LINTENSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE CIENCIAS FISICO - MATEMATICAS DIVISION DE ESTUDIOS DE POSTGRADO

DETERMINACION DE ELEMENTOS DE CUATRO MUESTRAS DE MINAS POR EL METODO DE ACTIVACION POR

UNIVERSIDAD AUTONOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE RIBLIO DE TECAS

M. EN C. CON ESPECIALIDAD EN

INGENIERIA NUCLEAR

PRESENTA EDGAR A. TREVIÑO DE LOS SANTOS

MONTERFEL N. L.

JULIO DE 1985

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

2

ï

UNIVERSIDAD AUTONOMA DE NUEVO LEON

FACULTAD DE CIENCIAS FISICO - MATEMATICAS

DIVISION DE ESTUDIOS DE POSTGRADO

UNIVERSIDAD ANEUTRONES DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS TRABAJO EN OPCION AL TITULO DE

M. EN C. CON ESPECIALIDAD EN

INGENIERIA NUCLEAR

PRESENTA

EDGAR A. TREVIÑO DE LOS SANTOS

MONTERREY, N. L.

JULIO DE 1985

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

137603

RECONOCIMIENTOS.

Agradezco a los Maestros Dr. Bernabé L. Rodríguez y al M. en C. Carlos R. Flores Jauregui; el primero, respon sable de que se haya terminado este trabajo, ya que -llevó la labor de revisión y supervisión del mismo; -al segundo por sus sugerencias, asesórias, supervisión y comentarios en el desarrollo experimental de este -trabajo.

De igual manera, deseo agradecer al Dr. Federico A. R<u>o</u> dríguez G. gran maestro y amigo de siempre, quien supo sembrar en mi el amor por esta disciplina.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Deseo también expresar mi agradecimiento a todos los Profesores del Departamento de Ingeniería Mecánica del Programa de Ingeniería Nuclear de la Universidad de Texas en Austin, U.S.A., y en forma muy especial a los señores Profesores; Dr. Thomas Bauer, supervisor del reactor nuclear y Profesor de la misma Universidad;al Dr. Philip Iskander, Jefe del Departamento de Radio química y al Dr. Nolan E. Hertel por su apoyo para larealización de este trabajo. También deseo agradecer a la Srita. María del Carmen --Román del Real, por su labor mecanográfica en este tr<u>a</u> bajo.

Por último deso expresar mi agradecimiento a mis padres, hermanos y amigos, quienes han sido guías durante toda mi existencia; puês han normado y apoyado mi formaciónanteponiendo siempre los valores humanos a todos los demás valores.

Vaya, pués, para todos ellos mi gratitud por siempre; --Dios los Bendiga.

Edgar A. Treviño de los Santos. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS Determinación de elementos en cuatro muestras de mínas, mediante el método de Análisis por Activación por Neu-trones.

Investigación desarrollada en el Departamento de Ingeni<u>e</u> ría Nuclear de la Escuela de Ingeniería Mecánica de la -Universidad de Texas, en Austin, E.U.A. (Verano-84).

Trabajo presentado por Edgar Alejandro Treviño de los --Santos para obtener el grado de Maestría en Ciencias con especialidad en Ingeniería Nuclear.

> DIVISION DE ESTUDIOS SUPERIORES FACULTAD DE CIENCIAS FISICO-MATEMATICAS. UNIVERSIDAD AUTONOMA DE NUEVO LEON. JULIO DE 1985.

INDICE

I.- ABSTRACTO.

TI.- INTRODUCCION.

III. - METODO DE ANALISIS POR ACTIVACION.

a).- Reacción (n, ¥); Mecanismó de Activación por 0^{n¹}
b).- Método de Análisis por Activación.
c).- Análisis Cualitativo y Cuantitativo; haciendo uso de A.A. como Técnica Analítica.
IV.- EQUIPO EXPERIMENTAL.
a).- Reactor Nuclear.
b).- Sistema de Espectroscopía de Radiación ¥.
c).- Sistema Computarizado de EG y G ORTEC, para - Tratamiento de Datos. (GELIGAM - PROGRAM).

a).- Preparación de Muestras y Estándares.

b).- Introducción y Medicón de Muestras y Estándar.

V1. - RESULTADOS EXPERIMENTALES.

VII. - CONCLUSIONES.

VIII.- APENDICES.

a).- Biblioteca de Estándares de Irradiaciones muy cortas de EG y G ORTEC. b).- Deducción de período de Semi-desintegración
 (T 1/2), a partir de fórmula de Actividady Condiciones Límite.

c}.- En que consiste el "Geligam - Program".

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS CAP. I.- ABSTRACTO.

El Método de Análisis por Activación, es un método analíti co muy utilizado en la actualidad, este se fundamenta pri<u>n</u> cipalmente en la reacción nuclear (n, X); pero no excluyela utilización de otros tipos de reacçiones nucleares. ---Por ejemplo: Conteo de β u otras partículas cargadas.

En nuestro caso se analizaron 4 muestras de minas de la -unión de pequeños propietarios de minas del Estado de Zac<u>a</u> tecas, obtenidas por el M. en C. Carlos R. Flores Jauregui; para la determinación de elementos en estas.

Como fuente de Irradiación, se utilizó un reactor nuclear-TRIGA MARK II, para la preparación de muestras, un labora-Dtorio de química y equipo de conteo; todo esto localizadoen el departamento de Ingeniería Nuclear de la Escuela de-Ingeniería Mecánica de la Universidad de Texas en Austin.

> A su vez se explica el Método Absoluto en Análisis por ---Activación y se explican sus inconvenientes; también se -explica un método alternativo denominado Método de Compar<u>a</u> ción, el cual es más sencillo y exacto; y por último se --

explica brevemente la utilización del Método Computarizado de EG y G ORTEC, el cual utilizamos y con el cual sol<u>a</u> mente es necesario la preparación de un estándar como --muestra testigo para checar calibración.

Por áltimo la evaluación de resultados.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS En el presente trabajo, se explciará la técnica analítica de Análisis por Activación por O^{NI} en su método tradicional; para ello se hablará al principia de un leve repasode algunas fórmulas tradicionales en física nuclear, para una mejor comprensión; en seguida se explicará el tradicional tratamiento de datos, los cuales contrastaremos -con el tratamiento de datos actual.

A continuación explicaremos el problema a tratar sobre -análisis de varias (4) muestras de minas, facilidades experimentales, tratamiento de muestras Pre y Post Irradiación.

UNIVERSIDAD AUTONOMA DE NUEVO LEON Finalmente los resultados experimentales y conclusiones. DIRECCIÓN GENERAL DE BIBLIOTECAS CAP. III. - METODO DE ANALISIS POR ACTIVACIÓN.

a).- La reacción (n**, Y**); Mecanismo de Activación por -Neutrones.

Si exponemos una muestra de material a un flujo de O^{n¹} térmicos en ésta, se lfevará a cabo la --reacción (n**, X**), generalmente; entonces:

$$o^{n^{1}} + zx^{A} \longrightarrow \left[zx^{A+1}\right]^{*} \longrightarrow zx^{A+1} + x^{A+1}$$

En forma general podemos decir que estamos produciendo un radioisotopo del elemento normalmente estable en la muestra; éste elemento zx^{A+1*} empieza a decaer en el tiempo de la forma acostum-brada por las especies radiactivas con su caract<u>e</u> rística constante de desintegración **2**.

> Por lo tanto la actividad inducida en la muestrairradiada un tiempo t después de t=0 es:

$$A(t) = A_0 e^{-2t} - (1)$$

Introduciendo el concepto de Vida Media (T 1/2) el cual se define como el tiempo necesario para - que una muestra que exhibe una actividad A_0 en t=0, exhiba una actividad $A_0/2$ para cuando ---t = T 1/2.

Por lo tanto aplicando la definición anterior en fórmula (1) se tiene que:

UNIVERSIDAD AUTONOMA DE NUEVO LEON Ahora substituyendo la Ec (2-b) en ecuación (1) DIRECCI se obtendrá: AL DE BIBLIOTECAS

$$A(t) = A_0 e^{-\frac{693}{11/2}t} - (3)$$

La ecuación (3) puede ser expresada en término de conteo R_t y R_0 correspondientes a las razones de desintegración A(t) y A_0 ; teniendo en cuentaque:

Entonces $R = A \in .$ (4).

y por tanto quedando Ec (3) aplicando Ec (4) como:

$$R_t = R_0 e^{-\frac{0.693}{T 1/2}t} - (5)$$

Los procesos mediante las cuales los radionúclidos decaen de estados de energía alta a estados de baja energía son variados; en nuestro caso de análisis por activación, los de mayor importancia son la emisión β^- , β^+ , emisión γ^0 y captura dectrónica orbital.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

La emisión ocurre en la gran mayoría de radioná clidos; las partículas of emitidas por un radionáclido dado no son manoenergéticos, sino que exhi-ben una distribución continua de energía desde cero (0), hasta una energía máxima, la cual es carac terística del radionáclido emisor; la energía má-xima de la mayoría de los emisores of es menor que 2.5 Mev.

> Un ejemplo de emisión \$ lo tenemos con el P^{32^*} emisor de \$ cuya T 1/2 = 14.3 días y E\$ = 1.71 Mev.

entonces:

Cuyo diagrama de desintegración es:

La emisión positrónica (p^*) por un radionáclido es muy parecida a la emisión p^* ; se encontrará tam-bién una distribución continua de energía desde c<u>e</u> ro (0) hasta una energía máxima (Emax); la forma del espectro positrónico es ligeramente diferente del espectro **p**^{*}, esto debido a las diferentes --- fuerzas de carácter coulumbino que actúan entre nucleo-electrón y nucleo-positrón (C. pares).

La emisión β^+ puede ocurrir cuando la cantidad -de energía desponible en un nucleo, el cual tiene una razón baja de neutrón-protón, en cuando menos 1.02 Mev o sea 2 veces la maşa en repaso del --electrón (2M - $_1e^0$).

La emisión fotónica por parte de un radionúclidopuede aparecer por 2 caminos diferentes; si la -emisión del fotón se origina en el nucleo del át<u>o</u> mo, entonces se denomina fotón **X** ; este tipo de emisión usualmente es precedido por una emisión -

procedente del mismo nucleo; también es posi-ble que el nucleo capture un electrón orbital --lEC) en este caso no se emite fotón M. Sin embar go los electrones orbitales llenan la vacante del -le^o absorbido por el nucleo; dando lugar a la -emisión de rayos X característica del radionúclido producido, el análisis de esas energías de fotones procedentes de la fuente desconocida, nos pueden llevar a la identificación del radionáclido.

Por ejemplo, el espectro de altura de pulso de --

Por ejemplo, para el Cu⁶⁴ se tiene:

Aquí en nuestro caso en un sistema detector deradiación ℣ bien calibrado, se obtendrá un fo-tópico en 1.34 Mev o 1340 Kev.

Interacciones de la Radiación con la Materia:

En forma muy general y esquemática, veremos modos generales de interacción de la radiación -con la materia; haciendo incapie en que el término radiación es utilizado para partículas u ondas: Entonces:

En nuestro caso, ya que estamos trabajando conun sistema de detección **Y** ; veremos con un poco más de profundidad la interacción de este -tipo de radiación con la materia.

Cuando un haz de rayo ya monoenergéticos bien -

colimado interactúa con un material de espesordelgado; entonces la intencidad de los rayos en función del material atravezado (espesor) s<u>e</u> ra:

I (X) = Io e H X - (6)

Tal que μ (coeficiente de atenuación lineal) es función de la energía y tipo de material; las unidades de μ (em⁻¹) y por lo tanto:

HIE) - C(E) + C(E) + K(E) - (17)

Donde C(E), C(E) y K(E) nos representan la -probabilidad de que sucedan el efecto fotoelectrônico, compton y producción de pares; lo an-terior es importante debido a que en el detec-tor se llevan a cabo cada uno de estos efectos.

> Efecto fotoeléctrico:- El fotón **X** se considera que actúa con el átomo en conjunto dando como resultado la emisión de un electrón orbital (<u>ge</u> neralmente de la capa K) tal que la energía cinética del electrón expulsado es:

$$E_{ein} - 1e^0 = hV - I_0 - (8)$$

 $E cin - 1e^{0} = hV - hV' - (9)$

La energía del fotón 🖌 dispersado después de la interacción de Compton es determinada mediante – el ángulo entre el rayo 🏹 incidente y el rayo 🕇 dispersado y puede calcularse mediante:

Proceso de Detección:

Una vez que el material ha sido irradiado para análisis por activación, es necesario distinguir la naturaleza de las radiaciones mediante el pr<u>o</u> ceso de detección:

13.

A través del proceso de detección podemos deter minar:

1.- Las energías de esas radiaciones.

2. - Tipos de Radiación.

3.- Las T 1/2 de los núclidos presentes en la -muestra.

4.- La cantidad de radiación debida a cada unode los componentes radiactivos de la muestra.

En algunos casos las determinaciones pueden ser hechas directamente desde la muestra; en otros casos es necesario la separación radioquímica.

Existe en el mercado un sinúmero de aparatos para determinación de tipos de radiación, como cámaras de ionización,contadores proporcionales, Geiger-Muller, contadores de cen telleo. espectrómetros y detectores semiconductores.

> El Método de Análisis por Activación es usualmente consi-derado como un método cuantitativo para análisis de tra--zas de elementos en una muestra. Sin embargo puede ser --usado para hacer un análisis cualitativo rápido y sensitivo.

> El método se basa en que la mayoría de los radionucleidos-

exhiben radiación β característica, energía X y vidasmedias, con lo cual nos queda solamente clasifíar las radiaciones que emite el radionucleido usando los aparatos apropiados y remitirnos a la Biblioteca de estánda-nes de elementos en estado puro irradiado, para obtenerrápidamente información acerca de los elementos que componen dicha muestra irradiada; sin empargo algunas ve-ces debido a que hay interferencias hay que hacer uso de técnicas de separación radioquímica.

La técnica anteriormente descrita puede expanderse a --hacer el análisis cuantitativo debido a que la actividad inducida en un elemento en particular en la muestra irr<u>a</u> diada en proporcional a la actividad presente de este --

elemento es la muestra, bajo un conjunto de condicionesde irradiación, lo anterior es siempre cierto, sin emba<u>r</u> go es necesario enfatizar que no todos los isotopos est<u>a</u> bles del elemento serán activables durante la irradia-ción de la muestra; por ejemplo, si tenemos en una muestra irradiada el elemento Fe, entonces hay para este el<u>e</u> mento 4 formas psotópicas estables, las cuales son ----Fe⁵⁴ [5.82%], Fe⁵⁶ [91.66%], Fe⁵⁷ [2.19%] y Fe⁵⁸ (0.33%) y solamente el Fe⁵⁴ y Fe⁵⁸ es suceptible de reacción (n,%). Por lo tanto, la actividad debido a este elemento será de solamente el 6.15% del total de fierro presente en la muestra.

Debido a lo anterior, es importante conocer la abundancia isotòpica de los elementos involucrados al hacer los cá<u>l</u> culos de sensitividad y mediciones de flujos O^{h¹} y decidir que tipos de irradiación debe ser usado para un -elemento dado.

La actividad inducida en una muestra no solamente depende de la cantidad de elementos presentes en la muestra irradiada, sino también de:

a).- La sección transversal del Núclido Blanco (5). b).- Flujo de Irradiación (\$).

c).- Tiempo de Irradiación (**t**irr.) d).- Las características de decaimiento del radio--DIRECCI elemento formado. DE BIBLIOTECAS

A continuación hablaremos brevemente de cada uno de estos factores:

a). Sección Transversal (**T**).

La Sección Transversal (**C**), nos expresa la probabil<u>i</u> dad de que un núclido dado interaccione con las partículas bombardeantes también **C** es función de la --- energía de la partícula incidente, por lo tanto $G(\mathbf{E})$; si utilizamos como partícula bombardeante $0^{h^{1}}T_{h}$, ento<u>n</u> ces hay que acudir a tablas de secciones eficaces de interacción de neutrones térmicos con los elementos p<u>a</u> ra hacer nuestros cálculos de actividad inducida.

b). Flujo de Irradiación (**\$**).

Este expresa el número de partículas bombardeantes que atraviesan la unidad de área en la unidad de tiempo -lQ part./cm²-Sec.l, y simplemente decimos que **\$\$d** Act. Ind.

cl. Tiempo de Irradiación (ti).

Este debe ser conocido para calcular la magnitud de la actividad inducida, sin embargo la función tiempo no es lineal durante la irradiación debido a que hay unaformación de núclidos radiactivos pero al mismo tiempo hay un decaimeinto de esos mismos núclidos, con su --constante característica de desintegración (λ).

> Después de un tiempo (ts), las razones de formación y de decaimiento llegan a ser íguales (equílibrio) y se dice que la muestra ha llegado a su actividad de satu ración.

17.

La actividad de saturación, es la actividad más alta que puede alcanzar la muestra irradiada a un ciertoflujo irradiante; como puede verse en fig. (3).

Donde:
$$\lambda = \frac{.693}{1.1/2}$$

Entonces:

$$A = N \nabla \phi (1 - e^{-\frac{.695}{T \cdot 1/2} ti}) - (12)$$

Donde:

A = Actividad inducida presente al final de la --

El término (I-e^{2ti}), es algunas veces llamado factor de saturación (5); el tiempo de irradiación (ti), conviene que sea grande comparado con el período de semidesintegr<u>a</u> ción del núclido producido.

> Una vez que una muestra a irradiar, bajo un flujo ϕ venga a su tiempo de saturación (ts), entonces el factor desaturación (5), llega a ser I y su actividad a ese pu<u>n</u> to denominado actividad de saturación, estará dada por:

19.

Donde:

$$N = \frac{Nav}{At} \frac{WK}{Wt}$$

Nav = No. de Avogadro 6.023×10^{23} At/mol.

UNIV Determinaciones Absolutas: MA DE NUEVO LEON

Dia ecuación de activación anteriormente definida, puede usarse para hacer una análisis para un determinado elemento; para lo cual requerimos que los valores de T, \$\$\$, \$\$\$ y T 1/2 sean conocidos para determinar el valor de A; este tipo de determinación absoluta se complica debido a:

 (a) Las secciones eficaces de la mayoría de los núclidos, son probablemente conocídos no más alla de un 5 a un-15%.

- (b) El flujo puede variar durante el período de irradia-ción o gradientes de flujo, pueden existir en la mues tra, o simplemente el flujo no es conocido con pere-cisión.
- (c) El tiempo necesario para poder hacer medidas de actividad absoluta en la muestra.

Sin embargo veamos dicho proceso: Sea una muestra de determinado elemento que está bajo un flujo neutrónico con las siguientes características: N = Densidad atómica (At/cm³)S Abundancia isotópi gr/cm³. Densidad = Kφ = (0 h /cm Wa = Peso atómico (gr/at-mol) Ja = Secc. eficaz de activación (cm²) = (barns). ti = Tiempo de irradiación (Sec). td = Tiempo de decaimiento (Sec).

Entonces: La razón con la cual las partículas proyectil interaccionan con las partículas blanco será:

Razón de = $\oint N \nabla a$ = No. de nucleos* producidos - (14). Interacción

Para obtener la solución de dicha ecuación diferencial pro-UNIVEDEMOS de la manera siguiente: A DE NUEVO LEÓN DIRECCIÓN dNRENFRAL DE BIBLIOTECAS $\frac{dt}{dt} = \oint_N \int_a - \lambda_N_R$

Agrupando:

$$-\frac{dN_R}{dt} + \lambda N_R = \phi N \nabla a$$

Entonces:

$$\frac{dN_R}{dt} + \lambda N_R = Z_a \phi.$$

Multiplicando ambos miembros de la ecuación anterior por e^{2t} se tiene:

DIRECCIÓN GENERAL DE BIBLIOTECAS

$$\int_{0}^{t} \frac{d \left(N_{R}e^{\lambda t}\right)}{dt} dt = Z_{a} \phi \int_{0}^{t} e^{\lambda t} dt$$

Para obtener:

$$N_R e^{\lambda ti} = \frac{Za\phi}{\lambda} (e^{\lambda ti} - 1)$$

Ahora multiplicando ambos miembros de Ec. anterior por e^{-Ati} entonces:

$$N_R e^{\lambda ti} = \frac{2 ti}{\lambda} = \frac{2 a \phi}{\lambda} = \frac{\lambda ti}{\lambda} = \frac{2 ti}{\lambda}$$

Tal que: $N_R = \frac{Za\phi}{\lambda}(1-e^{-\lambda}ti)$ (16)

Donde N_R es el No. de nucleos* presentes al final del --tiempo t=ti producidos.

Ahora si $N_R = N(ti) = Ni$ y aplicando condiciones inicia-les de que en t=0 $N_R=0$ entonces:

UNIVERSIDAD AUTONOMA DE NUEVO LEÓN

Precisamente en el momento en que es suspendida la irra-diación empieza el decaímiento.

Entonces los Ni átomos radiactivos presentes al final -del tiempo ti (final del tiempo irradiación), empiezan adecaer con el tiempo, con su característica constante dedesintegración del radionáclido producido: Entonces sea t_d , el tiempo de decaímiento; entonces:

$$Ni \{t=td\} = Nd = Ni e^{-\lambda td}$$
 - (18)

Donde: Ni=
$$\frac{\sum a \phi}{\lambda} (1 - e^{-\lambda t i})$$

Substituyendo el valor de Ni en Ec. (18) se tiene:

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN $V \times Ac \left(\frac{des}{3}-sec\right) = \theta \sum a \phi (1-e^{-\lambda ti}) e^{-\lambda td} \times V - (20)$ DIRECCIÓN GENERAL DE BIBLIOTECAS

Ac
$$\left(\frac{des}{Sec}\right) = \frac{\Theta Za}{\frac{N X Wa}{Nav}} m \left(1 - e^{-\lambda ti}\right) e^{-\lambda td}$$

Entonces:

$$Ac = \frac{Nav \Theta S \sigma_a \Phi m}{MWa} (1 - e^{-\lambda t i}) e^{-\lambda t d} - (20 - b)$$

Ahora teniendo en cuenta que:

Razón de Cuentas = Razón de
Observadas. = Desintegración X efeciencia del detector.
Entonces
$$R = A.E.$$
 -(21)
Tal que la actividad en el fotópico (PA) es:
PA = $\Theta \overline{Ca}$ Nav $m \phi$ (1-e- λti) e- λtd (1-e- λtc) \in IX -(22)
Donde:

UNIVERSIDA (<u>1-e⁻²tc</u>) = Término de corrección por conteo si **te** ≈ --2 T 1/2. DIRECCIÓN GENERAL SI tc<T 1/2 entonces se desprecia. E = Eficiencia intrínseca del detector. Iz = % de intensidad F; este término es ---igual a 1 si el isotopo producido tiene 1 so

la manera de desintegración.

Finalmente:

$$PA = \frac{\Theta G_a}{Wa} \frac{Nav}{\lambda} = \phi (1 - e^{-\lambda ti}) e^{-\lambda td} (1 - e^{-\lambda tc}) \in I_{\mu} - (22 - a)$$
y finalmente, podemos decir que la actividad en el fotóp<u>i</u> co (PA), es proporcional a la cantidad de elemento prese<u>n</u> te en la muestra.

Sin embargo, cuando este procedimiento es usado aún te--niendo el mayor cuidado, no pueden lograrse precisiones no mayores del 20%; debido a las causas que especificamos anteriormente.

Debido a lo anterior en análisis por activación, se util<u>i</u> za un método alternativo conocido como técnicas de comparación, la cual elimina muchas de las incertidumbres del-Método Absoluto.

Esta técnica comparativa, consiste en irradiar simultane<u>a</u> mente la muestra a analizar junto con un estándar en est<u>a</u> do puro y de peso conocido del elemento a estudiar, llevándose a cabo la irradiación por el mismo tiempo y flujo (Se irradian en forma conjunta).

> Bajo condiciones ideales, las actividades específicas (razón desint./peso de elemento) de ambos, estándar y mues-tra son las mismas, y por lo tanto uno puede contar (mue<u>s</u> tra desconocida y estándar) bajo identicas condiciones; las eficiencias de conteo **E**s y **E**x son iguales y por lo

tanto podemos utilizar la relación.

$$\frac{Wx}{Ax} = \frac{Ws}{As} \qquad - (23)$$

Tal que: $Wx = \frac{Ws}{As} - (23-a)$.

UNIVERSIDAD AU WS = Peso del elemento x en el estándar. B DIRECCIÓN GEAX = Razón de desíntegración del elemento x en muestra.

- As = Razón de desintegración del elemento x en estándar.
- Rx y Rs = Razón de conteo de elemento x en estándar y muestra bajo estudio.
 - Ex = Eficiencia de conteo en muestra.

Es = Eficiencia de conteo en estándar.

La elección de un estándar es un asunto de gran importa<u>n</u> cia debido a los factores siguientes:

1.- El estándar debe ser de alta pureza.

2.- El estándar debe tener solamente una especie activable (óxides, nitrates, exalatos, carbonatos-y formas elementales, son preferibles a clorures, y yoduros).

El estándar debe ser facilmente soluble en sou-ventes convencionales.

Fl estándar debe ser no higroscópico y facilmen te ser pesado.

UNIVERSIS.-AEL estándar debe ser resistente a la radiación y a la descomposición térmica. DIRECCIÓN GENERAL DE BIBLIOTECAS

Cálculo de Sensitividad:

Veamos un ejemplo de rímites de sensitividad de la técnica para un elemento, por ejemplo el Cl.

Las reacciones nucleares son:

Suposiciones.

$$\phi = 10^{12} o^{h^{1}} / em^{2}$$
 - Sec.
 $ti = 10^{3}$ Sec.
 $w_{CE} = 1 \mu gr.$

Primero calculamos el No. de átomos presentes en el µgr. Cl.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

La actividad inducida en la muestra de Cl cuando se expone a un flu Di jo Ø durante un tiempo de irradiación, es: OTECAS

$$A = N \mathbf{\sigma} \mathbf{\phi} (1 - e^{-\lambda t i}) \qquad - (24)$$

La actividad inducida en los átomos de Cl³⁶ será:

 $A C \ell^{36} = (1.25 \times 10^{16}) (10^{12}) (44 \times 10^{-24}) \left[1 - \exp(7.32 \times 10^{-14}) \operatorname{Sec}^{-1}\right]$ Sec ⁻¹) (10³ Sec)

Para valores pequeños de ≯ti entonces 1-e-7ti ≌2ti

Por lo tanto:

$$A C \ell^{36} = \{1.25 \times 10^{16}\} (10^{12}) (44 \times 10^{-24}\}.$$

$$[7.32 \times 10^{-14}] (10^{3}).$$

$$A C \ell^{36} = 4 \times 10^{-5} \text{ des./Sec./} \mu g.$$

$$Per \ \ell o \ tanto \ sensitividaues \ basadas \ en \ \ell a \ formación \ de \ este \ producto \ son \ muy \ pctrcs.$$

$$Para \ C \ell^{38} \ tendremos:$$

$$A C \ell^{38} = ... 1 \times 16^{15} (10^{12}) (5.6 \times 10^{-25}) \left[1-e^{-\frac{.693 \times 10^{3} Sec}{2.22 \times 10^{3} Sec}}\right]$$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN A Cl³⁸ = >.7 X 10⁴ des. /Sec. / µg. DIRECCIÓN GENERAL DE BIBLIOTECAS

> Si los cálcules están en el conteo de β ; 100% β^- , como está indicado en esquema de decaimiento y la eficiencia típica de un Geiger - Muller es de 9.5%, o sea \mathfrak{s} = 9.5%, ento<u>n</u> ces la razón de conteo será:

> 3.7 × 10⁴ des/Sec/ µg × 100% × 9.5% = 3.5 × 10³ cuentas/min/ µg.

Para una desviación estándar en conteo del 10% (100 cuen tas totales, probablemente el más bajo límite práctico). por lo tanto el más bajo límite de determinación es:

$$\frac{10^{2} \text{ cuentas'min.}}{3.5 \text{ cuentas/min.}/ \mu g} = 2.9 \times 10^{-2} \mu g.$$

Si nos basamos en la detección \checkmark , generalmente la eficiencia del conteo \in = 20% y de acuerdo al esquema de d<u>e</u> sintegración hav un 47% de transiciones \checkmark ; entonces la razón de conteo será de:

3.7 × 10⁶ des!min/ μ g. × 47% × 20% = 3.5 × 10³ cuentas/min/ μ g.

y por lo tante el límite más bajo de determinación será:

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

ERRORES:

El uso de la técnica de comparación, elimina muchos de -los problemas errores asociados con el análisis por activación; usando esa técnica lo que debe reconocerse es que ciertas diferencias en las características físicas de lamuestra y el comparador u, estándar pueden llevarnos a -errores significantes. Esos errores son debido al autoblindaje neutrónico que exhiben algunas materias sólidas, o a la alta sección -eficaz de algunas componenetes de la muestra en creci--miento del flujo térmico por moderación de neutrones --epitérmicos dentro de muestras en estado aquoso.

El efecto de autoblindaje neutrónico, puede anularse ut<u></u> lizando muestras muy pequeñas; otro método de corrección involucra la adicción del elemento deseado a una porción de la muestra, ambas muestras concida y desconocida son irradiadas, y la actividad específica del elemento dese<u>a</u> do es calculada por diferencias de actividad.

El efecto de termalización en muestras aquosas, deja deser importante si la muestra y el estándar a irraduar, tienen el mismo volumen de agua; por lo tanto, no es bu<u>e</u> UNIVERNA práctica irradiar la muestra en un estado físico y el estándar en otro.

> Otro efecto que puede conducir a errores en análisis por activación, es aquel de reacciones competitivas; esas -reacciones pueden ocurrir directamente {Interferencia --Primaria} o como Interferencia de 20. Orden.

> La Interferencia Primaria, ocurre cuando las reacciones-

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS CAP. V.- PROCEDIMIENTO EXPERIMENTAL.

a) Prefaración de muestras y estándar para chequeo de nuestro sistema.

En la provaración y manejo de muestras y estándar para ca caradiación en el reactor nuclear IRIGA, se de be tener espera: cuidado al aspecto contaminación, na sue los exementos que se adhieron en las muestra: caradiar pueden interferir cur el espectro in com nuesto a analicar

contractor contractor, se hace necesario lavar los necipientes de poi cetilieno que contendrán cas muestras a irradiar, con jabéi pira usos nucleares, aqua desig nicada cor ácido últrico al jos, posteriormente agua desionizada con ácido cítrico al 48 para después dejarlos secar y luego limpiarlos con acetona; cabe a.cir que todo el procedimiento anterior i todo mine; posterior de estos recipientes, así como la prepara ción de muestras, se tiene que hacer con guantes.

> También cada una de las muestras y el estándar, se pesaron individual y cuidadosamente en una balanza -

con precisión de décimas de miligramo.

En nuestro caso se prepararon 5 muestras incluyendo el estándar de Sn. Los cuales enlisto a continuación:

UNIVERSIDAD⁵¹D⁴^mUEVO LEÓN © DIRECCIÓ^Sⁿ, st^deneral de ¹D[§] H^gⁿO ^eⁿE⁹, ^MS.

> * Para la preparación del Sn-Std, se procedió de la -siguiente manera; se disponía solamente del compuesto - Sn Cl₂ 2H₂0 en estado puro (99.999%) en polvo y cuyo peso molecular es de 225.65, entonces:

1 Hol de Sn Cl₂ 2H₂0 pesa 225.65 gr. y contiene F18.69 gr de Sn. entonces:

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIR 380.23 mg. de Sn Cl₂ 2H₂0 contienen .2 gr. de Sn.

El siguiente paso fué disolver los 380.23 mg. de Sn --Cl₂ 2H₂O en 10 ml. de ácido cloridrico (HCL) y calentar entre 80-90°C, hasta que se disuelva completamente; --ya ocurrido esto, se añade agua desionizada hasta obtener 100 ml.

Entonces:

100 ml. contienen .2gr de Sn 100,000 μl. ".2gr de Sn

Posteriormente se prepara el estándar de 90 pl, del cual podemos concer el contenido de Sn de la manera siguiente:

Este estándar de Sn, servirá para checar nuestro sistema si es buena la calibración; pués este estándar se irradiará junto con las muestras a analizar. DIRECCIÓN GENERAL DE BIBLIOTECAS

b) Irradiación y Medición de Muestras:

En nuestro caso de irradiación se llevó a cabo en el \cdot reactor nuclear TRIGA, utilizando el sistema neumático para períodos de irradiación de 3 minutos y en este caso, el reactor trabajando a su máxima potencia para estado estable, que es de 250 Kw y cuyo flujo netrónico \cdot térmico es de 2 X 10¹² 0^{h¹}/em²-Sec. Tomando a su vez en cuenta y en forma individual para cada una de las muestras; la hora de inicio de irra-diación, tiempo de irradiación, hora de final de irra diación e inicio de tiempo de decaimiento y por su--puesto el tiempo de conteo, para poder suministrar es tos datos a la computadora para que haga las correc-ciones necesarias.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS CAP. IV. - EQUIPO EXPERIMENTAL.

a). - Reactor Nuclear.

El Reactor Nuclear con que se llevó a cabo dicho tr<u>a</u> bajo en la Universidad de Texas, en Austin, es un -reactor TRIGA MARK I (TRAINING RESERCH ISOTOPES GE-NERAL ATOMIC), cuyas siglas nos indican su finalidad que es el entranamiento e investigación y producción de radioisotopos. Este tipo de reactor es muy seguro, es el tipo heterogéneo; cuyo combustible es Uranio y está mezclado en forma de aleación con Hidruro de --Zirconio y como refrigerante, y a la vez como moder<u>a</u> dor utiliza agua.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Este tipo de reactor puede operar en forma normal, --DIRE en estado estable a una potencia de 250 Kw; pero --también puede trabajar en operación pulsada a 250 Mw.

> El flujo de O^{h¹} (neutrones), utilizado en nuestro -caso para la irradiación de las muestras, fué de = $2 \times 10^{12} \text{ oh}^1/\text{cm}^2$ -Sec, que es el que se tiene caandose opera el reactor a una potencia de 250 Kw.; y lafacilidad de irradiación, fué el sistema neumático.-

(Preumatic Transfer System o Rabbit).

- b).- Facilidades de Irradiación en este tipo de --Reactor son:
 - 1).- Las muestras grandes pueden ser irradia-das en algún lugar adyacente al corazón del reactor.

- 111. El soporte giratorio de muestras (Rotary-Specimen Rack), el cual consiste de un -anillo de aluminio que contiene 40 depósi tos para guardar a los contenedores de ma teriales a irradiar; dichos contenedoresson de 4 pulgadas de longitud, 1 pulgada-RSIDAD A de diametro y un volumen de aprox. 25 ml. y son de plexiglass; este mecanismo es 🕮 DIRECCIÓN GEutilizado en irradiación de muestras para períodos del orden de 1 o varias horas --(Long irradiation).
 - III).- El sistema neumático (Pneumatic Transfer-System o Rabbit), el cual fue utilizado por nosotros, consiste de 2 tubos que --guian a la cámara de irradiación, la cual

está localizada en el corazón del reactor; en este caso la muestra a irradiar se trasladan rá pidamente hacia adentro y afuera de la cámara de irradiación por medio de aire comprimido; -este mecanismo es utilizado para períodos de -irradiación de varios segundos a minutos gene-rafmente. (Short Irradiation O' very Short Irra diation), y es conveniente para la producción de radioisotopos de vida media corta.

- El Lubo experimental central (Central Experimental Lube), es un tubo de irradiación en el centro del corazón del Acactor, el cual permite irradiar muestras-La región de más alta densidad neutrónica.

bl.-Sistema de espectroscopía de Radiación. O LEON

El sistema de espectroscopia utilizado en nuestro trabajo es un detector coaxial de Germanio hiper paro (HP Ge). --Modelo GEM-20180-5; CFG-SV-GEM con un volumen activo de -96.1 C.C. y dimensiones de 50.4 mm. diâmetro por 53.7 mm. longitud, con ventana de aluminio de 1 mm. de espesor, -distante del detector 6mm. cuya fuente de alto voltaje es de 3000 Volts, polaridad (+) cuya eficiencia garantizadaal 20% de la razón del área bajo el fotópico de un cris-tal de NaI(TL) de dimensiones de 3" X 3", medido a 1.33 -Mev (fotones) con una distancia entre fuente y detectorde 25 cms.

El detector está acoplado a un analizador multicanal, --modelo 7010 Stand-alone DAA. (Data Acquision and analysissystem), cuya memoria es de 4096 canales y el cual está concentrado a un sistema computacional de EG y G ORTEC, modelo 1150, el cual se encarga de analizar el espectrocapturado por el analizador multicanal y compararlo con el que tiene almacenado en su memoria, utilizando para -ello el programa Gelligam AN2 y AN1, dado en discos (FLO--PPING DISCKS).

> En nuestro caso el sistema ya está calibrado al nivel 9, por lo tanto no fué necesario hacer una curva de calibra ción con fuentes estándar calibradas que son generalmente

de Ce, Ba, Co, como normalmente se hace.

También está acoplado a este sistema una impresora marca Texas Instruments, modelo OMNI 800, con la cual podemos pedir información y mandar a la computadora a que tipo de biblioteca de estándares referirse.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS CAP. VI. - RESULTADOS EXPERIMENTALES.

los resultados de las muestras bajo estudio (#-2,-

UNIVERSI **estândares** de irradiaciones cortas; dichos resul-DIRECtados se adjuntan a continuación, en forma de Lis

tado que nos proporcionó dicho sistema en formas -

continuas.

47_ NAAC 1 <3.2 > 15-AUG-84 PAGE 1 12:09:45 SPECTRUM ACQUISITION STARTED LIVE REAL 001435, SPC 293 15-AUG-84 09:20:16 180 SAMPLE UNIVERSITY OF NVEVO LEON SAMPLE M-3 DETECTOR SYSTEM ORTEC #GEM-20180-S CFG-SV-GEM; SS# 22-P-769A 50.4MM BY 53.7MM; 96.1CC. 1.MM AL; 6.MM GAP CALIBRATION LVL9.CLB EUROPIUM CALIBRATION STANDARD 1.0 UNITS CHANGER POSITION LEVEL 9.0 LIBRARY DK:VSHORT.LIB STANDARD WPA TABLE FILE VSHORT START, STOP 50, 4000 SENS(%) 25 MULTIPLIER 164948.5 DECAY CORRECTED TO 15-AUG-84 09:09:46 TIME CORRECTED TIME CORRECTED PERCENT NUCLIDE ACTIVITY UNCERTAINTY UG/G BECQUERELS COUNTING 1 S AL-28 1.272E+04 1.011E+07 1.4 TI-51 8.100E+05 9.057E+04 0.9 V-52 9.274E+06 1.086E+03 0.6 MG-27 1.025E+05 5.710E+03 14.2

LAPSED TIME: 111.00 SECONDS UFD=BY1:MEX007/V:4

DIRECCION GENERAL DE BIBLIOTECAS

LIVE REAL ACQUISITION STARTED SPECTRUM 198 001437.SPC 15-AUG-84 09:27:10 180 SAMPLE UNIVERSITY OF NVEVO LEON SAMPLE M-9 DETECTOR SYSTEM ORTED #GEM-20180-S CFG-SV-GEM; SS# 22-P-769A 50.4MM BY 50.7MM; 96.100.; 1.MM AL; 6.MM GAP CALIBRATION LVL9. CLB EURIPHIM CALIBRATION STANDARD 1.0 IMITS CHANGED FOSITION LEVEL 9.0 DK: V-HERT.LIB ' BRARY STANDORD WEA TABLE FILE VSHORT 17.4948.5 START, STOP SO, 4000 SENS'%) 25 Y LTIPLIER DECAY CORRECTED TO 15-4/97 4 09:00:55 **************** SUMMARY OF NUTLILE: IN TAMFLE *************** TIME CORRECTED TIME CORRECTED PERCENT UNCERTAINTY NUCLIDE ACTIVITY COUNTING 1 S BECQUERELS UG/G 3.107E+06 AL-28 4.165E+03 0.7 TI-51 < 3.0E+03 V-52 7.270E+05 9.070E+01 1.1

DIRECCION GENERAL DE BIBLIOTECAS

< 1.9E+04 MG-27

· ************************* E()

NIVERSIDAD AUTONOMA DE NUE ELAP F" TIME: 111.00 SECONDS

UF0=DV1:MEX008/V:4

12:12:07 NAAC 1 (3.2 15-AUG-84 >

48.

FAGE 1

49. NAA1 (1,7 > 15-AUG-84 12:14:00 PAGE 1 SPECTRUM ACQUISITIUN STATTED LIVE REAL 001438.SPC 15-AUG-84 09:38:09 257 180 SAMPLE UNIVERSITY OF NVEVO LEON PAMPIF M-2 DETECTOR SVOTEM ORTEC #GEM-20180-S CFG-SV-GFM: 58# 22-P-769A 50.4MM BY 53.7MM; 96.1CC.; 1.MM AL; 6.MM GAP CALIBRATION LVL9.CLB EUROPIUM CALIBRATION STANDARD 1.0 UNITS CHANGER POSITION LEVEL 9.0 LIBRARY TK: VSHORT.LIB STANDARD WPA TABLE FILE VSHORT 164948.5 START, STOP 50, 4000 SENS(%) 25 MULTIPLIER DECAY CORRECTED TO 15-AUG-84 09:36:47 TIME CORRECTED TIME CORRECTED PERCENT NUCLIDE ACTIVITY UNCERTAINTY BECQUERELS UG/G_ COUNTING 1 S AL-28 3,932E+06 5.204E+03 0.5 TI-51 < 6.0E+03 V-52 1.865E+05 2.299E+01 3.0 MG-27 < 2,2E+04 **************** H'R C EON ELAPSED TIME: 111.00 SECONDS UF0=DY1: MEX009/V:4

DIRECCIÓN GENERAL DE BIBLIOTECAS

NAAC : (3.2 > 15-AUG-84 12:16:53 PAGE 1 50. SPECIEUM ACQUISITION STARTED LIVE REAL 001439.SPC 15~AUG-84 09:48:53 180 1 309 SAMPLE UNIVERSITY OF NVEVO LEON SAMPLE M-35 DETECTOR SYSTEM ORTEC #GEM-20190-8 CFG-8V-GEM: 85# 22-P-769A 50.4MM BY 53.7MM: 96.100.: 1.MM AL; 6.MM GAP CALIBRATIC & LVLS.CLE EUROPIUM CALIBRATION STANDARD 1.4 UNITS CHANGER POSITION LEVEL 9.0 LIBRASY DF: JSHORT.LIB STANDARD WPA TAPLE FILE VSHORT STAPT STOR 0150 4000 SENS(%) 25 MULTIPLIER 4 164948.5 DECAY CORRECTED TO 15-AUG-84 09:43:06 ************** SUMMARY OF NUCLIDES IN SAMPLE *************** TIME CORRECTED TIME CORRECTED PERCENT NUCLIDE ACTIVITY UNCERTAINTY BECQUERELS UG/G COUNTING 1 S FL-JB 3. e 90E+02 T.109E+13 1.3 17-51 < 1.35+04 V-52 7.970E+05 1.028E+02 2.0 MG-27 7.900E+04 4.843E+03 11.9 ************************** 1014-00 * MG-17) A []' ()NOMA DE NI EO I H

ELAPSED TIME: 113.00 SECONDS UFD=DT1: MEXQ10/V/4N GENERAL DE BIBLIOTECAS

NAAC 1	<3.Z	3	15-AUG-84	12:23:07	PAGE 1	51
SFECT 001440.	RUM SPC	ACQUISI 15~AUG-8	TION STARTED 4 09:55:49	LIVE 180	REAL 218	
SAMPL UN ST	e Iversi Andard	N OF NVEVO	LEON			
DETEC ORTEC # 50,4MM	TOR SYS GEM-201 BY 53.1	STEM 180-8 CFG-8 7MM; 96.1CC	V-GEM; 88# 22-F .; 1.MM AL; 6.P	-769A Im Gap		
CALIB EUROFIU CHANGER	RATION M CALII POSIT:	LVL9.OLP SRATION STA ION LEVEL P	NDARD 1.0 UNITE .0	1	*	
L I BRARY STANDAR START,S DECAY C	DK: D WPA T TOP (S ORRECTE	VSHORT.LIB TABLE FILE 50, 4000 SE ED TO 15-		IFLIER 1	164948.5	
*****	# # # # # # # # #	*** SUMMARY	OF NUCLIDES IN	I SAMPLE ****	****	
NUCLIDE	TIME (AC BEC	CORRECTED TIVITY CUERELS	TIME CORRECTED	PERCENT UNCERTAINTY COUNTING 1 '	s	
SN-113M SN-123M SN-125M		2.8E+05 307E+04 475E+05	1.800E+00 1.800E+00	5.4 1.1		
****	*****	****	* UNUSED PEAKS	***	****	

ELAPGED TIME: 193.00 BECONDE ÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

.

•

NAAC 1 <3.2 > 15-AUG-84 12:25:10 PAGE 1 LIVE ACQUISITION STARTED REAL SPECTRUM 293 001435.SPC 15-AUG-84 09:20:16 180 SAMPLE UNIVERSITY OF NVEVO LEON SAMPLE M-3 DETECTOR SYSTEM ORTEC #GEM-20180-S CFG-SV-GEM; SS# 22-P-769A 50.4MM BY 53.7MM; 96.1CC.; 1.MM AL; 6.MM GAP CALIBRATION LVL9.CLB EUROPIUM CALIBRATION STANDARD 1.0 UNITS CHANGER POSITION LEVEL 9.0 DK: VSHORT.LIB LIBRARY STANDARD WPA TABLE FILE VSHORT START, STOP ()/50, 4000 SENS(%) 25 MULTIPLIER 164948.5 DECAY CORRECTED TO 15-AUG-84 09:09:46 TIME CORRECTED TIME CORRECTED PERCENT NUCLIDE ACTIVITY UNCERTAINTY UG/G BECQUERELS COUNTING 1_S SN-113M < 4.2E+05 < 4.2E+03 SN-123M SN-125M < 1.3E+04

52.

ELAPSED TIME: 99.00 SECONDS NOMA DE NUEVO LEON UFU=DY1:MEX007/V:4

DIRECCIÓN GENERAL DE BIBLIOTECAS

53. PAGE 1 NAAC 1 <3.2 >> 15-AUG-84 12:27:20 SPECTRUM ACQUISITION STARTED LIVE REAL 001437.SPC 15-AUG-84 09:27:10 180 198 SAMPLE UNIVERSITY OF NVEVO LEON SAMPLE M-9 DETECTOR SYSTEM ORTEC #GEM-20180-8 CFG-SV-GEM: SS# 22-P-769A 50.4MM BY 53.7MM; 96.1CC.; 1.MM AL; 6.MM GAP CALIBRATION LVL®. CLB EUROPIUM CALIBRATION STANDARD 1.0 UNITS CHANGER POSITION LEVEL 9.0 LIBRARY DK: VSHORT, LIB STANDARD WPA TABLE FILE VEHORT START, STOPN OSU, 4000 CENJ(%) 25 MULTIPLIER 164948.5 DECAY CORRECTED TO 15-AUG-84 09:22:55 44744747444444444444 SUMMARY OF NULLIDES IN SAMPLE ***************** PE VUEL TIME CORRECTED TIME CORRECTED ACTIVITY C NULLIDE IN ER AINTY BECQUERELS 116/0 COUNTING 1 -----SN-113M < 1.8E+05 SN-12 1 <1, KE+03 SN-1 -5M < 2.5E+03 *****************************

ELARCED TIMES INS. DECOMPSONOMA DE NUEVO LEON

*DIRECCIÓN GENERAL DE BIBLIOTECAS

54. PAGE I 12:29:30 NAAC 1 15-AUG-84 REAL LIVE SPECTRUM ACQUISITION STARTED 25715-AUG-84 130 001438.800 80:88:98 SAMPLE UNIVERSITY OF NVEVO LEON SAMPLE M-2 DETECTOR SYSTEM ORTEC #GEM-20180-S CFG-SV-GEM; SS# 22-P-769A 50.4MM BY 53.7MM; 96.1CC.; 1.MM AL: 6.MM GAP CALIBRATION LVL9, CLB EUROPIUM CALIBRATION STANDARD 1.0 UNITS CHANGER POSITION LEVEL 9.0 L1BRARY DK:VSHORT.LIB STANDARD WEA TABLE FILE VSHORT 164948.5 START, STOP (50, 4000 SENS(%) 25 MULTIPLIER DECAY CORRECTED TO 15-AUG-84 09:36:47 PERCENT TIME CORRECTED TIME CORRECTED UNCERTAINTY ACTIVITY NUCLIDE COUNTING 1 S BECQUERELS UG/G SN-112M < 4.0E+05 < 3.7E+03 SN-127M SN-125M < 3.8E+03

ELAPSED TIME: 97.00 SECOND NOMA DE NUEVO LEON

DIRECCIÓN GENERAL DE BIBLIOTECAS

DIRECCIÓN GENERAL DE BIBLIOTECAS

ELAPSED TIMEL .03.00 SECONDS ÓNOMA DE NUEVO LEÓN

WILLERSON OF WAENS LECK 144518 -35 DETECTOR SYSTEM URTEC #GEM-20180-S CFG-SV-GEM; \$9# 11-P-7084 TO. 4MM BY 53.7MM: 96.100.1 1.MM 4L1 6.MM 64P JALJE-ATION LVLALCLE EURDRIUM LALIBRATION STANDARD 1.0 UNITE CHANGER POSITION LEVEL S.O. LIERASY DALVENDET.LIP STANDAFE REA TABLE FILE JSHORT 164948.5 STAFT, FTOP, 50, 4000 SENS(%) 25 MULTIPLIER DECAY CORRECTED TO 15-AUG-84 09:43:06 TIME CORRECTED TIME CORRECTED PERCENT NUCLIDE UNICERTAINTY ACTIVITY BECOUERELS COUNTING 1 S U5/6 < 4.1E+05 SN-113M SN-123M < 4, 2E+03 < 8.6E+03 SN-125M ************************

15-205-3**4**

ACTUISITION STAFTED

15-AU3-84 09:48:53

10447 1 KE 2 1

KEELIK "

001477.3PD

55.

PAGE :

REAL

309

:2:3::40

LIVE

180

GAMMA 2 (3.2)	15-	-216-84	13:02:14	PAGE 1	
	COUTSTITION :	TAPTER	1305	DEA	
001440.SPC 15	-AUG-S4 09):55:49	180	218	
SAMPLE					
UNIVERSITY OF	NVEVO LEON				
STANDARD SN					
DETECTOR SYSTEM					
ORTEC #GEM-20180-9	CFG-SV-GEM	SS# 22-P-	-7694		
50.4MM BY 52.7MM:	96.100.; 1.1	1M AL: 6.MM	1 GAP		
where the new list tailer tailer she show that will react the the tailer tailer tailers the					
CALIBRATION LVLS	'.CLB				
EUROPIUM CALIBRATI	ON STANDARD	1.0 UNITS			
CHANGER POSITION L	EVEL 9.0				
	RILIB		F.4 7 = F		
BROAT STUP DU, 4	ODD SENS(%)	25 MULII	FLIER	104948.5	
DELAY LURREDIEL IL	10-406-84	0410011	1	•	
*****************		DEALS THE		***********	
CENTROID	BACKGROUND	NET APEA	INTENSITY	INCERT FULLM	
CHANNEL KEY	CHINTS	COUNTS	CTS/SEC	· · · · · · · · · · · · · · · · · · ·	
					3
117.57 58.58	10511.	906.	5.031E+00	16.4 1.990	
1243.71 620.73	2580.	700.	3.889E+00	10.9 1.85:	
2067.79 1131.52	3229.	641.	3.560E+00	16.1 P	
2294.03 1145.00	2566,	2224.	1.2365+01	4.9 2.55)	
3290.51 1642.86	2723.	27072.	1.504E+02	0.7 2.44	
3317.81 1656.34	2540.	2363.	1.313E+01	3.7 3.450	
151.02 75.70	8411.	292.	1.620E+00	44.9 0.84	
116.00 ± 156.00	A 1920 TI	DNOMA	0.0005-01	***** 2.940	
321.88 -159.70	167702 1	415.	2:306E+00-	44.4 2.940	G
321.88 159.80	19951.	0.	0.000E-01	***** 2.940	C
321.91 160.50	14904,	RATIF	1.267E+01	ECAS	
	17451		6.0002-01		
0.00 167.80	19002	0.	0.000E-01	XXXXX 1.701	
0.00 164.00	17153	()。 時の	2 867E-01		
0.00 164.60	19070.	<u> </u>	0.000E-01	88888 7 95D	
0.00 164.90	17099.	86.	4.805E-01	214.1 2.950	
494.79 246.00	6028.	292.	1.622E+00	38.1 1.10	
494.79 246.50	6511.	286.	1.590E+00	40.3 1.10	
665.60 332.00	4304.	13900.	7.722E+01	1.1 1.42	
0.00 506.00	9756.	0.	0.000E-01	***** 3.50[
1024.18 511.00	6028.	3223.	1.791E+01	3.8 3.510	
1024.18 511.00	6028,	3223.	1.791E+01	3.8 2.510	
1024.22 511.60	14165.	Q.	0.0005-01	***** 3.510	
0.00 , 512.00	8149.	1102.	6.123E+90	12.0 8.510	
6.00 515.50	9242.	9.	5.185E-02	***** 3.510	
2591.19 1293.30	7694.	1265.	7.026E+00	10.2 5,170	

•

. 56.

Gamma 2 <	3.2 >	15-	AUG-84	13:02:47	P	AGE 2	57.
2591.19 0.00	1 293.5 4 1300.20	6715. 3897.	2244. 122.	1.247E+01 6.774E-01	5.6	5.17D 5.18D	

NULLIDE	TIME UF COUNT ACTIVIT - PECTOERELS	TIME CORRECTED ACTIVITY SECONERELC	PERCENT UNCERTAINT COUNTING 1 .
	* • • - • • • • • • • • • • • • • • • •		
5 0	1. 2402+05	• ₹26E+\$t	S., F
1 - 1 1 3M	5 F64E+04	573E+04	5
۲	1.004E+05	1.4758405	

		 COD1 A.S. 		3E-///
51. 50 - 20-71				
÷.,=\$. ON 620,73 1131.	.57 1145.	.00	÷:7.	1656.34

ELARGES TIME: 1138.00 SECONUS UFD=6. (IMEXQ11 VI2

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Gamma 🔮 🦕	3.2 >	15-	AUG-84	13:21:58	PA	GE 1 58.
SPEL "RU" 1415, SP	т А С 15	CQUISITION 3 -AUG-84 09	TARTED 120116	LIVE 180	REAL 293	
PMPL E IN I VI SAMP	EPCITY UP	NVEVN : EON				
い、イビンには 1904 - マアト イモー メイト・	* ***STEM *-1 (180-5 * ?.7mm;	CFG-SV-GEM: 96.100.4 1.M	85# 22-f M AL; 6.M	-769a M Gaf		
- 3RH -16 . M - N - Pr	TICN (VL9 4L15FA⊺I 4(TICN _	.CLB ON STANDARE EVEL 7 0	! → JNIT::			
14-17 41.5.7.7-7 1.5. 1-17 1.85	11:V:HO 5 51.4 NOTED 10	5'.LIE 000 55NS 7 15-AUG-54	≪ ≪IL' い?t)≎t	IPLIER	. 4948.5	
				ME E MALLA		Marken Marken 20
	ENICO .V	DARL STREET	NET AREA	INTENG (T	NCERT	FUUM
HUNNI	KEV	COUNTS	LOUNTS.	CTS/SE	%	KEV
2		6				
·····	58.58	2/3943.	1107.	6,148E+00	20.0	1.480
50.06	74.55	27545.	117	6,534E+00	20.2	1.470
i e (1. ju)	94.52	26195.	939.	5.217E+00	24.6	2.010
	211.34	39327.	1824.	1.014E+01	15.6	2.900
1515. "	727.04	5550.	595.	3.306E+00	18.2	3,250
1 3.36, 27	788.49	4933.	.308.	7.268E+00	8.1	1.690
135.20	1090.58	4750.	1149	6.381E+()	9.0	1.970
2 471 . 34	13 2 75	3405.	506.	2.3095+00	17.1	3.640
2741. 7	1~67.21	3427.	<i>45</i> 2.	3.622E+00	13.3	1.930
1 1.05.51	1900.04	A4307.	447.	2,485E+00	21.3	2.640
J∠08,03	1601.91	5540.	1438.	27,989E+02	6.4	4.530
2378, 24	1686.31	1775.	285.	1.581E+00	21.8	2.31UR
3297.94	1692.30	2345.	480.	2.667E+00	15.0	5.650
3627,18	1910.65	N (2592.EK	A 36058.	D 2003E+02D	C70.8	2.62
0.00	D14 (0	50709	150	5 21 DE A1	217 0	3.190
0.00	314.60	57810	A ()	2 1956-01	822.9	3.180
0.00	317.00	52010	4V. A()	2.1955-01	822 9	3.180
0.00	317.00	525107	510	2.1206 01	67 6	3.180
0.00	318.30	32340,	27022	1 5075+02	1.0	3.190
041,00	520.00	27710	27020.	0.00005-01	*****	3.500
1022 24	511 00	29177	2270	1.8775+01	7.4	3.510
1023.04	511 00	29177	3279	1.8775+01	7.4	3.51D
	511 40	43394	().	0.000F-01	***	3.51D
··· 00	512 00	20975	1581	8.786E+00	15.9	3.510
0.00	515 50	37339.	217.	1,208E+00	117.1	3.51D
0.00	843.80	276351.	0.	0.000E-01	****	4.14D
1696.42	847.02	7103.	267090.	1.484E+03	0.2	4.150

.

gamma 2 <	3.2 >		15-AUG-84	13:22:28	Р	age 2
0.00	548.84	268878.	5315.	2.953E+01	13.9	4,150
1860.27	928.50	3407.	733.	4.072E+00	11.9	4.32D
0.00	930.00	4111.	29.	1.618E-01	311.9	4.330
0.00	1009.78	7999.	117.	6.487E-01	108.7	4.500
0.00	1012.40	8093.	23.	1.292E-01	547.6	4.51D
2032.10	1014.40	7596.	520.	2.886E+00	24.1	4.510
0.00	1015.90	8002.	114.	6.349E-01	111.1	4.51D
2197.34	1097.30	3018.	238.	1,321E+00	33.3	2.35
2591.07	1293.30	9045.	404.	2.246E+00	33.6	5.17D
2591.07	1293.54	8873.	571.	3.175E+00	23.7	5.170
2603.39	1300.20	8309.	1140.	6.332E+00	11.7	5.18D
2872.53	1434.20	5176.	37899.	2.105E+02	0.6	5.53D
0.00	1435.86	42991.	84.	4.675E-01	348.7	5,530
0.00	1770.80	11034.	ο.	0,000E-01	****	6.46D
35 -3.52	1778.80	2059.	7429.	4.127E+01	1.4	6.48
0.00	1783.42	11108.	0 .	0.000E-01	****	6.50B

	TIME OF COUNT	TIME CORRECTED	PERCENT	
S	BECQUERELS	BECQUERELS	COUNTING 1 S	
AL-28	4.270E+05	1.011E+07	1.4	
88-80	1.331E+06	2.017E+06	7.4	
I-134	4.096E+06	4.707E+06	0.2	
IN-114	4.356E+07	1.927E+10	11.7	
IN-116M	1.505E+04	1.723E+04	23.7	
71-51	2.292E+05	8.083E+05	1.0	
V-52	1.379E+06	9.634E+06	0,6	
****	****	*** UNUSED PEAKS	****	** *** *****
1 1 151.7.	50 1 ZN-71	843.80 ! MG-2	DF NLIEV	O LEÓN
\odot +58,58	74.55	94.52 211	.34 757.04	788.47
1090.50	1332.76	1368.21 1500	.04 1601.91	1686.31

^{1672,30} DIRECCIÓN GENERAL DE BIBLIOTECAS

ELAPSED TIME:1170.00 SECONDS UF0=DY1:MEX007/V:2 59.

Gamma 2 <	3.2 >	15-	-AUG-84	15:24:06	PAGE 1
SPECTRU	M	ACOUTSITION 9	STARTED	LIVE	REAL
01437.SP	C 1	5-AUG-84 09	27:10	180	198
SAMPLE	FRSITY O	E NVEVO LEON			
SAMP	LE M-9				
DETECTO	D OVOTEM				
RTEC #GE	M-20180-9	5 CFG-SV-GEM;	SS# 22-P	-7698	
50.4MM BY	53.7MM;	96.1CC.; 1.M	1M AL; 6.M	M GAP	
		0 0 0			
UROPIUM	CALIBRAT	TON STANDARD	1.0 UNITS		
HANGER P	OSITION 1	EVEL 9.0	110 00010		
	D17-1-00-04				
TART GTO	UK:VSH	JALIB	25 MULT		144040 5
ECAY COR	RECTED TO) 15-AUG-84	09:22:	55 ·	104748.0
				593.50 ² 0	
******	********	SUMMARY OF	PEAKS IN S	SAMPLE ****	***
CENTROID	ENERGY	BACKGROUND	NET AREA	INTENSITY	UNCERT FWHM
CHANNEL	KEV	COUNTS	COUNTS	CTS/SEC	% KEV
				ی مع نیز کا کا کر اور در مع	
117.93	58.58	4548.	1114.	6-189E+00	9 1 1 2911
1120.38	553, 22	2083	319.	1.7745+00	21 0 1 241
1516.44	756.54	1466	673.	3.736E+00	21.0 1.860 9 9 1 4411
2539.64	1267.84	2098.	812.	4.513E+00	8.7 2.890
2740.68	1368.21	1571.	343.	1.208E+00	17.2 2.390
3627.24	1810.65	140.	2592.	1.440E+01	2.1 2.680
151.31	75,70	4593.	352.	1.954F+00	27 0 1 52
101001	D 102.50	D /7865CÓI		6.1585-01	113.6 2 9AD
0.00	103.00	7949		1.4735-01	475.9 2.860
0.00	104.20	7924.	52.	2.885E~01	242.8 2.870
0.00	106.00	7889.00	87	4.858E-01	144.1 2.870
217.52	107,90)N (7945)EK	AL HE I	1.703E-01	411.5 2.870
217.52	107.90	7945.	31.	1.703E-01	411.5 2.870
217.52	108.00	10730.	ο.	0.000E-01	***** 2.870
217.52	108.20	7737.	239.	1.330E+00	52.4 2.870
217.52	108.20	7737.	239.	1.330E+00	52.4 2.870
0.00	506.00	6077.	15.	8.329E-02	735.8 3.500
1024.00	511.00	4869.	1223.	6.794E+00	8.6 3.510
024.00	511.00	4869	1223.	6.794E+00	8.6 3.510
024.12	511.60	7785.	0.	0.000E-01	***** 3 510
0.00	512.00	5646	446	2.475E+00	24.3 3 510
0.00	515.50	6027.	65.	3.616E-01	169.1 3.510
0.00	843.80	20460.	51.	2.829E-01	397.5 4 140
676.55	847.02	1360.	19151.	1.064E+02	0.8 4.150
0.00	848.84	20514.	· 0.	0.000E-01	***** 4 150
031.94	1014.40	1295.	195.	1.082E+00	27.1 2.42
591.19	1293.30	3106.	419.	2.328E+00	19.4 5 170

Gamma 2 <	3.2 >	15	-AUG-84	15:24:38	P	AGE 2	61.
2591.19	1293.54	2957.	568.	3.158E+00	14.2	5,170	
0.00	1300.20	3401.	124.	6.873E-01	67.3	5.188	
2872.64	1434.20	2088.	11133.	6.185E+01	1.1	5.53	
0.00	1435.86	13473.	0.	0.000E-01	****	5.53D	
0.00	1770.80	20884.	41.	2.284E-01	497.4	6.46D	
3563.56	1778.80	810.	21735.	1.207E+02	0.7	6,480	
0.00	1783.42	21428.	0.	0.000E-01	****	6.500	

NUCLIDE	TIME OF COUNT ACTIVITY BECQUERELS	TIME CORRECTED ACTIVITY BECQUERELS	PERCENT UNCERTAINTY COUNTING 1. S
AL-28	1.033E+06	3.296E+06	0.7
BR-80	4.674E+05	5.443E+05	8.6
I-134	2,907E+05	3.059E+05	0.8
IN-116M	1.482E+04	1.557E+04	14.2
V-52	0. 3.564E+05	7.270E+05	1.1

\underline{S}	511.60 !	ZN-71	1435.86 !	CS-138		1010 15
5	58,58	558.82	756.54	1267.84	1368.21	1810,65
<u> </u>						

ELAPSED TIME: 1170.00 SECONDS UFD=DY1: MEX008/V:2

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

GAMMA 2 (3.2	>	15-AUG-84	15:43:38	PAGE 1	
SPECTRUM	ACQUISITI	ON STARTED	LIVE	REAL	
001438.SPC	15-AUG-84	09:38:08	180	257	

SAMPLE

UNIVERSITY OF NVEVO LEON SAMPLE M-2

DETECTOR SYSTEM ORTEC #GEM-20180-S CFG-SV-GEM; SS# 22-P-769A 50.4MM BY 53.7MM; 96.1CC.; 1.MM AL; 6.MM GAP

CALIBRATION LVL9.CLB EUROPIUM CALIBRATION STANDARD 1.0 UNITS CHANGER POSITION LEVEL 9.0

LIBRARY DK:VSHORT,LIB START,STOP 50, 4000 SENS(%) 25 MULTIPLIER 164948.5 DECAY_CORRECTED TO 15-AUG-84 09:36:47

CENTROID . ENERGY BACKGROUND NET AREA INTENSITY UNCERT FWHM CHANNEL KEV COUNTS COUNTS CTS/SEC % KEV 149.96 74.55 19808. 3599. 2.000E+01 5.8 1.840 172.12 85.54 17264. 900. 5.000E+00 20.9 2,390 1516.64 757.04 4269. 1533. 8.519E+00 6.5 2.020 3243. 1580,12 788.49 660. 3.669E+00 12.3 2.260 2185.14 3257. 1090.58 685. 3.807E+00 12.4 2.570 3342. 2539.34 1267.34 1359. 7.550E+00 2.760 6.6 2550,94 2611. 309. 1273.33 1.717E+00 24.1 1.690 3208.75 1601.41 3762. 620. 3.833E+00 13.1 3.870 3627.31 1810.65 2061. 18989. 1.055E+02 0.8 2.510

UNIVERSIDAD AUTONOMA DE NUEVO LEON

836.30	416.86	6438.	757.	4.204E+00	15.4	1.74 R
0.00	459,20	18358.	144.	8.024E-01	132.9	3.420
925.88	462.79	18197.FR	AL 305. P	1.692E+00	62.9	3.420
0.00	467.26	18363.	139.	7.723E-01	138.1	3.430
0.00	506.00	26651.	270.	1.501E+00	85.6	3.500
1024.15	511.00	22157.	4764.	2.647E+01	4.7	3.51D
1024.15	511.00	22157.	4764.	2.647E+01	4.7	3.510
1024.16	511.60	35165.	0.	0.000E-01	****	3.51D
0.00	512.00	25311.	1610.	8.943E+00	14.2	3.510
0.00	515.50	26726.	195.	1.086E+00	118.5	3.51D
1639.81	818.00	2358,	224.	1,244E+00	31.4	1.82
1639.81	818.00	2358.	224.	1.244E+00	31.4	1.82
1639.87	818.70	3721.	317.	1.762E+00	27.8	1.87
0.00	843.80	144782.	0.	0.000E-01	****	4.14D
1696.52	847.02	3887.	139225.	7,705E+02	0.3	4.150
0.00	848.84	142268.	· 846.	4.700E+00	63.1	4.150
2030.91	1014.40	2275.	227.	1.261E+00	30.4	1.89
2197.87	1097.30	3937.	628.	3.491E+00	14.7	4.70D
GAMMA 1	3.2	15	-415-34	;7:44:10	P	AGE 2
---------	---------	--------	---------	-----------	-------	-------
0.00	1101.00	4366.	199.	1.105E+00	47.5	4.71E
2591.15	1293.30	8610.	233.	1.324E+00	55.4	5.170
2591.15	1293.54	7413.	1435.	7.971E+00	8.9	5.170
1633.05	1300.20	8250.	596.	3.321E+00	21.9	5.180
2572,41	. 4. 1.	7875.	41CE.	1.281E+01	3.4	5.53D
	:405.Be	11727.	254.	1.410E+00	60.7	5.53D
Q. (4)	1770.90	51478,	15%.	€.844E-Q1	201.7	6.460
3563.58	1778,80	659.	50978.	1.832E+02	0.4	6.43D
0.00	1727.47	52554.	Ö.	0.000E-01	*****	6.50D

63.

1.

S TY SAMARA SAMARY OF NUCLIDES IN SAMPLE ***************

NUCLIPE	T.ME OF CLUNT ACTIVITY BECOUSEELS	TIME CORRECTED ACTIVITY BECQUERELS	PERCENT UNCERTAINTÝ COUNTING 1 S	
	1.7:1E+0¢	4.106E+06	 ი.4	
35-30	N.STOE+0e	1.961E+06	4.7	1
I-134	1.117E+06	2.167E+06	0.3	
IN-114	2.053E+07	4.637E+07	21.9	
IN-116M	3.765E+04	3.833E+04	8.9	
V-50	1.414E+05	1.846E+05	3.4	
******	****	*** UNUSED PEAKS	***	***
5410.8	6 - IN-116M	511.60 ' ZN-71	643.8	0 ' MG-27
10:7.5	2 - IN-110M			
74.55	97.54	757.04 788.	.49 1090.5	8 1267.34
1275.32	1 501 . 51	1810.65		
ELAF SEL	1ME:1159.00 SE			
UFQ=DY1;M	1EX009/V+2			

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

GAMMA 2 KK	.2 :	15-	aug-84	10:04:43	PA	IGE 1	64.
SPECTRUM DO1479.SPC	AC 15-	QUISITION S AUG-84 09	TARTED : 48: 53	LIVE 180	REAL 309		
LAMPLE UNIVE SAMPL	REITY OF E M-SS	NVEVO LEON					
DET&UTUK いりっ、おいEM うい、4MM Br	9YSTEM -20180-5 53.7MM: 9	CFG-SV-DEM: 95.100.1.M	- 38# 12 M AL: A.M	- 6%4 M 3AP			
S FRAT STERESON C SHANGER PO	IGN LVL9. ALIBRA ID SITION LE	CLE DN STANDARD EVEL A.D	L.C MIT-				
LIBRARY START STOP DFIAY CORR	DK:VSHOF 50.40 ECTED TU	81.01B 200 55N9 15-446-04	25. MILI 1944 :	P_IFR No	104948.5	5	
*******	***	SUMMARY OF	FEAHS IN	AMPLE *****	*******	*****	
VE . TROILER	ENERGY	BACEGROUNP	NE ARE	INTEN-1	UNCERT	FWHM	
SHANNFL	ŀ,E'v	C.CIUNT <	COLINTS	CIEVER	7.	KEV	
5							
K X			21 A		10.4	1 000	
150.06	74.55	39453.	144.5.	8.125E+00	17.4	1. 740	
2 18°.26	94.52	41595.	2055.	1.1432+01	14.2	1 2011	
300.19	14%, 44	31799.	2848.	1.5828+01	2.0	1.220	
1 20, 43	5577.22	21192.	2532.	1.4076+01	3.4	2.10	
15.80.1	786.49	5148.	1466.	8.1446400	20.07	2 770	
1 730,1.5		2587.	311.	1.7292400	13.3 / /	2.210	
185.44	1091.08	2675,	1225.	6.80/E+00	0.0	2,440	
L481.04	1278.63	2378.	333.	1.8536+00	21.4	1.400	
253.72	7 . * 4	2075.	382.	2.123E+00	21.1	3.120	
INN AGR	1968.71	450 2.	1154.	6,409E+00	/ 0 8 : / F	5.830	
320€.471	14:01.141	5235.	1462.	8,122E+00	7.5	2.670	
12.1	.310.65	300°.	39383.	2.188E+02	V. 3	2.6200	
DIR	FCCIÓ	N GENER	AL DE I	RIBLIOTE	CAS		
		Shran S		5 0225+00	28.9	2.15	
208.32	105.00	239UN, 53400	904.	5,0226,00	23.9	2.15	
208.52	104.20	20000	504.	2 0495+00	47 A	0.98	
244.77	121.00	2703°,	071	3.05%E+00	31.7	2.14	
420.93	210.00	3/343.	3/1,	4.00/ETVV	33 5	1.42	
429.21	214.00 A14 C4	31284,	/J/.	3 050CLAA	23.6	1.72	
833.74	410.00	13073.	e~	0.000E-01	*****	3.370	
867.81	433.10	4/032. 22540	470 ?	2 \$125+01	4.7	3.37	
867.81	404.10 AOA AO	4204U.	4702.	0.00000-01	****	3.370	
867.82	504 00	20000.	C 20	1 7445+(1)	143.3	3.500	
0.00	511 00	AD700	10700	7 (1555-4)	2.5	3.510	
1024.02	511.00	72130. A9756	12700.	7 05555401	2.5	3.510	
1024.02	511.00	70100	12700.	0.0005-01	****	3.510	
1024.03	512.00	5000C	1000	> 7245+01	6.6	3.510	
0.00	515 50	5504A	4703,	2.72701	88.8	3.51D	
0.00		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ci/ 44 .	A.V/ L.VV			

Gamma 2	<3.2	2		15-AUG-84	10:05:1	3	PAGE 2	65.
2.0	0 61	6.40	29159.	45.	2.742E-01	420 .	3 705	
0.0	- 61°	7.00	33809.	· 0.	0.000F-01	*****	2 700	
1240.2	: 6.1i	8.90	27300.	1908.	1.000E+01	17 8	3.700	
· . 08	0 <u>41</u>	1.79	33669.	· 0.	0.000E-01	اب د سد د بلين محفظة	3.70D	
1258.3.	- KS2	2.90	26628.	11775.	6 547E+C1		3.710	
S. 31	. 929	6,30	2022.	0.	0.000E-01	- • - 	1.8.	
1ec8	5 .€≍	3.60	5199.	444.	- A78E+00	20.2	4.11:	
0. N) 835	5.70	9058.	0.	0.0005-01	20,0 20,0	4.12	
0.0.	9 837	7.00	9030.	õ.	0.000E=01	*****	4,130	
C. 00	54(0.00	°010.	<u>0</u> .	0.000E-01	*****	4.130	
, н	843	1.51	298115.	6.	1.000 E-01	*****	4.140	
i · .~:	÷47	•••	3613.	239020		* / ***	4.140	
÷ 4	: 4 :	.24	191675.	5960.	P 11154 1	1. 2	4.172	
·•••.	1005	.78	5277.	65.	# 37E-0%	157 Å	A EOD	
С., Q.	1012	40	5266.	74.	4. (1)3E-61	154 1	4.300	
- "wati"	1.14	4.40	4827.	=,1='	THE AND	1 30. I 76. Mar	4.010	
14	115	, A.	5281.	£		171 4	4.510	
1051.77	1 30	00	4276.	7944	4. 3F7E+01		4.010	
24.01 . 22	01039	. 40	10947.	1175.	5.7E+0(150	4.0/1	
2198.29	1097	.30	2929.	526.	2.9245400	12,7	4.570	
0.00	ALE 1101	.00	3438.	· 17-	2.429E-02	10.2	4.700	
2561.05	1293	P. 30	48352.	**f123.	/ 12/75 ANA	197 0	4./10 E 270	
2541.05	1293	.54	9679.	406.	1 1505+00		5.170	
264 3.55	1300	.20	18402.	1083.	4 017E+00	99 D	5.17D	
2784.65	1388	.50	2026.	177.	8.8225-61	14.3	5.18p	
2872.58	1434	.20	5343.	6732.	2 7405404	20.	1.20	
2.00	1435	. 6 .	12020.	52	1 154E-01	792.0	D. 030	
3160.98	:528	,24/	2740.	242	t. JAAF-voo	801 0	0.73U X 7/	
0.00	1770	. 80	13580.	68.	3.789E-01	341 0	1./6	
3563.46	1778	. 80	3863.	9785	5 4345401		6.46U	
9.00	1783.	.42	14840.	0.	0.0005-01	*****	6.48U	
		1.000	-344 (1950) TO 1970 (1970) (1970)		128	*****	8. 30L	

**************** SUMMARY OF NUCLIDES IN SAMPLE *************

	TIME OF COUNT TI ACTIVITY BECQUERELS	ME CORRECT ACTIVITY BECQUERELS	ED PERCENT EVOLEON UNCERTAINTY COUNTING 1 S
AL-28	5.797E+05	3.871E+06	1 4
BR-80	5.029E+06	6.452E+04	9.5
CU-66	3.463E+06	8.183E+06	22.2
I-134	4.440E+06	4.827E+06	0.2
IN-114	4.327E+07	1.673E+09	12.2
IN-116	DECAY CORRECTION	DURING AC	DUISTION 312 HALE-LINES
V-52	2.500E+05	8.029E+05	2.0

433.90 843.80	' AG-108 ' MG-27	511.60 1039.00 -	! ZN-71 - CU-66	×17.00 ·	BR-80
74.55 1091.08	94.52 1238.88	149.44 1267.84	559.32 1368.71	788.49 1601.91	963.25 1810.65
ELAPSED TI UFO=DY1:ME	ME:1256.00 X010/V:2	SECONDS			

CAP. - VIII. - CONCLUSIONES.

Como se observó en el capítulo anterior, los resultados experimentales obtenidos en el análisis cuantitativo hecho mediante análisis por activación ut<u>í</u> lizando irradiaciones cortas en las muestras fueron satisfactorios, faltando por realizar el mismo exp<u>e</u> rimento pero para períodos largos de irradiación -lvarias horas pués pueden existir elementos en estas, que no sean facilmente activables y esperar el tiempo suficiente para que decaígan las especies -radiactivas producidas de vida medía corta y hacer-

el mismo procedimiento hecho anteriormente; pero -ahora utilizando la Biblioteca de estándares de --irradiación langa y seguramente se obtendrán otroselementos que no se detectaron anteriormente; estepaso no se realizó por falta de tiempo.

> Sin embargo para un análisis cuantitativo exhaustivo, hay que analizar dichas muestras por métodos -cuantitativos de análisis, como lo son los de fluoresencia por rayos X, obsorción atómica y métodos químicos para una posterior comparación de resultados.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS Dada por el Sistema de EG y G ORTEC."

LISTING FOR GAMMA LIBRARY LTOINF.LIB CREATED : 09-MAR-83 12:11:52 LAST MODIFIED : 09-MAR-83 12:11:52

HALF LIFE= 2,40000 MINUTES UNCERT= 0.000000 AG-108 PK BFG (BQ)= 0.000000 1 GAMMA/D BRANCHING RATIO SUMMING CODE KEV 433.900 0.470000 0.000000 511.000 0.130000 0.000000 HALF LIFE= 0.407000 MINUTES UNCERT= 0.000000 AG-110 FK BKG (BQ) = 0.0000002 FEV GAMMA / D PRANCHING RATIO SUMMING CODE 4.50000 0.000000 657.700 ONOM HALF LIFE= 2.31000 MINUTES UNCERT= 5.00000 AL-28 PI BKG (BQ)= 0.000000 0 KEV BRANCHING RATIO SUMMING CODE GAMMA/D 1778.800 100.000 0.000000 HALF LIFE= 0.340000E-03 MINUTES UNCERT= 0.000000 5-12 PK_{BKG} (BQ) = 0.000000 4 KEV GAMMA/D BRANCHING RATIO SUMMING CODE 4430.000 1.30000 0.000000 EA-131M HALF LIFE= 14.6000 MINUTES UNCERT= 0.000000 5 PK BKG (BQ)= 0.000000 IR KEV ION GAMMA/D R BRANCHING RATIO SUMMING CODE 108.200 40.0000 0.000000 HALF LIFE= 0.517000E-02 MINUTES UNCERT= 0.000000 BA-136M PK BKG (BQ) = 0.000000Ŀ. GAMMA/D PRANCHING RATIO SUMMING CODE KEV 0.000000 40.0000 164,000 0.000000 818,000 100,000 BA-137M , HALF LIFE= 2.55100 MINUTES UNCERT= 0.000000 PK BKG (BQ) = 0.0000007 BRANCHING RATIO SUMMING CODE KĖV GAMMA/D 84.6000 0.000000 661.600 HALF LIFE= 18.2700 MINUTES UNCERT= 11.0000 BA-141 PK BKG (BQ)= 0.000000 8

KEV GAMMA/D BRANCHING RATIO SUMMING CODE

68.

	190,220 275,990	45.0000 23.3000	54.0000 20.7 00	5	b [‡] .
86-142 T	HALF LIF PI BK3 (E= 10.6000 BQ)= 0.000007	MINUTES UNTE	[RT= ∫.JG00	
	'E\ 255.120 1204.060	Gamha/B 20.6000 15.8000	BRANCHIN, RATIO 0.000000 0.000000	Ramming Kode	-
£.r.−.3	HALF LIS Fr g j	E= 17.50/3 B(= 17.000)	MINYTES IN E	.8*= .J ∾00.	
	PEV 511,00 7,000	GAMMA (1 2,5 000 7,2 000	BRANCHING RATIO C. 190000 C. 1914	S.MAIND CODE	
BF-10M 11	HALF LIFI Pk BI'G (1	E= 6.10000 BQ)= 0.000000	MINUTES UNCE	n™≈ ≦. 0:0000	
SSID	4 56: FLAMM 4 76: <u>10</u> 47, 115 776: 500	GAMMA D 0.240000E-0 0.200000E-0	BFRNCHING FAT: 1 (.000000) 1 (.000000)	3.IMM 14. 111E	
5ñ - 34	~A_F _175 Ph	E= 01.8000 30)= 0.000000	MINITES UNLE	דכורי באד די	r
~	KEV . 302.200 881.600	GAMMA/D 5.90400 41.0000	BRANCHING RATIO 5.90406 41.0000	SUMMING CODE	
BF-94M 13	HALF LIFE	= 6.00000 (1)= 0.00000	MINJES UNGER	ETNE COOL	LEÓN
	*EV 424.000 881.600	GAMMA/D I (100.00; E) 98,0000	BRANCHING RATIO	Summing Code 1	S
CA-49 14	HALF LIFE PK BKG (E	= 8.72000 (2)= 0.000000	MINUTES UNCER	₹ ⁷ = 0.000000	
	KEV 3084.400 4071.900	GAMMA/B I 91.7000 7.00000	RANCHING RATIO 6.000000 0.000000	SUMMING CODE	
CD-111M 15	,HALF LIFE PK BKG (B	= 48.6000 G)= 0.000000	MINUTES UNCER	T= 0.000000	
	KEV 150.600 245.400	Gamma/D E 30.0000 94.0000	RANCHING RATIO 0.000000 0.000000	SUMMING CODE	
2E-139M	HALF LIFE PK BKG (B	= 0.933000 0)= 0.000000	MINUTES UNCER	T= 0.000000	

	1 EV 754.400	Gamma/D 93.0000	BRANCHING RATIF 0.000006	SUMMING CODE	70.
ul - 38M 1 -	HALF LIFE= FN B G (BQ	0.119000E)= 0.00000	-01 MINUTES JNCE 0	RT= 1.000000	T
	· E. Sett. "N°C	GAMMA/L 100,000	BRANCH1NG 54T1: 0.000000	S. MMING CODE	
.1 ==	HATE TIEE=	::55000 ⇒ √001	MINUTES UNCE	F7= 0,000000	
	 	(HM*)5 E ((*)E− 0.15% (JE−	BRAN, 41NG RATE. -02 0,0000000 -02 0,000000	ELYMIN, JODE	
35* 1	HALF LIFE= PK <u>Pk≬ k</u> B0	()= (, 0000)	NINCTEI .". E	-*= :0.0000	×
		60. 0	BRANCHING RATIO	: UMMING CODE 1 :	
VERS	÷s ee= F - F. Bi	24.04 V = 1.40 000	MINUTES UNIE K	F= 4.20000	
	1 2 14: 5.50 4:	64mma D 7 == 21 - 26 30, 701 - 2	BRANCHING RATI 70,0000 30,7000	almming CODE 3 1	
	4415 <u>155</u> =		MINUTES D'LE	FT=00000	
UN	F* BRG (BD IVERSID ; E 933, 24 2, 38, 892	6AMMA I 0,250001 4,00060	BFANCHING RATIO 9.000000 FRAG. (EÓN R
DV-165M 22	H4L= LIFE= PK BKG (BQ	1,16000)= 0.00000	MINUTES JACE	FT=	
	KE√ 52.100 53.500	GAMMA/P 11.00(1 2.50000	BRANCHING RATIC 0.00000 0.000000	SUMMING CODE	
F-20 23	HALF LIFE= P⊨ BKG (BQ	0.123600)= 0.00000	MIN_YTES LINCE	RT= 0.000000	
	KEV 1633,100	6amma/0 100,000	BRANCHING RATIO 0,000000	SUMMING CODE	
58-70 _4	HALF LIFE= PK B⊀G (B0	21,1000)= 0,00000	MINUTES LINCE	FT= 0.000000	
	rev 175,300	GAMMA/D 0.2000000 ,	BRANCHING AATIO C.CDOGOO	SUMMING CODE	

KEV GAMMA/B BRANCHING RATIC SUMMING CODE

	1300,200	0.170 5	6.000000		7
IN-110 3	HALF LIFE Ph Big (B	= 0.235000 00)≈ 0.000000	MINUTES UNC	ERT≠ 6 000000	
	- EV 434,132 - 730,000	вамма Г — н 0.120006 0.1000(0	BRANCHING RATIT C.IDUUD G.OOLIDI	SUMMING CODE	
*r*j.** -	4ALT _ IFS 57 Er 3 E	(= 54.1505 () = 1 (10.15	MINUTES SHIT	EP*≈ 4.00000	
	E 1_75,54) 1097,300	04004 1 1 84,47 H 86,270	56100	. M™.NG CODE 1 2 2	
N- 1-2* 35	HA_F _IFE PL BLG (E	= 1.4° Q)= 0.000000	* 1*42 ° E E LIMO 8	EHT= 000000	
		GAMMA/P E 9.5000005-(; 0.8000005-(;	RANCHING SATIC	OUMYING CODE	
TIVER.	HALF LIFE	(= 3.17000 (2) = 0.00°0° GAMMA/D P	MINUTED UNCE RANCHINE RATIO	S WYING CODE	
	585.800	. 16. 9000	0.00000.	L N L	
U	9425 _1FE F: F:G (B) YEV 243,800 1014,40 E	= 2,4 0)= 0.000000 GAMMA,D B 72.000 28.000	MINITEN E	E NUEVO LEÓN = MELIOTECAS	R
MO-161 19	HALF LIFE P) BKG (B	= 14.6000 Q'= 0.000000	MINUTES UNCE	RT= 0.000000	
	kev 192.000 1012.400	GAMMA/D B 25.0000 25.0000	RANCHING RATIO 0.000000 0.000000	SUMMING CODE	
N-16 39	HALF ∟IFE PK BKG (B	= 0.119000 Q)= 0.000000	MINUTES UNCE	RT= 0.000000	
	K EV 2750.000 6128.000	GAMMA/D B 1.00000 69.0000	RANCHING RATIO 0.000000 0.000000	SUMMING CODE	
NB-94M 40	HALF LIFE PK BKG (B	= 6.26000 Q)= 0.000000	MINUTES UNCE	AT= 0.000000	

w_

KEV GAMMA/D BRANCHING RATIO SUMMING CODE

	703.000 871.100	C. 200000E- 0. 200000	02 0.000000 0 ₈ 000000	0.00000 0.000000	
NB- 75 4;	HALF _IFE Fk BkG (B	= 51.1000 @)= 0.00000	MINUTES UNC 0	ERT= 5.00000	
	KEV 787.200 711.300	Gamma/D 93,1000 75,5000	BRANCHING RATIO 93.1000 75.5000	SUMMING CODE 1 1	
F1	HALF LIFE	= 1_,4000 (= -, 1000)		ERT= . 100000	
	* Ex 117,1 * 127.0 **	GAMMA - D 25, 0000 5, 4000	BRANCHING RATIO C.OOCOO C.OOCOO C.COOQA	SUMMING CODE	
1∾∋m 43	HALF LIFE PF BKG LB	= २.२७००० २)= ०.०००००	MINUTES UNCE	RT= 0.000000	
rsin,	71.390	3AMMA/D 16,0600 2,50000	BRANCHING RATIO 0.000000 0.000000	SAIMMING CODE	
≍	HALF LIFE FI BLG (B	= 1.17900 &= (.000000	MINUTES UNCE	R™= 7.80000	_
1	1001.030 765.600	GAMMA/D 0.584230 0.267300	BRANCHING RATIO 0.000000 0.000000	SUMMING CODE	
<u>-יר</u> - י־מ 4ייַ U	HALF LISE PA BKG (B	= 1.355000 9 = 0.000000	MINUTES LINCE	RT= 0.000000	EÓN
	יצע 21 ₪00EC	Gamma 'D (86.14400 -	BRANCHING RATIC	SUMMING CODE BLIOTECAS	R
PE-:000	HALF LIFE Pr Brg (B	= 4.59000 ()=),(0000(MINUTES UNCE	RT= 0,000000	
	153.930	Gamma, D 58, 7090	BRANCHING RATIO 0.000000	SUMMING CODE	
51- 11 47	HALF LIFE Pr Bro (Br	= 22,0000 2)= 0.000000	MINUTE: INCE	RT= 0.000000	
	4EV 584,100 1459,900	Gamma / [- 0. 820000 0. 550000	BRANCHING RATIC 0.000000 0.000000	SUMMING CODE	
=	DAF JER Si Dago E	≠ 95,2000 5 = 5,00 500	MINUTEE UNCE	FT= 4,00000	
	۲ Ε ν` 14. ₹` ۱	94004 (P 2461904)	BRANC-INC BLTIC	: MTING CODE	

	5.1.1	≂. 40 ×	J. *	3	74.
рт 1707 4:	HALF ∟IFE: PF BKG (BC	5 0,283 JOC D= 0,00000	MINUTES UNC	EFT= 1,000000	
	меў 65,100 66,800	54mma/p 2 30000 8.50000	ERANCHING PCTIC 0.000000 0.0000000	BUM ING CODE	
RB-86M	HALF LIFF: M BLG (BC	= :.02000 N=00000	MINUTER JNC	ER7 = 555.800	
	4EV 555, 800	0-1444/1 98.2000	24-000HING RANIG 0.000000	S. MATING CODE	
55-20 51	ча <u>г</u> е гіге= =. =»с (вс	= 17.8000 31= 0.00000	MENUTES UNCO	ERT= 13,0000	
/~	1836.000 998.030	GAMMA/D 22.1000 14.5000	BRANCHING RATIO 22.1000 14.5000	SUMMING CODE 1 1	
RP-91	Hàlf Life: Pk Brg (B(= 15.2000 = 0.00000	MINUTES UNC	ERT= 19 0000	
AWE	127 1010, 380 12743, 100	Gamma/D 59.0000 43.0000	BRANCHING RATIO 55.0000 43.0000	SUMMING CODE 1 3	
RE-180* 53	PL PC (B)	= 18,7000 ?'= 0.00000	MINUTES THE	ERT= 0, 10000	
U	NK 200 SI	Gamma/D 9.50000 9.50000	BRANCHING 54710 2.000000 0.000000	Envirente li	EÓN
RH-103M 54	DIREC HALF LIFE PK BKG (BC	CIÓN GE = 56.1200 >)= 0.00000	NERAL DE B MINUTES UNCE	IBLIOTECAS	
	KEV 20.216 20.074	Gamma/D 4.18000 2.20000	BRANCHING RATIO 0.000000 0.000000	SUMMING CODE	
PRH-104 55	HALF LIFE: PK BKG (BK	= 0.705000 3)= 0.00000	MINUTES UNCE 0	ERT= 0.000000	
•	'KEV 555.800 1237.000	GAMMA/D 2.00000 0.720000E-	BRANCHING RATIO 0.000000 01 0.000000	SUMMING CODE	
5 6	HALF LIFE PK BKG (BC	= 4.34000 2)= 0.00000	MINUTES UNCE 0	RT= 0.000000	
	KEV 51,400	Gamma/1 57,0000	BRANCHING RATIO 0.000000	SUMMING CODE	

	77.600	2.50000	0.0000	00		25.
\$-37 57	HALF LIFE= PK BKG (BQ	5.00000)= 0.00000	MINUTES 0	UNCERT= 0	. 000000	
	KEV 3102.400	Gamma/D 90.0000	BRANCHING R	ATIO SUMM 00	iing cabe	
SB-122M 58	HALF LIFE= PK BKG (BG	4.20000)≈ 0.00000	MINUTES 0	UNCERT= 0	00 0000	
	KEV 61.600 76.300	GAMMA/D 50.0000 17.0000	BRANCHING R 0.0000 0.0000	ATIO SUMP 00 00	IING COBE	
58-124M 59	HALF LIFE= PK BKG (BQ	1.55000)= 0.00000	MINUTES	UNCER T = (.000000	
	KEV 498.400 602.700	GAMMA/D 19.7000 20.0000	BRANCHING R 0.0000 0.0000	ATIO Sume 00 00	IING CODE	
SC-46M 60	HALF LIFE= PK BKG (BQ	0.312000)≠ 0.00000	MINUTES	UNCERT* 0	, <u>2000</u> 00	
	KEV 142.500	GAMMA/B 100.000	BRANCHING R	ATIO SUMP	IINGE COBE	
3E -77M	HALF LIFE= PK BKG (BQ	0.290000	MINUTES	UNCERT= C	. 000000	
UN	KEV 161,600	GAMMA/D 52.0000	BRANCHING R	ATIO SUMP 00 DE N	EVO L	EÓN R
SE-79M 42	HALF LIFE= PK BKG (BQ	3.90000)= 0.00000		UNCERT= 0		
	KEV 95.700	GAMMA/D 10.0000	BRANCHING R	ATIO SUMP 00	IING CODE	
3E~81 63	HALF LIFE= PK BKG (BQ	18,5000)= 0,00000	MINUTES	UNCERT= (000000	
	KEV 275.900 290.080	GAMMA/D 0.510000 0.440000	BRANCHING R 0.0000 0.0000	ATIO SUMM 00 00	IING CODE	
SE-81M 64	HALF LIFE= PK BKG (BQ	57.3000)= 0.00000	MINUTES	UNCERT= (.000000	
	KEV 103.000	GAMMA/D 8.00000	BRANCHING R 0,0000	ATIO SLIMP 00	ING CODE	
SE-83	HALF LIFE=	22.5000	MINUTES	UNCERT= 0	.000000	

65	PK BKG (BQ)= 0.00000	00	76.		
	KEVGAMMA/D356.00075.0000512.00045.0000	BRANCHING RATIO SUMMING CODE 0.000000 0.000000			
SE-83M 66	HALF LIFE= 1.16700 PK BKG (BQ)= 0.00000	MINUTES UNCERT= 0.000000			
	KEV GAMMA/D 1031.000 30.0000 989.000 19.0000	BRANCHING RATIO SUMMING CODE 0.000000 0.000000			
SM-155 67	HALF LIFE= 22.4000 PK BKG (BR)= 0.00000	MINUTES UNCERT= 0,000000			
/	KEV GAMMA/D 104.200 73.0000 141.200 1.70000	BRANCHING RATIO SUMMING CODE 0.000000 0.000000			
SN-113M 68	HALF LIFE= 21,0000 PK BKG (BQ)= 0.00000	MINUTES UNCERT= 0.000000			
VERS	KEV GAMMA/D 79.300 0.600000	BRANCHING RATIO SUMMING CODE 0.000000			
SN-123M 69	HALF LIFE= 40.1000 PK BKG (BQ)= 0.00000	MINUTES UNCERT= 0.000000			
	KEV GAMMA/D 159.700 84.0000	BRANCHING RATIO SUMMING CODE 0.000000			
SN-125M 70	HALF LIFE= 9.50000 PK BKG (BQ)= 0.00000	TÓNOMA DE NUEVO LEÓ MINUTES UNCERT= 0.000000	R		
	DIRECCI GAMMA/D 332,000 99.0000	BRANCHING RATIO SUMMING CODE 0.000000			
TA-182S 71	HALF LIFE= 15.8000 MINUTES UNCERT= 0.000000 PK BKG (BQ)= 0.000000				
	KEV GAMMA/D 65.200 14.5000 67.000 3.50000	BRANCHING RATIO SUMMING CODE 0.000000 0.000000			
TC-96M 72	HALF LIFE≃ 51.5000 PK BKG (BQ)= 0.00000	MINUTES UNCERT= 3.80000			
	KEV GAMMA/D 34.400 98.0000 778.220 2.00000	BRANCHING RATIO SUMMING CODE 0.000000 0.000000			
тн-233	HALF LIFE= 22.3000	MINUTES UNCERT= 0.000000			

 73 PK BKG (BQ)= 0.000000

UNCERI 0.000000

	KEV 95.900 108.000	Gamma/D 0.600000 0.170000	BRANCHING R4 0.00000 0.00000	ATIO : 00 00	SUMMING	CODE	77.
TI-51 74	HALF LIF PK BKG (E≈ 5.80000 BQ)= 0.00000	MINUTES 0	UNCER	T= 0.000	0000	
	KEV 320.000 608.400	GAMMA/D 95.0000 1.50000	BRANCHING R4 0.00000 0.00000	ATIO 00 00	SUMMING	CODE	
TL~206 75	HALF LIF PK BKG (E= 4.20000 BQ)= 0.00000	MINUTES	UNCER	T≐ 0.000	0000	
	KEV 903.300	GAMMA/D 0.650000E-	BRANCHING RA	9110 00	SUMMING	CODE	
V-52 76	HALF LIF PK BKG (E= 3.76000 BQ)= 0.00000	MINUTES Q	UNCER	T= 0.000	000	
	1434.200	GAMMA/D 100.000	BRANCHING RA	ATIO : 20	SUMMING	CODE	
W-183M 77	HALF LIF PK BKG (E= 0.883000E BQ)= 0.00000	-01 MINUTES	UNCER	T= 0.000	0000	
E.	KEV 67.200 69.100	GAMMA/D 5.00000 6.00000	BRANCHING R4 0.00000 0.00000	ATIO : DO DO	SUMMING	CODE	
W-185M	HALF LIF	E= 1.66000	MINUTES	UNCER	T= 0.000	0000	
78 UN	PK BKG (BQ) = 0.00000	° ónoma	DE	NUE	VOL	EÓN
U A LA	KEV	GAMMA/D	BRANCHING RA	ATIO	SUMMING	CODE	R
	107.900	0.350000	VER A0. 00000	BIB]	LIOTE	CAS	
XE-135M 79	HALF LIF PK BKG (E= 15.6500 BQ)≈ 0,00000	MINUTES 0	UNCER	T= 1.30	0000	
	KEV 526.561	Gamma/D 80.5120	BRANCHING RA	ATIO : 00	SUMMING	CODE	
XE-137 80 /	HALF LIF PK BKG (E= 3.83000 BQ)≈ 0.00000	. MINUTES	UNCER	T= 14.0	0000	
	KEV 455.510 848.840	GAMMA/D 30.0000 0.620000	BRANCHING R/ 0.00000 0.00000	ATIO : DO DO	SUMMING	CODE	
XE-138 81	HALF LIF PK BKG (E= 14.1700 BQ)= 0.00000	MINUTES 0	UNCER	T≈ 8.0(000	
	к еv 258.310	GAMMA/D 31.5000	BRANCHING RA	01TE	SUMMING	CODE	

 ZN-71
 HALF LIFE=
 2.40000
 MINUTES
 UNCERT=
 0.000000

 82
 PK BKG (BQ)=
 0.000000

KEV	GAMMA/D	BRANCHING RATIO	SUMMING CODE
511.600	14.0000	0.000000	
910.300	3.50000	0.000000	

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Apendice "B".- Deducción de periodo de Semi-desintegración (T 1/2) a partir de fórmula de Actividad.y Condiciones Límite.

La actividad presente a un tiempo t, después de t=0de -un radionúclido, es dada por $A(t) = A_0 e^{-\lambda t}$. Entonces --

UNIVERSIO AD AUTÓNOMA DE NUEVO LEÓN DRECCIÓN GENERAL DE BIBLIOTECAS

 $\frac{1}{2} = e^{-\lambda T 1/2}$ $\ln 1 - \ln 2 = -\lambda T 1/2$ $\frac{-\ln 2}{-\lambda} = T 1/2$ $\frac{-693}{\lambda} = T 1/2 \quad \delta \quad \lambda = \frac{-693}{T 1/2}$

El método comparativo de N.A.A., supone que si elementos trazados estándar conocidos y muestras desconocidas, son irradiadas al mísmo tiempo ambos, reciben el mismo flujo y perturbaciones de flujo, tienen también el mísmo perí<u>o</u> do de irradiación y el mismo tiempo de salída del reac-tor (TOR).

La concentración de el elemento de interés en la muestra es:

 $\frac{\mu_{gr/gr}}{W_T} = \frac{A \text{ muestra } X \mu_{gr/gr} \text{ Std } X W_T \text{ Std}}{W_T \text{ muestra } X \text{ A Std.}}$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Donde: DIRECCIÁ muestra = Actividad del producto a estudiar -

> en la muestra en tiempo corregido -(TOR).

A Std = Actividad del mismo producto de activación en el estándar con tiempocorregido (TOR).

Wr muestra = Peso en gms.

Hgr/gr Std. = Hgr/gr del elemento de interés en el Std. El análisis de los productos en N.A.A., es un análisis e<u>s</u> pecializado de energías **X** ; todas las rutinas necesariaspara análisis de Energías Gamma (**Y**), ya existen en el paquete analítico (Software) llamado GELIGAM.

El GELIGAM, determina el área neta y contiene de las de -convoluciones múltiples, aplica una corrreción sumaria ytambién corrige le decaimiento del núclido durante su análisis y a cualquier tiempo presente.

La concentración mínima detectable (MDC) o precisión de -conteo está determinada también; además tiene un almacenamiento ilimitado y memoria de archivos nucleares y de cal<u>i</u> bración que contienen información sobre la forma, eficiencia y energía Vs. canales.

UNIVERSIDAD AUTONOMA DE NUEVO LEON

El (NA. A-C) Software, proporciona las habilidades necesa rias para calcular Ec(I), con lo cual se minimiza el traba jo del operador; toda composición estándar puede ser carac terizado en las tablas de los archivos.

Cada archivo es nombrado individualmente en forma única u contiene los µgr/gr para cada núclido estándar [Std] u un lugar para el factor peso estándar X actividad [STDWPA que será determinado, la tabla de archivo construída manda el programa [TBL], debe contener dos columnas: La primera columna contiene: La concentración estándar en unidades de µgr/gr de Std.

La segunda columna conteine: Los factores STDWPA.

Esto permite el uso de encapsulados múltiples (alternativamente) del mismo estándar o el uso de una o más cápsulas de un estándar en la misma irradiación, todas caracterizadas por una tabla: La STDWPA es la siguiente posición de -Ec(1).

 $STDWPA = \frac{\mu_g/gr \ Std \ X \ Wstd}{Astd}$ (2)

La concentración del estándar, viene de la tabla que se -acaba de describir. La actividad y el peso del estándar d<u>e</u> ben de venir del análisis GELIGAM del espectro estándar. El peso de cualquier estándar o muestra usada en una irra-

diación particular, es introducida independientemente en archivo.

La Biblioteca Nuclear contiene el nombre del elemento de la traza, la actividad característica del producto, vida media y energía del fotópico; además las razones de Y por desintegración relacionadas a cada elemento de traza en el estándar. Las Bibliotecas pueden ser modificadas en parte o en su totalidad o se pueden hacer nuevas Bibliotecas de los com ponentes de Biblioteca, ya existentes.

Un número ilimitado de Bibliotecas pueden <mark>ser almacenadas</mark> y llamadas (Memoria), a través del tiempo út<mark>il de vida d</mark>e un estándar.

Las actividades estándar así como los pesos son remitidos hacia un archivo de salida denoinado <u>(UFO)</u> 'UNFORMER NUT PUT).

<u>EL SC1:</u> Combina la información de las 2 entradas mencron<u>a</u> das para formar los valores STDWPA, (Ec2) y para darles entrada en archivo.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

<u>El SC2</u>: Combina las STDWPA individuales de los elementos estudiados en una tabla de archivo para usarse en los an<u>é</u> lisis de la muestra, en este paso, quien lo esté usandi tiene la opción de agregar nuevos elementos con sus STDWPA de los elementos que ya fueron anotados, y es por este me dio que los datos de varios estándares pueden ser combin<u>a</u> dos para usarlos en un archivo.

El espectro de la muestra es analizado por los programas-ANI y AN2, los cuales determinan la actividad de la muestra seguido por el programa NAC., que calcula los Mgr/grpara la muestra en Ec (1), los análisis están hechos de los archivos de espectros almacenados y los cuales contienen.

a). - El espectro.

bl. - Calibraciones espectroscópicas

c).- Tiempo y fecha de obtención del espectro.

d).- Duración del espectro.

e).- Tiempo y fecha del final de irradiación (TOR).

f).- Peso de la muestra.

g).- Nombre de Biblioteca utilizada y hasta del elemento a ser utilizado.

h).- Nombre de tabla de archivo de factores STDWFA.

DESCRIPCIONES DE PROGRAMAS:

ANI: Es el primero de una serie de programas que analizan el espectro GELIGAM; esto crea e inicia un archivo ll<u>a</u> mado UFO, el cual contiene todos los parámetros requenidos para los análisis y que incluyen los datos de ca libración, de corrección por absorción, geometría, archivo de especificaciones de la Biblioteca y las especificaciones del archivo del aspectro.

> En este caso ANI primero obtiene estos parámetros de análisis del archivo del espectro y luego revisa la -validez de estos parámetros, si detecta un parámetronc válido (error), el ANI pedirá al usuario un --nuevo parámetro; despuês que todos los paráme----

tros han sido verificados, los remite al archão -UFO para que sean utilizados por el programa-si--guiente (AN2) y continuar con el análisis.

AN2: Es el segundo de una serie de programas que analizan el espectro GELIGAM; este programa calcula las áreas de fotopicos y la actividad del máclido ba-sándose en los parámetros analíticos que fueron -gravados en UFO por AN1.

> Cuando AN2 termina sus cálculos, anota los valores de la actividad del núclido en µCi, en archivo -UFO para tener acceso a programas su**bsecuentes**.

NAC.: Este programa realiza los cálculos de la activ**edad** UNIVERS de una muestra y los bactores WPA para los estánda res. DIRECCIÓN GENERAL DE BIBLIOTECAS

> El NAC obtiene la información de la **actividad de** la muestra del archivo UFO y lo proporc**iona al es**tándar WPA.

> Los resultados de los cálculos del NAC, son agrega dos al archivo UFO para ser incluídos en el reporte del análisis.

Durante el análisis de una muestra, e**l NAC deberá ser** · corrido después de AN? y antes del RPT **(Programa de Re**portes'.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

Apendice "D".- Bibliografia.

 Bowen, H.J.M., and Gibbons, D. Radioactivation Analgsis, Oxford at the Clarendon Press.

2. - Taylor, Denis, Neutron Irradiation and Activation An<u>a</u> lysis, D. Van Nostrand Company, Inc. 3. - Knoll, F. Glenn, Radiation Detection and Measurement, Jhen - Eiley and Sons.

4. Price J. William, Nuclear Radiation Detection, MgGraw-Hill, Series in Nuclear Engineering. IVERSIDAD AUTÓNOMA DE NUEVO LEÓN

5. - Activation Analysis Using TRIGA Reactor, High - Resolution Gamma Spectrometer and Computer, Radiochemis-try Research Laboratory, the Dow Chemical Co. Midland, Mich.

6.- J.D. Buchanan, Activation Analysis With TRIGA Reactor, General Atomic Division of General Dynamics, John Jay Hopkins Laboratory for pure and Applied Science. P.O. BOX 608, San Diego 12 California (1961). 7.- W.H. Zimmer, What Affects a Gamma Spectrum, Systems. Application Studies EG y G ORRTEC. Physical Sciences Div. (1971).

.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

