D
1016	G 0 0		0 0-0 90	000	0 050	1110 G11100 0 08-0.13 0 30-0 60 0.040 max 0 08-0 13
1017	G10170		0 30-0 60	0.040	0 050	1117 G11170 0.14-0.20 1.00-1 30 0.040 max 0.08-0 13
1018	G 01 0	The second secon	0 60-0 90	0.040	0.050	1118 G11180 0.14-0.20 1.30-1.60 0.040 max 0.09-0.13
1019		0 15-0.20		0.040	0.050	1137 G11370 0.32-0.39 1.35-1 65 0.040 max 0.08-0 13
10 0			0 30-0.60	0.040	0 0.50	1139 G11390 0.35-0.43 1.35-1. 5 0.040 max 0.13-0.20
1021		KUBBIAMMAMI	0 60-0 90	0 040	0.050	1140 G11400 0.37 0.44 0.70-1.00 0 040 max 0.08-0 13
1022	V / / / / / / / / / / / / / / / / / / /	TUITITITI	0.70-1 00	0.040	0.050	1141 G11410 0.37-0.45 1.35-1.65 0.040 max 0.08-0 \cdots
1023			0 30-0.60	0.040	0.050	1144 G11440 0.40-0.48 1.35-1 65 0.040 max 0 24-0 33
1025	11121111-2222		0.30-0 60	0.040	0.050	1146 G11460 0 42-0.49 0.70 1.00 0.040 max 0 08-0 13
1026	FERT BOOKS	0 22 0.28	0.60-0.90	0 040	0.05 0 0.05 0	1151 G11510 0.48-0.55 0.70-1.00 0.040 max 0.08-0.13
1029 1030	G10290		0.60-0 90	0 040	0.050	RESULFURIZED AND REPHOSPHORIZED
1035			0.60-0.90	0.040	0 050	
1037		0 32-0 38		0.00	0.050	1211 G12110 0.13 max 0.60-0.90 0.07-0.12 0.10-0.15 1212 G12120 0.13 max 0.70-1.00 0.07-0.12 0.16-0.23
1 38			0.60-0.90	0 040	0.050	1213 G12130 0.13 max 0.70-1.00 0.07-0.12 0 16-023
1039		0.37-0.44	THE CONTRACTOR OF THE PROPERTY OF	0 040	0 050	1215 G12150 0.09 max 0.75-1.05 0.04-0.09 0.26-0.35
			Paralle Same			12L14 ³ G12144 0.15 max 0.85-1.15 0.04-0.09 0.26-0.35
1040		0.40 0.47	0 60 0 90	0.040	0.050	12214 0.10 11BA 0.00 0.00 0.20 0.33
1042 1043		0.40-0.47		0.040	0.050	1. The following notes refer to boron, copper, lead, and silicon
1044			0.30-0.60	0 040	0.050	additions:
1045		0.43-0.50		0 040	0.050	BORON: Stand rd killed carbon steets, which are generally fine
1046		0 43-0 50	_ / \ \ / /	0.040	0 050	grain, may be p oduced with a boron treatment dollion to in
1049		0 46-0 53	0 60-0 90	0.040	0.050	p ove ha dena il ty. Such ste is are produced to a range of,
1050		0.48 0.55		0 D40	0 050	0.0005-0 003% B. The se steels are identife d by inserting the level
1053	5 /	0.48-0.55		0 040	0.050	ter "B" between the second and third n mer is of the A Slo
1055		0.40-0.55			0.050	SAE numb 1, e.g. 10846.
1059		0 55 0.65		0.040	0 050	COPPER: When copper is required, 0.20% min is general
						specified.
1060 1064		0.55-0 65		0 040	0.050	1
1065		0 60-0 70		0 040	0 050	LEAD. Staldard carbon stells can be produced with a leaf ringe of 0.15-0.35% to implie we machin bility. Such steels at
1069		0 60-0 70 0 65-0 75		0 040 0.040	0.050 0.050	identified by inserting the I tter "L" betw en the s cond are
1070		· 0 65 0 75		0.040	0 050	third numer is of the AISI or SAE number, e.g. 12L15 and 10L45.
1078		0 72 0.85		0.040	0.050	The state of the s
						SILICON. It is not common practice to p oduce the 12XX sere
1080		0 75-0 88		0 040	0.050	of res I fur zed nd r phosphorized st Is to specified lim ts la
1084		0 0-0.93			0.050	s'l' on boce of its dvetf ct on michinabilty When I'n rig sorl mitsae q'dfrrulfu zed ornon e
1086	G10860	0 80-0 93	0 30-0 50	000	0. 50	s'u' dist is, ho v r, the lues ply: ara g of 0 % %
1090		0 85-0 98			0.050	Si for Si m x up to 0 15% ' clu ' e, a ra ge of 0 10% Si for Si
1095	G10 50	0 90-1 03	0 30-0 50	0 040	0.050	m x r0.15t 0.20% inclusive, ar nge of 0.15% Si for Si ma
	COPIL VI	WIND OWES				o er 0 0 to 0 30% i cl s' e, a darange of 0.20% S for Sima
	IESEM XI					o cr 0 30 0 0 60% i clusive E mple: Si max is 0 25%, r ge 1
1513		0 0-0 16			0 05 0	0 10 0. 5%.
1522		0 18 0 24			050	
1524		0 9-0 25			0 50	2 S' d dgr de for erod d'e nly.
1526		0 22 0 29			0000	0.0460060 06
1527	G1 270	0 2029	1 51 5		0 050 0 050	3. 0.15-0 35% Pb.
	1 1 20 161	11 1144	1 21 3	J 040	0.030	#.

0 40 0 60

0 40 0 70

0 15 0 35

015025

G 6 00

G

20

0 5 1 00

0 40 0 45

0 35

40

8640

3642

Composition, %12

AISI-SAE No.	UNS No.	C	Mn	P max	Smax	Sı	Ni	Cr	Mo
8645	G86450	0.43-0 48	0.75-1 00	0 035	0 040	0.15-0 35	0 40-0 70	0.40-0 60	0.15-0 25
8655	G86550	0 51-0 59	0.75 1 00	0,035	0 040	0 15-0.35	0 40-0.70	0 40-0 60	0 15-0 25
8720	G87200	0 18-0 23	0 70-0 90	0 035	0 040	0 15-0 35	0.40-0.70	0.40-0 60	0 20-0 30
8740	G87400	0 38-0 43	0.75-1 00	0.035	0 040	0 15-0 35	0.40-0.70	0 40-0 60	0 20-0 30
8822	G88220	0 20-0 25	0 75-1 00	0 035	0.040	0.15-0 35	0.40-0 70	0 40.0 60	0 30-0 40
9260	G9260 0	0 56-0 64	0.75-1.00	0 035	0 040	1 80-2 20		s :	
Standa	ard Boron	Grades ⁴							
50844	G50441	0 43-0 48	0 75-1 00	0 035	0.040	3 15-0 35	545-01	0 40-0 60	-
50B46	G50461	0 44-0 49	0 75-1 00	0 035	0 040	0 15-0 35		0 20-0 35	-
50B50	G50501	0.48-0.53	0.75-1 00	0 035	0.040	D 15-0 35	()	0 40-0 60	7 1000 1
50860	G50601	0 56-0 64	0.75-1 00	0 035	0 040	C 15-0 35	-	0.40-0.60	=
51860	G51601	0 56-0.64	0 75-1 00	0 035	0 040	0 15-0 35		0.70-0 90	-
81B45	G81451	0.43-0.48	0.75-1 00	0 035	0 040	0.15-0 35	0 20-0.40	0.35.0 55	0.08-0 15
94B17	G94171	0.15-0.20	0 75-1 00	0 035	0 040	0 15-0 35	0 30-0 60	0.30-0 50	0 08-0 15
94B30	G94301	0.28-0.33	0.75-1.00	0.035	0.040	0.15-0.35	0 30-0 60	0.30-0.50	0.08-0 15

^{1.} Small quantities of certain elements are present which are not specified or required. These incidental elements may be present to the following maximum amounts. Cu, 0.35%, Ni, 0.25%; Cr, 0.20%; and Mo. 0.06%. 2. Standard alloy steels can also be produced with a lead range of 0.15.0.35%. Such steels are identified by inserting the letter "L" between the second and third numerals of the AISI or SAE number, e.g. 41L40.3. Electric furnace steel. 4. 0.0005-0.003%. B

Source Steel Products Manual, American Iron and Steel Institute.

15.2. - FACTORES DE CONVERSION

US Customary to SI	SI to US Customary
UNIVER 11b (mass), 0-4536 kg TON	1 kg. 2 2046 lb (mass)
1 lb (force), 4,448 N	1 m. 39 370 in.
DIRELIN., 25.4 mm (exact) DIRELIN. 10, 118 Nmm LENERA	1 mm 0.039 37 in. 1 MPa. 145 psi LIOTECAS
1 hp 0 7457 kW	1 N. 0.2248 lb (force)
1 Btu, 1,055,000 Nmm 1 Btu, 252 calories	1 kW, 1.341 hp 1 centipoise, 0 000 000 145 lb sec in. ²
1 Btu 5 677 watts hr ft² °F m² °C	Nsec 145 lb sec in ? A calorie 37 05 in lb
	

Dus- /		ell hardness 16 mm ball,		A-scale,	lockwell har B-scale, 100-kg	dors No - C-scale, 150-kg	D-scale 100-kg	hardnes bra	well superfic is No. super le penetrato	tical.	Shore		Dia- mond
wand	Bland-	Hult-	Tun, sten	load, braie	load. 1/16 m.	load, brale	brale	IS-N scale,	#O-N Acale,	45-N scale,	scope bard-	Tensile succepth	p.mamid bard
No.	pall	Eall	peg mr.p.de	pene- trator	pall pall	pene- trator	pene- trator	15-kg load	M kg load	65 kg load	No.	(App 0x). 1000 pm	No.
940 920		s.0.3		85.6 85.3		68.0 67.5	76.9 76.5	93.2 93.0	84.4 84.6	75.4 74.8	97 96		940 920
900 880	9.4		767	85 6 84.7		67.0 66.4	76.1 75.7	92 <u>.9</u> 92.7	83 6 83.1	74.2 73.6	95 93	3	900 038
860	36.4°	76.6	757	84.4	• • •	65.9	75.3	92.5	82.7	73.1	92	## ####	860
840 820	***	***	745 733	84.1 83.8		63.3 64.7	74.5	92.3 92.1	87.2 81.7	72.2 71.8	91 90	***** ****	840 820
800 780	07.555 1998	***	722 710	83.4 83.0	**** ****	64.0 63,3	73.5 73.3	91.8 91.5	81.1 80.4	71.0 78.2	88 87		200 789
760 740	195	*••	698 694	82. 6 82.2	***	62.5 61.8	72. 6 72.1	91.6	79.7 79.1	69.4 68 6	86 84	***	7 60 740
T20	***	615	670 656	81.8 81.3	• (•)	61 0 80.1	71.5 70.8	90.7 96.3	78 4 77.6	67.7 66.7	83 81	-A	720
690	***	€10 603	647 638	81.1 80.8	*(3).*() *(3).*() (226)	59.7 59.2	70.5 78.1	90.1 89.8	77.2 76.8	66.2 65.7	80	329	690 680
670	5.55 9.24	397	630	80.6	***	58.8	69.8	89.7	76.4	65_3	100	324	670
860 850	***	590 585	611	80.9	53(5) ****	58.3 57.8	69. 4	89.3 89.2	75,9 75.5	64.7 64.1	79	319 314	660 650
640 630	121	578 571	601 591	79.5 79.5		57.3 56.8	68.7 68.3	89.0 88.8	75.1 74.6	63.5 63.0	T1	309 304	640 630
620 610		564 557	582 573	79.2 78.9	•••	56.3 53.7	67.3 67.5	88.5 88.2	74 <u>.2</u> 73.6	62.4 61.7	75	299 294	610 620
600 590		550 542	364 554	78.6 78.4	***	55.2 54.7	67.0 66.7	88.0 87.8	73.2 72.7	61.2 69.5	74	789 284	500 590
580		ALER ITA LA VERTITAT	MMANSAL	78.9	•••	54.1	66.2	87.5	72.1	59.9	72	279	580
370 560	4	527 518	535 525	77.8 17.4	155.	\$3.6 \$3.9	65. 8 65. 8	87.2 86.9	71.7 71.2	59.3 58.6	'n	274 269	570 5 6 0
550 540	565 496	512 503	517 567	77.8 75.7		52.3 51.7	64.8 64.4	86. \$ 86.3	76.5 79.0	57.8 57.0	69	264 260	550 540
530 520	488	495	488	76.4 76.1	•	51.1 50.5	63.5 63.5	86.0 85.7	69.5 69.0	56.2 55.6	67	254 250	530 520
510 500	673 465	175	479 471	25.7 75.3	(*) 3:440	49.8	62.9 62.2	85.4 85.6	68.3 67.7	54.7 53.9	56	244 240	510 500
490	456 648	460	481 452	74.9	***	48 4 47.7	61. s 61.3	84.7 84.3	67.1 66.4	53.1 52.2	64	234 230	490 480
480 470	641	412	642	74.5	***	46.9	60.7	83.5	65.7	51.3		230	470
450	433 425	423	433 425	73.6 73.3		46.1 45.3	59.1 59.4	83.6 81.2	64.9 64.3	50.4 49.4	62	220 214	460 450
440	405	41.5 495	€1.5 405	72.3 72.3	***	44.5 43.6	58.8 58.2	82.8 82.3	63.5 62.7	48.4	59	210 204	440 430
420	397 385	397 385	397 333	71.8 71.4	***	42.1	57.5	81.5 81.4	61.9 61.1	46.4 45.3	57	200 195	420 410
400	379 369	279 279	379 369	70.3	, , , ,	41.8 40.8 29.8	56.8 56.0 55.2	81.6 80.3	60.2 59,3	44.1 42.9	55	190	400 390
390 380	380	364	380	69.3	(110.0)	_ iii	51.1	79.8	58.4	41.7	52	180	380
370 360	356 341	341	350 341	. 68.7	(109.0)	37.7	53.6 52.8	79.2 78.6	57.4 56.4	39.1	50	175	370 360
350 340	331 322	323 731	331 322	63.1 67.6	(106.0)	35.5 34.4	51.9 51.1	78.6 77.4	55.4 54.4	37.8 36.5	47	166 161	R350
330	313 303	313 TD 303	313	67.0 86.4	(107.0)	33.3 D 32.2	50.2 49.4	76.2	53.6	35.2	∧ C45	156 151	330
320 310	294	294	294	65.3	(105.5)	31.0	48.4	75.6	51.3	32.5 31.1	AD	146	310 300
300 295	284 280	284 280 275	284 280 275	65.2 64.3 64.5	(104.5)	29.8 23.2 28.5	47.5 47.1 46.5	74.9 74.6	49.7 43.0	30.4 29.5	42 41	139	29
290 285	275 278		270	64.2	77.	27.8	46.1	74.2 73.8	48.4	28.7	~	134	285
280 275	265 261	761	265 261	63.5 63.5	(103.5)	26.4	45.3 44.8	73.4 73.0	47.8 47.2	27.1 27.1	40		27
270 265	256 252			61.1 62.7	(103.0)	25.6 24.8	44.3 43.7	72,6 72,1	46.4 45.7	26.2 25.2	38	126 124	
260	247 243		247 243	62.4 62.0	(101.0)	24.0 23.1	43.1 42.2	71.6 71.1	45.0 44.2	24.3 23.2	37	121	
255 250	Z 3.8	238	238	61.6 51.2		22.2 21.3	41.7	70.6 70.1	43.4	72.2 21.1	36	116	25-
245 240		221	223	69.7	/ 28.1	29.3	46.3	59. 5		19.9	34)1)	24
230 220		201	209		96 7 95 0	(18 0 (15.7)	* * *		(5.518) (6.635)	33 32	101	22
210 200					93 4 91 5	(13 4 (11 0		***		•••	30 29	92	20
190	18		9	***	89.5 87.1	(8.5 (6 0)		232	13/4/41	2E 21		
180) 15	2 16	2 162	•••	85 D 81 7	(30	<u> </u>	7.0 ¥		3#63 #6 (201 8 728 23	2:	5 7	9 17
166 134	14	3 14	3 142		787	(0 0	***	2.0 2.0			2	2 7	1 15
146					75.0 71.2	CE.00		• • •					
12	0 11	4 11	4 114		66 7		1.0	•			7.4	5	7 13
10	0 F	ı\$ Ş	5 95 p6 94	5 ,	56.2	4.4				• • • •		82 -	. 1
9	0 1	56 1	18 8	s	48.0	١							
8	5 1		81 8				he joint S.					i	

b) The values in bold face type correspond to the values in the joint SAE-ABM-ASTM hardness conversions as printed in ASTM E48.

This is values in parentheses are beyond normal range and are given for information only

-						 	#							
						s -ck = ell perc) 	~— R∞in	ell auper	ecst —	(*1 000000		
Branell	Bonell	hardness	No (b),-	Duamond	A-scale, 60 kg	B scale,	C scale,	D-reals,	superfic a	rdoms No I base re		Shore sclero-		Brinell
mdenta.	10 mm	ball, 3000	ke load Tungsten	pyramid	load,	load.	load,	load.	15-N	30 - N	45-N	500 pe	Tensde	undents.
ti s d am,	Stand-	Hult- gress	CAL HIGH	bard-	b ale	I 16~10. dama	brale pene-	prais brais	scale, 15-kg	scale,	scale, 45-kg	hard- hess	strength (approx),	t pa dam.
1000 1000	ball	ball	ball	No	irstor	ball	trator	trator	load	load	load	No.	1000 pm	mm.
·	(V) - 12 (SV)		200	940	85 6	*************************************	68 0	76.9	93.2	84 4	75 4	97	•••	100 Telephone
,, *			***	920	85 3	>1.5	67.5	76 5	93 0	84.0	74 8	96	15.72	(.€) 30.€3
34	300	* * *	7.67	90 0 88 0	85 0 84.7		67 D	76 1	92.9 92.7	83 6	74.2	95	4,41,4	
30	•••	• • •	7 67 7 57	860	34.4	7.5.5	66 4 65.9	75.7 75.3	92.5	83 1 82.7	73 6 73 1	93 92	-11	
2.25	***		745	840	84.1		65 3	74.8	92 3	82.2	72.2	91	***	2.25
02.552	925		733	820	83.8	(Sortin	64.7	74 3	92 1	81.7	71.8	90	\$ * *	3.88
2 30	7.000	5.57	722 713	800	83.4	(#. •)))	64.0	73.8	91.8	81.1	71.0	88	E.A.0	2 30
		-4.	710	780	83 D	***	63.3	73.3	91.5	80 4	70.2	87	****	
10.000	56.934	(e. (e. (e))	698	760	82 6	• • •	62.5	72 6	91.2	79 7	69 4	86	***	•-•
2.35	• • •	***	684 682	740 737	82.2 82.2		61.2 61.7	72.1 72.0	91.0 91.0	79.1 79.0	68 6 6 8.5	84	600	2,35
		***	570	.30	81.8	•••	61.0	71.5	207	78 4	67.7	83		2.30
**	*(#74°	3430	656	700	81.3	(a) 1 (a)	50.1	70 8	90.3	77 6	66 7	• • •	6- F.A.	
2 40	::00%		653	697	81.2	• • • • •	60.8	70.7	90.2	77.5	66.5	81	202.2	2.40
20.5		•••	647 638	69 0 680	81.I 80.8	***	59. 7 59. 2	70.5 70.1	90.1 89.8	77.2 76.8	66.2 65.7	80	329	***
***	200		630	676	80.6	***	58.8	69 8	89.7	76 4	85.3	•	324	
2.45	5.5.4	delin	527	667	80.5		58.7	69.7	89 6	76.3	65.1	79	323	2.45
2.50	25	601	501	677 64 6	80.7 79. 3		59.1 57 -3	70.0 68.7	89.8 89.0	76.8 75.1	65.7 63.5	77	328 309	2 50
		578		648	79.8	***	57.3	68.7	89.0	75.1	63.5	ALTER A	309	i
2 55		1100000	578	615	79.1	108	56.0	67.7	88.6	73.9	62.1	75	297	2.55
2.60	T	555	LAMMAMT	607	78.8		55.6	67.4	8-3.1	73.5	61.6	4000	293	} 2.60
	V	VERIT	ATIS 555	591	78.4		54.7	66.7	57.S	72.7	60.6 59.8	73	285	· · · ·
2 65	{ :::	534	534	579 569	78.0		54.0 53.5	65.1 65.8	87.3 87.2	72.0 71.6	59.2	71	279	2 65
	j	514		553	77.1		52.5	65.0	86.7	70.7	58.0		266	i
2.70	i :::	710	514	547	76.9		52.1	64.7	85.5	70.3	57.6	70	263	} z.70
	495	$\langle X \rangle$	-/X.•>	5 39	76.7		51.6	64.3	86 3	69.9	56.9		259)
2.75	{ ···	495	495	536 528	76.3	KW WW	51.1 51.0	63.9 63. 8	85.0 85.9	69. 3 69. 4	56.2 56.1	68	254 253	2.75
	[477	امنت		516	75.9		50.3	63.2	85.6	68.1	55.2		247	Ý
2.80	1 1"1	477		508	75.6	5.85 84.**	49.6	62.7	85.3	68.2	54.5	56	243	2.80
2.85	461			495	75.1	*.*.*	48.8	61.9	84.9	67.4	53.5	• • •	237	2.85
2.43		461	17.71	491	74.9	21212	48.3	61.7	84.7	67.2	53.2	65	235	7 2.00
2.90	J 444	444		474 472	74.3 74.2		47.1	61,0 66,8	84.1 84.0	66 0 65.8	51.7 51.5	63	226 225	2.90
2,95	429	423	429	453	73.4	• • •	45.7	59.7	83.4	64.6	49.9	61	217	2.95
3.08	415	415	413	144	8.57		44.5	58.8	82.8	63.5	48.4	59	210	3 00
3.05	461	401	481	425	72,0	***	43.1	57.3	82.0	62.3 61.1	46.9 45.3	58	202	3.05
3.15	3 88 375	388 375	388 375	410 396	71.4 70.6	***	41.8	56.8 55.7	81.6 80 6	59.9	43.6	56 54	195 188	3.10 3.15
3 20	363	363	353	383	78.0		39.1	54.6	80.0	58.7	42.8	52	182	3 20
3.25	352	352	341	A 372	A 69.3	(1100)	37.3 36.8	53.8 52.8	79.3	57.6 56.4	40,5 39,1	51 50	176	3.25
3.39 3.35	341	331	O 1321	350	68.1	(109.0)	35.5	51.9	78.0	55.4	37.8	48	166	3.35
3.40	321	321	321	339	67.5	(108 0)	34.3	51.0	77,3	54.3	38.4	47	160	3.40
3.45	311	311	311	328	£33 £33	(107.5)	33.1 32.1	50.0	76.7	53.3 52.2	34,4 33,8	46	155	3.45
3.5 0 3.55	302 293	392 293	302 293	319	65.7	(107.0)	30.9	49.3	76.1 75.5	51.2	32.4	45	150 145	3.50 3.55
3.69	285	285	285	301	65.3	(105.5)	29.9) L _{47,8} 5	75.0	50.3	31.2	A.5	141	3.60
3.65	277	277	277	292	64.6	(104.5)	28.8	46.7	74.4	49.2	28.9	41	137	3.65
3.7 0 3.75	269 262	269 262	269 262	284 276	64.1 63.6	(104.0) (103.0)	27.6 26.6	45.9 45.0	73.7 73.1	48.3	28.5 27.3	40 39	133 129	3.7 0 3.75
3.80	255	255	255	269	63.0	(102.0)	25.4	44.2	72.5	48.2	26.4	38	126	3.80
3.85	248	248	248	261	62.3	(101.0)	24.2	43.2	71.7	45.L	24.5	37	122	3.85
3.90	241	241	241	253 247	61.8 61.4	100 Q 99 Q	22.8 21.7	42.6 41.4	70.9 70.3	41.9 42.9	22.8 21.5	35 35	118	3.90
3.95 4.0 9	235	235 229	229	241	60.8	98.2	20.5	40.5	69.7	41.3	20.1	34	115 111	3.95 4.00
4.05	223	223		234		97.3	(18.8)		• • •	9.0			3.670	4 05
4 10	217	217		228		95.4	(17.5)			• • •	•••	33	105	4 10
4.20	207	207 197		218 207	***	94.8 92.8	(15.2) (12.7)		***	#065 #14140	***	32 30	100 95	4.30
4.30 4.40	197 187	187		198		90.7	(100)			***		***	90	4 40
4.50	179	179	179	188	***	89 0	(8.0)	***	***	(€) €		27	87	4.50
4 60	170	170		178	***	86.8	(5.4)		3.3X		tre-wre	26	83	4 60
4.70 4.80	163 156	163 156		171 163	•••	85.0 82.9	(3.3) (0.9)		• • • •		•••	25	79 76	4 70 4 80
4.90	149	149	149	156	***	80.8	33.4	1000	***	***	1564	23	73	4 90
5 00	143	143	143	150	•••	78.7	•••	• • •		•••	• • •	22	71	5 00
5.10	137	137		14	•••	76.4 74.0	•••	•••			• • •	21	67	5 10 5 20
5,20 5,30	131 125	331 126		137		72.0	***		***		•••	20	65 63	5.30
5 40	121	121	121	127	F. 9.2	59 8			.33		3.83	19	60	5 40
5.50 5.60	11 5 111			122	140	67. 6 63.7	***	***	00000 7550-2	***	#6# @ \$5\$50	18 15		5.50 5.60
2 00	111	411	or State	***	•••	787 782 F	2	723 - 01 1	•••	***	11.00	10		*

(a) The values in bold face type correspond to the values in the foint BAE-ASM-ASTM hardness conversions as printed in ASTM facts. Table 3. b) Brinell numbers are based on the diameter of impressed indentation. If the ball distorts fattens) during test, Brinell numbers will vary in accordance with the degree of such distortion when related to hardnesses detamined with a Vickers diamond pyramid, Rockwell brale, or other penetrator which does not sensibly distort. At high hardnesses, therefore, the relationable between Brinell and Vickers or Rockwell sales is affected by the type of ball used. Steel balls standard or Builtgren) tend to

fisten slightly more than carbide balls, resulting in larger indentation and lower Brineil number than shown by a carbide ball. Thus, on a specimen of 640 Vickers, a Hultgren ball will leave a 2.55 mm impression (578 Bhn), and the carbide ball a 2.50 mm impression 601 Bhn) Conversely, identical impression diameters for both types of ball will correspond to different Vickets or Rockwell values. Thus, if both impressions are 2.53 mm (578 Bhn), material tested with a Hultgren ball has a Vickers hardness of 640, while material tested with a carbide ball has a Vickers hardness of 615, (c) Values in parentheses are beyond normal range.

2025000000000000						12-04-20		-2					0.000
	8%	8' 16	3 6	66	Rock	well bardne	ss No	Rocksel	auperficial	pardness		====	
		Bna	ell bardness	No	A-scale.	B scale,	D scale,	No supe	rheial brale	penetrator			
	Diamond	10 mm	ball 3000-		60-kg	100-kg	100-kg	15-N	30-N	45-N	Shore	Tensile	Rock
C scale	pyremid	t 2 12 121	See 1	Tungeten	load,	load 1/18-		scale,	nem)e,	scale,	neleroscope	strength	C-scal
prigade	bardbess	Standard	Hultgress	carbide	brale	യസ്ത	brele	15-Kg	30 - kg	45 - kg	hardness	(appros),	
No.	No.	p=II	pen	bell	penetrator	ball	penetrator	104	load	load	No.	1000 pei	No.
67 67	940				85.6		76.9	93.2	84.4	75.4	97	•••	61
67	940			1.2	85.0		76.1	92.9	83 6	74.2	95	•••	
56	365	1911 E) = 1 = 1		84.5	7.5	75 4	92.5	82.8	73.3	92	***	65
65	8.32	•••		739	83.9	***	74.3	97.2	\$1.9	72.0	91		65
64	806 772		15.50	722	83 4	***	73.8	91.5	81.1	71.0	88		64
8	746	5.65	31.00	705 688	82.8		73.0	91.4	80.1	69.9	88 87		•
#24BB6	720	****		676	82.3 81.5	•••	72.2	91.1	79.3	68.8	85		9857589
	697		2.1		5433337	***	71.5	50.7	78.4	67.7	83	***	61
59	574		613 599	634 635	81.2		70.7	90 2	77.5	66.6		THE REAL PROPERTY.	
58 57	653	***	587	638	80.7		69.9	1,01	76.8	65.5	18 06	326	60 59
57	633	***	575	395	80.1	• • •	69.2	89.3	75.7	63	78		33
56	613 595 577 360	***	561	577	79.6 79.6	***	68.5	88.3	74.8	63.2	76	315 305	84
33	595	444	346	560	78.5	***	67.7	88.3	73.5	62.0	76	295	31
53	377		534	543	78.0	***	66.9	87.9	73.0	60.9	15	287	30
53	514	224	519	560 543 525	77.4	***	66.1	87.4	72.0	59.3	75 74 72	278	23
56 54 53 52 53 53	544 528	487	508	512	76.1		65.4	26.9	71.2	58.6	71	269	24
	513		494	496	76.3		64.6	86 4	70.2	37.4	60	262	58 57 56 55 54 53 52 53
49	498	475 464	481	481	75.9	-0.276	63.4	85.9	69.4	56.1	68	253	51
44	484	451	469	469	75.2	#.A.=	63.1	3.5	68.5	35.0	32.20	100000000000000000000000000000000000000	
54 49 41 47 46 45	471	451 442	435 443	453 443 432	74.7	***	62.1	85.0	67.6	53.8	67	245	59 48 47 46 44 43 41
46	458	432	432	463	74.1	***	61.4	84.5	66.7	32.5	66	239	65
43	445	421	421	421	- 73.6		E0.2	83.9	65.8	51.4	64 63	232 225	68
42	434	409	409	409	73.1	• • •	60.0 59.2	23.5	64.B	50.3	93	2/3	4.6
1984	423	400	409	400	72.5	220	58.5	83.0	64 0	49.0	62 60 38 57 36 55	219 212	77
6	402	390	330	390	72.0 71.5	3.004	57.7	82.5	637	47.8	38	206	44
-/-	L Section	321	3101	381	70.3	***	56.9	82.0 81.5	62.Z	46.7	57	201	ü
200	392 382	371	371	371	70.4		56.2	20.9	61.3	45.5	56	196	42
3	172	.365	362	362	69.3		55.4		60.4	44.3	55	191	41
37	Title RE	: FLA 353 A M	353	362 353	69.4		54.6	20.4	59.5	43.1	54	186	44
36	353 354	FLA153 AM Rita 344 1327	344	344	68.9	• • •	53.A	79.9 79.4	58.8 57.7	41.9	52	181	33
35	345	334	336	336	68.4	(109 0)	33.1	78.8	27.7	40.8	51	376	38
ENCKER	335	327	321	327	67.9	(108.5)	52.3	78.3	56.8 55.9	39.6 38.4	54 52 53 50 69 48 47 46 43	172	S R R R R R R R R R R R R R R R R R R R
73	321	311	319	319	67.4	(ina ni	51.5 -	78.3 77.7 77.2	35.0	37.2	19	168	36
32	316	301	311	311	66.3	(107.5)	50.8 50.0	77.2	54 0	36.1	36	163	35
31	310	294	301 294	301	66.3	(107 6)	49.2	76.6	53.3	36.1 34.9	ii.	134	ñ
36	302			294	65.R	(108.0)	48.4	26.1	53.3 52.1 51.3	33.7	44	154 150	32
n n n n n n n n n n n n n n n n n n n	294	286 279	286 279	286	45.3	(105.5)	47.7	75.6		32.5	43	346	31
21	286	271	279	279	64.7	(104.5)	47.0	75.0	50.4	31.3	40	142	39 29 28 27 26 25 24 23 22 21
27	279	264	271	271	64.3	(104.0)	46.1	74.5	49.5	30,1 28.9 27.8 26.7 25.5	42 41 40 38 38 37 36 35 35	138	23
DE .	272	256	264	264 258	63.8	(103.01	45.2	73.0	48.6	24.9	41	134	28
23	266	258 253	251 253	253	63.3	(102.5)	44.6	73.3 72.2 72.2	46.8	26.3	40	131	27
22 22 22 22 22 22 22 22 22 22 22 22 22	260	247	247	247	62.8	(101.5)	43.8	72.2	45.9	25.5	38	127	25
23	254	243	243	243	62.4	(101 0)	437	71.6	45.0	24.3	37	124 121	24
22	24	237	žñ	237	61.5	100.0	42_1	71.0	44.0	Z3.1	36	118	23
21	243	237 231	231	237 231	61.0	99.0 98.5	41.4	70.5	63.2	22.0	3.5	115	22
20	228	224	226	226	80.5		60.5	69.9	42.3	20.7	35	113	21
(18)	230	219	219	219		97.8	40.1	69.4	41.5	19.6	34	110	26
(16)	222	212	212	212	•••	96.7 95.5		•••	• • •	•••	34 33 32	106	(18)
(14)	213	203	203	203		93.9	•••	***		•••	32 31	102	(16)
(12)	204	194	194	194		02 3	***	***	***		31	98 94 90	(14)
(10)	196	187	187	187	14 -	90 7		***	***	2.55	28	en 1	(10)
(8)	188	179	170	179	TEAL	89.5	I A Γ)E::N		7.7.	77	87	(8)
(8) (6)	180	171	771	171		90 7 89.5 87.1	/L/AVIL	JEE I		V III	26	84	(6)
(4)	173	165	265	165		85.5				UE ES	29 24 27 25 25 24	80	(4)
(3)	166	158	158 152	158		83.5		***	•••	• • •	24	22(R)	(2)
(0)	260	152	152	152	• • •	81.7	***		#1#1#)	•••	24	75	(0)

(a) The values in bold face type correspond to the values in the joint SAE-ASM-ASTM hardness conversions as printed in ASTM But Table 2 Values in parentheses are beyond normal range and are given for information only.

Brinell Hardness Numbers (10-Mm Ba	l Diameter)	ĮĮ.
------------------------------------	-------------	-----

ndenta	1400		• ***	6 6 005			Indentat	K000		-				Indentat	JOD.		1	l. k g-		
DATE:	500	1908	inad 1500	2000	2500	\$000	diam.	800	1900	1500	1, kg- 2000	2500	8000	dam, mo	506	1000	1500	2000	2500	300
2 00	158	316	473	632	788	945	3.50	50.3	101	151	201	252	302	5 00	23.8	47.6	71.5	95.2	119	143
2 05	150	300	450	600	788 750	899	3.55	48.9	97.8	147	196	246	293	5.05	23.3	46.6	70 0	93.2	117	140
2 10	143	288	428	572	704	856	3 60	47.5	95 0	143	190	238	285	5.10	22.6	45.6	68.5	91.2	114	137
2 15	136	272	409	544	481	817	3 65	46_1	92.2	139	184	231	277	8.15	22.3	44.6	67 0	89.2	112	134
2.20	130	260	390	520	250	780	3 70	44 9	89.8	133	180	225	269	5.20	21.8	43.6	65.5	87.2	109	131
2.25	124	248	373	496	621	745	3 75	43 B	87.2	131	174	218	262	5.25	21.4	42.8	64 0	85 6	107	128
2.30	119	238	356	476	593	712	3.80	42 4	84 B	128	170	212	255	5.30	20.9	41.5	63 0	83 6	105	128
2.35	174	228	341	456	568	652	3.85	41.3	82 B	124	165	207	248	5.35	20.5	41.0	61.5	82.0	103	123
2 40	209	218	327	436	545	653	3.90	40.7	80 4	121	161	201	241	5 40	20.1	40.2	60.5	80 4	101	131
2 45	104	208	314	416	522	627	3.95	39.1	78.2	118	156	196	235	5 45	197	39 4	59.0	78 E	98.5	118
2.30	100	200	301	400	500	601	4 00	38.3	78.2	115	152	191	229	5.50	19.3	38.6	58 0	77.2	96.5	116
2.55	96 3	193	229	385	482	578	4 05	37.1	74.2	112	148	186	223	5.55	18.9	37.B	57.0	75.6	95 0	114
2 60	92.6	185	278	370	462	555	4 10	36.2	72 4	109	145	181	217	5 60	18.6	37.2	35.5	74 4	92.3	111
2 65	29 0	178	267	356	445	534	4 15	35.3	70 8	106	141	177	212	\$.65	18.2	36 4	54.5	72.8	90 8	109
2 70	85 7	171	257	343	429	514	4.20	34 4	68.8	104	138	172	207	5 70	17.8	35 6	53.5	71.2	89.2	10.
2 75	82 6	165	248	330	413	495	4.25	33.6	67.2	101	134	267	201	5 75	17.5	35.0	52.5	70 0	87.5	105
2.BG	79.6	159	239	318	398	477	6.30	32.8	65.6	98.3	131	164	197	5.80	17.2	34 4	51.5	8.88	85.8	103
2.85	76 8	154	231	307	384	461	4.35	32 0	64 0	96 0	128	160	192	5.85	16.8	33 6	50.5	67.2	84.2	101
2.90	74.1	148	722	296	371	444	4 40	31.2	62 4	93.5	125	156	157	5.90	16.5	33 0	49 6	66 0	82.5	99
2.95	71.5	143	215	286	358	429	4 45	30.5	61.0	91.3	123	153	163	5.95	16.2	32 4	487	64.8	81.2	97.
3 00	69 1	138	208	276	346	415	4.50	29.8	59 B	89.5	110	149	179	6 00	15.9	31.8	47.8	63.6	79.5	95.
3 05	66 B	134	201	267	334	401	4.55	29 1	38.2	87 0	116	145	176	6 03	15.0	31.2	46.9	62 4	78.0	83
3 10	64.6	129	194	258	324	388	4 50	26 4	56.B	85.0	114	142	170	6 10	15.3	30.4	44 0	61.2	78 7	03
3 15	62.5	123	188	250	313	375	4 65	27.8	55 6	23.5	111	139	167	6 15	25.1	30.2	45.2	60 4	73.3	90.
.20	60.5	121	162	242	303	363	4 70	27 1	54.2	81.5	108	136	163	6.20	14.8	29 6	44.4	59.2	73.8	89
25	58.6	117	176	234	293	352	4 75	26.5	53 0	79.5	106	133	159	6.25	14.5	29.0	43 6	58 0	72.6	67.
30	36.8	114	171	227	284	341	4.80	23.9	51.8	78.0	104	130	156	6.30	14.2	28 4	42.	56 8	71.3	25.
35	55 1	110	156	220	276	331	4 83	25 4	50.8	76.0) 02	127	152	6.35	14 D	28 0	42.0	56 0	70 0	84
40	53 4	10:	161	214	267	321	4.90	24.8	49 6	74.5	99.2	124	149	6 40	337	27 4	413	54 8	68 8	₽2.
45	51.8	104	156	207	259	311	4.95	34.3	48.5	73 0	97.2	123	146	6 45	13.5	27.0	40.5	54 C	57.5	81

PARTE I. - ROLADOS EN CALIENTE, NORMALIZADOS Y RECOCIDOS 15.4.- PROPIEDADES DEL ACERO AL CAKEON Y ALEADOS

1															-
Ro. C	OIRE(Yield Strength.	Tensule Strength, Psu	Elonga Ilon	Reduc tion in Area.	Hard Mess Blyn	Impaci Strength (170d), F1 Lb	ALERE FLAM	ONO	Yield Strength, Psi	Tensile Strength,	Elon gs lion, %	Rrduc lion in Area.	Hard ness. Bhn	Impact Strength (Irod), F1 tb
1015		45 500	61.000	39.0	019	126	8 5	1340	Normalized (1 600 F)	81.000	121.250	22.0	629	82 82	~ 63
	Normalized (1 200 F)	47,000	61.500	37.0	9 69	121	85.2		Annealed (1.475 F)	63,250	102,000	25.5	573	202	25.0
100000000000000000000000000000000000000	-	41.250	26 000	37.0	69 7	Ξ	æ	3140	Normalized (1 600 F)	87,000	129,250	19.7	573	262	395
2,5	_	48 000	65.000	36.0	980	143	079	1	Annealed (1,506 F)	61,250	100,000	24.5		197	34.2
	American (1980)	067,04	64.000	35.8	6/9		80 cm	4130	Normalized (1 600 F)	63,250	97,000	25.5	59 5	161	63
	_	0000	062.70	9 %	000		3		Annealed (1,585 F)	52.250	81,250	282	556	156	45.5
Ĩ		000.23		25.0) v	6 5	9 20	4140	Normalized (1 600 F)	95,000	148,000	17.7	468	305	191
	Autorité de (1 G/10 F.)	46,000	65.250	350	9 69	3	2		Annealed (1,500 F)	90.500	95.000	25.7	56.9	761	402
Ξ		50 700	80 000	32.0	5/0	5.2	550	4150	Normalized (1.500 F)	106 500	167,500	= {	88	321	و د د
	New York of (1 2011) F)	000 0%	75 500	32.0	809	149	069	7007	Minicales (1 300 r.)	20,000	OC / CD	3	7 0	ř.	201
	O Dr. 1) prophasiny !	49 500	67,250	31.2	57.9	126	515	026*	Normalized 640 F)	67.250	115 000	20.8	8	ž:	e 6
Ē	- T	60 000	000 06	25.0	5	۶	36.0		Annealed (1.360 F)	C79.19	3	- ₹	200	ŝ	ت چ
	Rength male all	54 250	85 500	280	54.9	1.0	480	4340	Normalized (1 900 F)	125 000	185 500	122	363	363	2:
	1 Amy 1 4 (1 4 (0 F)	81 250	75 250	30 2	57.2	149	32.7		Anneared (1 490 F)	000	108.000	0 77	2		
? E	_	20 000	105,000	200	40.0	229	230	4620	Normalized (1 650 F)	53.125	83 250	062	66.7	7.4	086
	Norm digred of Rap Fy	95 no	108 500	20 0	39.4	217	002	(A. 100 (A. 10)	Annealed (1,5/5/1)	100 K	4.250	F F	2	64	0.59
	Appropriated (1 1740 F)	53 000	92 250	23.7	39.9	187	12.5	4820	Normalized (1.580 F)	70,250	109.500	24.0	59.2	523	%
3		7p 1000	118 000	0 / 1	34.0	241		100 miles	Annealed (1,500 F)	67.250	98.750	223	88	197	68 5
	Manual Comment	00u 19	112 500	180	3/12	229		5140	Normalized (1 600 F)	68 500	115 000	127	59.2	229	280
	Anne ried (1 450 F)	54.000	90.750	22.5	38 2	179	e0	Service Servic	Annealed (1.525 F)	42.500	83.000	286	57.3	167	30 0
E	_97	85 000	140 000	120	170	283	20	5150	Normanzed (1.600 F)	76.750	126,250	702	58.7	255	23.2
	Norm street (1 650 F)	26 000	146 500	01:	20 6	293		:0	Annealed (1 520 f)	25 250	98.000	22.0	43.7	761	185
	-	24 500	89 250	24.7	450	7.	~	5160	Normalized (1 \$75 F)	77,000	138,750	17.5	8 8	569	80
60	_	83 000	140 000	0.6	180	293	00		Annealed (1 495+)	40.000	104 750	17.2	30 6	161	7.4
	Normalized (1 650 F)	005 22	000 (1)	9.8	135	293	40	6150	Normalized (1 600 F)	89 250	136 250	218	910	569	26 2
0	5%	25 000	95.250	30	9 0 2	192		1	Annealed (1 500 F)	58 750 027	96.750	230	48.4	<u> </u>	202
=	922	000	70 600	330	69.0	E 3	09	8620	Normalized (1 675 F)	51.750	91.750	263	28 7	183	73 5
	14 Deg () Degripmion	9 5	3.5	335	85	2 :	8 5	1	Annealed (1 600 F)	55 875	77.750		62 1	149	828
-	Amircaled (1 37312	0000	(167.70	921	286	2 :	o (8630	Normalized (1 500 F)	62.250	94 250		535	187	69 8
9	_	200	0.00	32.0	000	5) r		Annealed (1 550 F)	30 F	81.750	0 62	688	95	70.2
	Annealed (1 450 ft	41 250	65.250	34.5	6 4	2 =	2 2	2650	Normalized (1 600 F)	99.750	148 500	2 5	0 .	305	90
2		200	000	28.0	2 4		? .	0110	La Con 11 na eannin	30.00	2	52	40	212	7 12
		\$7500	9,000	22.5	485	6	4 0	8/41)	Annualized (1 500 F)	98 000	134.750		47.9	55.5	_; _;
	Annealed (1 450 F)	90° SX	84 750	992	53.9	ž	36.8	9264	Marmalined (1,500 ft)	2000	3 3	775	9 9	ē i	5.62
=	As willed	52 000	98 000		38.9	19.7	8 2	1676	Annealed 11 550 Fa	200	135 (50	2 6 6	7 -	569	0 v
	Normalized (1 650 F)	58 750	102 500		55.5	Ŕ	38.8	9310	Normalized (1 610 Ft	22.750	21 500			9 5	
	-	92 F	85 R/10	25.5	49]	3	73.3		Annested (1 550 F)	63.750	200 61	95	2 2	62.	2 0
=	_	2 2 3	107.000	310	0 1	212	39.0							7	
	Mormation of 1 650 FT	05.5	2: 2:	0 i	\$U :	6	2:	5	We grader are fine eranad arread	Ji all men	In 1860 to 1880 1880 to	WI	1		

(Part 1), white properties of quenched and tempereis Data mere abtained from specimens 0 505 in in grades are for single heats (Parl II) Sources of the Because of the many variables that affect a steel a properties however these tisted proprietes of a given grade of steel in the indicated condition didmeter which were machined from I in rounds lage lengths were ? in Average properties of his rolled normalized and annealed malerial are listed fals are Bethlehem Steel Carp and Nepublic Steri cal Both strengths and ductiblies may range up and down from the values given depending on the combon steels and many alloy steels are also affected by residusi elements (aarficularly nickel chrom.um and molybdenum) even though their amounts are should not be considered either as average or type positions of individual heats of the same grade yer tion sizes, and internal structures. Properties of car fine grained steels normally have better impaci should be considered when reviewing the results of led lests. Mardress values are not always related to limited to maximums by AISI and SAI specifica Strength than coarse grained types a factor which effect occurs with carbon steels because they are shallow hardening Hardness lesss were made on corresponding tensile strengths in particular this ing bar centers (Center hardnesses are usually Suifacts and these hardnesses will not reflect the fentile Biengifts ablained milb specimens represent lower than surface hardnesses \$ S

as a guide to show the potential user what to repect

These Datasheats (Pari I and Pari II) are offered

Hot rolled properties for altoy signic are and given BI GIELDI

because these grades are customaridy heat treated Recause the tamples were small enough to assure full quenthing values indicate strengths and duc thines which may be obtained with hardened fine wal weer to alle ubrides it, wit to blotte pavied

PARTE II.- TEMPLADOS Y REVENIDOS

AISI No "	Tempering Tempera ture F	Tensile Strength, Psi	Yield Strength, Psi	Elonga tion,	Reduc tion in Area, %	Hard ness, Bhri	AISI No	Tempering Tempera Ture, F	Tensile Strength, Psi	Yield Strength, Psa	Elonga tion,	Reduc tion in Area,	Hard ness, Bhn
													
1030	400	123 000	94 000	17	47	495	1330†	400	232,000	211 000	9	39	459
	600	116 000	90 000	19	53	401		600 800	207,000 168 000	186,000 150,000	9 15	53	402 335
	800	106 000	84 000	23	60	302		1 000	127 000	112 000	18	60	263
	1 000	97 000 .	75 000	28	65	255		1,200	106 000	83 000	23	63	216
100000000	1.200	85 000	64 000	32	70	207	1240	124 459-1-1-1	262 000		2000	35 -	505
1040†	400	130 000	96 000	16	45	514	1340	400 600	230 000	231 000 206 000	11 12	43	453
	600	129 000	94 000	13	52	144.		800	163 000	167,000	14	51	375
	800	122 000	32 000	Z!	57	352		1 000	140 000	120 000	17	58	295
	1 000	113 000 97 000	86 500 72 000	23 28	61	259 231		1 200	116 000	90,000	22	66	252
10.725.20	1 200	dell extravery is	0.000 0.000 0.000		És		4037	400	149 000	and the same of	6	38	310
1040	400	113 000	86 000	19	45	CSC CSS	7026	600	138 000	110 000 111,000	14	53	295
	600	115 000	86 000 060 08	21	52 54	::: ::::		800	127 000	106 000	20	60	270
	1000	164 200	71 300];	57	2	(1	1 000	115 000	95 000	23	63	247
	, 1 200	92 000	63 330	1 29	35 35	192		1 200	101 000	61,000	29	60	220
	721201547651	163 000	1 117 200	9	2-	214	4042	400	261 000	241,000	12	37	516
1050+	400 I 600	158 000	115 900	1 13	36	144	3 * 3 *	600	234 000	211,000	13	42	455
	800	145 000	110 000	13	48	. 3"5		800	187 000	170,000	15	51	380
	1 000	125 000	95 000	23	58	293		1,000	143,000	128,000	20	59	300
	1,200	104 000	78,000	28	65	235		1 200	115 000	100,000	28	66	238
1050	400 ERE	FLAMMAM			0 (mm m)	-	4130÷	400	236,000	212,000	10	41	467
1050	600 VE	142,000	105,000	14	47	321	71001	600	217 000	200 000	ii	43	435
	800	136,000	95,000	20	50	277		800	186 000	173 000	13	49	380
	1 000	127 000	84 000	23	53	262		1,000	150 000	132,000	17	57	315
3/11111	1,200	107,000	68 000	29	60	223		1,200	118,000	102,000	22	64	245
1060	400	160 000	113 000	13	40	321	4140	400	257,000	238,000	8	38	510
1000	600	160,000	113,000	13 -	40	321		600	225,000	208 000	9	43	445
	800	156,000	111,000	14	41	311		800	181,000	165,000	13	49	370
	1 000	140 000	97,000	17	45	277		1,000	138,000	121,000	18	58	285
	1,200	116,000	76,000	23	54	229		1,200	110,000	95,000	22	63	230
1080	400	190 000	142,000	12	35	388	4150	400	280,000	250,000	10	39	530
	600	189 000	142,000	12	35	388		600	256,000	231 000	10	40	495
	800	187.000	138,000	13	36	375		800	220,000	200,000	12	45	440
	1,000	164 000	117,000	16	40	321		1,000	175 000	160,000	15	52	370
	1,200	129 000	87,000	21	50	255		1,200	139,000	122,000	19	60	290
1095†	400	216 000	152,000	10	31	601	4340	400	272,000	243,000	10	38	520
- TN T1	600	212,000	150,000	11	33	534	/ A T	600	250,000	230,000	10	40	486
$\cup \cup \cup$	800	199 000	139,000	13	(35)	388	VLA I	800	213,000	198,000	10	4.4	430
	1,000	165,000	110,000	15	40	293		1,000	170,000	156,000	13	51	360
	1,200*	122 000	85 000	20	47	235	Market College	1,200	140,000	124,000	19	60(R	280
1095	400	187 000	120,000	10	30	401	5046	400	253,000	204,000	9	25	482
	600	183,000	118,000	10	30 R	△375	DEF	800	205,000 165 000	168,000 135,000	10 13	37 50	401 336
	800	176,000	112 000	15.	32	363 321		1,000	136,000	111,000	18	61	282
	1 000	158 000	98,000 80,000	15 21	37 47	269		1,200	114,000	95.000	24	66	235
	1,200	130,000					50846	400	,	34,000		_	560
1137	400	157,000 143,000	136,000	5	22	352 285	30040	600	258 000	235,000	10	37	505
	500 800	127,000	122.000	10 15	33 48	262		800	202 000	181 000	13	47	405
	1,000	110,000	88,000	24	62	229		1,000	157,000	142,000	17	51	322
	1,200	95,000	70,000	28	69	197		1,200	128,000	115,000	72	60	273
1137+	400	217 000	169 000	5	17	415	50 660	400	_			_	600
	600	199 000	163,000	9	25	375		600	273,000	257,000	8	32	525
	800	160 000	143,000	14	40	311		800	219,000	201 000	11	34	435
	1 000	120 000	105 000	19	60	262		1,000	163 000	145.000	15	38	350
	1.200	94 000	77,000	25	69	187		1,200	130 000	113,000	19	50	290
1141	400	237,000	176 000	6	17	461	5130	400	234 000	220,000	10	40	475
ALCO TU	500	212.000	186 000	9	32	415	**************************************	600	217 000	204,000	10	46	440
	800	169 000	150 000	12	47	331	•	800	185,000	175 000	12	51	379
	1 000	130 000	111 000	18	57	262		1.000	150.000	136,000	15	56	305
	1 200	103,000	86 000	23	62	217		1,200	115,000	100,000	20	63	245
1144	400	127 000	91 000	17	36	277	5140	400	260,000	238.000	9	38	490
	600	126.000	90 000	17	40	262		600	229 000	210 000	10	43	450
	800	123 000	88,000	18	42	248		800	190 000	170 000	13	50	365
	1 000	117,000	83 000	20	46	735		1,000	145,000	125 000	17	58	280
	1 200	105,000	73 000	23	55	217		1,200	110 000	96,000	25	66	235

[&]quot; All grades are fine grained except for those in the 1100 series which are coarse grained. Hormalizing and annualing temperatures are given in parentheses. "Water quenched.

		-	7. R			Reduc	_
	1	Tempering	Tensile	Yield	Elonga	tion in	b.
	Afei			324	100		
	AISI	Tempera	Strength,	Strength.	tion,	Area.	ñ:
	No *	ture, f	PSı	Psi	%	%	Bi
	5150	400	282 000	251 000	-	37	52
	3130	103921785			5		
		600	252 000	230 000	6	40	47
	1	800	210 000	190.000	9	47	411
	1	1,000	163 000	150 000	15	54	340
		1,200	117,000	118 000	20	60	270
	5160	400	322 000	260 000	4	10	627
	527 5	600	290,000	257,000	9	30	555
		800	233,000	212,000	10	37	461
		1,000	169 000	151 000	12	47	341
	3						269
	7.000 VALUE (2.11)	1,200	130,000	116,000	20	56	
	51B60	400	—)		5-	_	600
	1	600				-	540
		800	237,000	216,000	11	36	450
		3,000	175,000	160,000	15	44	355
		1,200	140,000	126,000	20	47	290
	6150						
	9130	400	280 000	245,000	8	38	538
		600	250,000	228 000	8	39	483
		800	208 000	193 000	10	43	420
ONO	1	1,000	168 000	155,000	13	50	345
TONOM		1,200	137,000	122,000	17	58	282
	81845	400	295 000	250,000	10	33	550 `
	0.545	600	256 000	228 000	8	42	475
WALERE FLAMMAMW	1	800	204,000	190,000		48	405
VERITATIS					11		
	2	1,000	160 000	149 000	16	53	338
		1,200	130 000	115 000	20	55 .	280
	8630	400	238,000	218 000	9	38	465
	0	600	215,000	202 000	10	42	430
	1	800	185,000	170 000	13	47	375
A CANAL OF THE SERVICE OF THE SERVIC		1,000	150 000	130,000	17	- 54	310
		1,200	112,000	100,000	23	63	240
	0540						
	8640	400	270,000	242,000	10	40	505
		600	240,000	220,000	10	41	460
		800	200 000	188,000	12	45	400
		1.000	160,000	150,000	16	54	340
		1,200	130 000	116,000	20	62	280
	86B45	400	287,000	238,000	9	31	525
	00043	500	246,000	275,000	9	40	475
		800	200,000	191 000	11	41	395
		1 000		150 000		5.45.25	335
TIMITUED CIDAD ATITÓN			160,000		15	49	
UNIVEKSIDAD AUTUN		1,200	131,000	127,000	19	58	280
	8650	400	281,000	243 000	10	38	525
	1	600	250 000	225 000	10	40	490
r .		800	210,000	192,000	12	45	4:0.
DIRECCIÓN GENERA		1 000	170 000	153,000	△ 15	51	340
DIRECTION GENERA	AL L	1,200	140,000	120 000	20	-8	
	8660	400	್ಷಾ ಕಾರ್ಡಿಸಿಕ ಕ	ARTO MAR	MA.	W.361	1.
	9000		-	-	_		• . •
		600			_	***	4
		800	237.000	225 000	13	3.	•••
		1,000	190 000	176 000	i"	45	
		1.200	155,000	138 000	25	: 3	::
	8740	400	290 000	240 000	10	4.	• 3
		500	249,000	225 000	11	4÷	4.5
		800	208 000	197 000	13	÷.	
		1,000	175 000	165 000	15	55	753
		1.200	143 000	131 000	20	60	3.5
	A022						6:1
	9255	400	305 000	297,000	1	3	
	1	600	281,000	260,000	4	16	5.8
		800	233,000	216 000	8	22	477
<u>;</u>	S	1 000	182 000	160 000	15	32	352
.•1		1 200	144 000	118,000	20	42	285
	9260	400	(_	R—4	600
		600		10,000	- '	_	540
		800	255 000	218 000	8	24	470
		1,000	192 000	164 000	12	30	390
		1 200	142 000	118 000	20	43	295
	282	N 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A CONTRACTOR OF THE PARTY OF TH	And the second of the second o		A Design	
	94B30	400	250 000	225 000	12	46	475
		600	232 000	205,000	12	49	445
	1	800	195,000	175 000	13	57	385
		1,000	145,000	135 000	16	65	307
		1.200	120 000	105 000	21	69	250
	200	16					

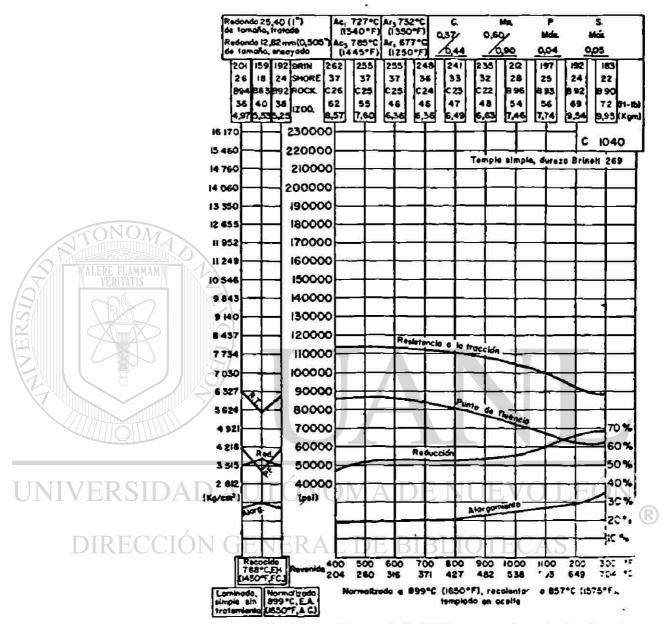
15.5.- PROPIEDADES TIPICAS DE ALGUNOS ACEROS INOXIDABLES

pulg °F). (b) Los valores medios aproximados de la resistencia máxima de los materiales, 403, 410 y 416 están dados por $S_u = 351 + 32,70$ (NDB), en kg/cm^2 (o bien $S_u = 5 + 0,465$ (BHN), en ksi). (c) Varía con los detalles del tratamiento térmico y del trabajado en frío. (d) Trabajado en frío, plena dureza. (e) Los límites de fa nes. En cizalladura, para alambres de resortes estirados en frío, G ≈ 745 250 kg/cm² (o bien G ≈ 10,6 X 10⁶ psi). (g) Tira de 1,48 mm (0,058 pulgadas). (h) Mínimo. (i) Barras de 25,40 mm (1 pulgada). (j) PH, endurecido por precipitación; Republic Steel IH 1050; Su min garantizada = 11 952 kg/cm² = 170 ksi; S¹n para 10°. tiga para aceros inoxidables se pueden estímar en 0,48_u, hasta la resistencía a la tracción de 11 250 kg/cm² (160 ksi) aproximadamente. (f) Varía algo según el estado: recocido, trabajado en frío, eliminado de tensio-Notas: (a) Coeficiente de dilatación térmica a temperatura próxima a la del ambiente, cm/cm °C (o bien pulg/-

1000									-	1						
			•				MÓD	MÓDUI O	۶.		MVC MH				ju	
	RESISTENCIA	NCIA .	LÍMITE DE	品	LIMITE DE	20	BLASTICIDAD	CIDAD	ALARGA-	REDUC.					.0. X	
	MAXIM	MA	FLUENCIA	٧I	FATIGA S'A	* 5 ×	S	_	MIENTO.	Š	NDB (BHN)	DENSIDAD	DAD	00211	<u>a</u>	
MATERIAL			EN TRACCIÓN	NOTO	E	•	J		5	MREA.	(medla)			ច		OBSERVAGIONES
151 T . ×	Se	<u>ુ</u>	7	છ	Ν.	T	щ	ы	S0 mm	*	-			_		
	kg/cm	ksi	kg/cm,	ksi	kg/om	kg/om* ksi	₽×		(2 pulg) (c)	3	ତ	.kg/dm	kg/dm' lb/pulg'	pie-lb	ES ES	
30 1 10E	1	13641	C 2737E3	76/4	11001	1 30/2	070	å	STORE		076	100			0 %	
יייי ז'א מחום.	(17)00/0	(15)(21	1 (The (1) (1) (1) (1) (1) (1)	(m)	4107/8		200	07			007	16.	097'0		6.01	(1/ % Cr., / % INI) USO general, uc.
302, recocido	. 6 327	8.	2 601	37	2390	¥	1,968	82	15	59	150	7,92	0,286	8	17.3	coración, estructurales Austenitico. Endurecible por trabajo
					L	Г	V								ę:	
302, 1/4 duro.	. 8 788(g)(h) 125(g)(h)	125(g)(h)	\$ 273(h)	75(h)	4921(d	75(h) 4921(d) 70(d) 1,968	1,968	87	12(h)		260	7,92	0,286		17,3	302, 303 son aceros inoxidables 18-8.
303, recocido.	6 327	8	2 460	35	2460	35	1,968	28	ş	\$\$	160	7,92	0,286	80	17,3	Austenitico Endurecible por trabajo
2 2 3 3 9				TO MONTO	Γ	Г					A					
304, recocido. , 5 976	. 5 976	85	2 460	35	1	T	1,968	28	25	02	120	7,92	0,286	110	17,3	Austenitico. Endurecible por trabajo
	-31	¥:		744	Γ	Г	E									
316, trabajado en				Mano		T	A Vertical Property of			97.00	20 CH					Austenstico. Endurecible por trabaso
frio (r)	. 6 327	8	4 218	3	2812	9	-,968	28	45	65	8	7.92	0,286		0'91	en frio.
321, recocido	. 6116	78	2 460	35	2671	38	1,968	78	S	65	150	8,02	0,290	01 1	16,7	Estabilizado por Ti.
347, recocido	. 6 327	&	2812	ð,	2742	30	1,968	28	8	53	160	7,92	0,286	8	16,7	Austenitico. Endurecible por trabajo
					1		E				-		,			en frio.
403, 410, con tra-	16				Γ	· T	E				090				-	
(amiento lermi-		_					V	-	×	3.3				ÿ		
(4) 00	/ /#(h)	(F)	5 976(h) 85(h) 4077	83(h)	4077	28	2,038	53	22	3	522	7,73	0,279	2	10,2	Martensitico, Eudurecible por trata-
Tele, uabajado en	יאיינט ר	(000)	740	ú	72.6	_ E) [6	ŗ	5	-	í			,	miento térmico.
(0) (0)	<u> </u>	(a)	0/00		07/6	2 5	2.035	5 5	, T	3 5	3:	2.	0,2/9	2	7'01	
416, recocido (6) 3.273	677 0	C/	7197	⊋	7197	2	2,038	£7	⊋,	8	661	7,70	0,278	٤	10,2	Martensitico. Endurecible por trata-
	-					3	E)	7.0	,		300		(miento térmico.
430, recocido 5273	., 5273	57	3 163	€	2812	₽	2,038	53	2	Ş	091	7,67	0,277	33	10,4	Ferritico. No endurecible por trata-
TOO ILV	34	æ		9,)]				_					miento térmico.
, 0.001 1.000 (A)	70.646	- 03.			=2		0.00	6	•	0.7	,	ì		_	1000	Martensitico. Endurecibie por trata-
. Ha	040	001) 1 6	3		(2,038	ζ,	2	8	77	ć,	6,28	20	=	miento térmico hasta alta resistencia
	10, 201		708 GT,	351	C00E	R	2000	0,	(K/K)	7	7001	7.68	7250			(17 % Cr. 7 % Ni. 1,15 % Al) Solu-
	-		ŀ		7007	7	00017	7	(u)	5	J. 70%	G)	0,770	55	10,1	i ción recocida, etc.

* OQT 1000 = Oil Quenched and Tempered at 1000* F = Templado y revenido en aceite a 538° C. (N. del T.)

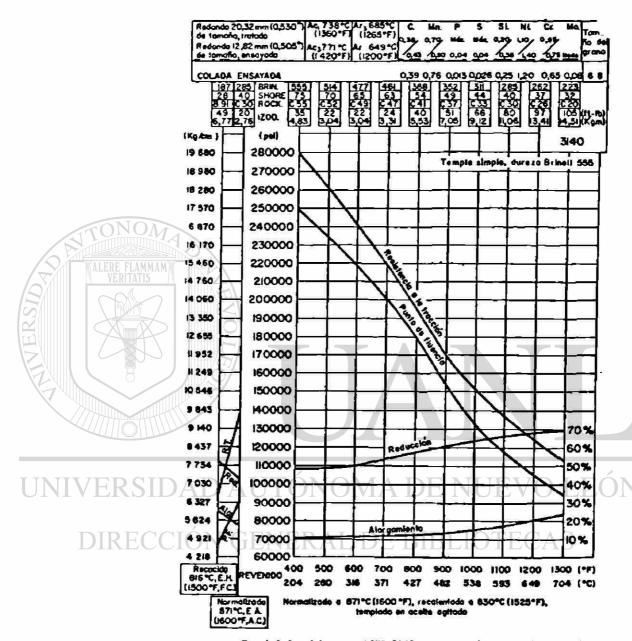
Notas: Los coeficientes aproximados de dilatación térmica son en cm/cm-°C (o bien en pulg/pulg-°F): hierro gris, 10 X -- 10 6 (o bien 5,6 X 10 6); hierro maleable, 11,9 X 10 6 (o bien 6,6 X 10 6); hierro nodular, 12,1 X 10 6 (o bien 6,7 X 10 6); acero moldeado, 11,7 X 10 6 (o bien 6,5 X 10 6) (pero varía -- apreciablemente con la composición).


Coeficiente de Poisson: hierro gris, 0,211 (min); hierro maleable, 0,265; hierro nodular, 0,16; acero moldeado, 0,27. -(a) Las especificaciones ASTM y SAÉ no son iguales. (b) Maqui nabilidad, valores relativos, AISI B1112 = 100%. (c) Diámetro 30,48 mm; soportes, 457,2 mm (o sea 1,2 pulgada diametro. so-portes 18 pulgadas). (c) Los resultados de los ensayos indi-can que la resistencia a la flexión del hierro fundido en secciones simétricas, calculada por S_f = M/Z, es aproximadamente 1,9Su a 2Su. Se usa 1,9Su. (e) Calculada. (f) Valores mínimos. Los valores típicos pueden estar comprendidos entre 10 y 40% más elevados. (g) Los materiales ASTM 35 y de grado (cali dad) más elevado se consideran que son de alta resistencia, y son más caros. (h) Para hierro fundido con 25% de resistencia máxima; varía con las dimensiones de la sección y el análisis químico. (i) Flexión invertida. Para hierro gris, 0.45u<5'n< 0,6Su. (j) El número indica las propiedades mínimas; por ejem plo, 80-60-03 indica $S_{ij} = 80$ ksi (5624 kg/cm^2) , $S_{ij} = 60$ ksi (4218 kg/cm^2) (deformación permanente de 0,2%) y alargamiento de 3%, mínimo, en sección de 25,40 mm (1 pulgada) aproximada-mente. (k) 0,3% C, máximo. (1) N&T, símbolo de "normalizado y revenido" (en inglés, "normalized and tempered"). Las pro-piedades de las piezas fundidas de acero varían con los contenidos de carbono y de elementos de aleación, y con el tratamien to térmico, como en el acero forjado; mínima S'n = 0,4Su. (m) Impacto de Charpy, entalladura en ojo de cerradura, 21°C, kgm (o bien 70°F, pie-lb). (n) Impacto de Charpy, entalladura en V. (o) Se toma igual a Su. (p) ASTM A339-55. (q) ASTM A395-56T. (r) ASTM A396-58. (s) Para el proyecto se admiten resis tencias máximas de compresión y resistencias de fluencia del hierro nodular iguales a Su y Sy, respectivamente. (t) Grados o calidades comerciales corrientes. (u) Revenido a 649°C (1200 °F). (v) Típica $s_u = 6749 \text{ kg/cm}^2$ (96 ksi), $s_y = 5132 \text{ kg/cm}^2$ - (73 ksi) cuando WQT 1200 (o sea, templado en agua y revenido a 1200°F, equivalentes a 649°C). (w) Tipo de aplicaciones generales.

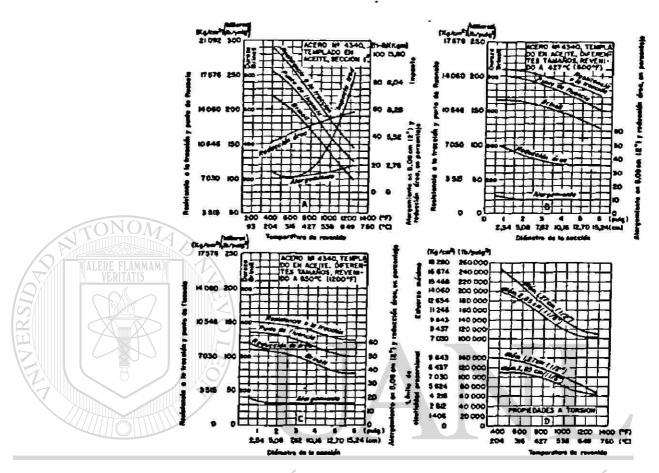
	MÍNIMO ESPESOR	DE PARED RECOMENDADO		5,17	(= 9,52 mm (- 9,52 mm	t = 15,87 mm t = 19,05 mm	t = 25,40 mm	(= 3,17 mm (= 3,17-22,22 mm	en 5 cm AREA		18	2	30			28(u) 68(u)	24 50		9(f) 22(f) 8 15
	72.73	(b)			3.2	\$ 8				120			\$\$	98 59		9/	0,00	200	
	90.5	E 700		10,7	7,04	7,26	7,45		Ÿ	7,26	7.19		7.86	38,7	7,86	7,86	7,86	7,86	7,86
	502	kgm mgx			3,18	4,28 98	10,36	13,82		1,65	1,24-2,76(n) 0,27-1,10(n)	0,27-0,83(n)	2.48(m)	3,18(m)	4,14(m)	3,04(m) 4.14(m)(u)	2,76(m)(u)	3,45(m)	1.66(m)
EUND TOOS	NO.	SOB SOB		156	201	292	302	24. 18.		120	160	270		329	<u> </u>	160	8.	233	310
FERROSOS FUNI	MADULO DE CIZA-	G × 10-4 kg/cm²	THE V	0,274(f)	0,365(f)	0,450(f) 0,450(f)	0,548(f)			0,752 0,752	0,668	969'0	906	808.0	808'0	808.0	808'0	808'0	808.0
MATERIALES FERROSOS	MÓDULO	C.DAD E × 10 kg/cm²	((y)	0,675(f)	0,914(f)	1,124(3)	1,434(f)	0,843(f) 0,843(f)	1	1,757	1,617	1,617		2,109				2,109	2,109
MATERL	FLUENCIA	TRACCIÓN Fu kg/cm²						1 968(f)		2 390 2 566	3 866 4 569	5 624	7 10%()	2 460(f)	2812(5)	1 51 5411(1)	4 218(f)	6 679(f Km	8 788(f) 10 194(l)
UNaVE		kg/cm²	(e)	703 808	984	00 T	1727		Δ.1	1792 1898	2109	3093(e)	V	1968		2460	3882	3845	4569
TIPICAS	RESIS.	(C) Kg		839 986	1145	1440	1678						ARBONO	lizado	opezije		<i>/</i> 1	` (R
	EQ	Tors. kg/cm²		1828	2812 1409	4007	(17Z9		EF	4077	4007 5132	6187	MAX CONT DE CARBONO Y TRATAMIENTO TÉRMICO	0,3 % C, Recocido 0,3 % C, Normalizado	0,35 % C. Normalizado	T&N TOW	28.5	F 60 ★ 8	WOT TOW
PROPIEDADES	MAXIMA	su. kg/cm³		2249	2882	3656	4218			3174	No.		MAX CC	20°	0.25 %				
PROP	RESISTENCIA MÁXIMA	ser kg/cm³	ê	5835	7 662	9843	13 147	7 030(1)		(E) (S)	© 9	(8)		4 2(8(1) 4 569(f)	4 921(5)	\$ 624(f)	6 127(1)	7 381(f)	10 546(f)
		s. kg/cm³	(6)	1 406(f) 1 757(f)	2 109(f)	2 812(f)	4 218(f)	1 757(f) 2 460(f)		3 646	4 02)	7 7 34		4 218(f) 4 569(f)	4 921(f) 4 921(f)	\$ 624(f)	(1)(2)(2)	7 381(f)	10 546(f)
		MATERIAL N.º ESPECIFICACIÓN	CARO GRIS (g) (fund simplemente sun tratamiento)	STM SAE(a)	•	(g) 120 · · · · · · · · · · · · · · · · · · ·	g)	P. Resist, Inco K-6	ERKO MALEABLE	STM Grado 47-22 75 9 47-52 75 95 95 95 95 95 95 95 95 95 95 95 95 95	END FONT OF LEAF	. !. : :: . :	CERO WILLEN	127-58(1) 127-58(1) 1/3 J. K.	127 58 127.58	1148 58 086	1148-58 090	1148-58 0105	4148-58 (1150

PROPIEDADES TIPICAS DE LOS MATERIALES FERROSOS FUNDIDOS (Continuación)

MATERIAL N.* ESPECIFICACIÓN HIERRO GRIS (g) (fund simplemente sin tralamiento) ASTM SAE(a) 10 110 15(g) 120 4 (g) 5 (g) 6 (g) N Resist, Inco K-6 Mechanite (w)	20(f) 25(f) 35(f)	RESISTENCIA MÁXIMA Suc ksi (d) (d) 83 97 109 140 124 164 187 60 100(f)	32 ksi ksi 64 60	Tors. ksi 48,5	RESIS. TRANSV. Jibras (c) 1850 2175 2525 2850 3175 3600 3700	LIMITE DE PATICA S'. (c) (c) ksi 11.5 11.5 11.5 21.5 221.5	PLUENCIA EN TRACCIÓN Sy ksi	Mόνυιο ELASTI- CIDAD E > 10 ' 9,6(f) 11,5(f) 13(f) 14,5(f) 16(f) 18,8(f) 20,4(f) 12(f)	Nicotro 01 4,660 3,26	AL DE BIBLIOTECAS	1200 pie-lb 23 25 31 63 75	DENSIDAD 16 pulg* 0,253 0,253 0,254 0,257 0,262 0,269 0,269	80 65 50 50
€	35(5)	100(1)					28(f)	12(f)	Ol	190			
HIERRO MALEABLE ASTM Grado AA1 51 32 510 A47-52 35 018	\$ 23	© ©	43	38 88		25.5	34,3	25	J. ÓN	ENER	12 16	0,262 0,262	22
H ERRO FUNDIDO NODULAR (J) 6 45-10 (recocido) (q) 80 60 03 (fund. simplem.) (p) 1 to 70-03 (trat. térmico) (r).	70 88 110	(s) (s)		57 73 88(e)		30 40 44(e)	65	23	2,000	160 230 270	9-20(n) 2-8(n) 2-6(n)	0.26	4
ASTM SAE(a) A.7 58(i)	60(1)	?	7 3 17 18 18 18 18 18 18 18 18 18 18 18 18 18	HIN CONT DE CIRBONO TRATINHENTO HEN CO	HBONO FRU CO)દ >	thor	00	ĐΑ	CIO		}	
A27 (8(t) 0010(k)		4 1 4 7 m = 1		 		2 13 2 13 2 13 2 13 2 13 2 13 2 13 2 13	38(7)	\$ 8		EC.	523 (a) (b)	0,284	an (8-5)(8-7
A 48 58 080	8	· ·		í.	RE & VERT		40xf1	30	12	RI	30(m)	0,284	111.7572 3
	8 (f)	ਨੂੰ ਤ ਿਲ * ਹ∀		TC	ALE	2,5	N.K.1NOS	30	1.	170	22(m) 30(m)(u)	0,284	HOR OF THE
A146 58 6105.	150	, ·		メルフ		49	85(1)	30	- - -	190	20(m)(u)	0,284	**
	120(f)	ž II		10.		≵ ⊄	95([#w]	8 8	ŧ	269	28(m) 25(m)	0,284	** **
	1751()	J~3 ()		7 CT	()		14301	130	į	310		0,284	4 2


15.7.- GRAFICA DE PROPIEDADES DEL ACERO 1040

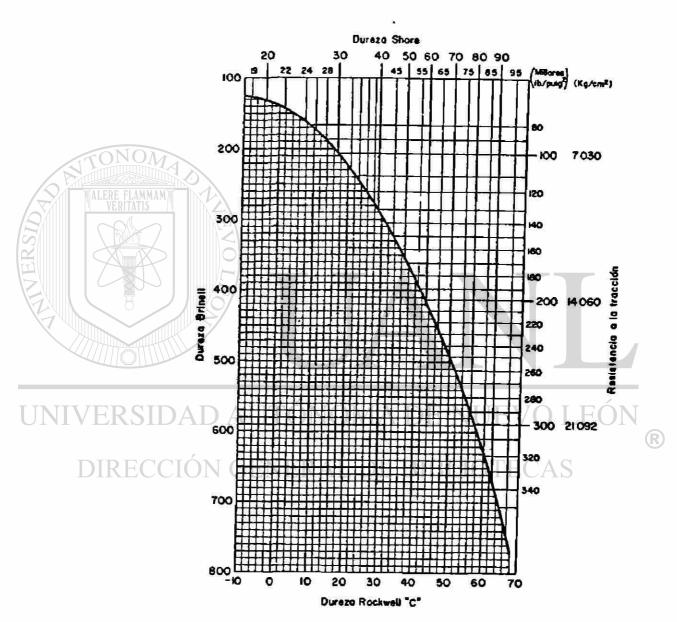
Propiedades del acero AISI C1040 con tratamiento térmico Las abscisas son temperaturas de revenido. Valores medios Los ábacos como éste son una guta sobre las propiedades mecánicas probables cuando el diámetro es de 6,35 a 38,10 mm (o sea de 1/4 a 1.1/2 pulgada).


E.H., abreviature de centrado en homos F.C., abreviatura de efurnace cooledo E.A., abreviatura de entrado al aire A.C., abreviatura de cair cooledo (N. del T.)

15.8.- GRAFICA DE PROPIEDADES DEL ACERO 3140

Propiedades del acero AISI 3140 con tratamiento térmico. Resultados colada unica. Las abscisas son temperaturas de revenido. Obsérvese el tratamiento térmico especificado y el tamaño de la probeta. La máxima resistencia $s_* = (35)$ (NDB) en kg/cm², o bien $s_* = (500)(BHN)$ en psi Este material se emplea mucho para piezas tratadas térmicamente. Para $R_c = 28$, la descarburación de la superficie reduce la resistencia a la fatiga en un 50 %. Para $R_c = 48$, la descarburación de la superficie reduce la resistencia a la fatiga en el 75 %, hasta aproximadamente $r_* = 5765$ kg/cm² (o bien 82 ksi), pero este porcentaje en inusitadamente alto

15.9.- GRAFICA DE PROPIEDADES DEL ACERO 4340


JNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Propiedades del acero AISI 4340 tratado térmicamente. Otra manera de especificar las propiedades mecánicas; los ábacos A, B y C indican propiedades a tracción; el ábaco D da las propiedades a torsión. Es una excelente aleación para aplicaciones generales. A continuación se indican otras resistencias diversas a la fatiga de este acero. Para s, ~ 18 980 kg/cm² (o bien 270 ksi).

Superficie no descarburada, $s_n = 6257 \text{ kg/cm}^2$ (o bien 89 ksi) Superficie descarburada hasta 0,76 mm (o bien 0,03 pulgada), $s_n = 2812 \text{ kg/cm}^2$ (o bien 40 ksi). Superficie descarburada, granallada, $s_n = 6679 \text{ kg/cm}^3$ (o bien 95 ksi). OQT 1075 (580° C), diâmetro 1,58 cm (o bien 0,625 pulgada), superficie nitrurada, $s_n = 8437 \text{ kg/cm}^3$ (o bien 120 ksi). Probeta de material laminado, transversalmente, $s_n = 3163 \div 4921 \text{ kg/cm}^3$ (o bien 45 \pm 70 ksi).

	Temp	eratura	Fa invertida, R	=-	Repetida,	R = 0
Para s, ~ 11 249 kg/cm'	.c	•F	kg/cm*	ksi	kg/cm ³	ke.
(o bien 160 ksi); varia-				-		
ción de la resistencia a	21,1	70	8226	117	4921	70
la fatiga con la tempe-	316	600	6749	96	4288	61
ratura.	427	800	5765	82	4148	59
1	538	1000	4570	65	2742	39

15.10.- RELACION DUREZA Vs. ESFUERZO

Relación entre números de dureza.

15.11.- PROPIEDADES TIPICAS DE METALES FERROSOS FORJADOS (DULCES)

Modulo de elasticidad en tracción o compresión, $E=2~109~000~kg/cm^2$ - (o bien 30 X $10^6~psi$). (Para hierro dulce, $E=1~968~000~kg/cm^2$, o bien $28~X~10^6~psi$).

Módulo de elasticidad en cizalladura o torsión, $G = 808\,500\,\mathrm{kg/cm^2}$ (o bien 11,5 X $10^6\,\mathrm{psi}$). (Para hierro dulce, $G = 703\,000\,\mathrm{kg/cm^2}$, o bien $10\,\mathrm{X}$

10⁶ psi).

La resistencia de fluencia en torsión (cizalladura) está comprendida -

frecuentemente entre 0,5Sy y 0,6Sy. Se emplea 0,6Sy.

Limite de fatiga de una probeta pulida, flexión invertida, aproximadamente $S_{\rm U}/2$.

Limite de fatiga en torsión invertida, aproximadamente 0,65 n.

El coeficiente de Poisson es aproximadamente de 0,25 a 0,33. Se em-plea 0,3 para el acero.

La densidad es aproximadamente 7,85 kg/dm² (o bien 0,284 lb/pulg²). --

(Para hierro dulce, 7,75 kg/dm3, o bien 0,28 lb/pulg3).

EKS	MATERIAL	ESTADO			IIMA TENCIA		DE FLU	TENCIA	ALARGA- MIENTO	REDUC•	NOS
	N. AISI	(c)	kg/cn	i. Lei	sa(kg/cm²	all the same	kg/cm		5,08 cm (2 pulg)	área %	(BHN
	Hierro dulce Acero forjado	Laminado simple	3 374	(a)48(a)	2 531	36	1 7570	a)25(a)	35	ŀ	
	C1010(k)	Estirado en frio	4 710	67	3 5 1 5	50	3 867	55	25	57	137
	C1015(k)	Estirado en frio	5 413	77	4 077	58	4 429	63	25	63	170
	C1020	Laminado simple	4 569	528 (542	3 445	49	3 374	48	36	59	143
	C1020	Normalizado	4 499	64	3 797*	54+	3 515	50	39	69	131
	C1020	Recocido	4 007	57	3 023	43	2 952	42	36,5	66 M	331
13 111 IEB 61	C1020(k)	Estirado en frio	5 483	78	4 077	58	4 640	66	20	59	156
INIVERS	C1022	Laminado simple	5 062	72	3 797	54	3 656	52	35	67	149
JI II V EIKS	C1030	Laminado simple	5 624	80	4 218	60	3 586	51	32	56	179
	C1035	Laminado simple	5 976		4 499	64	3 867	55	29	58	190
	C1045	Laminado simple	6749	96	5 062	72	4 148	59	22	45	215
DIR E.C	C1095	Normalizado A	9 913		7 381	105	5 624	80	8	16	285
	B1113(k)	Acabado en frio	5 835	83	4 359	62	5 062	72	14	40	170
	B1113	Laminado simple	4 921	70	0.000		3 163	45	25	40	138
	C1118	Laminado simple	5 273	75	3 937	56	3 234	46	32	70	149
	C1118(k)	Estirado en frío	5 624	80	4 218	60	5 273	75	16	57	180
	C1144	OQT 1000 (538°C)	8 296	118	6 187	88	5 835	83	19	46	235
	1340	OQT 1200 (649° C)	7 945		5 905	84	6 468	92	21	61	229
	13B45	OQT 800 (427° C)	13 147		9 843	140	12 303	175	16	56	
	2317(e)	OQT 1000 (538° C)	7 451	106	5 554	79	4 991	71	27	72	220
	2340(e)	OQT 1000 (538°C)	9 6 3 2	0.000	7 241	103	8 437	120	22	60	285
	3150		10616		7 945	113	9 140	22	16	54	300
	3250(e)	QT 1000 (538°C)	11 670		8 577	101.000	10 264	10000	16	52	340
	4063	OQT 1000 (538°C)			9 491		11 249		14	43	375
	4130	WQT 1100 (593°C)		1.503	6 679	95	8 015	707 0	18	62	260
	4130(e)	Estirado en frio	8 577	THE COLUMN TWO IS NOT	6 398	91	7 381	District 19	16	45	248
	4340(c)	Estirado en frio	8 577		6 398	91	7 381		15	45	248
	4640(e)		10 686		7 311	104	9 140	-0-3	19	56	310
	5140(e)	OQT 1000 (538°C)			7 945	113	8 999	200	19	55	300
	5140(e)	Estirado en frio	7 381	Agriculture In	5 554	79	6 187	88	18	52	212
	8630	Estirado en frio 10 %			6 046	86	7 030		22	53	222
	8640	OQT 1000 (538° C)			8 4 3 7	10750-9783	10 546	515.F0	16	55	3311
	8760	[전시기의 보고프트	15 468	Sec. 1990 (1991)	11 600	1915.00	14 068	100 S 100 S	12	43	420
	9255	OQT 1000 (538° C)			9 4 9 1		11 249		15	32	311
	9440	OQT 1000 (538° C)		152	7 311	104		135	18	61 48	161
	9850	OQT 1100 (593°C)	17 600	190	9 491	135	11 108	28	15	75	Second

El coeficiente de dilatación térmica (lineal) es de 0,0000126 cm/cm-°C (o bien 0,000007 pulg/pulg-°F). (Para hierro dulce es de 0,0000117 cm/cm-°C, o bien 0,0000065 pulg/pulg-°F).

Notas. Una B precediendo al número AISI indica Bessemer, como B1112; la C delante indica acero Siemens-Martin, como C1020. (a) Valores mínimos. (b) Recocido. (c) QT 1000 indica "templado y revenido a 1000°F" (o sea a - 538°C), etc. Las expresiones OQT o bien WQT significan que el correspon-diente tratamiento térmico se efectúa "en aceite" (oil), o bien "en agua" - (water), respectivamente. (d) La resistencia máxima en cizalladura se ha - tomado arbitrariamente igual a 0,75 de la "máxima resistencia a la tracción" excepto los valores señalados con asterisco * que son valores de ensayo. -- (e) Probeta de 25,40 mm (una pulgada). (f) Torsión. (g) Recocido en facto ría. (h) Estirado en frío. (j) Muesca en V Charpy, 21,1°C (o bien 70°F) (k) Las propiedades dependen de la magnitud del trabajo en frío.

WERSI		ROCK	lZe kgm	oo pie-lb	MAQUI- NABI- LIDAD (i) —	ALGUNOS USOS TÍPICOS. OBSERVACIONES
		B60	JJII	0/	50(h)	ASTM A85-36, A41-36.
				2/	5	Ser vitaliseating is such display
1/4				1	50	Barras, tiras, chape, placa. Perfiles estirados en frío.
			18,94(j)	137(j)	50	Barras, chapas Tabla AT 8. Para cementación: tabla AT 11.
		B79	8,84	64	64	Acero estructural; placa, chapa, tira, alambre.
		B74	9,95	72		Calidad de cementación, tabla AT 11.
		B66	11,06	80		Aplicaciones generales.
		B83	2222		62	Piezas diversas de máquinas, forjadas en frío; barras.
		B81	8,29	60	70(h)	Aplicaciones generales.
OTAL		B88	7,60	55/	60	Piezas de maquinaria, Tabla AT 8. NUEVULEUN
		B91	6,22	45	57	Piezas de méquinas. Pueden ser tratadas térmicamente. Tabla AT 9
		B96	4,14	30	51	Ejes grandes.
		C25	0,41	\mathbb{N}^3	39	Herramientas, muelles. Usualmente, tratadas térmicamente. Tabla AT 9,
		B87 B76		TAG	135	Mecanizado fácil; alto contenido de azufre. A A Mecanizado fácil; alto contenido de azufre.
		B81	11,06	80	82	Mecanizado fácil; ordinariamente sin soldadura. Cementación, tabla AT II.
	[7]	Det	15,20(j)		85	Tabla AT 8 para C1117.
	54	C22	4,97	36	A SOUTH COLUMN	Mecanizado fácti. Alto contenido de azufre. Tablas AT 8 y AT 9 para C1137.
		C31	13,13	95		(1.75 % Mn). Acero al manganeso.
		C42	23,13	-	43(8)	1345 con boro para mejorar la templabilidad.
		B97	11.75	85	55(h)	(3 ½ % Ni) Engranajes, forros (camisas) de bomba, etc.
		C30	6,91	50		(3 ½ % Ni) Engranages, etc.
		C32	6,36	46		(1.25 % Ni. 0.8 % Cr). Engranajes, pernos, ejes, etc.
		C36.5	4.14	30		(1.85 % Ni 1.05 // Cr) Engranages, etc.
		C40	8.15	59	,-2	(0,25 % Mo). Ejes, barras, etc.
		C25	11,75	85	65(b)	0.95 % Cr. 0.20 % Mo) Ejes, piezas forjadas, pasadores, tubos para aviación.
		1	#.H#.	0.4.2.		(1,85 % Ni, 0.8 % Cr. 0.25 % Mo). Aplicaciones generales. Figura AF 3.
	•	C33	5,66	41	55(b)	(1.85 % Ni, 0,25 % Mo).
	3	C32	CHANGE			(0,80 % Cr) Engranajes, ejes, pasadores, etc.
		3			60(g)	ORD AND LINES COME OF THE PROPERTY OF THE PROP
						(0.55 % Ni, 0,5 % Cr, 0,2 % Mo). Tabla AT 9.
		C35	4,97	36		(0,55 % Nī, 0,50 % Cr, 0,20 % Mo).
		C46	2,62	19		(0.55 % Ni, 0.50 % Cr, 0.25 % Mo). Herramientas, engranajes, pernos.
		C36	0,96	7	200000000000000000000000000000000000000	(2,00 % St, 0,82 % Mn). Muelles, cinceles, herramientas.
		C33	10,09	73		(0,45 % NL 0,4 % Cr. 0,11 % Mo).
		C37 1	6,91	50	50(b)	(1 % Ni. 0.8 % Mn. 0.8 % Cr. 0.25 % Mo). Service pesado; aplicaciones
						generales.

15.12.- PROPIEDADES TIPICAS DE ACEROS EN DIVERSOS TAMAÑOS Y ESTADOS

(a) Torneado. (b) 10 %. (c) Inconsistente, de diferentes factorias.

	AISI	ESTADO		ARRA	RESIST	6-0-56-0		E COORDINATED	% EN 5,08 cm	CIÓN ÁREA	NEOB (BHN)		XO
			cm	pulg	kg/cm		kg/cm	, kai	(2 pulg)	×	(DILLY)	kgm	pie-It
	C1015	Laminado simple	1,27	Ж	4288	61	3198	45,5	39	61	126	11,19	81
	NIO	Recocido	2,54	1.	3937	56	2952	42	37	69,7	111	11,47	83
ITU	NO	Normalizado Normalizado	1,27	1/2	4429	63	3374	48	38,6	71	126	11,75	85
		Normalizado	2,54	1	4323	61,5		47	37	69,6	121	11,75	85
TALER		Normalizado	5,08 10,16	.4	4218 4148	60 59	3128 2938	44,5 41,8	37,5 36,5	69,2 67,8	116 116	11,89 11,47	86 83
VI VI	CILIZ	Laminado simple	1,27	*	4963	70,6		44,3	33	63	143	8,29	60
		Recocido	2,54	1 2	4359	62	2847	40,5	32.8	58	121	9,54	69
	3447	Normalizado	1,27	34	4900	69.7		45	34,3	61	143	9,67	70
Y IIII CX		Normalizado	5,08	2	4710	67	2917	41,5	33,5	64.7	137	11,47	83
7		Normalizado	10,16	4	4478	63,7	The state of the s	35	34,3	64,7	126	11,61	84
A HKS D	C1030	Laminado simple	1,27	1/2	5624	80	3586	51	32	54	179	7,60	55
	3	Recocido /	2,54	1	4710	67	3445	49	31	57,9	126	7,05	51
		Normalizado	1,27	1/2	5448	77,5	3515	50	32	61,1	156	9,54	69
Y W		Normalizado	10,16	4	5096	72.5	3304	47	29,7	56,2	137	8,43	61
		WQT 1000	2,54	1	6187	88	4780	68	28	68,6	179	12,72	92
		Laminado simple	1,27	*	6538	93	3867	55	26	63	192	8,43	61
		Recocido	2.54	1	5976	85	3515	50	27	54	174	5,11	37
		Normalizado	1,27	*	6890	98	4077	58	25	58	201	9,54	69
		Normalizado Estirado en frio	5,08 2,54	2 1	6749 7241	96 103	3445. 6538	93	22 15	51 56	197 217	2,90	21
				4/1	6327	90	3867	55	27	54	174	4,42(c)	
		Recocido	2,54	1	6960	99	4288	61	25	49	207	6,63(c)	
-		Normalizado Lam. en caliente (a)	2,54	1 [1]	6116	87	3797	54	77	56	187	7,05(c)	
		Estirado en Írio (b)	5,08	ЬK	7030	230	5976	85	L19()	45	235	1,05(0)	21(0)
		WQT 1000 (538°C)	1,27	3%		130	7734	110	16	56	260	10,37(c)	75(c)
		WOT 1200 (649°C)	1,27	34		110	5905	84	23	61	220		
		WOT 1000 (538°C)	5,08	2		110	4921	70	23	50	205	11,75(c)	85(c)
		WQT 1200 (649°C)	5,08	2	6890	98	4499	64	26	58	190		rowell SV
		WQT 1000 (538°C)	10,16	4	6609	94	4148	59	25	49	180	8,57(c)	62(c)
8		WQT 1200 (649°C)	10,16	4	6538	93	3867	55	28	55	186		et ats
.,	Ç1050	Laminado simple	1,27	1/2	7170	102	4077	58	18	37	229	3,18	23
		Recocido	2,54	1	6468	92	3726	53	23,7	40	187	1,66	12
		Normalizado	1,27	*	7804	-53	4359	62	21,5	45	223	2,35	17
		Normalizado	10,16	4		100	3937	56	21,7	41,6	201	2,76	20
	-	Estirado en frio	2,54	1		113	6679	95	12	35	229		
		OQT 1100 (593°C)	1,27	X		122	5695	81	22,8	58	248	3.04	22
		WQT 1100 (593°C)	1,27	7.4		119	6187	88	21,7	60	241	7,05	51
		OQT 1100 (593°C)	5,08	2 2	SUMMERS SE	112	4780	68	23	55,6 61	223	2,76	20 24
		WQT 1100 (593°C)	5,08	4	ACCUMENTS.	101	5518 4112	78,5 58,5	23 25	54.5	207	3,31 2,90	24 21
		DQT 1100 (593°C) WQT 1100 (593°C)		4 1		112	4780	68	23.7	55,5	229	2.07	15

15.13. - PROPIEDADES TIPICAS DE ACEROS TRATADOS TERMICAMENTE

Para obtener la resistencia o el número Brinell para cualquier otra temperatura de revenido, interpolar con repartición lineal entre los valores dados. La extrapolación para temperaturas más bajas puede dar a veces una estimación razonable, pero no se puede confiar en ella.

(a) No interpolar utilizando este valor.

(Medio denfria-		WHO	REVI	ENIDO A	MÁXIMA RESISTENCIA Sa	PUNTO DE FLUENCIA EN TRACCIÓN 5y	NDB (NHH)	ALARG. % EN 5,08	I	00
VERITATIS WILLIAM	'em	pulg	·c	•F	kg/cm² ksi	kg/cm³ ksi		(2 pulg)	kgm	pic/lb
C1035 (agua)	2,54 2,54 2,54	1	316 538 704	600 1000 1300	8 296 118 7 170 102 5 976 85	6116 87 5132 73 4007 57	240 200 170	11 22 29	5,53 7,88 12,85	40 57 93
C1095 (aceité)	1,27 1,27 10,16	1/2	427 593 593	800 1100 1100	12 373 176 to 194 145 9 140 130	7 874 112 6 187 88 4 570 65	363 293 262	11 17 17	0,83 0,83 0,69	. 6 6 5
C1137 (aorite)	1,27 1,27 5,08	1/2	371 538 538	700 1000 1000	9 491 135 7 804 111 7 381 105	8 085 115 - 6 187 88 4 429 63	277 229 217	12 23 23	1,79(a) 8,43 4,28	61 31
2330 Acero al niquel (agua)	1,27 1,27 1,27 10,16	ж Ж	316 538 704 538	600 1000 1300 1000	14 760 210 9 491 135 7 522 107 7 381 105	13 710 195 8 858 126 6 397 91 5 976 85	429 277 217 207	13 20 26 26	5,39 10,64 15,07 12,02	39 - 77 109 - 87
VER 4140 A Cr-Mo (aceite)	1,27 1,27 1,27 10,16	× × ×	260 427 649 649	500 800 1200 1200	18 980 270 14 760 210 9 140 130 7 874 112	16 943 241 13 710 195 8 085 115 5 835 83	534 429 277 229	11 15 21 23	1,10(a) 2,90 11,47 J2,02	
4150 Cr-Mo (aceite)	1,27	×	427 649	800 1200	16 029 228 11 178 159	15 110 215 9 913 141	444 331	10 16	1,66(a) 7,32(a)	12(a) 53(a)
5150 Cromo (aceite)	1,27 1,27 1,27	X X	427 538 649	800 1000 1200	14 760 210 11 249 160 8 929 127	13 710 195 10 475 149 8 226 117	415 321 269	11 15 21	2,35(a) 5,39 8,15	17(a) 39 59
6152 Cr-V (accite)	1,27 1,27 1,27 5,08	% % %	371 538 649 649	700 1000 1200 1200	17 294 246 12 936 184 9 983 142 8 507 121	15 748 224 12 163 173 9 210 131 6 608 94	495 375 293 241	10 12 18 21	1,24(a) 4,14 8,98 6,22(a)	9(a) 30 65 45(a)
8630 Ni-Cr-Mo (agua)	1,27 1,27 10,16	% %	427 593 593	800 1100 1100	13 006 185 9 632 137 6 749 96	12 233 174 8 788 125 5 062 72	375 285 197	25	8,01 13,13 14,37	58 95 104
8742 Ni-Cr-Mo (aceite)	2,54 2,54 10,16	4	371 649 649	700 1200 1200	9 140 130 8 296 118	14 271 203 7 734 110 6 397 91	455 262 235	11 21 22	1,93(a) 9,26(a)	14(a) 67(a)
9261 St-Mn (aceite) 9840	1,27 1,27 1,27 2,54	X	427 482 649	900 1200 700	15 110 215 10 335 147	16 029 228 13 498 192 8 718 124 15 045 214	514 429 311	10 11 17	1,66 1,79 4,83(a)	12 13 35(a)
Ni-Cr-Mo (aceile)	2,54 15,24	1	549 538	1200	9 843 140 10 616 151 .	8 437 120 9 210 131	280 302	19 16	8,98(a)	65(a)

15.14.- PROPIEDADES DE RESISTENCIA A LA FATIGA DE LOS METALES

La relación de fatiga a. s. disminuye cuando aumenta la dimensión de la sección, hasta un valor tan bajo como 0,35 para la dimensión de 152,40 mm (o bien 6 pulg) en acero fundido.

MATERIAL	' ESTADO	PARA NÚM	F ₆ DE CICLOS	-		٤,	3,
	1	kg/cm³ (i	b) ksi	(4)	kg/c	o ku	,
Hierro dulce	Longitudinal	1617	23	0.49	1968	28	1,2
Hierro dulce	Transversal	1335	19	0,55	1757	(c) 25(c) 1,3
Hierro fundido	ASTM 30	843	12	0,38			0
Hierro fundido	ASTM 30	1124 en 10º	16 cn 10°	1			1
Hierro fundido	ASTM 30	1476 en 10°	21 en 104	d .			1
	Fundic, simple, sin tratar	2214	31,5	0.45	2531	36	1,14
Acero fund., 0,18% C.		2425	34,5	0.45	2601	37	1.0
	Fundido y normalizado	2460	35	0.46	3163	-120	11.2
Acero fund., 1330 (a).		3374	48	0,49	4288	61	1,2
	Fundido, WQT (269 BHN)	4077	58	0,48	7451	106	
		100 N O U O V	64		100 000	200 - 1000	1.8.
	Fundido, WQT 1100	4499	1726.3 (1)	0,40	10405	148	2,3
	Fundido, N&T 1200	3797	54	0,49	5976	85	1,57
Acero Jundido, 8630 .	Fundido, WQT (286 BHN)	4570	65	0,47	8788	125	1,92
Acero forjado 1015				1			
1015	Estirado en frio (10 % trabajo)	2812	40	0,57	4429	63	1,58
		3163 m 10*	45 en 104	, w.	3374	48	1.08
	Laminado simple	2812 en 10*	40 cn 10'		3374	48	711 10000
	Laminado simple			1		48	1,20
	Laminado simple	2320 en 104	33 en 104		3374		1.45
The state of the s	Estirado en Irio	3234(c)	46(c)	0,50	5484	78	1,69
	En aire	2854	40,6	0,46	4077	58	1.43
	En salmyera	1729	24,6		4077	58	2,36
	En azulre	745	10,6	i	4077	58	5,48
RSIDATI	Estirado en Irlo (traba- jo 10 %)	3797	EAUJ	0,54	5976	85	1,57
1040	Estirado en Irio (traba-	4148	59	0.5	6468	92	1,56
	jo 20 %)	VELTO VIETO					
	Estirado en frío	2812(c)	40(c)	0,50(c)	2.2.30.79	68	1,70
	Esturado en frio	315 D	D 150	0,46	6237	90	1,8
	OOT 1100 NEKAL	4780 B	R@IO	0,54	7874	112	1,65
1144	Estirado a temperatura	5062	79	0.48	9843	140	1.94
	elevada (ETD)	E 152	72	F 150		•	- 5
	En aire	3656	52	13,0	3515	7,20	0 %
	En salmuera	2231	31,6		3515	550000	1.55
	En azufre	1680	23,9		3515		2.09
	Barra laminada en caliente	3374	48	0,50	3586	51	1,06
2320	Cementado, endurecido 🔧 superficial	6327	90	0.53	9843	140	1.56
3120	Cementado, endurecido			2 20			
4340 E	superficial in 1000° F. o sea 538° C	6327	90 '	0.64	7030	100	1.11
Ĭ.	(OQT 1150)	2512	40 }	ı			
6150	fratado térmicamente	6*49	96	2190		711027	.96
8630 [[] E	strado en frio (20 %)	4359	62	0,51	1,202,000		.73
94B40 (OQT 1100	4921	70		50000000000000000000000000000000000000	119 1	.70
itralloy N)	Vitrurado	8718	124	0,65	2655	180 📜	.44
stralloy 135, modif., h		3163	45	8		-	
trafley 135, modif h		6327	90	0.66	9843 1	140 1	.56
	ntallado y no nitrurado.	1687	24	-0	CONTRACTOR OF THE	- 1	
	ntallado y natrurado	\$624	80	0.59	9843 1	40 11	.75
ero inoxidable 3!6 E		2671	38		2460		97
tero inoxidable 403 B		2812	40	2000000000	2601		67
	erras, tratamiento Vérmi-	TOIP	-	400		٠, ١,٠	40.55

PROPIEDADES DE RESISTENCIA A LA FATIGA DE LOS METALES (Continuación)

Notas: (a) Acero al manganeso. (b) El numero de ciclos es indefinidamente grande, a no ser que se especifique. (c) Por analogia (no es un valor obtenido por ensayo). (d) Depende del numero de ciclos. (e) Molde permanente

	MATERIAL	FSTADO	PARA NÉM I		5 m 5 m	3 ₁₁		1
		1	(b) kg cm²	ksi	(d)	kg/cm²	ksi	S
	Nero mox dable 410	Barra, OQT, ar. P. 9	4077	58	0,52	5976	85	1,
	Acero inox.dable 410	ع کو چتے دور دی دا ل		gi.				
		±5 4 €	3023	43				
	Acero movidable 41x	OQT i2*	5273	75	0,54	7592	108	1,
	Lero incredable 434	R						
00	MOLE	.′e 5/4\	3234	¥6	0,61	3515	50	1,
2117	Aluminio 214	F2 11	1265 en 5 × 10°	18 en 5 × 10°	0,33	3023	43	2.
	Alaminio 2014	F - 1-20 = -	1406 cn 5 × 101	20 en 5 × 10°	0,32	2952	42	2
	A. minio 2 (4)	F - 70	1265 en 5 × 10'	18 en 5 × 10°	0,26	4218	60	3.
MALE	Alum 210 21 14	X its	2109 en 104 -	30 en 10°	0.43	4218	60	2
	Allmro 2 14	\:o * r 2:	351 en 5 × 10°	5 en 5 × 10°	0.45	597	8,5	1
		To a a recala	1054 en 5 × 104		0,21	4218	60	4
		Trubi sca en in a Hill	1195 en 5 × 10°		0,51	1968	28	1
	A 4 m mio 50 52	Tanian o. H.	1335 en 5 × 10°		0.47	2460	35	i.
	Alum nio 6063 .	Forjago T5	703 en 5 × 10 ^a		0,37	1476	21	ż
	Alumitio 7079 .	Forjado T6	1617 en 5 x 10°		0,30	4780	68	2
	- N.C. STREET - 126 ft N. S. S. S. L	Fundido en arena, TT7	738 en 5 × 10°	and the second s	0 35	1617	23	2
	Aluminio, aleac 142.		667 en 5 × 104	CONTROL STORY BURNINGS STORY	0.20	2952	42	
	Bror ce de alum (10	Extru do, tratam térmico			9,44	3515(c)		4
		Fund en arena, reco. do		and the second second second second	0.34	2812	40	22.5
		/	1900 641 6 × 10	20 611 8 × 10	0.54	2012	940	1
	Laton Cartacht (70-30).	Alambre de resorte de	1546 100	22 104		4570/->	e 81 24	١.
	1 20 20		1546 en 10°	22 en 10ª	0.17	4570(c)	D3(C)	-
	Laton cartuch. (70-30).	Dureza media, barra de		25 20 5 27 202		2000	~	١.
		25,4 mm (1 pulg)	1546 en 5 × 10°	23 en 3 x 10'	0,31	3656	52	2
*	Laton de lacu mecan	Dureza media, barra 50,8				1		
		mm (2 pulg), SAE 72	984 en 3 × 10°	14 en 3 × 10"	0,25	3093	44	3
	Bronce comercial .	Alambre duro de 2 mm						L
X 7 T	DCIDAD	(0,08 puls)	1617 en 10*	23 en 10°	0.31	4218(c)	60(c)	2
	Bronce de estaño y	AUTONO	IVIA D	ENUF	, V (H.C)
	plomo	Fundido en arena, alca-	227 222	7 11 ES	resear	1970as	102	
		ción 2A (Navy M)	773 en 10°	11 en 10°	0.29	1265	18	1
	Latón pobre (80-20)	Dureza de resorte, cinta	West too States			50.8880		
DI	DECCIÓN	1 mm (0,04 pulg)	$1687 \text{ en } 2 \times 10^{\circ}$	24 en 2 × 10°	0,26	4570	65	2
DI	Latón pobre (80-20)	Alambre de resorte de		DLIUI	EU.	HO		
	s v .ss	2 mm (0,08 pulg)	1828 cn 10°	26 en 10°	0,21	6187(c)	88(c)	3
	Bronce al manganeso	Fund en arena, aleac 8A	1490 en 10s	21.2 en 10°	0,30	1968	28	1
		Fund, en arena, aleac 8C	727.0	25 en 10 ⁴	0.24	4921	70	2
	Bronce de silic., tipo A.		2109 en 3 × 103	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	0,39	3163	45	1
	그 보다 가장 전화 대회 가는	Laminado en caliente	1335 en 5 × 10°		55	1		1
	Bronce de silie, tipo B		1406 en 5 × 10"		0.29	1867(c)	55(c)	2
		Estirado frio, reduc. 723,	PERSONAL PROPERTY OF THE PROPERTY OF	1074 man 107 mar 1175 m	0.32	4851(c)	1000 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		Alambre duro de 2 mm		The second section of the second section of the second sec				
		(0,08 pulg)	1757 ep 10*	25 en 10 ^a	0,28	4710	67	2
	Magnesio (AZ63A)	Fundido, T5	773 en 5 × 10*		0,38	1054	15	1
	Magnesio (AZ31B)	Barra extruida	1054 en 5 × 101		0,41	1546	22	1
	Inconel (Ni-Cr).	Estirado en frío	2812 en 10*	40 en 10 ⁴	0,38	5624	80	2
	Inconel	Forjado simple o lamina-			0100			1
	**************************************	do en caliente	2671 en 10°	38 en 10°	0.42	2460	35	0
	Monel (67 Ni, 30 Cu).		2179 en 10'	31 en 10'	0,42	2109	30	0
	Monel	Barra estirada en frio	2952 en 10'	42 cn 10 ⁴	0,41	5273	75	ĭ
		A STATE OF THE PARTY OF THE PAR				PERSONAL L		
	Monel	Recondo En agua salobro	Control of the Contro	21 en 10'	0,28	2109	30	1
	K Monel (3 Al)	Esurado en frio, endure-		36 104	0.00	7774	110	١,
		cido por envejecimiento		45 en 104	0,30	7734	110	2
	1 Hanto (5 Al, 2.5 Sn)	Conformado, acabado es-				1	110	١.
		mer lado	4218	60	0,5	7734	110	ŀ

15.15.- PRUPIEDADES TIPICAS DE ACEROS CEMENTADOS

La cementación se efectúa a unos 927° C (1700° F). Una temperatura de revenido de 150° C (300° F) produce el máximo endurecimiento de superficie; a 232° C (450° F) se obtiene mejor resistencia al impacto.

Notas: (a) Tamaño nominal de la muestra, 25,4 mm (1 pulgada). (b) Muestra de 12,7 mm (1 2 pulgada). (c) Muestra de 50,8 mm (2 pulgadas). (d) Muestra de 101,60 mm (4 pulgadas). (e) Abreviaturas: «SOQT 450», temple simple en aceite y revenido a 450° F (232° C); «DWQT 300», doble temple en agua y revenido a 300° F (149° C); Q, temple; P 300, recocido en caja a 300° F (149° C). (f) Del orden de los otros grados de dureza indicados. (g) El espesor de la capa endurecida depende de la temperatura y del tiempo de cementación; por ejemplo, a 927° C (1700° F) durante 4 horas, el espesor de la capa endurecida será del orden de 1,27 mm (o bien 0,05 pulgada); a 927° C (1700° F) durante 8 horas, aproximadamente 1,52 mm (0,06 pulg). Como se deduce de los valores dados, éstos no constituyen reglas estrictas.

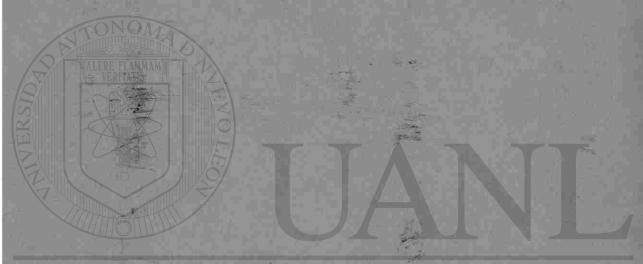
- 100 PK (15) As		1	þj	OPIEDAD	ES DI	el mác	LEO		1	ÇAPA	ENDU	RECIDA	
VERITATI	ESTADO (e)	Máxis resistes s _u		Punto fluenci tracci	a en	% Alorg. en 5,08 cm	Re- duc- ción área	NDB (BHN)	1 .	zod 	Dure- za Rock. Rc	25.00	esor oras)
		kg/cm²	ksi	kg/cm ³	ksi	(2")	%		kgm	pie/Ib		ന്നമ	pulg
C1015(b)	SWQT 350	5 132	73	3 234	46	32	71	149	12,5	91	C62	1,219	0,048
C1020(a)	DWQT 300	5 976	85	3 867	55	33	65	170			(f)	(g)	(g)
C1020(a)	SWQT 300	5 624	80	3 515	50	30	60	160			(f)	(g)	(g)
C1117(b)	SWQT 350	6 749	96	4 148	59	23	53	192	4,5	33	C65	1,143	0,045
2115(a)	DO (6 W)QT	1					7						
	300	6 327	90	4 218	60	30	70	185	9,6	70	(1)	(g)	(g)
2317(a)	DOQT 300	6 679	95	4 218	60	35	65	195	11,7	85	(0)	(g)	(g)
2317(a)	DWQT 300	7 030	100	4 570	65	30	60	210	9,6	70	(n)	(g)	(g)
2515(a)	DOQT 300	11 952	170	9 140	130	14 .	50	352	5,5	40	(f)	(g)	(g)
3115(a)	DOQT 300	7 030	100	4 921	70	25	55	212	7,6	55	(f)	(g)	(g)
3215(a)	SOQT 300	9 913	141	7 734	110	17	50		6,2	45	(f)	(g)	(g)
E3310(b)	SOQT 450	12 655	180	10 475	149	14,5	-58	363	7.8	57	C57,5	1,193	0,047
E3310(b)	DOQT 300	12 444	177	10 054	143	15,3	58	352	6,5	47	C61	1,193	0,047
3415(a)	SOQT 300	9 140	1,30	6 679	95	18	52	285	7,6	55	(I)	(g)	(g)
3415(a)	DOQT 300	9 491	135	7 381	105	19	55	300	8,3	60	(f)	(g)	(g)
4320(5)	OQ directo	UL		EK	ΑI			516		\cup		$\cup A$	
	desde P 300	15 252	217	11 178	159	13	50	429	4,4		C60,5	1 524	757 10 10 10 10 10 10 10 10 10 10 10 10 10
4320(Ъ)	DOQT 450	10 194	145	6 609	94	21,8	56	293	6,6	48	C59	1,905	0,075
4620(b)	DOQT 300	8 577	122	5 413	77	22	56	248	8.8	64	C62	1,524	
4620(b)	DOQT 450	8 085	115	5 413	77	22,5	62	235	10,7	78	C59	1,524	0 060
4820(Ъ)	SOQT 300	14 552	207	11 741	167	13,8	52	415	6.1		C61	1,193	0.047
4820(Ъ)	SOQT 450	14 410	205	12 936	184	13	53	415	6.5	47	C57,5	1,193	0,047
8620(b)	SOQT 300	13 217	188	10 475	149	11,5	51	388	3,6	26	C64	1 905	0.075
8620(6)	SOQT 450	11 741	167	8 437	120	14,3	53	341	4.0	29	C61	1,930	0,076
8620(b)	DOQT 300	9 351	133	5 835	83	20	56	269	7.6	55	C64	1,778	0,070
E9310(b)	OQ directo							1					
100,74001	desde P 300	12 584	179	10 124	144	15.3	59	375	7,8	57	C59,5	0,990	0,039
Е9310(Ъ)	SOQT 300	12 163	173	9, 491	135	15,5	60	363	8.4	61	C62	1.193	0.047
E9310(b)		12 233	174	9 772	139	15.3	62	363	7,4		C60 5	1,397	0.055
E9310(a)	SOQT 300	11 178	159	8 577	122	15,5	57	321	9,4	68	(1)	(g)	(g)
E9310(c)	SOQT 300	10 194	145	7 592	108	18.5	66	293	12.8	93	(f)	(g)	(g)
E9310(d)	SOQT 300	9 561	136	6 609	94	19	62	277	12.8	93	ത	(g)	(g)

15.16. - PROPIEDADES TIPICAS DE ALGUNOS METALES NO FERROSOS

Para aleaciones de aluminio se emplea el coeficiente Poisson μ = 0,33; resistencia máxima a la torsión = 0,65 S_u ; resistencia de fluencia a la torsión = 0,55 S_y . En los perfiles obtenidos por extrusión, de más de 19 mm (3/4 pulg), S_u será aproximadamente un 15% mayor.

Para aleaciones de magnesio se toma la resistencia a la flexión (en secciones simétricas) como valor medio de las resistencias a la tracción y a la compresión. Véase nota (k). Se emplea μ = 0.35.

Abreviaturas: H, duro; 1/4 H, 1/4 duro; H14, designación de revenido que significa 1/2 duro; HT, con tratamiento térmico; T4, designación de revenido que significa tratamiento térmico en la solución.


Notas: (a) Para 0,5% de alargamiento total bajo carga. -(b) Reducción en frío de 11%. (c) Para deformación permanente
de 0,2%. (d) NDB o (bien BHN) (número de dureza Brinell). -(e) NDB (o bien BHN) con carga de 500 kg. (f) Mínimo. (g) -Plano de espesor uniforme de 1,016 mm, o sea 0,04 pulgadas. -(h) Resistencia a la fatiga en torsión invertida, 1757 kg/cm²
= 25 ksi. (i) a en cm/cm °C (o bien pulg/pulg °F), coeficiente de dilatación térmica; temperatura ambiente. (j) Varía con
el tamaño de la probeta de ensayo. (k) Punto de fluencia en compresión; aleación AZ91C-T6, 1335 kg/cm² = 19 ksi; AZ61A-F,
1335 kg/cm² = 19 ksi; AZ80A-T5, 1968 kg/cm² = 28 ksi. (1) Fun
dición en coquilla. (m) En compresión para deformación, 0,125%
(n) A 650°C (1200°F), después temple en agua y envejecimiento.
(o) Calculada. (p) Usada para perfiles estructurales laminados. (q) Para bronce al manganeso de engranajes, utilizar Sn%
= 1195 kg/cm² = 17 ksi. (r) Para bronce fosforoso para engranajes, SAE 65, usar Sn = 1687 kg/cm² = 24 ksi. (s) Temperatura normal;
(t) Chapa. (u) Aproximadamente 1,23
X 10⁶ kg/cm² (17,5 X 10⁶ psi) en compresión. (v) Templado en
agua y envejecido a 525°C (975°F). (w) Suc = 6116 kg/cm² = 87
ksi, Charpy = 6,6 kgm (48 pie 1b). (x) Después de un año. -(y) Platino puro. (2) Fundiciones inyectadas a presión en mol
de metálico.

PROPIEDADES TIPICAS DE ALGUNOS METALES NO FERROSOS (Continuación)

					1		•		- mide Spirited				
		RESISTENCIA	CIA	TIMO	465	A LA PATIGA		o in Olym					
MATERIAL (N.º 81940ificación ASTM)	CONDICIÓN (estado)			PLUENCIA	ER	Num de cidos a que	MODIFIC DE LASTIC	DE BLASTIC. TRANSV	MIEMTO.	DUNEZA	DENSIDAD	× S	
,		ks/cm' ks/cm'		k years	k (cm	den estas valores de s.	E LO			O _M	ka/dm³	-tilo/tilo	CON SNIANES DE CLEMBNIOS
ALEACIONES DE COBRE Laión del Almiraniazgo (BIII).	Recordo	×4.	115	335								,	
Bronce de Aluminio (8150-2)	un di	**************************************	•	4 921(a)		9 × 10	1,034	0,407	25	FT.8	æ. E. 9	20,2	71 Cu, 28 Zu, 1 Sn
Cobre & benico (B194)	HT 427°C	7 030		0 140	1968	8 × 10'	1,054	0,457	23	88	5.5		91 Cu. 9 Al
Enton de carruchería (Bi34-6) Bronce comercial (134-2).	1/2H, varilla	116.001.00			_	S × 10	<u> </u>	0,421	78	58	นี้	7,92 00,02	1,9 Be, 0,2 Ni o Co
Latón de (Acil mecanización (B16).	22.45000 (2) - (2)	3.867	2252	3 (9 % a)	-	15 X 10	1,195	0,450	(0)	878	8,80		% Cu. 10 Zh
Bronce at menganeso (B136-A).					2109	10 (8)(4)	7,27	0,421	ដង	B75 B80	8, 8, 6, %		61.5 Cu, 35,5 Zn, 3 Pb
Plata-niquel B	H(E)	0.75	_	5.976(8)	Ě	3 × 10°(6)	750	0,393	23.	88	8,42		60 Cu, 39,25 Zn, 0,75 Sn
Bronce at sulcio (B98-B)	1/2H, barre H. vanila 25 mm	5 624	7.0		213	10.(1)	97	0,421	- E	B83	8, 80 8, 83		55 Cu. 27 Zn. 18 Zi. 92 Cu. 1.5 Si. más
Laton amarillo (B36-8)	1/8H, var. 25 mm	W. C. S.			32	.0.(z).01	1,195	0.39,0	5 \$	B80	8.48	17,8	97,7 Cu, 1,5 St, mds
ALEACIONES DE ALTIMINIO	_+-	- 3	2197	515(a))		1.054	0,393	12	870	80		65 Cu, 35 Zn
MOLHIA (MIA)	Estimo duro	3	780	4757.0									
2014T6 (CS1A)	HT. envejectdo		-	4 218(c)	1265	k X	0.703	0,270	2 -	9	2,74	22,2	1,0 Mn, otros
6061-T6 (p) (GSIIA).	HT, envejecido	3,580	2882	3 304(c)(p)		5 X X	0,745	0.281	28	120(e)	2,7	23,4	3,9 Cu, 0,5 %, 0,4 Mn, 0,2 Mg
7075-T6 (ZG62A)	HT. enveyecido			5 062(c)	1617	ХX	0,70	0.263		95(e) 150(e)	2,77	22.8	0.15 Cu, 0.8 Mg, 0.4 St
35,75	molde metalico	2 812 11	_	1 687(c)		×	72.	0330				ŀ	
The strategy of the strategy o	Fundido en arena	50	1968	1.757	632	S × 10°	0.724	0,270	3,	() () () () () () () () () () () () () (2.5		9 St. 0.4 Mg
AZ61A-F.	-	١.	_					95					
AZ80A-T5 AZ91C-T6		2315	8 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6		0.00	× × × 5 5	0.457	0.168	24	E72	08.	6,23	6 Al, 1 Z, 0,2 Min
ALEACTONES DE DI OACO	FUIGURO ON BICHA	7 817	7	1 335	38	\$ × 10'(z)	0,457	0,168	, w	16	1.82	25.9	6,5 Al, 0,5 Zn, 0,13 Mn 9 Al, 0,7 Zn, 0,2 Mn
Y ESTARO (unitricción)					7(
Lebiu (823-467-8)	€ U.S.		Ju = 239		274	2 × 10,	0295		•	1,000			
Bubbitt de estaño (B23-49-1)	€ 0 .0 ×	2 2	26	E E	12	X IP	:		`E	10(6)	76.9	32	80 Pg. 15 Sg. 5 Sg.
DIVERSAS			П		1		CIC.		7	(s)	2,7		91 Sn. 4,5 Sb. 4,5 Cu
Monel K	Fundido en arena		_	3 515(c)	3	10°(n)	1.863	egog:	9	S	35.0	57 E	
Aleación de Mailino	Recoude	2 483 2 63 2 63	- 2	7 030Ke)	2952		1,828	4 =	28	ខិ	8,48	- 22	52 N; 28 Mo. 5 Pc
TWANG (B265, & 5) (t)	Recordo (s) Endurecido (sKv)	9 386		9 140(c)	2952(1) 10*	<u> </u>	350		25	90(e)	000	9,0(y)	10 Rodio
Zinc (AC41A)	Fund. a previón en		<u>. </u>	,	1		1,034			•	?	10,4	Servicio acron, temp. elevada
	INTER INCIDIT (W)	04.		-	\$		٠ •		1	91(e)	6,63	27,4	4 A C. OR M.
								ļ					I

BIBLIOGRAFIA

- 1.- ENSAYE E INSPECCION DE LOS MATERIALES DE INGENIERIA H.E. DAVIS, G.E. TROXELL, C.T. WISKOCIL C.E.C.S.A.
- 2.- INTRODUCCION A LA METALURGIA FISICA SYDNEY H. AVNER MC. GRAW-HILL
- 3.- DISERO DE ELEMENTOS DE MAQUINAS VIRGIL M. FAIRES MONTANER & SIMON, S.A.
- 4.- METALS HANDBOOK VOL. 1 PROPERTIES AND SELECTION
 AMERICAN SOCIETY FOR METALS
- 5.- METALS PROGRESS MATERIALS & PROCESSING DATABOOK' 81 AMERICAN SOCIETY FOR METALS
- 6. METALURGIA APLICADA
 - MALCOLM S. BURTON AGUILAR
- DIA-E PROCESOS DE FABRICACION DE BIBLIOTECAS
 MYRON L. BEGEMAN
 C.E.C.S.A
 - 8.- FOLLETOS DE MAQUINAS PARA ENSAYOS TINIUS OLSEN
 - 9.- HANDBOOK No. 29, 30, 31
 AMERICAN SOCIETY FOR TESTING OF MATERIALS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN GENERAL DE BIBLIOTECAS