UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA CIVIL

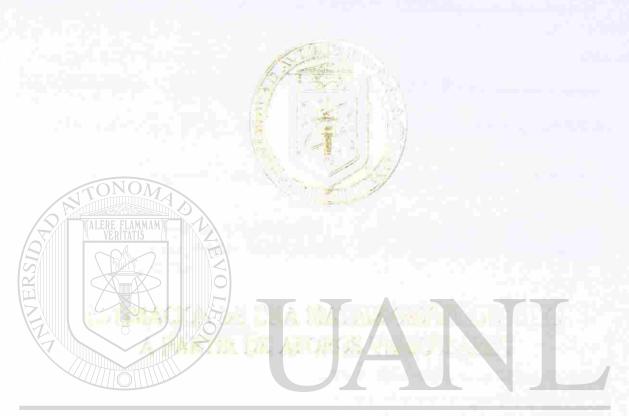
ESTIMACION DE UNA MATRIZ ORIGEN-DESTINO A PARTIR DE AFOROS VEHICULARES

Por:
HILDA LAURA BOCANEGRA LOPEZ

Como requisito parcial para obtener el grado de MAESTRIA EN CIENCIAS con especialidad en Ingeniería de Tránsito

CD. UNIVERSITARIA

FEBRERO DE 2005


TM HD373 .M6 B6 2005 c.1

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ®
DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTUMOMA DE NUEVO TECNI FACULTAD BUTUGULTURA CIVIL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Como numisito percial para obtener el grado de MAESTRIA I-N CIENCIAS con especialidad co l'especialidad con especialidad con

TO UNIVERSITARIA

TERRAL STATE OF THE STATE

HE373
· MC
BC
2005

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ©
DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL Subdirección de Estudios de Posgrado

COMPROBANTE DE CORRECCION

Tesista: HILDA LAURA BOCANEGRA LÓPEZ
Tema de la tesis: ESTIMACIÓN DE UNA MATRIZ ORIGEN-DESTINO, A PARTIR DE AFOROS VEHICULARES.
Este documento certifica la corrección <u>(DEFINITIVA)</u> del trabajo de tesis arriba identificado, en los aspectos: ortográficos, metológico y estilístico.
Recomendaciones adicionales: NINGUNA
UNIVERSIDAD AUTÓNOMA DE NUEVO-LEÓN
Nombre y firma de quien corrigió: ARQ: RAMON LONGORIA RAMIREZ
ING. JUSITNO CÉSAR GONZÁLEZ ALVAREZ M.en I.
,Ciudad Universitaria, a de del 2004.

COORDINACIÓN DE SEGURIDAD Y OPERACIÓN DEL TRANSPORTE Oficio N° 733,208.- 045,2004

Sanfandila, Qro., 1° de octubre de 2004

C. M. en C. RAFAEL GALLEGOS LÓPEZ, Coordinador de la Maestría en Ingeniería de Tránsito, Facultad de Ingeniería, Universidad Autónoma de Nuevo León, Presente.

Por medio del presente hago constar que la C. ING. HILDA LAURA BOCANEGRA LÓPEZ, alumna de esa Universidad Autónoma de Nuevo León, concluyó bajo mi dirección en la Coordinación de Seguridad y Operación del Transporte del Instituto Mexicano del Transporte, su trabajo de tesis titulado "Estimación de una matriz origendestino a partir de aforos vehiculares". Por lo anterior, agradeceré a usted iniciar los trámites para la titulación.

Sin más por el momento, reciba un cordial saludo.

Atentamente,

El Coordinador

DNOMA DE NUEVO LEON

DR. ALBERTO MENDOZA DÍAZ.

AL DE BIBLIOTECAS

Stantilicolás de los Garza, N.L., 13 de diciembre del 2004.

C. PRESIDENTE DEL COMPRÉ DE MAESTRÍA, Presente.

De acuerdo actificio discribir nulle se me informa que se me ha asignado como Evaluation de la tesis "Estimación discursa Militariz Origen-Destino a partir de Aforos Vehiculares", presentada por la CHII litta Lizaura Bocanegra López, como requisito parcial para obtener el grado de Maestro estr Cierculas con Especialidad en Ingeniería de Tránsito, comunico a ustad que se ha cestizado la revisión y la evaluación correspondientes a la misma, y obtespués de tratiser termado en cuenta y correspitto las dibastrosciones prertinentes, se le constitue para obtener.

VERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Sincutrogarticular de momento,

ATTENUTAMIENTE

IOSER MADE REPRESENTATION

San Nicolás de los Garza, N.L., 13 de diciembre del 2004.

C. PRESIDENTE DEL COMITÉ DE MAESTRÍA, Presente.

De acuerdo a oficio donde se me informa que se me ha asignado como Evaluador de la tesis "Estimación de una Metriz Origen-Destino a partir de Aforos Vehiculares", presentada por la C Hilda Laura Bocanegra López, como requisito parcial para obtener el grado de Maestro en Ciencias con Especialidad en Ingeniería de Tránsito, comunico a usted que se ha realizado la revisión y la evaluación correspondientes a la misma, y después de haber tomado en cuenta y corregido las observaciones pertinentes, se le considera como APROBADA.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Sin otro particular de momento,

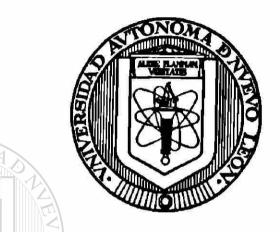
ATENTAMENTE.

JOSEFINA ELENA PEÑA LEAL

San Nicolás de los Garza, N.L. Enero 12 del 2005.

Presidente del Comité de Maestria Presente.-

En atención al oficio, en el que se me informa que he sido designado como EVALUADOR de la tesis "ESTIMACIÓN DE UNA MATRIZ ORIGEN-DESTINO A PARTIR DE AFOROS VEHICULARES", que presenta la lng. Hilda Laura Bocanegra López, como requisito parcial para obtener el Grado de Maestro en Ciencias con Especialidad en Ingeniería de Tránsito, comunico a usted que he revisado y evaluado la calidad de dicha tesis, considerándola como APROBADA.


Sin otro particular por el momento, quedo a sus órdenes para cualquier aclaración que considere pertinente.

DIRECCIÓN GENERAL DE BIBLIOTECAS

ATENTAMENTE

M.C. RITA BUSTAMANTE ALCANTARA

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL

ESTIMACIÓN DE UNA MATRIZ ORIGEN-DESTINO A PARTIR DE AFOROS VEHICULARES

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

HILDA LAURA BOCANEGRA LÓPEZ

Como requisito parcial para obtener el grado de MAESTRÍA EN CIENCIAS con especialidad en Ingeniería de Tránsito.

San Nicolás de los Garza, Nuevo León, Febrero de 2005

Agradecimientos

Al Dr. Alberto Mendoza Díaz, quien con sus conocimientos, esfuerzo, dedicación y cariño me dirigió y asesoró durante la elaboración de esta tesis.

A cada uno de los integrantes de la Coordinación de Seguridad y Operación del Transporte, del Intitulo Mexicano del Transporte, por su infinito apoyo y consejos brindados; en especial, a *Emilio Abarca Pérez* y *Francisco L. Quintero Pereda*.

Al Instituto Mexicano del Transporte, por brindarme la oportunidad de realizar los estudios de postgrado y la realización de esta tesis.

Al Ing. Oscar Moreira Flores, director de la Facultad de Ingeniería Civil (F.I.C.) de la Universidad Autónoma de Nuevo León (U.A.N.L.), por el apoyo en el transcurso de los estudios de posgrado.

Al M.C. Rafael Gallegos López, coordinador de la maestría, por todos los conocimientos brindados y el apoyo incondicional durante los estudios de posgrado y la realización de esta tesis.

A cada uno de los catedráticos que me proporcionaron, con su esfuerzo y dedicación, los conocimientos adquiridos durante mis estudios en la maestría.

Al Instituto de Ingeniería Civil (I.I.C.) de la Facultad de Ingeniería Civil, de la Universidad Autónoma de Nuevo León, por brindarme nuevamente el apoyo para seguir con mis estudios de posgrado.

A cada uno de mis compañeros de generación de la maestría, por su apoyo y comprensión.

A mis padres Raúl y María de Jesús:

Con mi eterno cariño y agradecimiento por todo el apoyo que me brindaron durante mis estudios y realización de esta tesis . . . sabiendo de antemano que no los iba a defraudar e iba a aprovechar cada uno de de los conocimientos que me han brindado durante toda mi vida . . .

Siempre con ustedes . . .

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

A mis hermanos Héctor, Hugo, Gloria, Marú, Olga y Benjamín y a mi etema amiga Tere:

Por darme su amor, comprensión y confianza.

Resumen Autobiográfico

Hilda Laura Bocanegra López

Candidato para el grado de Maestro en Ciencias con especialidad en Ingeniería de Tránsito

Tesis:

ESTIMACION DE UNA MATRIZ ORIGEN-DESTINO A PARTIR DE AFOROS VEHICULARES

Campo de Estudio: Planeación de sistemas de transporte.

Biografia:

Nacido en: Monterrey, Nuevo León el día 10 de abril de 1980.

Hijo del Sr. Raúl Bocanegra Ramos y la Sra. María de Jesús

López Macias

DIRECCIÓN GENERAL DE BIBLIOTECAS Educación: Egresado de la Universidad Autónoma de Nuevo León, San

Nicolás de los Garza, Nuevo León.

Grado obtenido: Ingeniero Civil.

Experiencia Profesional:

- Servicios y estudios de ingeniería, BCP Servicios Administrativos, S.A. de C.V.
- Investigador para estabilización de suelos, Instituto de Ingeniería Civil, U.A.N.L.
- Colaborador para la realización de estudios de ingeniería de tránsito, Instituto de Ingeniería Civil, U.A.N.L.

Título del estudio:

ESTIMACIÓN DE UNA MATRIZ ORIGEN-DESTINO A PARTIR DE AFOROS VEHICULARES

Área de estudio: Planeación de sistemas de transporte

Autor: Lere Flamman Hilda Laura Bocanegra López

Número de páginas: 160

Fecha de graduación: Febrero de 2005

Candidato para el grado de Maestro en Clencias, con especialidad en Ingeniería de Tránsito

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Propósito, contribuciones y conclusiones: BIBLIOTECAS

Se analizan las metodologías existentes para la estimación de matrices O-D a partir de aforos, seleccionándose una de ellas, la cual se aplica a un ejemplo sencillo así como a un caso práctico relacionado con los flujos de libramiento y acceso de pasajeros y vehículos al Área Metropolitana de la Ciudad de México (AMCM). La importancia de este trabajo reside en que, por cuestiones económicas, en el país se privilegia la medición de aforos a la recopilación de información O-D, por lo cual, este trabajo hará posible sacar un mayor provecho a los aforos existentes, permitiendo generar la información O-D requerida para llevar a cabo una planeación más adecuada del tránsito y del transporte.

DIRECTOR DE TESIS: Dr. Alberto Mendoza Díaz

Índice de Contenido

Cap	Capítulo		
1	Intro	ducción	1
	1.1	Aspectos preliminares	3
		1.1.1 Utilidad de los estudios O-D	3
		1.1.2 Métodos para realizar estudios O-D	5
	ITO	1.1.3 Estimación de la matriz O-D a partir	
	ALERE	FLAMMAN de aforos vehiculares	9
3)		1.1.4 Modelos de asignación más comunes 1	3
2 / 6 1		1.1.5 Programas computacionales para la	
		planeación del transporte 1	5
		1.1.6 Evolución urbana y del transporte en	
		el Área Metropolitana de la Ciudad	
		de México (AMCM) 2	23
INI	1.2	KSYD ATOTATI TONIONIATO ENTERVOMERON	25
, 1 (1	1.3	Hipótesis	8
	Dir	Metodología GERMERIA EL DEL BIBLIO TECAS 2	6
	1.5	Alcances 2	27
	1.6	Utilidad 2	28
2	Ante	cedentes 3	Ю
	2.1	Elección de ruta y estimación de matrices 3	13
	2.2	Calibración de un modelo de demanda de	
		viajes a partir de aforos vehiculares 3	4
	2.3	Estimación de matrices a partir de aforos	
		vehiculares 3	
	2.4	Aforos vehiculares y estimación de matrices 4	7

Cap	ítulo		Pr	igina
		2.4.1	Independencia	. 48
		2.4.2	Inconsistencia	. 49
	2.5	Extens	siones	. 53
		2.5.1	Asignación no-proporcional	. 53
		2.5.2	Métodos heurísticos	. 55
3	Sele	ección o	de la Metodología	57
	3.1	Bases	tradicionales para la modelación del tránsito	. 58
5	3.2	Métod	O SPME	62
		3.2.1	El principio del SPME	. 62
RS		3.2.2	Ejemplos de calculo usando SPME	66
		3.2.3	Elección del modelo de asignación dentro	
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	del SPME	. 70
		3.2.4	Discusión sobre el SPME	72
	3.3	Métod	o MPME	. 74
UN	IVE	3.3,1	Principios	.]74
		3.3.2	Algunos ejemplos de cálculo	. 76
	DI	3.3.3	Algunos características del MPME	. 79
	3.4	Metod	ología seleccionada	. 80
	3.5	Ejemp	olos del SPME utilizando TransCAD	82
		3.5.1	Procedimiento general	. 82
		3.5.2	Ejemplo de la Figura 3.1	. 91
		3.5.3	Ejemplo de la Figura 3.2	. 93
4	Apli	cación	a un caso práctico	. 95
	4.1	Descri	ipción de los elementos básicos	96

Capítulo	Págin	
4.1.1	La red 96	
4.1.3	2 Los aforos 99	
4.1.3	La matriz semilla101	
4.2 Calil	oración de la matriz semilla109	
	ones y recomendaciones 113	
ALERE FLAMMAI VERITATIS	ritmos de camino óptimo 120	
Anexo B Núm	ero de identificación de centroldes127	
Anexo C Matri	z semilla 131	

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

Índice de Figuras

Figura		Página
2.1	Red simple con aforos vehiculares	39
2.2	Aforos dependientes	
2.3	Inconsistencias en los aforos	50
2.4	Métodos de asignación para estimar matrices O-D	54
2.5	Métodos para estimar matrices O-D a partir de aforos	
NI	vehiculares	56
3.1	Red con aforos vehiculares inconsistentes	66
3.2	Otra red con aforos vehiculares inconsistentes	69
3.3	Red con aforos vehiculares consistentes	70
3.4	Comparación del ME2, SPME y MPME	73
3.5	Otra red con aforos vehiculares inconsistentes	78
3.6	Diagrama de la metodología seleccionada	81
4.1	Representación en TransCAD del modelo de red del	
NIIV	ENSIDAD AUTÓNOMA DE NUEVO LEÓ	98
4.2	Representación en TransCAD de los 38 sitios de aforo) I V
D	seleccionados para el área de estudio	101
4.3	Representación en TransCAD de las 10 estaciones	
	seleccionadas para el área de estudio	105
4.4	Representación en TransCAD de los 36 pares O-D	
	con mayor flujo vehicular en ambos sentidos, obtenidos	
	de la matriz semilla	107
4.5	Representación gráfica de los flujos resultantes de la	
	asignación de la matriz semilla	108
4.6	Representación gráfica de los flujos en ambos sentidos	
	obtenidos de la asignación de la matriz semilla Vs. los	
	valores de aforos	109

Figura	Página
4.7	Representación e n TransCAD de los 75 pares O-D
	con mayor flujo vehicular en ambos sentidos, obtenidos
	de la matriz estimada 110
4.8	Representación grafica de los flujos resultantes de la
	asignación de la matriz estimada111
4.9	Representación gráfica de los flujos en ambos sentidos
	obtenidos de la asignación de la matriz estimada Vs.
	los valores de aforos
	ALERE FLAMMAN VERITATIS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Índice de Tablas

	Página
Cálculo de seis matrices factibles	40
Algoritmo multi-proporcional aplicado a dos aforos	45
Algoritmo multi-proporcional aplicado a tres aforos	46
Método SPME utilizando el problema dado en	
la Figura 3.1	68
Método MPME utilizando el problema dado en	
la Figura 3.4	74
WEDITATIS AND THE STATE OF THE	
	77
TPDA de las entidades federativas del área de	
estudio	100
Estaciones de encuestas O-D seleccionadas en el	
	105
	la Figura 3.1 Método MPME utilizando el problema dado en la Figura 3.4 Método MPME utilizando el problema dado en la Figura 3.5 TPDA de las entidades federativas del área de estudio

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

R

DIRECCIÓN GENERAL DE BIBLIOTECAS

Siglas y Abreviaturas

AMCM Área Metropolitana de la Ciudad de México

BPR Agencia de Caminos Públicos, por sus siglas en inglés

EECAN Estudio Estadístico de Campo del Autotransporte Nacional

EMME/2 Equilibre Multimodal, Multimodal Equilibrium, por sus siglas en

inglés y francés

etc. Etcétera

GIS Sistemas de información Geográfica, por sus siglas en inglés

Mb Megabits

ME2 Maximización de la Entropía

Por Ejemplo

MPME Estimación de la Matriz por Camino Múltiple, por sus siglas en

inglés

MSA Método de Promedios Sucesivos, por sus siglas en inglés

Origen-Destino ONOMA DE NUE LOD VERSI

P. ej. DIR F

SCT

VERAL DE BIBLIOTECAS

RP Preferencias Relevadas, por sus siglas en inglés

Secretaria de Comunicaciones y Transportes

SP Presencias Establecidas, por sus siglas en inglés

SPME Estimación de la Matriz por Carnino Sencillo, por sus siglas en

inalés

STAN Análisis Estratégico del Transporte, por sus siglas en inglés

SUE Equilibrio del Usuario Estocástico, pos sus siglas en inglés

TDPA Tránsito Diario Promedio Anual TLD Distribución de la Longitud por de los Viajes, por sus siglas en

inglés

UE Equilibrio del Usuario, por sus siglas en inglés

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
DIRECCIÓN GENERAL DE BIBLIOTECAS

1. INTRODUCCIÓN

Las matrices de origen a destino (O-D) cuantifican los flujos del tránsito (de vehículos de pasajeros y de carga) entre diferentes zonas de un área considerada de estudio; lo cual significa que, previamente a su generación dicha área debe estar dividida en zonas que en su interior sean homogéneas en términos socio-económicos.

Normalmente las matrices O-D se estiman a través de una encuesta que se aplica a una muestra de los usuarios que se desplazan entre las diferentes zonas. Tanto la encuesta como su aplicación deben diseñarse para captar la información especifica del tipo de viaje deseados (p. ej. matriz O-D de pasajeros de la hora de máxima demanda o pico de la mañana). Por supuesto, la información generada a partir de una encuesta es una muestra, que como tal, debe ser expandida posteriormente para estimar los flujos totales. La confiabilidad estadística de estos últimos depende del tamaño de la muestra, y es por lo general, prohibitivamente caro y dificil levantar encuestas del tamaño necesario para generar resultados confiables.

Suele ser más conveniente utilizar herramientas computacionales para estimar matrices O-D a partir de conteos o aforos vehiculares, ya que éstos son económicos de obtener y generalmente se dispone de ellos rutinariamente a partir de los procesos de monitoreo del comportamiento de los arcos de la red.

Contar con información de origen a destino en la forma de matrices O-D es de utilidad en los procesos de planeación de la infraestructura y los servicios de transporte entre las zonas del área de estudio, ya que permite contrastar la demanda cuantificada entre los sitios de origen y destino (o flujos estimados en los pares O-D) contra la infraestructura y los servicios existentes, permitiendo identificar y definir medidas de mejoramiento.

Por todo lo anterior, en este trabajo se pretende explorar algunas metodologías para la estimación de matrices O-D, a partir de aforos o conteos sobre algunos de los arcos de la red considerada. Se seleccionará una metodología y su herramienta computacional correspondiente, aplicándose ambos a un ejemplo sencillo así como a un caso práctico relacionado con los flujos de libramiento y acceso de pasajeros y vehículos al Área Metropolitana de la Ciudad de México (AMCM). La herramienta computacional que se utilizará para lo anterior es el programa TransCAD, que es un programa de planificación del transporte, diseñado para trabajar en una plataforma de sistema de información geográfica (GIS) (Referencia 1).

1.1 Aspectos Preliminares

Los estudios O-D son la base para la preparación de planes globales de transporte para un área determinada. Debido a que los planes integrales son a largo plazo y lentos en su implantación y ya que las obras de trasporte deben construirse para muchos años de uso, la información O-D recopilada, debe proyectarse para proporcionar datos de las demandas futuras del transporte.

Estos estudios también son empleados para los propósitos de la planeación del transporte, como son la localización, proyecto y programación de nuevas carreteras, para mejorarlas y para obras del trasporte público o servicios.

1.1.1 Utilidad de los Estudios O-DNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Los estudios O-D sirven para obtener datos sobre el número y tipo de viajes en un área considerada, incluyendo movimientos de vehículos de pasajeros y carga, desde las zonas de origen hasta las zonas de destino.

La utilidad de las matrices O-D está vinculada con el paso de asignación del denominado proceso de planeación del transporte, el cual consta de los siguientes cuatro pasos (Referencias 2 y 3):

- Generación/Atracción. Es el proceso mediante el cual se cuantifican los viajes (producidos o atraídos) realizados por las personas que residen o desarrollan actividad en una determinada área urbana, o por vehículos relacionados con dicha área.
- <u>Distribución.</u> Es el proceso mediante el cual se determinan las zonas de origen y destino de los viajes generados, esto es, las producciones de viaje de cada zona que se conectan con todas las zonas a las cuales son atraldos.
- 3. <u>División Modal.</u> Determina la proporción de los usuarios que seleccionan el modo de transporte para la realización de sus viajes.
- 4. Asignación. Se utiliza para estimar el flujo en una red de transporte, usualmente a través de algún método de equilibrio que utiliza el tiempo de viaje y congestión, con la premisa de que los individuos puedan reducir sus costos mediante la selección de rutas. Este paso permite desarrollar mejoras de transporte a la red.

Nota: en adelante, cuando se mencione el término asignación, en este documento, deberá considerarse que se está haciendo referencia a este paso del proceso de planeación del transporte.

1.1.2 Métodos para Realizar Estudios O-D

Los procedimientos para realizar estudios O-D son variados. En los métodos más extensos se obtienen los datos para una muestra de viajes, incluyendo la identificación del origen y del destino, el propósito del viaje, el tiempo del viaje, el modo (automóvil, transporte público, camión, taxi, etc.), los usos del suelo en el origen y en el destino, los datos socio-económicos de los viajeros, etc.

El método para la recopilación de la información O-D se selecciona considerando las necesidades de datos, el personal del que se dispone, el presupuesto y las limitaciones de tiempo.

A continuación se mencionan algunos métodos (Referencias 4 a 7):

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Encuesta domiciliaria.

DIRECCION GENERAL DE BIBLIOTECAS

Consiste en aplicar encuestas directamente en cada una de las viviendas que pertenecen a una muestra previamente seleccionada. Esta encuesta permite obtener información sobre los viajes que fueron realizados en el día inmediatamente anterior al día de la encuesta, por cada una de las personas mayores de cinco años, incluyendo los viajes en trasporte publico, camiones, taxis y automóviles particulares, así como información sobre las variables socioeconómicas, como son: el ingreso y la tenencia de vehículos. Este método se debe apoyar en otros complementarios como:

a. Entrevista a un lado del camino o método del aforo vehicular

Este tipo de estudio puede proporcionar, con frecuencia, la mayoría de los datos necesarios para la planeación o evaluación de un libramiento. En este método, se detiene a los conductores a un lado de la vía y se les pregunta sobre su origen, su destino y otros datos deseados sobre el viaje que realiza cada vehículo. Este estudio está dirigido a conductores de automóviles, camiones y autobuses. Sólo se solicita información sobre el viaje que en ese momento se está realizando, sin producir ningún dato relacionado con los pasajeros. Para detener los vehículos es conveniente y necesario contar con el apoyo de la policía o de agentes de tránsito.

b. Método de registro de las placas de los vehículos en tránsito

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

En este método los observadores deben anotar las cuatro últimas cifras alfanuméricas de las placas de los vehículos, agrupándolos en períodos cortos, (de un minuto), anotando la hora al final de cada período. Conforme pasa el vehículo por cada estación, se registra; lo que permite trazar el viaje a través del área de estudio. El origen del viaje corresponde a la estación donde el vehículo fue registrado por primera vez, y el destino es el lugar donde fue visto por última vez. En el caso de sitios con altos volúmenes, se requiere del empleo de una grabadora portátil por cada observador para lograr registrar las placas de todos los vehículos. Se recomienda que, paralelamente, se efectúen conteos vehículares para realizar el ajuste a la muestra que finalmente se logre obtener.

c. Etiquetas en el vehículo

Éste es otro método de vehículo en movimiento, que no depende de la cooperación total de los conductores, que puede utilizarse cuando el tránsito es demasiado pesado. Se entrega al conductor una tarjeta codificada, o bien, se fija a su vehículo, al entrar a la ruta o zona de estudio. Se informa al conductor acerca de la naturaleza del estudio y de que la tarjeta será recogida al salir de la ruta o zona de estudio. Cuando el vehículo sale de la ruta o zona, se registran en la tarjeta, la hora, la estación, la dirección del viaje y observaciones.

d. Tarjetas postales al conductor

Este método puede usarse cuando el volumen vehicular es alto y no es posible detener al conductor el tiempo necesario para la entrevista. Consiste en entregar a los conductores, unas tarjetas postales con las preguntas, en las que se solicita llenarlas y dejarlas en algún buzón del correo. Se necesitan aforos de volúmenes de tránsito en cada hora y en ambas direcciones para extender la muestra.

e. Cuestionario a empleados

Éste es un estudio dirigido específicamente a un generador de tránsito. Se pueden distribuir los cuestionarios a todos los empleados de un centro de

trabajo. Éstos, a su vez, proporcionarán los datos de su residencia, cómo llegan al lugar de trabajo, la hora de entrada y salida, información sobre el estacionamiento y costos de viaje. Los datos anteriores se pueden obtener para conductores de automóvil y para pasajeros en automóvil, en autobús y taxi.

Método de ascenso y descenso de pasajeros en una ruta de transporte público

Este método es independiente de las encuestas domiciliarias y se utiliza para determinar la movilización O-D de pasajeros en una ruta dada.

El estudio precisa los orígenes y destinos de los pasajeros que utilizan una ruta específica de transporte público, utilizándose principalmente para planear las mejoras de una ruta o reestructurar los despachos de vehículos. En algunas ocasiones se puede utilizar para autorizar nuevas rutas. En este caso, por las necesidades de desplazamiento, los usuarios del servicio organizan sus propios paraderos, donde son recogidos y transportados por vehículos particulares, requiriéndose de la autorización y legalización de la ruta.

Uno o dos encuestadores abordan el vehículo y distribuyen un cuestionario a cada pasajero que sube al automotor. El cuestionario debe ser recogido por el personal de campo cuando el pasajero baja del vehículo. Adicionalmente al cuestionario, se registra en un formulario el número de pasajeros que ascienden y descienden, describiéndose el sitio donde una u otra cosa ocurre (paradero).

1.1.3 Estimación de la Matriz O-D a Partir de Aforos Vehiculares

Conforme aumenta el tamaño del área considerada, se eleva la necesidad de datos O-D detallados, así como la complejidad y el costo para obtenerlos mediante estudios O-D. La estimación de la matriz O-D a partir de aforos vehículares se desarrolla con el propósito de reducir ambos aspectos anteriores, logrando, además, un nivel de confiabilidad adecuado en esa estimación.

Para un área de estudio determinada y su correspondiente red de transporte, el problema consiste en estimar la matriz O-D que sea consistente con un conjunto de aforos vehiculares en los arcos de esa red. Los enfoques más prácticos para lo anterior parten de una matriz O-D previa o inicial, aplicándose un procedimiento que iterativamente la va actualizando hasta lograr una versión de la misma para la que se obtiene un buen nivel de consistencia entre los flujos predichos en los arcos mediante asignación y los aforos vehiculares con los que se cuenta. A los procedimientos que siguen el enfoque anterior se les denomina como de "actualización de matrices".

Esta estimación tiene la ventaja de que sólo se requiere instalar aparatos contadores automáticos en los nodos y/o arcos en la zona de estudio, reduciendo el tiempo, el número de personal en el campo y en la oficina, la capacitación de éste, la coordinación con las autoridades, la difusión del estudio, la instalación de estaciones, la recopilación de información, la

codificación, las capturas y el procesamiento, las demoras y congestionamiento en las vías, así como el equipo necesario para llevar a cabo el estudio, obteniéndose también una buena confiabilidad en los resultados que se generan.

Los procedimientos de actualización o ajuste de matrices tienen como objetivo utilizar información sobre los aforos del volumen de vehículos, normalmente disponibles o que pueden obtenerse fácilmente, para estimar una matriz de viajes (Referencia 2).

El desarrollo teórico de los procedimientos de actualización de matrices empezó hacia fines de la década de los 70's como una respuesta a las necesidades de estudios que exigían la obtención de matrices de viajes en plazos y costos menores que los asociados a las formas tradicionales de acopio de información. En lugar de utilizar investigaciones domiciliares de origen/destino, encuestas en vehículos u otras formas de colecta de datos, se busca la utilización de aforos de tránsito, que se caracterizan por la ejecución simple, la interferencia reducida en el flujo de tránsito y un elevado grado de automatización.

La idea básica de estos procedimientos consiste en estimar los valores de las celdas de una matriz $\left(T_{y}\right)$ de tal forma que el siguiente conjunto de restricciones sea satisfecho:

$$V_a = \sum_{ij} T_{ij} \cdot p_{ij}^a \qquad \text{para } a \in A \qquad (1.1)$$

donde:

V = Volumen de tránsito observado en el arco a.

 T_{μ} = Número de viajes de la zona i hacia la zona j.

 p_{ii}^{a} = Proporción de viajes de *i* a *j* que utilizan el arco a.

A = Conjunto de arcos para los cuales existen aforos de tránsito.

Algunos enfoques alternativos fueron adoptados para adicionar informaciones que permitieron la estimación de las variables. En general, estos enfoques buscan introducir algún tipo de estructura en la matriz de viajes. Entre estos enfoques, aquél que representa mayores ventajas y que, por lo tanto, es más adoptado en aplicaciones prácticas, es el que utiliza el concepto de maximización de entropía.

La maximización de la entropía es un concepto derivado de la Teoría de la Información, cuya aplicación inicial al desarrollo de modelos de transporte se debe a Wilson (Referencia 8). Una buena discusión sobre el concepto, sus marcos teóricos, su evolución histórica y sus aplicaciones al desarrollo de modelos puede encontrarse en la Referencia 9.

En su esencia, la maximización de la entropía busca alcanzar el estado más probable de un determinado sistema, respetadas algunas condiciones establecidas exógenamente.

Así, en el caso de la actualización de matrices de viajes, cuando se impone una estructura a la matriz que satisfaga la condición de maximización de entropía, se busca determinar el conjunto más probable de (T_y) que satisfaga las restricciones de la ecuación (1.1). Entre las ventajas de la utilización del concepto de maximización de entropía para la utilización de matrices, con respecto a otras alternativas presentadas en la literatura especializada, está la posibilidad de utilizar informaciones existentes como si fuera una matriz antigua o previa, o aquélla correspondiente a otro período u otro modo de transporte.

En este caso, la solución formal del problema está dada por:

$$T_{ij} = t_{ij} \cdot \prod_{a} (X_a)^{p_i^a} \tag{1.2}$$

donde:

 T_y = Número de viajes de la zona *i* hacia la zona *j*.

 p_{ij}^a = Proporción de viajes de *i* a *j* que utilizan el arco a.

 t_{ij} = Número de viajes entre i y j en la matriz conocida.

 X_a = Factores de corrección o balanceamiento.

En el caso de actualización de matrices, los factores de corrección o balanceamiento (X_s) que intervienen en la celda ij son aquellos correspondientes a los arcos en el camino entre i y j que poseen informaciones de aforos.

En cuanto a su aplicación, los procedimientos de actualización de matrices son primordialmente utilizados para estimar matrices de viajes de vehículos, sean éstos automóviles, autobuses o camiones, en conjunto o por separado. Es posible ajustar matrices para diferentes períodos del día o del año, en función de los aforos disponibles. Sin embargo, no es práctico, aunque posible, aplicarlos para estimar matrices por motivo de viaje, una vez que esto exigiría la realización de encuestas para categorizar las informaciones de los aforos en los diferentes motivos (Referencia 6).

1.1.4 Modelos de Asignación de Tránsito más Comunes

Todo o Nada

En la asignación "Todo o Nada", todo el tránsito que fluye entre los pares O-D se asigna a los caminos más cortos que conectan los origenes y destinos. Este modelo es poco realista, debido a que sólo un camino entre cada par O-D se utiliza, aun cuando exista otro camino con el mismo o casi el mismo tiempo de viaje o costo. También el tránsito en los arcos se asigna sin considerar si hay o no congestión o la capacidad adecuada; el tiempo de viaje es fijo y no varía dependiendo de la congestión en el arco.

Equilibrio del Usuario (UE)

El método "Equilibrio del Usuario" utiliza un proceso iterativo para lograr una solución convergente en la que ningún viajero puede mejorar su tiempo de viaje al cambiar de ruta. En cada iteración, se calculan los fluios en los arcos de la red, lo cual incorpora efectos de restricción de la capacidad de los arcos y tiempos de viaje dependientes de los flujos. En la solución que corresponde al equilibrio, para cada par O-D, el tiempo de viaje en todos los caminos usados es igual, y también menor que o igual al tiempo de viaje que experimentaría un solo usuario por cualquiera de los caminos no utilizados. La definición anterior implica que los usuarios (conductores) tienen información completa (es decir. conocen el tiempo de viaje en todas las rutas posibles) y que consistentemente toman la decisión que más les conviene en relación con su elección de ruta. La asignación del UE se plantea mediante la formulación de un programa matemático, el cual se resuelve en la práctica a través del algoritmo de Frank v Wolf. Tanto el programa matemático que resuelve el UE como el algoritmo de Frank y Wolf, se emplean en el programa TransCAD (Referencia 1).

Equilibrio del Usuario Estocástico (SUE)

El método "Equilibrio del Usuario Estocástico" es una generalización del "Equilibrio del Usuario", que asume que los viajeros no tienen información perfecta acerca de los atributos de la red y/o que perciben los costos de viaje de diferentes maneras. Las asignaciones SUE producen resultados más realistas

que el modelo determinístico UE, debido a que SUE permite el uso de rutas menos atractivas, así como de las más atractivas. Las rutas menos atractivas tendrán menor utilización, pero no tendrán flujo igual a cero, como tendrían bajo UE. El SUE se calcula utilizando el Método de Promedios Sucesivos (MSA), que es el único método convergente conocido (Referencias 10 y 11). Debido a la naturaleza de este método, debe utilizarse un número grande de iteraciones. Este tipo de asignación, así como su algoritmo de solución (MSA), están implementados en el programa TransCAD (Referencia 1).

1.1.5 Programas Computacionales para la Planificación del Transporte

El programa TransCAD

El TransCAD es un programa de planificación del transporte, diseñado para trabajar en una plataforma de sistema de información geográfica (GIS), que permite analizar y hacer mapas de sistemas de transporte en una escala de vecindad, ciudad, estado, nación o mundial.

Los sistemas de información geográfica (GIS), son sistemas automatizados de procesamiento de información que parten de una base de datos geográfica para realizar diferentes tipos de análisis y obtener resultados significativos desde un punto de vista espacial. La cualidad de trabajar bajo una base de datos geográfica o geo-referenciada, le da la confiabilidad de mantener la integridad de los datos en su conjunto evitando inconsistencias.

El TransCAD combina un único set de capacidades para construir mapas digitales, manejo de bases de datos geográficos, y presentaciones gráficas con herramientas con aplicación a transporte sofisticado, operaciones de investigación y modelos estadísticos.

El programa TransCAD organiza la información de un mapa en bases de datos geográficos que a su vez están constituidas por "layers" o capas. Cada capa es un grupo de elementos de información del mismo tipo. El control del contenido de un mapa se efectúa seleccionando las capas que serán incluidas y el orden en el cual serán trazadas.

Una base de datos geográfica contiene como mínimo una capa de información y cada capa de un mapa tiene un nombre por medio del cual se identifican los elementos que la componen. TransCAD puede representar tres tipos de bases que son: puntos, líneas y áreas, en las que cada una contiene las coordenadas y los atributos que describen sus características particulares.

OBSERVACIONES:

El TransCAD tiene aplicaciones para todos los tipos de datos de transporte y para todos los modos de transporte, y es ideal para la construcción de sistemas de información y de soporte de decisiones para el transporte; también sirve en la modelación de flujo de pasajeros y carga a nivel estatal o nacional, cuenta

con varios sub-módulos (modelo de generación de viajes, modelo de distribución de viajes, modelo de reparto modelo de asignación a la red).

El TransCAD usa matrices para almacenar datos de flujo de transporte, tiempos de viaje, distancias y resultados de tabulación cruzada. Las matrices del TransCAD son una forma extremadamente eficiente de almacenamiento de datos de transporte que no encajan bien en bases de datos u hojas. Se pueden crear, editar, manipular y combinar matrices de muchas formas diferentes para soportar aplicaciones analíticas.

El TransCAD es un software ágil y versátil, debido a que los modelos o redes se pueden realizar en una forma fácil y sencilla, en comparación con otros programas para la planificación de transporte, que se describen a continuación:

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN El programa STAN DIRECCIÓN GENERAL DE BIBLIOTECAS

El STAN es un modelo general de transporte interurbano, que considera múltiples modos (multimodo) y múltiples productos (multiproducto), y que está orientado a la planificación estratégica de nivel nacional o regional de transporte

(Referencia 12).

En un sistema de transporte interurbano, los modos interactúan sobre una red de transporte, para satisfacer la demanda de transporte (que se ingresa al modelo expresada en matrices de viajes) de carga y pasajeros, resultando flujos

de equilibrio sobre cada uno de los arcos de la red. En consecuencia, para su operación se requiere la especificación detallada de las características de:

- a) Atributos de las redes,
- b) Matrices de demanda.
- c) Funciones de Costo de Arcos y Transbordos.

Las redes representan la oferta de infraestructura y servicios de transporte. Los arcos y nodos representan la topología del sistema (con sus características físicas y de operación), los modos especifican los servicios de transporte disponibles y sus características y los transbordos capturan las operaciones intermodales realizadas en estos sistemas. Los centroides representan los puntos en que se genera y atrae demanda, los que deben ser conectados a la red de transporte a través de arcos de acceso.

La demanda específica representa cuáles son los productos y propósitos de viajes de personas relevantes para el análisis y la cantidad de cada uno a ser transportada entre cada par de zonas. Las decisiones relacionadas con la generación, atracción y distribución son exógenas a la modelación de STAN.

El STAN realiza una asignación multimodal y multiproducto, que simula el comportamiento del transito y del sistema de transporte, es decir, como se satisface la demanda al mover las cantidades de diferentes tipos de productos

especificadas en las matrices O-D, sobre la red multimodal, de acuerdo con un determinado criterio cuantificado a través de las funciones.

El STAN utiliza el criterio de asignar los flujos en las matrices O-D sobre la red considerada, de tal manera que se minimice el costo total de transporte de dichos flujos calculando dicho costo de acuerdo con los criterios en las funciones (costos y tiempo de viaje, congestionamiento, etc.).

OBSERVACIONES:

El STAN es única y exclusivamente para vehículos de carga, ya sea a nivel regional o nacional, es decir, no modela pasajeros.

como se menciono anteriormente el STAN es un software que realiza asignación de tráfico ya sea con uno solo modo de transporte o varios modos de transporte, ya que tiene la opción de hacerse multimodal, agregando otros modos de transporte. Para realizar el modelo requiere de varios insumos, tales como los modos, productos, vehículos, la red a modelar, transferencias entre modos, las funciones de costo de comportamiento de tráfico y matrices.

El programa EMME/2

El EMME/2 es un sistema de vanguardia en la planificación multimodal del transporte. El cual proporciona herramientas flexibles y amplias a proyectistas,

para el análisis y modelación de la demanda, así como para el análisis y evaluación de redes (Referencia 12).

El EMME/2 puede usarse para una gran variedad de problemas de planificación del transporte, desde estudios de autopistas Interurbanas hasta estudios de rutas urbanas, de transporte público y de transporte multimodal, permitiendo manejar y estructurar de forma eficiente grandes cantidades de datos y de resultados relacionados con la planificación del transporte.

el EMME/2 ofrece herramientas de manipulación de matriz que permiten la aplicación de una amplia variedad de modelos de pronósticos de demanda de viaje; procedimientos de asignación, basados en teorías legítimas; cálculos interactivos que permiten la implementación de las evaluaciones y métodos de análisis de impacto; un poderoso macro lenguaje, para automatizar los procedimientos repetitivos; capacidad de despliegue de graficas completas; editores de redes de gráficos-interactivos.

OBSERVACIONES:

El EMME/2 es un software muy parecido al STAN, solo que la diferencia radica en que este programa modela flujos muitimodales de pasajeros, y es utilizado en áreas urbanas, ya que el algoritmo con el que se desarrolló toma en cuenta factores como el de penalización por semáforos, y congestionamiento. La metodología para hacer el modelo es muy similar al STAN, también se puede

crear redes multimodales (autos, autobuses, camiones de carga, metro, tren ligero, y peatones).

El programa ArciNFQ

El ArcINFO es un software completamente equipado de GIS para visualizar, manejar, crear y analizar datos geográficos, incorpora herramientas adicionales para funciones de geoprocesamiento avanzado y conversiones entre formatos (Referencia 13).

Las herramientas de ArcINFO se estructuran en tres aplicaciones cuyo uso combinado permite acceder a toda su funcionalidad:

ArcMap: Permite la visualización, consulta, edición avanzada y análisis de los datos implicados en el estudio.

CCIÓN GENERAL DE BIBLIOTECAS

ArcCatalog: Constituye un avanzado explorador de datos geográficos y alfanuméricos, pensado para la visualización, administración y documentación de la información.

ArcToolbox: Es la aplicación que permite realizar conversiones entre formatos, cambios de proyección, y ajuste espacial. Incluye además herramientas para la generación de geometrías complejas, una fista innumerable de funciones de geoprocesamiento.

Estas herramientas permiten realizar de forma sencilla diversas tareas de edición:

- Edición de elementos siguiendo las reglas topológicas definidas, así como corrección de errores topológicos.
- Definición y gestión para la edición multiusuario con el posterior tratamiento de conflictos (bases de datos corporativas).
- Edición de elementos complejos: rutas calibradas y redes geométricas.
- Edición en modo desconectado de los datos (bases de datos corporativas).
- Creación y edición de anotaciones asociadas a elementos.
- Generación y edición de clases de elementos de tipo "acotación".
- Permite administrar, organizar, crear y previsualizar tanto datos
 UNI geográficos como alfanuméricos. MA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS OBSERVACIONES:

El ArcINFO, es una herramienta cara y su interfase no es fácil de aprender (todo por comandos y se necesita una cierta base en conceptos GIS para poder entender lo que se hace). El ArcINFO es un GIS que se utiliza como apoyo para realizar las redes de transporte (arcos, nodos, intersecciones entre arcos, etc.)

1.1.6 Evolución Urbana y del Transporte en el Área Metropolitana de la Ciudad de México (AMCM)

La ciudad de México, capital de la República Mexicana, es el lugar donde se concentran las más importantes actividades económicas, políticas y culturales del país, dado que alberga la sexta parte de la población de México.

Durante las últimas décadas, el Distrito Federal ha vivido un proceso de despoblamiento de las delegaciones centrales, a pesar de ser las de mayor infraestructura urbana (Referencia 14). Esta situación ha sido acompañada de un crecimiento expansivo hacia las delegaciones del poniente, oriente y sur; y, en mayor medida, hacia los municipios del Estado de México, particularmente los ubicados al oriente. Este proceso de concentración de la población en las áreas externas de la ciudad ha provocado cambios importantes en los patrones de viaje.

DIRECCIÓN GENERAL DE BIBLIOTECAS

Una implicación importante de la expansión urbana es el crecimiento de la demanda de viajes que no ha ido acompañada de una red de infraestructura de transporte adecuada. De esta forma, la movilidad en el Valle de México se enfrenta a varias distorsiones e insuficiencias tanto en los modos de transporte (el auto particular, el transporte público de mediana y gran capacidad, como los autobuses y el metro, y una creciente dotación de transporte concesionado como los taxis y los microbuses) como en la red vial disponible.

La movilidad (la cual está determinada fundamentalmente por el origen y el destino del viaje) tanto de personas como de bienes en las actuales condiciones del Distrito Federal y del Área Metropolitana que la circunda, son generadores de molestias cotidianas y masívas, al igual que el crecimiento desordenado de la ciudad y su metrópoli.

La movilidad se refiere tanto a la demanda de viajes que requiere una población creciente y con empleos, viviendas y accesos a educación, cultura y comercio, cada vez mas distanciados entre sí, y por otro lado, a la oferta de infraestructura vial de avenidas y calles, con sus intersecciones, así como a los diversos servicios que se utilizan para realizar los viajes.

La movilidad en la red vial del AMCM es deficitaria, con fallas de integración para facilitar transferencias en los modos de transporte y entre las vialidades primarias y las secundarias, donde a su saturación se le suman las deficiencias en la administración, control y regulación del tránsito, así como una escasa cultura vial que colaboran a acentuar los congestionamientos. El resultado es una saturación crónica y una reducción de velocidad. Por lo anterior, la naturaleza de la movilidad en el AMCM se revela como un "desorden sistémico", donde la lentitud del tránsito, la insuficiencia e inseguridad del transporte, son apenas un síntoma irritante de un mal que surge del patrón urbano, el desorden en los modos de transporte y la insuficiencia y mal aprovechamiento de la red de vialidades.

1.2 Objetivos y Metas

En este trabajo se analizarán las metodologías existentes para la estimación de matrices O-D a partir de aforos, y se seleccionará una de ellas, la cual se aplicará a un ejemplo sencillo así como a un caso práctico relacionado con los flujos de libramiento y acceso de pasajeros y vehículos al Área Metropolitana de la Ciudad de México (AMCM). Sobre este último punto, se pretende desarrollar una matriz O-D a partir de aforos vehículares considerando como área de estudio los estados de la Región Centro del país (Estado de México así como su Área Metropolitana, Distrito Federal, Estado de Hidalgo, Estado de Morelos, Estado de Puebla, Estado de Tlaxcala y Estado de Querétaro), utilizando como herramienta computacional el software TransCAD para resolver dicha matriz, en el cual se analizará la problemática del área de estudio y se propondrán eventualmente mejoras en la infraestructura de la red carretera.

Las alternativas de mejora que podrían definirse con la matriz O-D generada para la red vial considerada (vías de penetración y vías perimetrales), son las siguientes:

DIRECCIÓN GENERAL DE BIBLIOTECAS

- 1. Un mejor nivel de servicio.
- Modernización de la infraestructura: construcción, ampliación, operación y mejoramiento de las vialidades.
- Agilizar la movilidad del transporte público y privado.

- 4. Aminorar los conflictos viales.
- 5. Disminuir el déficit de las vialidades.
- 6. Reducir las horas-hombre invertidas en los traslados.
- 7. Reducir la contaminación generada por las fuentes móviles.

1.3 Hipótesis

Si es posible contar con una matriz O-D preliminar, así como con un conjunto de aforos o conteos vehiculares en algunos arcos, entonces se puede seleccionar y aplicar un algoritmo que iterativamente la vaya ajustando, hasta generar una matriz O-D ajustada, que al ser asignada sobre la red considerada produzca unos flujos predichos, compatibles con los flujos o aforos medidos en los arcos, dentro de un error máximo, para un cierto nivel de confiabilidad.

DIRECCIÓN GENERAL DE BIBLIOTECAS

1.4 Metodología

Se basa en el desarrollo de las siguientes tareas o actividades:

Revisión Detallada de los Antecedentes. Incluye lo correspondiente a la
obtención de información O-D a partir de estudios de campo, a los principios
de estimación de matrices O-D a partir de aforos vehiculares en los arcos y
al GIS para la planeación del transporte denominado TransCAD.

- Selección de Metodología. Partiendo de un conjunto de conceptos básicos, se escoge un algoritmo que estima paso a paso una matriz O-D a partir de aforos vehiculares, cuya aplicación se describe a través del desarrollo de un pequeño ejemplo.
- 3. Aplicación a un Caso Práctico. Con la recolección y elaboración de los datos de la muestra se utiliza el software TransCAD, en el cual se estima la matriz O-D a partir de aforos vehiculares, para el acceso o libramiento al AMCM y su área conurbada. Lo anterior permitirá eventualmente proponer las medidas necesarias para alcanzar los resultados que se desean obtener para mejorar la infraestructura vial.
- 4. Redacción de la Tesis. Se refiere a la escritura de los capítulos que conforman esta tesis: introducción, antecedentes, selección de la metodología, descripción y fundamentos de la aplicación a un caso práctico, así como conclusiones y/o recomendaciones resultantes de la investigación.

1.5 Alcances

Los alcances de este trabajo se encuentran definidos en cada uno de los capítulos que lo componen, los cuales se describen a continuación:

Capítulo 1. Se introduce el tema de tesis y el problema a analizar, se describe el trabajo a realizar, los aspectos preliminares, los objetivos y metas, la hipótesis, la metodología, los alcances y su utilidad.

Capítulo 2. Se presentan los antecedentes, incluyendo los enfoques más relevantes que se han venido dando a la estimación de matrices O-D a partir de aforos vehiculares.

Capítulo 3. Se describe la selección de la metodología. Se escoge un algoritmo que estima paso a paso una matriz O-D a partir de aforos vehiculares, cuya aplicación se describe a través del desarrollo de un pequeño ejemplo.

Capítulo 4. Se describe la aplicación a un caso práctico, utilizando el software TransCAD, en el cual se estima la matriz O-D a partir de aforos vehiculares para el acceso o libramiento al AMCM y su área conurbada.

Capítulo 5. Se presentan las conclusiones y recomendaciones más importantes derivadas del desarrollo del trabajo.

1.6 Utilidad

Este trabajo permitirá seleccionar una metodología para estimar matrices O-D a partir de aforos de vehículos de pasajeros y de carga. La importancia de este

trabajo reside en que, por cuestiones económicas, en el país se privilegia la medición de aforos a la recopliación de información O-D. Por lo anterior, la información de aforos con que se cuenta tanto a nivel nacional, regional y local, es más detallada, completa, frecuente y actualizada que la información O-D. Por consiguiente, este trabajo hará posible sacar un mayor provecho a los aforos existentes, con el fin de complementar la información O-D requerida para llevar a cabo una planeación más adecuada.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

2. ANTECEDENTES

Los métodos convencionales para la recopilación de información origen-destino, por ejemplo, entrevistas en el hogar o a la orilla del camino tienden a ser costosas, de labor intensiva y a generar pérdida de tiempo para los viajeros. El problema es aún más agudo en países en desarrollo dónde los cambios rápidos en el uso del suelo y en la población desactualizan los datos rápidamente. La necesidad por desarrollar métodos de bajo costo para estimar matrices O-D presente y futura, es evidente (Referencia 15)

Los aforos vehiculares pueden verse como el resultado de combinar una matriz de viajes y un patrón de elección de ruta. Ellos proporcionan la información directa sobre la suma de todos los pares O-D que utilizan los arcos aforados. Los aforos vehiculares son muy atractivos como fuente de datos porque no generan pérdida de tiempo para los viajeros, están generalmente disponibles, su obtención es barata y su recopilación automatizada está muy avanzada. La idea de estimar matrices de viajes o modelos de demanda a partir de aforos vehiculares merece una seria consideración y la última década ha visto el desarrollo de numerosos enfoques dirigidos justamente a ello.

Considérese un área de estudio que está dividida en N zonas interconectadas por una red vial que consiste en una serie de arcos y nodos. La matriz de viajes para esta área de estudio consiste de N^2 celdas o (N^2-N) celdas si los viajes intrazonales no son considerados. La etapa más importante para la estimación de un modelo de demanda de transporte a partir de aforos vehiculares es, identificar los caminos seguidos por los viajes desde cada origen hasta cada destino. La variable p_{ψ}^a se utiliza para definir la proporción de viajes de la zona i a las zonas j a través del arco a. Así, el flujo (V_a) en un arco particular a es la suma de las contribuciones a ese arco de todos los viajes entre zonas. Matemáticamente, puede expresarse como sigue:

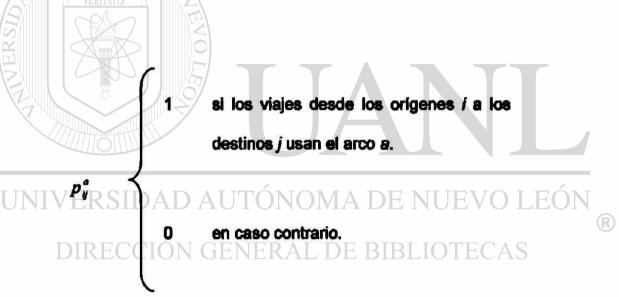
$$V_a = \sum_{ij} T_{ij} p_{ij}^a \qquad 0 \le p_{ij}^a \le 1$$
 (2.1)

donde:

 $VERSIDAD AUTÓNOMA DE NUEVO LEÓN <math>V_a$ = Aforo o flujo vehicular observado en el arço a.

T, = Número de viajes de la zona i hacia la zona j.

 p_{ij}^a = Proporción de viajes de *i* a *j* que utilizan el arco a.


La variable p_{ij}^a puede ser obtenida utilizando varias técnicas de asignación de viajes, desde una simple asignación tipo todo-o-nada hasta una asignación más complicada tipo "Equilibrio del Usuario" (Referencia 16). Dados todos los p_{ij}^a y todos los aforos vehiculares observados (V_a) , habrá N^2 términos desconocidos

 T_{ψ} 's a ser estimados de un conjunto de ecuaciones lineales simultáneas L (2.1), dónde L es el número total de aforos vehiculares.

En un principio, se requieren N^2 aforos vehiculares independientes y consistentes, con el fin de determinar una solución única para la matriz de viajes $\overline{\overline{T_{\scriptscriptstyle H}}}$. En la práctica, el número de los aforos vehiculares observados es mucho menor que el número de términos $T_{\scriptscriptstyle H}$'s desconocidos. Por consiguiente, es imposible determinar una única solución para el problema de estimación de la matriz O-D. En general, habrá más de una matriz de viajes O-D que, cuando se carque en la red, reproducirá los aforos vehiculares. Hay dos enfoques básicos para resolver este problema: los métodos estructurados y los no estructurados. En el caso de los estructurados, el modelador restringe el espacio de factibilidad para la matriz estimada, Imponiendo una estructura particular que es proporcionada usualmente por un modelo existente de demanda de viajes, por ejemplo, un modelo de gravedad o de demanda directa. El enfoque no estructurado se basa en principios generales, como el de maximización de la entropía, con el fin de proporcionar el mínimo de información adicional requerido para estimar una matriz. Estos dos enfoques generales se describirán más adelante, pero primero se discutirá la relación entre elección de ruta y la estimación de modelo.

2.1 Elección de Ruta y Estimación de Matrices

Robillard (Referencia 17) clasificó los métodos de asignación para la estimación de matrices de viajes a partir de aforos en dos grupos principales: asignación proporcional y no-proporcional. Los métodos de asignación proporcional consideran que la proporción de usuarios (conductores) que escogen cada ruta es independiente de los niveles de flujo. El ejemplo más común es la asignación todo-o-nada y en este caso p_{ij}^{x} se define como:

Los métodos de asignación puramente estocásticos, como el de Burrell y Dial, también caen dentro de este grupo, pero en estos casos p_{ij}^a puede también tomar valores intermedios entre 0 y 1.

Las técnicas de asignación no-proporcional toman explícitamente en consideración los efectos del congestionamiento y, por consiguiente, la

proporción de viajeros que usan cada arco depende de los flujos en los arcos.

Los métodos de asignación del "Equilibrio del Usuario" (UE) o del "Equilibrio del Usuario Estocástico" (SUE) forman parte de este grupo.

Las técnicas de asignación no-proporcional se piensa que son más realistas para condiciones de congestionamiento. Sin embargo, la ventaja de los métodos de asignación proporcional es que permiten la separación de los problemas de elección de ruta y de estimación de matriz; puede asumirse que la proporción de viajes que utilizan cada arco p_{ij}^{σ} es independiente de la matriz de viajes a estimar. En contraste, la elección de ruta no-proporcional requiere de la estimación conjunta e iterativa de la elección de ruta y de las matices de viajes, para que los dos sean consistentes. Primero se asumirá que los métodos de asignación proporcional son una aproximación razonable a la elección de ruta, presentándose posteriormente los supuestos necesarios para cubrir los métodos no-proporcionales.

2.2 Calibración de un Modelo de Demanda de Vlajes a Partir de Aforos Vehiculares

La calibración del modelo de gravedad fue uno de los primeros métodos propuestos para estimar matrices O-D a partir de aforos vehiculares. La idea básica es postular una forma particular de modelo gravitacional y examinar qué

pasa cuando se asigna a la red. Por ejemplo, en el caso de los viajes interurbanos, la matriz O-D podría ser:

$$T_{ij} = \frac{\alpha P_i P_j}{d_{ij}^2} \tag{2.2}$$

donde: T_{ij} son los numero de viajes de la zona i a la zona j, P_i es la población del área urbana i, P_j es la población del área urbana j, d_{ij}^2 es la distancia entre las dos zonas o regiones y α es una constante de calibración, en este caso la única. Si una matriz del tipo anterior es asignada a la red, se obtiene:

$$V_a = \frac{\sum_{ij} p_{ij}^a \alpha P_i P_j}{(d_{ij})^2} = \frac{\alpha \sum_{ij} p_{ij}^a P_i P_j}{(d_{ij})^2}$$
(2.3)

Nótese que en el lado derecho de la ecuación anterior, α es lo único desconocido, y las demás variables son proporcionadas por datos externos o un buen modelo de elección de ruta. El modelo anterior puede generalizarse e incluir otros factores de generación/atracción de viajes, tales como el empleo, la producción industrial, el espacio comercial, etc. Si esta parte del modelo gravitacional se denota por:

$$G_{ij} = \frac{O_i D_j}{d_{ij}^2} \tag{2.4}$$

donde:

 G_y = Viajes producidos por la zona i y atraídos por la zona i.

O, = Total de viajes producidos por la zona i.

D, = Total de viajes atraídos por la zona i.

 d_{ij}^2 = Distancia entre la zona i y la zona j.

y además se permiten varios propósitos de viaje k (o tipos de mercancías si se trata de movimientos de carga), entonces:

$$V_a = \sum_k \sum_{ij} \frac{p_{ij}^a \alpha_k O_j^k D_j^k}{\left(d_{ij}\right)^2} = \sum_k \alpha_k \sum_{ij} p_{ij}^a G_{ij}^k$$
 (2.5)

En la expresión anterior, las α_k son parámetros de calibración o ajuste, pero el resto de los datos se asume que están disponibles. Es relativamente sencillo observar que las α_k pueden ser estimadas utilizando técnicas de mínimos cuadrados. En este caso, se asume que $V_s = V_s + \varepsilon_s$, donde ε_s es el error. Si se realiza el siguiente cambio de variables:

$$X_k = \sum_{ij} p_{ij}^a G_{ij}^k$$

se obtiene:

$$V_a = \alpha_0 + \sum_k \alpha_k X_k \tag{2.6}$$

donde α_0 es el intercepto y puede interpretarse como la parte del flujo no representada por el modelo gravitacional; por ejemplo, el tránsito local o intrazonal. Este tipo de enfoque fue seguido por los primeros investigadores en esta área.

Una vez obtenidos los parámetros α_k por ajuste de mínimos cuadrados, el flujo T_k^k puede obtenerse mediante la siguiente expresión:

$$T_{ij}^{k} = \frac{\alpha_k O_i^k D_j^k}{d_{ij}^2} \tag{2.7}$$

o si lo que se desea es conocer la matriz agregada (en vez de la matriz desagregada por tipo de producto):

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN
$$T_{ij} = \sum_{i} T_{ij}^{*}$$
 DE NUEVO LEÓN
(2.8)
DIRECCIÓN GENERAL DE BIBLIOTECAS

2.3 Estimación de Matrices a Partir de Aforos Vehiculares.

Durante muchos años, las técnicas de maximización de la entropía y de minimización de información han sido utilizadas como herramientas de elaboración de modelos en la planeación urbana, regional y del transporte. El principio de maximización de la entropía proporciona una matriz O-D que, como ya se dijo en el capítulo anterior, tiene la máxima probabilidad de ser la real y

que, además, es consistente con la información disponible representada como restricciones de un problema de maximización (de una función de entropía).

La idea anterior fue utilizada por Willumsen (Referencia 18) para derivar un modelo de estimación de matrices O-D a partir de aforos vehiculares. El problema puede escribirse como:

Maximizar
$$S(\overline{\overline{T_y}}) = -\sum_{ij} (T_{ij} \ln T_{ij} - T_{ij})$$

LERE FLAMMAN
VERITALIS

(2.9)

sujeto a:

$$V_a - \sum_{ij} T_{ij} p_{ij}^a = 0 (2.10)$$

para cada arco aforado a, y:

UNIVERSIDAD AUTÓM,≱ŒA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS La disponibilidad de una matriz previa o antigua, o simplemente de una matriz estimada a partir de otro estudio, puede utilizarse con alguna ventaja. Si $\overline{t_y}$ es esa matriz previa, algunas veces denominada como 'matriz meta de viajes'; la nueva función objetivo se vuelve:

$$Maximizar S_1 \left(\frac{\overline{T_y}}{\overline{t_y}} \right) = -\sum_{ij} \left(T_{ij} \ln \frac{T_{ij}}{t_{ij}} - T_{ij} + t_{ij} \right)$$
 (2.11)

sujeta a las mismas restricciones (2.10) y de no-negatividad. Esta función objetivo es convexa y el término t_y , que es una constante, sólo se incluye por conveniencia, pudiendo, de hecho, ser eliminado del modelo.

A manera de ejemplo, considérese la red simple mostrada en la Figura 2.1. Esta red tiene dos orígenes (1 y 2) y dos destinos (3 y 4). Los flujos y todos los arcos se muestran también en la figura.

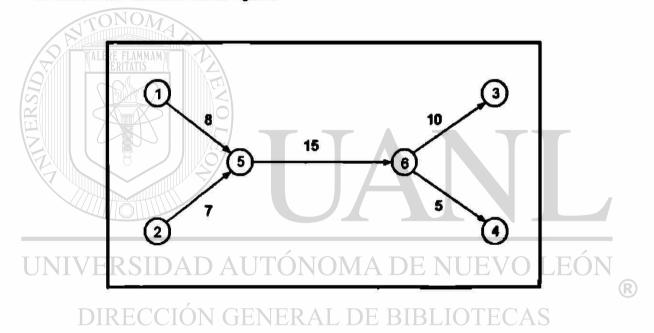


Figura 2.1 Red simple con aforos vehiculares

Puede verse que hay sólo seis matrices (enteras) que pueden reproducir los flujos observados mostrados arriba.

El formalismo de la maximización de la entropía busca identificar la matriz de viajes más probable que sea consistente con la información disponible, en este caso, 5 aforos vehiculares. Incidentalmente, puede verificarse que sólo tres de

esos aforos son independientes, por consiguiente, el problema está de hecho sub-especificado. Los valores de la función objetivo $S(\overline{T_y})$ (Ecuación 2.9) se muestran en la Tabla 2.1.

Tabla 2.1 $\hbox{C\'alculo de $S(\overline{T_y})$ y $S_1(\overline{T_y}/\overline{t_y})$ para las seis matrices factibles }$

	3	4	3	4	3	4	3	4	3	4	3	4
ONOM	8	0	7	1	6	2	6	3	4	4	3	5
LERE FLAMMAM	2	5	3	4	4	3	5	2	8	1	7	0
s(7,)	-11	.07	-7.46		-5.96		-5.78		-6.84		-9.96	
$S_1\left(\overline{T_y}/\overline{t_y}\right)$	-5.79		-3.69		-3.70		-5.07		-7.22		-12.2	

De acuerdo con la tabla anterior, la matriz de viajes más probable sería la cuarta, {5, 3, 5, 2}, debido a que tiene el valor máximo de entropía (-5.78). Si una matriz previa está disponible, entonces puede utilizarse una segunda función objetivo (2.11). Asúmase que la matriz previa {3, 2, 1, 3} está disponible; los nuevos valores de la función de entropía son los que se muestran en la tabla arriba. La matriz de viajes más probable en estas circunstancias se vuelve ahora la segunda {7, 1, 3, 4}. De hecho, en problemas más prácticos se puede esperar que puedan calcularse directamente los valores de entropía para todas las matrices posibles. Nótese, por ejemplo, que el reducir el número de aforos aumenta el número matrices O-D factibles. Aún más importante, los flujos del orden de los cientos o los miles, aumentan enormemente el número de matrices

O-D posibles. Lo que se necesita es un método efectivo de solución que no requiera de identificación de matrices.

Hay varios métodos posibles para resolver el modelo (2.11). El más utilizado es el enfoque multi-proporcional. En este método, se emprenden una serie de correcciones sucesivas a la matriz previa de viajes, con el fin de reproducir los aforos observados. Este enfoque es uno de los que en el capítulo anterior fueron referidos como procedimientos de actualización de matrices. En este enfoque, hay un factor de corrección o balanceamiento X_s para cada aforo vehicular y su cálculo involucra la estimación iterativa de estos factores hasta que los flujos observados en los arcos son reproducidos dentro de una tolerancia aceptable. Si no hay matriz previa inicial disponible, t_s puede tomarse como la unidad.

El modelo de estimación de matrices basado en la maximización de la entropía (ME2) siempre reproducirá las observaciones V_a dentro de una tolerancia dada, asumiendo que las restricciones definen un espacio de factibilidad, es decir, las ecuaciones (2.10) deben tener cuando menos una solución dentro de todas las posibilidades no negativas para T_{ψ} .

Se ha demostrado que minimizar el negativo de la función objetivo (2.11) es aproximadamente equivalente a minimizar:

$$S_2\left(\frac{\overline{\overline{T_y}}}{\overline{\overline{t_y}}}\right) = \frac{0.5(T_y - t_{ij})^2}{T_{ij}}$$
(2.12)

Esto es una medida de la probabilidad de la diferencia entre los valores de t_y y T_y . De hecho, el negativo de $S_1(\overline{T_y}/\overline{t_y})$ es también una medida natural de la diferencia entre los valores correspondientes en las celdas: es cero cuando $t_y = T_y$, aumentado positivamente, a medida que la diferencia se incrementa. En este sentido, la matriz estimada es aquélla más cercana a la matriz previa que, cuando es cargada a la red, puede reproducir los aforos vehiculares.

El modelo puede acomodar otras fuentes de datos si éstos pueden ser incorporados como restricciones lineales. Un ejemplo de este tipo puede ser información sobre la distribución de la longitud de los viajes (TLD), considerada como realista para el área de estudio. Este tipo de información puede ser transformada en restricciones equivalentes como sigue:

$$\frac{1}{T}\sum_{ij}T_{ij}\delta_{ij}^{k}=P_{k} \tag{2.13}$$

donde T es el número total de viajes; P_k es la proporción de viajes en el rango de longitud (o costo) k; δ_{ij}^k es 1 si los viajes entre i y j tienen longitud en el rango k, y cero en caso contrario.

Los sistemas de transporte público con un sistema tarifario zonal o cualquier otro sistema tarifario variable, permiten la introducción de restricciones de este tipo para apoyar la estimación de las matrices de viaje correspondientes utilizando conteos de pasajeros y datos de ventas de boletos.

El programa matemático también puede escribirse con una combinación de restricciones de igualdad y desigualdad, aumentando el valor de este tipo de enfoque. Por ejemplo, el planificador puede saber que la capacidad de un arco es Q_a pero no tener un aforo vehicular para él; o que no más de D_j^* vehículos pueden ir a un destino particular debido a la capacidad del estacionamiento ahí. Este tipo de información puede incorporarse como restricciones de desigualdad, por ejemplo:

$$\sum_{i} T_{ij} p_{ij}^{a} \leq Q_{a} \text{ para algunos arcos a} \qquad (2.14)$$

$$\text{UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN}$$

$$\text{DIRECCIÓN } \sum_{i} T_{ij} \leq D_{ij}^{i} \text{ para algunos destinos } i \text{ (2.15)}$$

Lamond y Stewart (Referencia 19) han demostrado cómo el algoritmo multiproporcional puede ser expandido para manejar restricciones de desigualdad, por lo tanto, el mismo método de solución puede usarse para este modelo expandido.

Una de las características del modelo ME2 (expandido) es su naturaleza multiplicativa. Esto significa que si una celda en la matriz previa es cero, seguirá siendo cero también en la solución. Esto podría originar problemas si la celda

en la matriz previa es cero por alguna circunstancia (por ejemplo, debido a la proporción de muestreo adoptada en el estudio) en vez de realmente representar un par de O-D sin viajes. Una solución pragmática a este problema, para matrices previas muy dispersas (con muchos ceros en sus celdas), es 'sembrar' las celdas vacías con un valor pequeño, por ejemplo, 0.5 viajes. Las restricciones, a través del algoritmo multi-proporcional u otro algoritmo de solución, asegurarán que algunos de estos viajes 'crezcan' a uno o más viajes completos mientras que otros retoman su valor de cero.

Considérese la misma red que en el ejemplo de la Figura 2.1 pero asúmase ahora que se tienen sólo dos aforos vehiculares, en los arcos 5-6 y 2-5 (15 y 7).

La Tabla 2.2 muestra los algoritmos multi-proporcionales aplicados a este problema. La tabla muestra primero la solución completa para el caso de una matriz previa (inexistente) uniforme (Caso A).

Como puede verse, toma sólo cinco iteraciones alcanzar la convergencia dentro de una tolerancia del 5%. La solución {3.99, 3.99, 3.5, 3.5} no coincide con la solución de la maximización de la entropía en la Tabla 2.1 debido a que el número de aforos no es el mismo. El caso B muestra el problema con la matriz previa {3, 2, 1, 3}; de nuevo, toma sólo cinco iteraciones alcanzar la convergencia satisfactoria. La solución {4.81, 3.21, 1.75, 5.25} es de hecho diferente, lo cual muestra cómo la información contenida en una matriz de viajes antigua puede utilizarse ventajosamente en la estimación de matrices; siempre hay algo de valor en información pasada, que vale la pena utilizar.

El Caso C ilustra lo que pasa cuando hay un valor de cero en la matriz de viajes. Existe todavía una solución pero el cero se conserva. Finalmente el Caso D muestra el efecto de 'sembrar' el cero en la matriz previa, con 0.5. La solución aquí, {4.81, 3.21, 1.0, 6.0}, afecta sólo los viajes desde el origen correspondiente a la celda con valor igual a cero.

Tabla 2.2
Algoritmo multi-proporcional aplicado al problema con dos aforos

NTONO	Aforo	Flujo	Fector	Visjes por Par O-D					
ALERE FLAM	AM Tránsko	Modeledo	Corrección	1-3	14	2-3	2-4		
CASO A Matriz Previe	7 - 1	_	_	1.00	1.00	1.00	1.00		
Nerackin 1	15	4.00	3.750	3.75	3.76	3.75	3.75		
	7	7.50	0.933		_	3,50	3.50		
Meración 2	15	14.50	1.034	3.88	3.86	3.62	3.62		
	7	7.24	0.967	.—	_	3.50	3.50		
Nemción 3	15	14.76	1.016	3,94	3.94	3.56	3.56		
HIVED CI		7.11	0.984		TEX /	3.50	3,50		
VIVERSI Neración 4	15 A	14.89	1.008	3.97	3.97	3.53	3.53		
DIRFO	CIÓN	7.05 CENIED /	0,992	RI IC	TEC	3.50	3.50		
Meración 5	15	14.95	1.004	3.99	3.99	3.51	3.51		
RESECUCIO	7	7.03	0.998	:	-	3.50	3.50		
CASO B	. .		-	3.00	2.00	1.00	3.00		
Neración 5	15	15.03	0.998	4.81	3.21	1.75	5.24		
REM GUICHT D	7	6.96	1.002	_		1.75	5.25		
CASO C		E	6)	3.00	2.00	0.00	3.00		
	15	15.06	0.998	4.82	3.21	0.00	6.97		
Neración 6	7	6.97	1.004		-	0.00	7.00		
CABO D	_	2. 01	(3.00	2.00	0.50	3.00		
hamaile o	15	15.04	0.998	4.81	3.21	1.00	5.90		
Mereción 6	7	6.98	1.002			1.00	6.00		

Considérese ahora el efecto de aumentar el número de aforos a tres, al incluir el arco 6-3. Los resultados correspondientes se muestran en la Tabla 2.3.

Tabla 2.3

Algoritmo multi-proporcional aplicado al problema con tres aforos

	Aforo de	Flujo	Factor de	Viejes por Par O-D					
	Tránsito	Modelado	Corrección	1-3	14	2-3	24		
CASO A Matriz Previe	DMA	_	_	1.00	1.00	1.00	1.00		
ALERE FLAN VERITAT		4.00	3.750	3.75	3.75	3.75	3.75		
Rereción (7	7.50	0.933			3.50	3.50		
	10	7.26	1.379	5.17	_	4.83	-		
	15	15.04	0.998	5.33	2.70	4.64	2.35		
Maración 20	7	6.99	1.001	_	-	4.65	2.35		
4110	10	9.98	1,002	5.34	_	4.66			
CASO B		=		3.00	2.00	1.00	3.00		
VIVERS	IDAD	AUTÓN	1014A I	E _{6.62}	1.50	3.43	EQ.		
Neración 15 DIRE	CCIÓN	GENER	1.003 AL 1.005 B	IRI 6.55	OTE	3.43	3.57		
CASO C	-	==	<u> </u>	3.00	2.00	0.00	3.00		
	15	17.15	0.875	8.75	0.13	0.00	6.12		
Neración 20	7	6.12	1.143	_	-	0.00	7.00		
	10	8.75	1.143	10.00		0.00	_		
CASO D	;—);	(3.00	2.00	0.50	3.00		
	15	15.08	0.995	6.98	1.04	2.97	4.01		
Neración 20	7	6.96	1.003			2.98	4.02		
	10	9.96	1.004	7.01	_	2.99	_		

Primero, nótese que el número de iteraciones requeridas ha aumentado. Esto parece depender, no tanto del número real de aforos utilizados sino del nivel de restricción que ellos imponen a la estimación de la matriz. En este caso, se remueven tres de cuatro grados de libertad por los tres aforos ahora considerados. La solución en el caso A, $\{6.55, 2.68, 4.67, 2.35\}$, es la que maximiza $S(T_{\theta})$ y, si se redondea a enteros, coincide con la solución de la Tabla 2.1.

La solución para el caso B, $\{6.55, 1.51, 3.45, 3.58\}$, tiene las mismas propiedades con respecto a $S_1(\overline{T_y}/\overline{t_y})$. El Caso C es interesante, dado que muestra que ante la inclusión de un cero en la matriz previa, el algoritmo falla en converger aún después de 20 iteraciones. Se puede verificar que forzar la celda 2-3 a cero, hace que el problema sea no factible: hay siete viajes que salen del nodo 2 pero sólo cinco deben llegar a su destino. En el Caso D se ilustra el efecto de sembrar la celda vacía con 0.5 viajes; el algoritmo ahora converge a una solución razonable.

2.4 Aforos Vehiculares y Estimación de Matrices

En esta fase es importante analizar si cualquier conjunto de aforos es conveniente para la estimación de matrices de viajes; es decir, si ciertas

combinaciones de aforos no permiten estimar una matriz que los satisfaga.

Estos problemas se discuten a continuación.

2.4.1 Independencia

No todos los aforos contienen la misma cantidad de 'información'; por ejemplo, en la Figura 2.2 el tránsito en el arco c se compone de la suma del tránsito en los arcos a y b. El tránsito aforado en el arco c es, por lo tanto, redundante y puede decirse que sólo dos aforos son independientes.

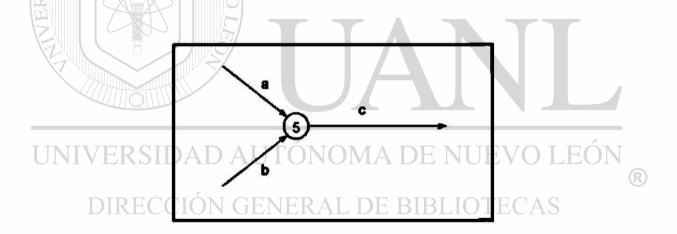


Figura 2.2 Aforos dependientes

Siempre que pueda escribirse una ecuación de continuidad de flujo del tipo 'los flujos que entran hacia' un nodo son iguales a 'los flujos que salen desde' el nodo, sus aforos serán dependientes linealmente. En este caso, será siempre posible describir el flujo en un arco como la combinación lineal del resto. Un conector de centroide, unido al nodo 5, removerá la dependencia en la Figura 2.2.

2.4.2 Inconsistencia

Los errores en el conteo vehicular y el hecho de que frecuentemente los aforos son obtenidos en diferentes momentos (horas, días, semanas), probablemente conducirán a inconsistencias en los flujos. En otras palabras, las relaciones esperadas de continuidad del flujo no se cumplirán. Si el aforo V_e en la Figura 2.2 es de 160 en lugar de 150, las ecuaciones correspondientes serían inconsistentes y ninguna matriz de viajes podría reproducir esos flujos. Una forma de reducir este problema es permitir un término de error en las ecuaciones o remover las inconsistencias de antemano.

Es posible identificar dos fuentes de inconsistencias en los flujos en los arcos. La primera es simplemente el hecho de que los errores en los aforos pueden conducir a situaciones en las que 'el flujo total que entra hacia' un nodo no es igual 'al flujo total que sale desde' el mismo nodo, por lo que no se cumplen las condiciones de continuidad de flujo en los arcos. La segunda fuente es un desajuste entre el modelo de asignación de tránsito asumido y los flujos observados. Por ejemplo, un modelo de asignación puede asignar cero viajes en un arco que tiene un flujo observado (quizá pequeño). En estas condiciones no habrá matriz de viajes capaz de reproducir los flujos aforados en los arcos utilizando ese modelo de elección de ruta.

Es útil distinguir entre dos tipos de inconsistencia; primero a nivel de flujo y después a nivel de flujo de camino. Asúmase que se tienen aforos del flujo de

cuatro arcos (identificados por el par de nodos que los delimitan) y se desea encontrar las matrices no negativas de viajes que satisfagan esos aforos y un modelo de elección de ruta como se muestra en la Figura 2.3.

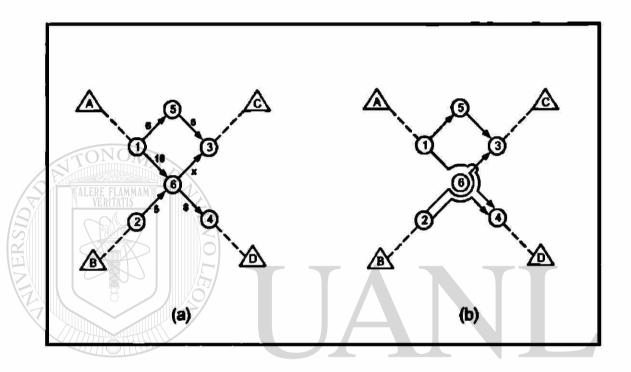


Figura 2.3 Inconsistencia en: (a) los flujos en los arcos de una red, y (b) los flujos en los arcos en relación con los flujos en los caminos

Considérese primero el caso en el se ha obtenido que el aforo x es igual a 8, con lo cual el flujo total que entra hacia el nodo 6 es igual a 15, y el flujo hacia fuera de ese nodo es igual a 16. Estos aforos, son por lo tanto, inconsistentes, quizá porque fueron medidos en diferentes días o simplemente debido a errores de conteo. Se puede remover esa inconsistencia aumentando arbitrariamente los flujos en los arcos (1,6) o (2,6) en uno, o reduciendo los flujos en los arcos (6,3) o (6,4) en uno. Adoptando un enfoque más sistemático, pueden hacerse los menores ajustes necesarios para preservar las condiciones de continuidad

de flujo. Por ejemplo, si lo que se desea es minimizar la suma de cuadrados de los incrementos/reducciones, entonces el cambio óptimo es 0.25 en cada arco.

Considérese ahora el caso en que el aforo x es igual a 7. Puede observarse que las condiciones de continuidad de flujo en los arcos se cumplen ahora. Sin embargo, la asignación asumida, mostrada en la Figura 2.3b, es incompatible con los flujos mostrados en Figura 2.3a. Ninguna matriz de viajes factible puede reproducir el aforo de 7 en el arco (6,3) debido a que el único camino que lo utiliza, B-C, está limitado a un máximo de 5 por el arco (2,6).

El conjunto de ecuaciones lineales que corresponden a este ejemplo está dado por:

Arco (1,5)
$$T_{AC} = 6$$
 (2.16)

$$Arco(5,3)$$
 TONOMA $T_{AC} = 6$ THEVOLE (2.17)

Arco (1,6)
$$T_{AD} = 10$$
 (2.18)

Arco (2,6)
$$T_{BC} + T_{BD} = 5$$
 (2.19)

Arco (6,3)
$$T_{BC} = 7$$
 (2.20)

Arco (6,4)
$$T_{AD} + T_{BD} = 8$$
 (2.21)

Claramente las ecuaciones (2.19) y (2.20) son inconsistentes con la nonegatividad de $T_{\rm BC}$. Lo mismo se aplica a las ecuaciones (2.18) y (2.21), haciendo imposible resolver este sistema de ecuaciones. En problemas sencillos como éste, las inconsistencias pueden identificarse por inspección pero en redes más complejas sólo pueden ser identificadas por medio de

operaciones de rengión y de columna en las ecuaciones lineales. Para sistemas grandes, estas operaciones son probablemente costosas, en términos de requerimientos computacionales.

En este ejemplo sencillo, no es difícil observar que el problema se origina en la ruta simple asumida entre A y C. Si se permitiesen dos caminos, uno a través del nodo 5 y el camino a través del nodo 6, la inconsistencia podría ser removida. Además, el valor de la variable resultante p_{AC}^{4} no puede escogerse arbitrariamente; de hecho, una solución factible requiere que:

$$0.2 \le p_{AC}^6 \le 0.5$$

El hecho de que las condiciones de continuidad del flujo de camino no se satisfacen, parece reflejar errores en la asignación, mientras que las discontinuidades del flujo en los arcos son un reflejo de errores en los aforos vehiculares. Parece razonable desarrollar una técnica para remover las inconsistencias del flujo en los arcos con el fin de asegurar que las condiciones de continuidad del flujo en los arco sean satisfechas. Por otra parte, un enfoque razonable para manejar la falta de consistencia al nivel del flujo en los caminos parece ser la adopción de un mejor modelo de elección de ruta. En términos generales, la consistencia a nivel del flujo en los arco es una condición necesaria pero no suficiente para la consistencia a nivel del flujo en los caminos sí es una condición suficiente para la consistencia a nivel del flujo en los carminos sí es una condición suficiente para la consistencia del flujo en los carminos sí es una

que hay sólo siete diferentes matrices de viajes (enteras) que pueden satisfacer los aforos en el ejemplo anterior.

2.5 Extensiones

2.5.1 Asignación No-Proporcional

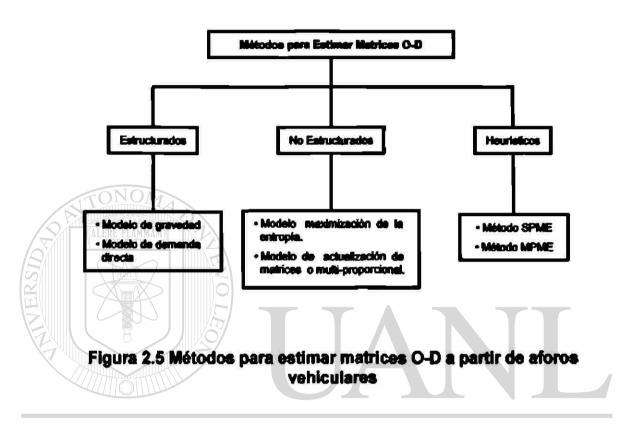
Lo antes presentado se basa fundamentalmente en el supuesto de que es posible obtener las proporciones de los viajes que van por las diferentes rutas (proporciones de elección de ruta) a través de un modelo de asignación, independientemente del proceso de estimación de la matriz O-D. Cuando el congestionamiento juega un papel importante en la elección de ruta, el supuesto anterior se vuelve discutible, dado que las proporciones de elección de ruta obtenidas de la asignación y la matriz de viajes se vuelven interdependientes. Por sus ventajas teóricas y prácticas, el modelo de asignación del "Equilibrio del Usuario" proporciona el marco de referencia natural para extender el modelo ME2 al caso de redes congestionadas.

Una forma de manejar la interdependencia entre las proporciones de elección de ruta y la matriz O-D a estimar, es a través del siguiente procedimiento iterativo: asúmase un conjunto de proporciones de elección de ruta $\{p_{ij}^a\}$, estímese una matriz $\overline{T_{ij}}$, cárguela a la red y obtenga un nuevo conjunto de

proporciones de elección de ruta; repítase el procedimiento anterior hasta que las proporciones y las matrices estimadas sean mutuamente consistentes.

El esquema general anterior puede ser implementado de diferentes maneras; por ejemplo, en un enfoque que es común, las proporciones de elección de ruta se estiman utilizando los valores α_n de cada iteración, del algoritmo de Frank y Wolfe (Referencia 16) que resuelve la asignación del "Equilibrio del Usuario" (dichas proporciones son estimadas como la combinación lineal óptima de flujos acumulados y auxiliares). Se reconoce que los flujos en los caminos bajo condiciones de equilibrio no son únicos, sin embargo, este enfoque asume que sí son únicos.

La Figura 2.4 muestra un diagrama general de los métodos de asignación para estimar matrices O-D, vistos en este capitulo


Figura 2.4 Métodos de asignación para estimar matrices O-D

2.5.2 Métodos Heurísticos

La mayoría de los métodos convencionales asume que los aforos vehiculares son variables determinísticas libres de error, o usan un modelo de asignación simplificado. Sin estos supuestos generales, los métodos frecuentemente requieren tiempos de cálculo prohibitivos. Para superar estos problemas en la práctica, se formulan los métodos heurísticos. Dos de esos métodos son el "SPME (Single Path Matrix Estimation o Estimación de la Matriz por Camino Sencillo)" y el "MPME (Multimple Path Matrix Estimation o Estimación de la Matriz por Camino Multiple)", ambos formulados por Nielsen (Referencia 20). Estos dos métodos son capaces de manejar aforos vehiculares con inconsistencias e incertidumbres. En ambos métodos, la matriz O-D estimada refleia los patrones de elección de ruta proporcionados por modelos de asignación según el denominado "Método de Promedios Sucesivos (MSA)", incluyendo el Equilibrio Estocástico del Usuario (SUE). Ambos métodos son más convenientes cuando se requiere actualizar una matriz antigua de viajes, para ser utilizada en estudios de planeación o como una matriz de pivote en modelos de tránsito más grandes.

Los dos métodos anteriores se presentan con mayor detalle en el capítulo siguiente, pues por sus ventajas prácticas, la recomendación de algoritmo que se hace en esta tesis, se centra en torno a ellos.

La Figura 2.5 muestra un diagrama general de los métodos de estimación de matrices O-D a partir de aforos vehiculares, vistos en este capitulo.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

3. SELECCIÓN DE LA METODOLOGÍA

Tradicionalmente, los modelos de tránsito son estimados utilizando encuestas de tránsito muy extensas, con base en entrevistas. Sin embargo, en años recientes, el interés de métodos alternativos de estimación ha aumentado. Para reducir el costo de adquisición de datos, la mayoría de estos métodos se basan en aforos vehiculares, complementados con algunos supuestos sobre la elección de la ruta de los usuarios.

En este capítulo se presentan dos métodos heurísticos para estimar matrices O-D a partir de aforos, los cuales son prácticos, fáciles de implementar, convergen rápidamente, pueden manejar inconsistencias e incertidumbres en los aforos y se basan en modelos avanzados de elección de rutas.

El primer método SPME (Single Path Matrix Estimation o Estimación de la Matriz por Camino Sencillo), fue originalmente formulado por Nielsen (Referencia 20), quien también sugirió el segundo método MPME (Multiple Path Matrix Estimation o Estimación de la Matriz por Camino Múltiple). Mientras que el principal enfoque del SPME fue que debe ser una herramienta fácil de

implementar, MPME fue desarrollado para reflejar mejor el patrón de elección de ruta.

3.1 Bases Tradicionales para la Modelación del Tránsito

Cuando se elige un modelo de tránsito, una de las principales consideraciones es que coincidan el modelo, el método de estimación y el estándar de los datos. Las fuentes de los datos han sido tradicionalmente las "encuestas de tránsito", pero el uso de aforos vehiculares ha aumentado debido al desarrollo de métodos estructurados, no estructurados y de fusión de datos. En las encuestas de tránsito, los usuarios, pasajeros o simplemente una muestra de la población, son interrogados sobre su comportamiento de viaje. Algunas técnicas como las Preferencias Reveladas (Revealed Preference o RP) o las Presencias Establecidas (Stated Preference o SP), pueden utilizarse para estimar un modelo de tránsito directamente a partir de las encuestas de tránsito. A pesar de que las entrevistas son frecuentemente indispensables para estimar los modelos de tránsito, hay también desventajas por utilizar los modelos de tránsito estimados sólo a través de encuestas de tránsito, debido a que:

 El costo es alto, ya que se necesitan muchas entrevistas para describir los patrones de viaje entre diferentes zonas. Usualmente, sólo un número limitado de personas pueden ser entrevistadas debido a restricciones presupuestales, lo cual resulta en una estimación "gruesa" de los flujos de tránsito;

- Un menor número de entrevistas dificultan describir características locales especiales por los modelos;
- Los modelos de tránsito basados en encuestas a menudo comparan
 pobremente con los aforos vehiculares sobre los tramos individuales de
 camino, debido a que los aforos vehiculares no se utilizan para la
 estimación del modelo, sino sólo para el control de los resultados finales;
- A menudo, una fuente considerable de conocimiento no se utiliza, dado que no se utilizan matrices O-D existentes en la estimación.

Como ya se mencionó en el Capítulo 2, los métodos de estimación no estructurados (Referencia 21) utilizan aforos para estimar matrices de viajes, sin utilizar ninguna expresión de modelo general (o estructura) para describir el comportamiento de realización de los viajes. Debido a restricciones presupuestales, lo anterior tiene que realizarse utilizando sólo aforos y conocimiento sobre las elecciones de ruta. Sin embargo, se requiere una matriz O-D antigua como información suplementaria sobre el patrón de viajes, debido a que el número de elementos de la matriz usualmente excede por mucho el número de aforos. Las matrices O-D estimadas pueden utilizarse subsecuentemente para estimar el modelo de tránsito, lo cual se realiza de una manera indirecta y pueden ser usadas como matrices pivote para un modelo de tránsito o directamente en la evaluación de un esquema carretero. Tales

métodos a menudo harán que los modelos representen bien los flujos de tránsito aforados, pero, no obstante, los métodos pueden causar problemas:

- No es necesariamente cierto que los flujos de tránsito asignados sean iguales a los flujos reales, puesto que el problema de estimación es muy indefinido. Esto se debe a que el número de pares O-D es mucho mayor que el número de aforos.
- Los datos de encuestas de tránsito antiguas se utilizan indirectamente en
 el proceso de calibración en la forma de una matriz O-D original.
- Los métodos proporcionan sólo una explicación general indirecta de los patrones de viaje. Así, son inadecuados para predicciones más estratégicas y de largo plazo.

Debido a su eficiencia económica en la práctica, los métodos de estimación de matrices O-D han despertado considerable interés en los investigadores (Referencias 22 y 23). Los *métodos estructurados* (Referencias 15 y 24) estiman los modelos de tránsito *directamente* a partir de los aforos. Así, se asume que el comportamiento de realización de los víajes en el área de estudio puede ser bien representado por un cierto modelo general, la estructura (Referencia 21). Los métodos comparten algunas de las desventajas de las encuestas de tránsito tradicionales, debido a que:

- No se toman en cuenta las características locales especiales:
- Los métodos no hacen uso de matrices existentes de viajes.

Otro problema es que el complejo de modelación de tránsito tiene que ser estimado en un solo paso a partir de los aforos vehiculares. Normalmente, esto sólo es posible con modelos muy simplificados. Aún modelos tipo boceto utilizan modelos de asignación no proporcional, que se resuelven a través de un algoritmo iterativo que dificulta la formulación del problema de estimación. La Referencia 25 define la fusión de datos como "el proceso de combinar dos o más fuentes complementarias en una sola base de datos global. El método de fusión de datos puede explotar las ventajas de las fuentes de datos y compensar sus desventajas, combinando dichas fuentes en una sola base de datos".

La Referencia 26 utilizó encuestas de tránsito y aforos vehiculares como ejemplo para la estimación directa de modelos. Los métodos de fusión de datos resultaron ventajosos para modelos de pequeña escala, cuando el principio "Todo o Nada" puede ser considerado como un modelo apropiado de asignación de tránsito. Sin embargo, el problema de la estimación aumenta significativamente cuando se utilizan modelos de asignación de tránsito más grandes con múltiples caminos, o cuando se consideran casos de escala completa. En la práctica, parece difficil utilizar encuestas de tránsito y aforos vehiculares para estimar modelos de tránsito simultáneamente. Sin embargo, en lugar de no utilizar aforos, éstos pueden ser utilizados para estimar matrices de viajes, y subsecuentemente utilizarse por sí solos, o junto con encuestas, para estimar el modelo de tránsito. Además, las matrices pueden utilizarse

como matrices pivote o directamente como la entrada a modelos simplificados para la evaluación de esquemas carreteros.

3.2 Método SPME

Como ya se mencionó, este método es heurístico y fue desarrollado para actualizar una matriz O-D antigua para la Región de Copenhague, Dinamarca, donde hay muchas alternativas de caminos o rutas en la red vial, con retrasos frecuentes y "colas" en ocasiones. Además, los aforos disponibles mostraron un componente estocástico considerable; incluso algunos aforos fueron claramente inconsistentes. Esto pudo deberse al método de aforo o conteo, al modelo de elección de ruta, o a la representación simplificada de la red y la estructura de zonas en el modelo. La mayoría de los métodos y software existentes para la estimación de matrices O-D no pueden considerar estas circunstancias.

DIRECCIÓN GENERAL DE BIBLIOTECAS

3.2.1 El Principio del SPME

El método SPME estima una nueva matriz de viajes que se ajusta, tanto como es posible, a los aforos vehiculares (ver Ecuación 3.1). Una consecuencia de esto es que la matriz original es modificada más que en muchos otros métodos de estimación de matrices. Este enfoque es fácilmente justificado cuando se actualiza una matriz antigua utilizando aforos más nuevos y más precisos.

$$\min_{T_{\theta}} \left[f_{1}(\overline{t_{\theta}}, \overline{T_{\theta}}, \overline{V_{\alpha}}, \overline{T_{\alpha}}) \right] \tag{3.1}$$

donde $\overline{T_a}$ es obtenido a través de un modelo de asignación de tránsito $\overline{T_a} = f_2\left(\overline{T_q},\overline{t_q}\right)$, $\overline{t_q}$ es la matriz de viajes original que describe el tránsito de la zona i a la j, $\overline{T_q}$ es la nueva matriz de viajes, V_a es el tránsito aforado en el arco a y T_a es el tránsito asignado en el arco a. f_1 estima la nueva matriz, f_2 es el modelo de asignación de tránsito.

El modelo de asignación de tránsito, f_1 , puede ser cualquier tipo de modelo y puede "correrse" en un software estándar, pero el comportamiento del SPME depende naturalmente de qué tan razonable sea el modelo de asignación. El modelo de estimación de la matriz, f_1 , estima cada elemento (o par O-D) en la nueva matriz de viajes, para minimizar la desviación promedio entre el tránsito aforado y el asignado a lo largo del camino óptimo entre cada par O-D considerado (de aquí, el nombre de Método de Estimación de la Matriz por Camino Sencillo).

El procedimiento consiste en calcular el tránsito esperado $T_{(x)y}$ para cada arco donde el tránsito ha sido aforado:

$$T_{(E)ija} = \frac{V_a}{T_a} \cdot t_{ij} \tag{3.2}$$

donde $T_{(x)yx}$ es el tránsito esperado entre la zona i y j en relación con el tránsito aforado en el arco a. t_y es un elemento de la matriz original de viajes, o en la matriz de la iteración anterior. V_x i T_x define el factor por el cual T_x debe multiplicarse para reproducir V_x . La lógica es que todos los elementos de la matriz, con respecto a ese aforo específico, deben ser modificados con la misma proporción (tasa) para reproducir el aforo. La media aritmética puede utilizarse para estimar los T_y 's a partir de los $T_{(x)yx}$'s (si puede considerarse que los aforos siguen una distribución normal o de Poisson):

$$T_{ij} = \frac{1}{N_{a \in (\tau, r)}} \cdot \sum_{a \in (\tau, r)} T_{(E)ija} \tag{3.3}$$

donde $T_{(x)p}$ es el tránsito esperado entre el par de zonas i, j desde la perspectiva del arco a. τ es el conjunto de arcos con tránsito aforado a lo largo de la ruta (óptima) r. N es el número de aforos a lo largo del camino.

Alternativamente, la *media armónica* como estimador minimiza el error cuadrado entre el tránsito aforado y el tránsito asignado (Ecuación 3.4):

$$\min_{T_{ij}} \left[Err_{sqr} = \frac{1}{N_{a \in (\tau,r)}} \cdot \sum_{a \in (\tau,r)} \frac{\left(T_{(E)ija} - T_{ij}\right)^{2}}{T_{(E)ija}} \quad \Rightarrow \quad T_{ij} = \frac{N_{a \in (\tau,r)}}{\sum_{a \in (\tau,r)} 1/T_{(E)ija}} \right]$$

Si la asignación depende del tránsito, la nueva matriz estimada conducirá a otros patrones de flujo diferentes a aquéllos utilizados para la estimación. Así, la

estimación debe ser resuelta a través de un enfoque iterativo. Si éste converge, entonces los elementos de la matriz cumplirán con las ecuaciones (3.3) o (3.4). El enfoque más sencillo es "correr" la asignación y la estimación de la matriz en una vuelta:

- 1. Inicio: Haga el número de iteración, n=1 y la matriz de viajes $\overline{T_{\psi(0)}}$ igual a la matriz semilla.
- 2. Asigne $\overline{T_{y(s-1)}}$ en la red de tránsito. Salve los flujos $\overline{T_{g(s-1)}}$.
- 3. Estime la matriz según las ecuaciones (3.3) o (3.4), los caminos óptimos, pueden encontrarse por el algoritmo de Dijkstra u otros métodos, los cual se describe en el Anexo A (Referencia 27).
- 4. Criterio para parar. Pare según algún criterio para parar establecido; de otra manera, vaya al paso 2.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

El algoritmo es muy eficaz, dado que sólo se necesita una asignación de DIRECTO EL AS tránsito por cada Iteración principal. Además, la memoria requerida para guardar los caminos no es mayor que aquélla dentro del modelo de asignación; típicamente elementos $i \cdot j$ y no elementos $a \cdot i \cdot j$ como con algunos otros métodos, por ejemplo Yang (Referencia 28); Ben-Akiva y Morikawa (Referencia 25). Así, para un modelo grande de tránsito, tal como el modelo de la Región de Copenhague, la memoria requerida para guardar los caminos o rutas, puede reducirse considerablemente (en este caso, de alrededor de 800 Mb a alrededor de 0.3 Mb).

3.2.2 Ejemplos de Cálculo Usando SPME

Para la red en la Figura 3.1, la Tabla 3.1 muestra el SPME correspondiente (los valores han sido redondeados a partir de una hoja de cálculo).

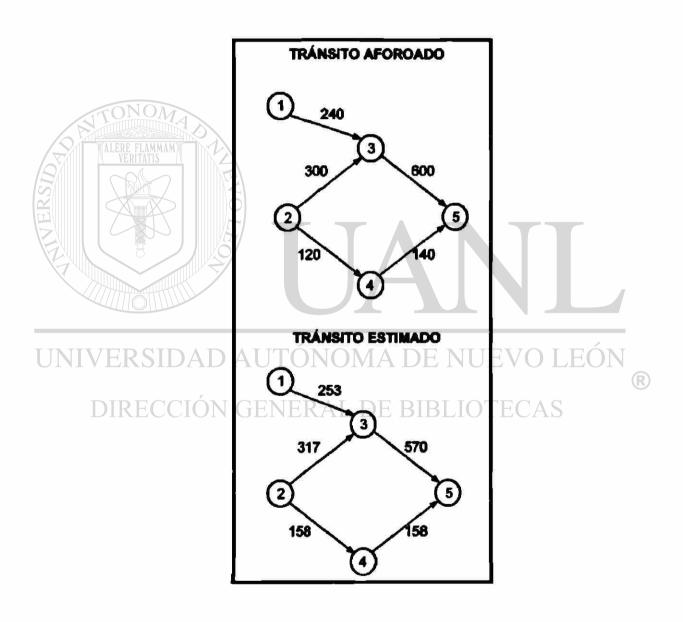


Figura 3.1 Red con aforos vehiculares inconsistentes

La matriz semilla tiene dos pares O-D T_{15} = 300 y T_{25} = 360, pero la solución es independiente de la matriz semilla en este problema sobreespecificado de estimación. El modelo de asignación es fijo o tipo "Todo o Nada"; T_{25} escoge los caminos o rutas 2-3-5 y 2-4-5 con probabilidades 2/3 y 1/3, respectivamente. En cada iteración, el tránsito esperado relacionado con cada elemento de la matriz (p. ej. T_{25}) es calculado como el elemento de la matriz a partir de la iteración anterior (p. ej. 300 de la primera iteración), multiplicado por el cociente entre el tránsito aforado y el asignado (p. ej. el tránsito esperado de 240/300 · 300 = 240 para el arco 1-3). Cada elemento de la matriz es estimado entonces como el promedio del tránsito esperado a lo largo de la ruta. En la décima iteración, T_{16} y T_{25} sólo cambian al nivel del primer decimal y tienen valores de 253.39 y 474.92.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ®
DIRECCIÓN GENERAL DE BIBLIOTECAS

Tabla 3.1

Método SPME utilizando el ejemplo dado en la Figura 3.1

	Ruta	Т	ránsito A E	Matriz Estimada				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	81.3	8,4	n los Arc	834	845	T _{1-8(n-1)}	T _{2-0(n-1)}
Aforos, V _e Matriz Original, T _{ee}		240	600	300	120	140	***	200
Asignación	f136	300	300	-	3 	-		
	72-3-6		240	240				
ONOL	1848			_	120	120		
TONON	Tao	300	540	240	120	120		
TALERE FLAMMA MARTIZTIS	T _{(E)1-3-6}	240	333.33	=	_	_	206.67	_
Estimada	T _{(E)2-9-6}		400	450				425
Asignación	fias !	286.67	286.67	_	\ - -			
8	1235		283.33	283.33	-	-1		
	F245		_		141.67	141.67		
WIO!	T ₍₍₁₎	286.67	570	283.33	141.67	141.67		
Matriz	T _{(E)1-3-5}	240	301.75		_		270.00	
Estimada	T _{(E)2-3-5}	AUI	447.37	450	DEI	VUEV	O-LE	(Man
Asignación	7136	270.88	270.88	L D E	BIBI	IOTE	ECAS	R
	<i>「</i> 2-3-5	_	299.12	299.12	()			
	F2-4-5	_			149.58	149.55		
	Texa	270.88	570	299.12	149.56	149.58		
Matriz	T ₆₅₎₁₋₃₋₅	240	285.13	 :	-		262.57	-
Estimade	T ₍₂₎₃₋₆	-	472.30	450	=	=		461.16
Asignación	11-3-5	253.44	253.44	2 	_			
	F2-3-6		316.56	316.56	—	-		
	^{[246}	 -			158.28	158.28		
	T _(C10)	253.44	570	316.56	158.28	158.28		
Matriz	T _{(E)1-3-6}	240	286.78	_	_		25,30	
Estimada	T ₍₅₎₂₋₃₋₅	, <u>==</u>	499.84	450				474.82

La Figura 3.2 muestra otro ejemplo de una red con aforos inconsistentes. En este caso, la matriz semilla tiene tres pares O-D T_{24} , T_{23} y T_{13} (aquí, fijados a 200 cada uno). En la 30° iteración, los elementos sólo cambiaron al nivel del segundo decimal, obteniéndose valores de 208.31, 272.49 y 769.20. Para propósitos de comparación, la solución analítica de minimizar el cuadrado ponderado entre el tránsito aforado y el asignado, da valores de 208.00, 272.00 y 767.00.

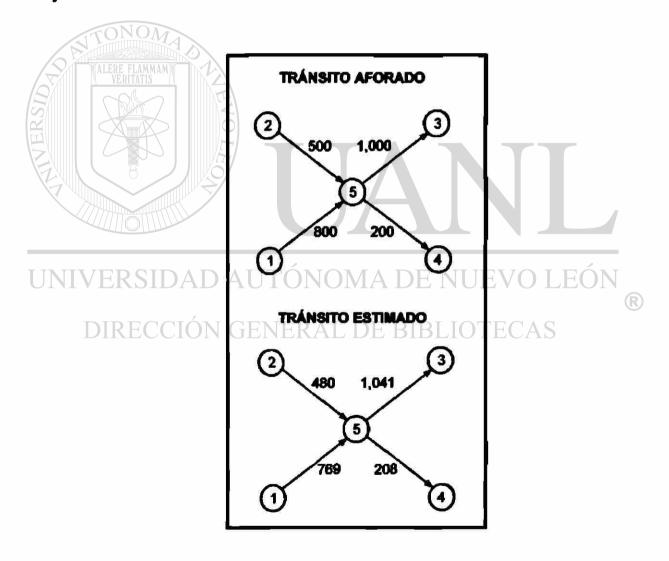


Figura 3.2 Red con aforos vehiculares inconsistentes

La Figura 3.3 muestra un ejemplo de una red con aforos consistentes; donde, por definición, son reproducidos exactamente por SPME. La matriz semilla tiene tres pares O-D T_{12} = 200, T_{34} = 200 y T_{88} = 600. En la 10º iteración, los elementos sólo cambiaron al nivel del segundo decimal, obteniéndose valores de 184.32, 115.69 y 815.66. Para propósitos de comparación, la solución analítica de minimizar el cuadrado ponderado entre la matriz semilla y la matriz estimada, da valores de 185.71, 114.29 y 814.29, considerando que los aforos son reproducidos exactamente.

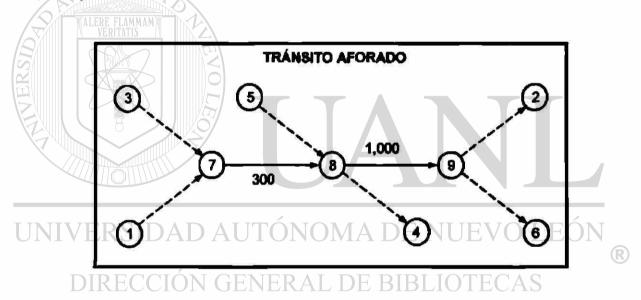


Figura 3.3 Red con aforos vehiculares consistentes

3.2.3 Elección de Modelo de Asignación dentro del SPME

La elección de ruta y de modelos de asignación de tránsito, han atraído considerable atención en la literatura. Los primeros modelos estocásticos de tipo Logit se basan en el supuesto de que las diferentes rutas son independientes (Referencia 29). Por lo anterior, generan problemas en redes

con rutas que se traslapan (Referencia 10), que es casi siempre el caso en redes de tamaño real. La Referencia 31 sugirió el uso de modelos de tipo Probit para superar ese problema y la Referencia 11 presentó un algoritmo de solución operacional. Un concepto similar es utilizado como parte del "Equilibrio del Usuario Estocástico" (SUE), sugerido en la Referencia 30 e implementado operacionalmente en la Referencia 11; pero aquí los tiempos de viaje son también dependientes del fluio. Así, el principio del SUE establece que "se alcanza un equilibrio cuando ningún viajero cree que puede mejorar su tiempo de viaje al cambiar unilateralmente de ruta". Se discute a menudo sobre cuándo conviene utilizar la asignación tipo Probit, tipo Equilibrio de Usuario (UE) o ambas (SUE). La asignación tipo Probit puede ser utilizada en redes no congestionadas y la tipo UE puede utilizarse como una buena aproximación para el tipo SUE en redes congestionadas. El enfoque SUE debe utilizarse para niveles intermedios de congestión (Referencia 10). Sin embargo, dado que las tres circunstancias ocurren en la mayoría de las ciudades, y muchas rutas consideran arcos no cogestionados, semicongestionados y completamente congestionados, se recomienda utilizar siempre el enfoque SUE (Referencia 32). En comparación con otros métodos heurísticos, los modelos anteriores todos permiten el "Método de Promedios Sucesivos (MSA)", mencionado en el Capítulo 2, el cual puede demostrarse que converge. Las Referencias 10. 32. 33, y 34, entre otras, proporcionan revisiones de literatura sobre modelos de asignación vehicular y recomiendan el uso de SUE.

3.2.4 Discusión sobre el SPME

En SPME, sólo los aforos a lo largo del camino óptimo son utilizados para la estimación. La lógica es que las desviaciones relativas entre el tránsito aforado y el asignado a lo largo de este camino proporcionan una estimación adecuada para el elemento. Esta simplificación es realizada con el fin de reducir la complejidad del cálculo. Experiencias pasadas han demostrado que el método converge relativamente rápido, encontrándose implementado en TransCAD 3.0 por Caliper (Referencia 35). Lo anterior indica que el SPME es utilizable en la práctica. Sin embargo, SPME no representa completamente el patrón de flujos del SUE y no siempre converge suavemente. Esto es especialmente cierto en el caso de redes con muchas rutas con resistencias similares de viaje entre los pares O-D.

La Figura 3.4 muestra, en una red vial simplificada, los resultados del método ME2 o modelo de estimación de matrices basado en la maximización de la entropía (Referencias 15 y 36), SPME y el método MPME en donde todos los aforos son utilizados (véase la descripción de MPME, más adelante). La Figura 3.4 muestra qué tanto influyen los aforos en el resultado final (columna intermedia) presentando también el tránsito asignado (columna derecha). T_{16} fue asignado para los métodos SPME y MPME en la red, utilizando un modelo de asignación estocástico con proporciones fijas entre rutas. En el ME2, el tránsito estimado para el par 1-6 es igual al último aforo utilizado en el algoritmo, es decir, el aforo en el arco 1-4. El estimado sería, entonces, 640

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

vehículos. En el SPME, los errores relativos a lo largo del camino óptimo son (640 - 800)/800 = -20 por ciento y (840 - 800)/800 = 5 por ciento. De esta manera, el tránsito esperado sería $1,300 \cdot 80\% = 1,040$ y $1300 \cdot 105\% = 1,365$ y el estimado es (1,040 + 1,365)/2 = 1,203.

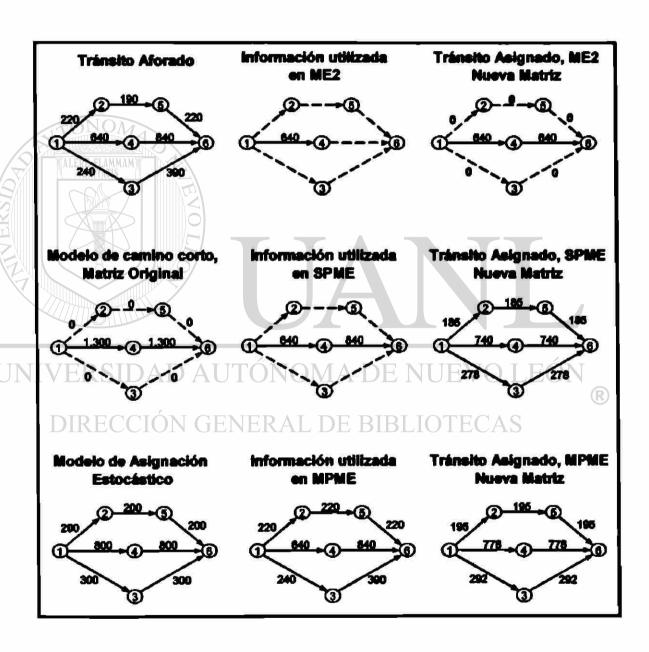
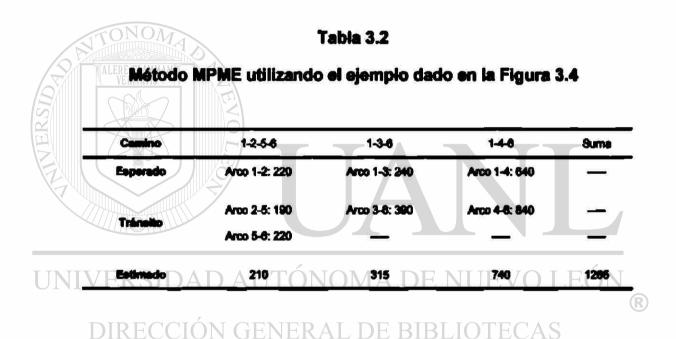



Figura 3.4 Comparación del ME2, SPME y MPME del tránsito en los nodos 1 al 6

En el MPME, el tránsito se estima igual a 1,265, como se muestra en la Tabla 3.2. Se aprecia que los métodos SPME y MPME proporcionan un mucho mejor resultado que el ME2, mientras que el MPME sólo resulta en un mejoramiento marginal comparado con el SPME. En redes más grandes, es de esperarse que el mejoramiento proporcionado por el MPME sea mayor, debido a que hay muchas más rutas alternativas en esas redes.

3.3.1 Principios

Como ya se indicó, la idea en el MPME es, para cada camino, utilizar todos los aforos a lo largo del camino para estimar el par O-D correspondiente. Las inconsistencias en algunos aforos a lo largo del camino son, por lo tanto, moderadas por otros aforos. Sin embargo, a diferencia del SPME, donde sólo

3.3 Método MPME

se utilizan los aforos a lo largo del camino óptimo, en el MPME lo anterior se realiza para todos los caminos según la probabilidad de escoger cada uno.

Así, el tránsito entre cada par O-D debe ser la suma del tránsito esperado a lo largo de cada camino o ruta entre el par, multiplicado por la probabilidad de elegir esa ruta (Ecuación 3.5a). Esto asigna un peso elevado a la elección de ruta, dado que a cada ruta se le asigna el mismo peso (según su probabilidad). independientemente del número de aforos a lo largo de la ruta. Puede asumirse que el tránsito esperado a lo largo de cada ruta es el promedio, a lo largo de la ruta, del tránsito esperado definido a partir de cada aforo (Ecuación 3.5b). El tránsito esperado, de acuerdo con cada aforo (Ecuación 3.5c), es equivalente al obtenido mediante la Ecuación 3.2 para el SPME.

$$\overline{UNIVERSIDAD AU O O O MA DE NUEVO LEÓN (3.5a)}$$

donde: IRECCIÓN GENERAL DE BIBLIOTECAS
$$T_{(E)||r|} = \frac{1}{N_{a\in\{r,r\}}} \cdot \sum_{a\in\{r,r\}} T_{(E)||a|}$$
(3.5b)

y

$$T_{(E)ija} = \frac{V_a}{T_{a(n-1)}} \cdot T_{ij(n-1)} \tag{3.5c}$$

donde $T_{(E)\mu\nu}$ es el tránsito esperado entre las zonas i y j en el arco a; τ es el conjunto de arcos con aforo; p_{pr} es la probabilidad de que la ruta r sea utilizada entre las zonas i y j, y n es el número de iteración.

Es casos muy simples, esto puede realizarse en un paso. Sin embargo, usualmente p_{ip} depende del tránsito en cada arco (elección no proporcional de ruta), y $T_{a(n-1)}$ depende de otros elementos de la matriz diferentes de $T_{g(n-1)}$. En este caso, un enfoque podría ser utilizar la Ecuación (3.5a) en un ciclo iterativo (donde n es el número de iteración). Si esto converge (lo cual puede probarse fácilmente en la práctica), la solución cumple con los supuestos que conducen a la ecuación.

Cabe señalar que, así como el SPME puede resolverse para redes reales con el software. TransCAD, el MPME puede resolverse mediante el software denominado ArcINFO (Referencia 13).

3.3.2 Algunos Ejemplos de Cálculo

La Tabla 3.3 muestra el uso del MPME en la misma red de la Figura 3.1 (algunos valores han sido redondeados a partir de una hoja de cálculo). Los resultados se muestran en la Figura 3.5. En la 10º iteración, T_{15} y T_{25} apenas cambian a nivel del segundo decimal, teniendo valores de 261.82 y 438.18. Para propósitos de comparación, la solución exacta de minimizar el cuadrado ponderado entre el tránsito aforado y el asignado, da valores de 260.28 y 434.04.

Tabla 3.3

Método MPME utilizando el ejemplo dado en la Figura 3.5

	Ruta	Tránsito Asignado y Esperado en los Arcos					Tránsito Esperado en las Rutas y Estimación de los elementos de la Matriz		
		81.3	834	82.3	82-4	a _{4.5}	T _{(E)(p}	T _{1-5(n-1)}	T _{2-8(n-1)}
Aforos, V.	537 =80	240	600	300	120	140			
Matriz Origin	val, T _(R0)						-	300	300
Asignación	r ₁₋₃₋₅	300	300	_		_			
	12-3-5	-	240	240	-	-			
	F248		_	<u>-</u>)	120	120	-c		
TO INC	Tato	300	540	240	120	120	- 2).		
ALERE FLAT	T@1-3-6	240	333.33	-	-	_	204.67	204.67	
	T _{(E)2-3-5}		266.67	300	==	-	283.33	_	413.33
	T _{(E)248}	8	-	_	120	140	130.00) {i}
Asignación	r ₁₋₃₋₅	286,67	286.67		.—/	—			
	1236	<u> </u>	275.56	275.56	-				
	1 245	<u>/</u>			137.78	137.78			
	T _{e(1)}	286.67	562.22	275.56	137.78	137.78		7	
	T _{(E)1-3-6}	240	305.93				272.90	272.96	_
	T _{(E)2-3-5}	DA	294.07	300	MA	DE	297.04	V O L	E 67.04
	T _{(E)2-4-5}		_	****** ******************************	120	140	130.00		e e
Asignación	CCIÓ	272.96	272.98	R <u>A</u> L	DE	B <u>IB</u> I	LIOTI	ECAS	
	F2-3-5		284.69	284.69		-			
	1246	_	_		142.35	142.35			
	$T_{a(2)}$	272.96	557.86	284.69	142.35	142.36	•		
	T _{(E)1-3-6}	240	293.69	_		_	206.96	204.05	-
	T _{(E)2-3-6}	-	306.31	300	-		303.16	-	433.15
	T _{(E)24-6}		-	-	120	140	130.00	—	
	_	204 00	204.00						
Asignación	F1-3-6	261.80	281.80 292.14	292.14		= 3			
	「236 「246				146.07	146.07			
	7244 T _{a(10)}	261.80	553.93	292.14	146.07	146.07	B ih		
	T _{(E)1-3-5}	240	283.57				261.78	261.78	_
	T _{(E)2-3-5}		316.43	300			340.22		438.22
	T _{(E)2-4-5}				120	140	120.00		

Como puede observarse, el MPME proporcionó una mejor solución que el SPME en ese caso, dada su habilidad para utilizar todos los aforos a lo largo de todas las rutas. En relación con los otros ejemplos resueltos para el SPME (Figuras 3.2 y 3.3), hubo sólo una ruta entre cada par O-D, por lo cual con SPME y MPME se obtendrán los mismos resultados.

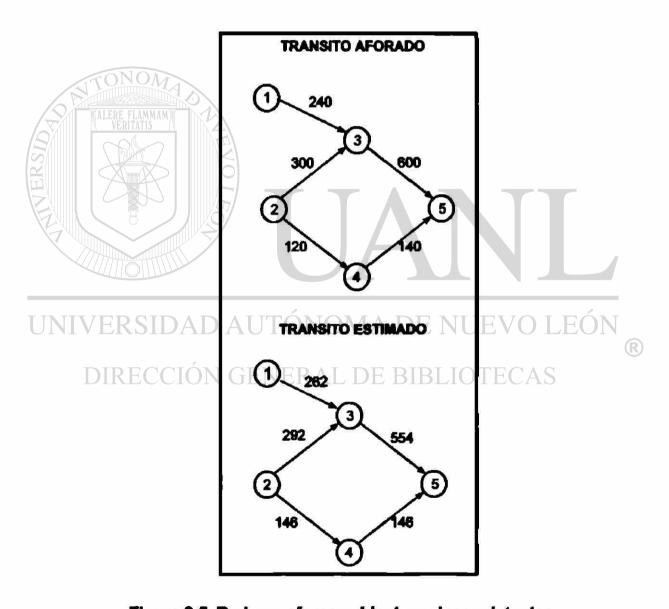


Figura 3.5 Red con aforos vehiculares inconsistentes

3.3.3 Algunas Características del MPME

La base fundamental del MPME son los aforos. En redes con más aforos que elementos matriciales (muy raras veces), la solución será independiente de la matriz semilla. Si los aforos son inconsistentes, el MPME encontrará una solución donde el tránsito esperado promedio a lo largo de cada ruta (Ecuación 3.5b) y la suma del tránsito esperado en todas las rutas entre el par O-D considerado, han convergido (Ecuación 3.5a). Si los aforos son consistentes, continuará modificando los elementos de la matriz hasta que se obtenga un ajuste perfecto. Además de estas características, algunas pruebas prácticas (incluyendo aquéllas de las Figuras 3.2 y 3.5) han demostrado que la solución es bastante cercana a la minimización del cuadrado ponderado entre el tránsito aforado y el asignado (aunque el supuesto detrás del MPME no es igual a este problema de minimización):

DIRECCIÓN GENERA
$$(T_a D V_a)^2$$
 BLIOTECAS min $\left[\sum_{a}^{a} \frac{(T_a D V_a)^2}{V_a}\right]$ (3.6)

En casos con más elementos matriciales que aforos, todos los elementos relacionados con un aforo serán modificados en la misma dirección. Naturalmente este efecto puede reducirse debido a otros aforos. La modificación de los elementos matriciales cumple la restricción de que el modelo de elección de ruta sea seguido y que la Ecuación 3.2 debe converger. La solución es bastante cercana a la minimización del cuadrado ponderado

entre la matriz semilla y la matriz estimada (aunque el supuesto detrás del MPME no es igual a este problema de minimización):

$$\min \left[\sum_{ij} \frac{\left(T_{ij} - t_{ij}\right)^2}{t_{ij}} \right] \tag{3.7}$$

3.4 Metodología Seleccionada

Después de la revisión de los principios generales, algoritmos y programas computacionales hasta aquí efectuada, se seleccionó el SPME y el software TransCAD para los desarrollos que se realizan en las secciones subsiguientes de esta tesis.

La elección del SPME (y con ello la del software TransCAD) reside en que dicha metodología tiene requerimientos computacionales razonables, además de que converge rápidamente, proporcionando frecuentemente una solución bastante cercana a la exacta, como ya se mencionó. Por lo tanto, la selección anterior de herramientas debe generar una solución adecuada, con niveles razonables de complejidad en casos reales, como el que se abordará en el capítulo siguiente. Como ya también se indicó, en estos casos, diferentes porciones de la red presentan distintos niveles de congestionamiento, variando entre porciones no congestionadas, semicongestionadas y completamente congestionadas. En

estas situaciones, el modelo de asignación vehicular recomendado es el "Equilibrio del Usuario Estocástico" (SUE), por lo cual es el que se utilizará en el caso real en el capítulo siguiente. La Figura 3.6 muestra un diagrama de la metodología seleccionada.

Se recomienda explorar en trabajos posteriores la conveniencia de aplicar otras metodologías y herramientas computacionales (p ej. MPME y ArcINFO), las cuales están fuera de los alcances de este trabajo.

Figura 3.6 Diagrama de la metodología seleccionada.

3.5 Ejemplos del SPME resueltos con el TransCAD

A continuación se describen el procedimiento y los resultados obtenidos para los casos en las Figuras 3.1 y 3.2, utilizando el software TransCAD. El caso de la Figura 3.1 se resuelve utilizando el SPME con un modelo de asignación fijo o tipo "Todo o Nada", para poder comparar los resultados obtenidos con el TransCAD, con los ya presentados en la Sección 3.2.2, obtenidos de la aplicación manual del SPME. El caso de la Figura 3.2, también se resuelve aplicando el SPME a través del TransCAD, pero en este caso, como entre cada par O-D sólo existe una alternativa de ruta, cualquier modelo de asignación elegido proporciona los mismos resultados.

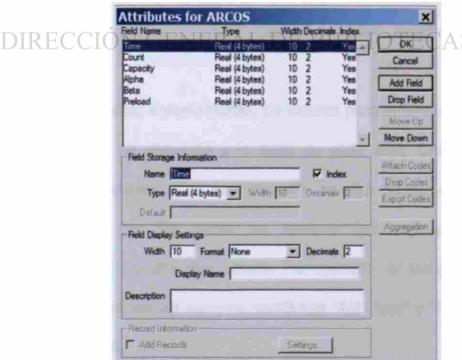
N.5.1 Procedimiento General ÓNOMA DE NUEVO LEÓN

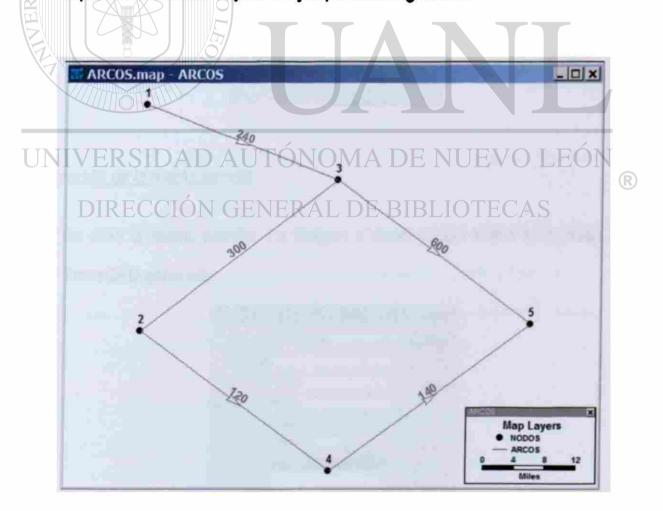
DIRECCION GENERAL DE BIBLIOTECAS

Para los dos ejemplos, primero se generó con Transc

representación geográfica o mapa del problema y, posteriormente, el modelo de red correspondiente.

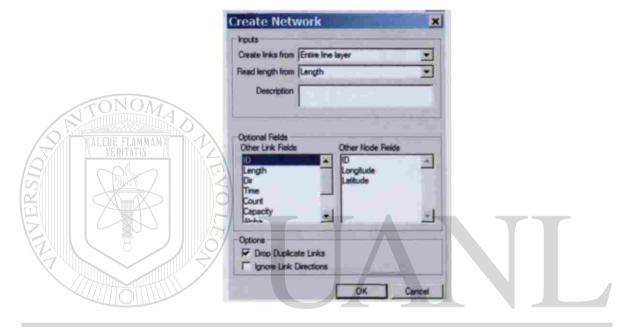
Generación de la representación geográfica


 Se preparó un archivo geográfico con un "layer" (capa) para arcos y otro para nodos. A continuación se ilustran dos pantallas de TransCAD, generadas durante la creación de dichos "layers".



 Se generó la estructura de la base de datos requerida para ingresar los atributos de los arcos. Enseguida se ilustra una pantalla de TransCAD, generada durante la preparación de los datos correspondientes al ejemplo de la Figura 3.1.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN



- De manera similar, de ser el caso, se crea una estructura para la base de datos de nodos.
- Con las herramientas de TransCAD para dibujar arcos, se generó la
 representación del problema en el "layer" de arcos, ingresándose
 posteriormente los atributos pertinentes de los arcos. La representación
 contiene todos los nodos de origen y destino que están en la matriz semilla,
 así como todos los arcos que pueden ser utilizados por los viajes O-D. De
 ser el caso, se ingresan los atributos de los nodos. Enseguida se ilustra la
 representación creada para el ejemplo de la Figura 3.1.

Creación del modelo de red

 Una vez generado el mapa del problema, fue necesario generar el modelo correspondiente de red. A continuación se ilustra una pantalla de TransCAD generada durante la creación de la red correspondiente.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Creación de la matriz semilla

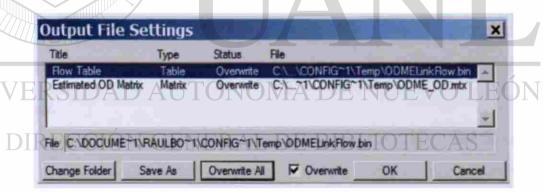
DIRECCIÓN GENERAL DE BIBLIOTECAS

 Se creó la matriz semilla. La imagen a continuación ilustra la pantalla de TransCAD generada.

 Se ingresaron los flujos de la matriz semilla. La imagen a continuación ilustra la pantalla de TransCAD generada.

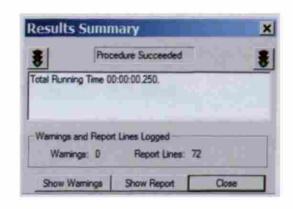
	1	2	3	4	5
1	0.00	0.10	0.10	0.10	300.00
2	0.10	0.00	0.10	0.10	240.00
3	0.10	0.10	0.00	0.10	0.10
4	0.10	0.10	0.10	0.00	0.10
5	0.10	0.10	0.10	0.10	0.00

Estimación de la matriz O-D


Una vez que se ingresaron los datos de entrada, se llevó a cabo el procedimiento para la estimación de la matriz O-D.

- 1. Se abrió el mapa que contenía la red que se generó, activándose posteriormente el "layer" de arcos.
 - 2. Se abrió la matriz semilla.
 - De la barra de herramientas Planning-OD Matrix Estimation, se abrió el cuadro de diálogo para la estimación de matrices O-D. La imagen a continuación ilustra la pantalla de TransCAD generada.

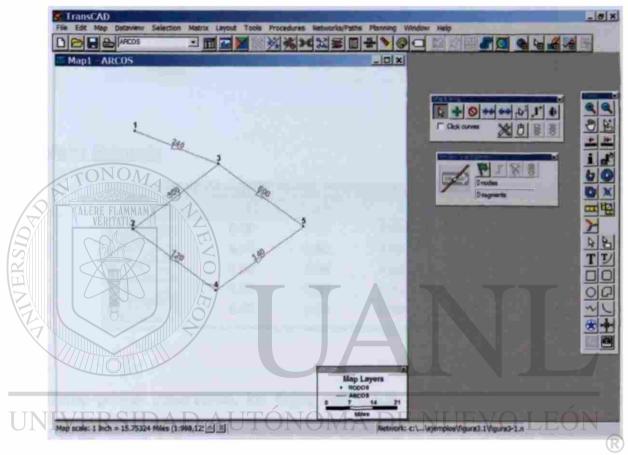
Line Layer A	RCOS				OK
letwork File C	_WUEVA CARP	ETAVEK	SURA3-1.N	ET	Cancel
Method E	lochastic User Equ	ibn im	سحد		Network
Matrix File N	IODOS Matrix File			*	Options
Matrix Fields	letriz Semilla			•	Settings
Time Tr	ne	v	Alpha	Alpha	
Capacity Ca	pacity	•	Beta	Beta	•
Court Co	unt	•	Preload	Preload	
Globals				-	
Iteration	s 20		ě	lpha 0.15	
Convergence	0.0100			Beta 4.00	
Function	Gumbel	•	تنايع	Emor 5.0000	
O-D Matrix Er	timation Settings				


- 4. A partir de la lista desplegada en "Method", se eligió el método de asignación. Por lo antes dicho, para el caso de la Figura 3.1 se eligió el modelo de asignación fijo o tipo "Todo o Nada". Para el caso de la Figura 3.2, se eligió el modelo de asignación tipo "Equilibrio del Usuario Estocástico" (SUE).
- 5. De la lista desplegada en "Matrix File", se abrió el archivo de matrices semilla ("NODOS Matriz File" para los dos ejemplos considerados).
 Asimismo, se activó la matriz semilla del problema a analizar (p. ej. "Figura 3-5-1").
- 6. Dependiendo del método de asignación elegido, se activan unos campos u otros de los apartados "Fields", "Globals" y "O-D Matrix Estimation Settings" de la pantalla arriba mostrada. En esta pantalla se muestran los campos que se activan cuando se elige el "Equilibrio del Usuario" como método de asignación.

- 7. Para cada parámetro en el apartado "Fields", TransCAD tomó por omisión los valores ingresados, para cada arco, en los campos del mismo nombre del "layer" de arcos.
- Se teclearon los valores escogidos para el número de iteraciones, convergencia y parámetros Alpha y Beta (de las funciones de congestionamiento de los arcos), correspondientes al modelo de asignación.
- Se teclearon los valores escogidos para el número de iteraciones y convergencia, correspondientes al modelo de estimación de la matriz.
- 10. Se pulsó el botón OK para desplegar el cuadro de diálogo "Output File Settings". Se escoge "use", "rename", o "overwrite" en cada archivo como se describe abajo:

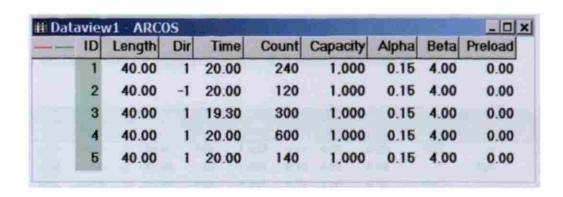
Si el estado es:	Hage esto:		
En uso, o existe, el archivo debe guardarse	De clic en Save As, escoja el fólder, tecles el nombre y de clic en Save. El estado se cambiara a uno nuevo.		
SI Existe, y el archivo no puede ser renombrado	Revise Overwrite. El estado será cambiedo por Overwrite. Si se desea borrer todos los archivos cuyo estado este en Existente, clic Overwrite All.		

11. Se pulsó el botón OK. TransCAD generó la matriz O-D que mejor se ajustó a los aforos de la red observados, desplegándose el cuadro de diálogo "Results Summary":


Para hacer esto:	Hage esta:
Ver custquier advertencie Ver al reporte	De Clic en Show Warnings y desplace el fondo del archive. Cierre el programa Notepad cuendo ya este hecho. De Clic en Show Report y desplace el fondo del archivo. Cierre el programa Notepad cuando ya este hecho.
Carrer el cuedro de diálogo	De alla en Clase.

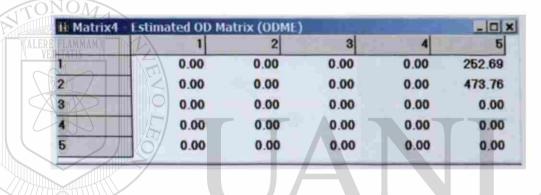
TransCAD despliega la matriz O-D resultante y una tabla que muestra los flujos en los arcos correspondientes a la matriz O-D estimada. Dependiendo de ciertas opciones escogidas, TransCAD también puede reportar tabulaciones de flujo y desplegar un terna de flujos mediante símbolos a escala.

DIRECCIÓN GENERAL DE BIBLIOTECAS

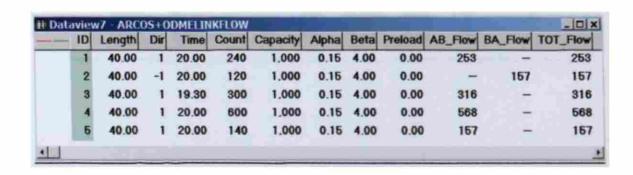

3.5.2 Ejemplo de la Figura 3.1

Generación de la representación geográfica

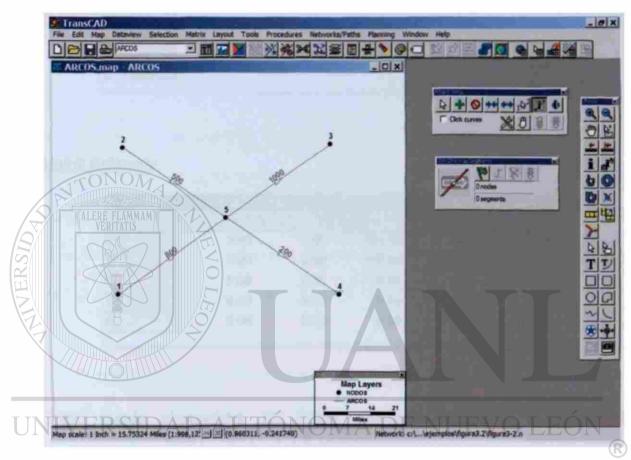
DIRECCIÓN GENERAL DE BIBLIOTECAS


Atributos de los arcos

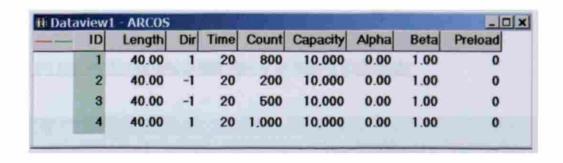
Matriz Semilla


H MATRIZ SEMILLA.mvw		NODOS Matrix	_ D X		
	1	2	3	4	5
1	0.00	0.10	0.10	0.10	300.00
2	0.10	0.00	0.10	0.10	360.00
3	0.10	0.10	0.00	0.10	0.10
4	0.10	0.10	0.10	0.00	0.10
5	0.10	0.10	0.10	0.10	0.00

Matriz Estimada

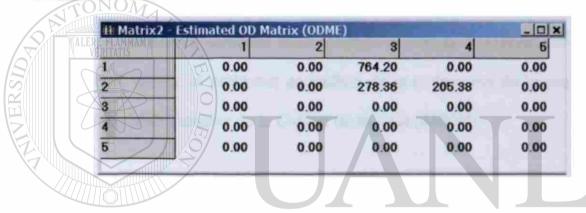

Como puede observarse, los flujos estimados mediante el TransCAD (T_{15} = 253.44, T_{25} = 474.85) resultaron muy similares a los estimados mediante la realización de 30 iteraciones para este ejemplo en la Sección 3.2.2 (T_{15} = 252.69, T_{25} = 473.76).

Flujos en los arcos correspondientes a la Matriz Estimada

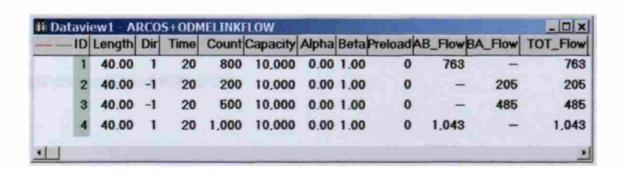

3.5.3 Ejemplo de la Figura 3.2.

Generación de la representación geográfica

DIRECCIÓN GENERAL DE BIBLIOTECAS


Atributos de los arcos

Matriz Semilla


	1	2	3	4	5
1	0.00	ALL TO	200.00	-	_
2		0.00	200.00	200.00	-
3	-	-	0.00		-
4	-	-	-	0.00	-
5	_	-	_	To Serve	0.00

Matriz Estimada

Como puede observarse, los flujos estimados mediante el TransCAD (T_{13} =764.20, T_{23} =278.36 y T_{24} =205.38) resultaron muy similares a los estimados mediante la realización de 30 iteraciones para este ejemplo en la Sección 3.2.2 (T_{13} =769.20, T_{23} =272.49 y T_{24} =208.31).

Flujos en los arcos correspondientes a la Matriz Estimada

4. APLICACIÓN A UN CASO PRÁCTICO

En este capítulo se presenta un ejemplo de aplicación del SPME (Single Path Matrix Estimation o Estimación de la Matriz por Camino Sencillo), junto con el modelo de asignación vehicular recomendado que es el "Equilibrio del Usuario Estocástico" (SUE), al problema específico de la estimación de la matriz O-D para el Área Metropolitana de la Ciudad de México (AMCM).

Como ya se mencionó, dicha aplicación se efectuará utilizando el programa

SIDAD AUTÓNOMA DE NUEVO LEÓN

TransCAD.

Según los principios metodológicos presentados en los capítulos anteriores, el desarrollo del ejemplo requiere trabajar con los siguientes tres elementos básicos: un modelo de red de la región de interés (el AMCM), un conjunto de aforos en sitios importantes de dicha red y una matriz semilla. En una primera parte de este capítulo se describe cada uno de esos elementos. En una segunda parte se presenta la calibración de la matriz semilla y se discuten algunos resultados relevantes.

Dado que el proceso de calibración de la matriz semilla será contra valores de tránsito promedio diario anual (TPDA), medidos en sitios de la red considerada, la matriz O-D obtenida después de la calibración será de flujos vehiculares diarios. Como la matriz semilla se obtendrá de la contabilización de todos los vehículos registrados entre cada par O-D en estaciones de encuesta instaladas en diferentes sitios de la red, la matriz semilla así como la matriz O-D calibrada, serán de flujos vehiculares totales (p. ej. integrados por los flujos de automóviles, autobuses, camiones, etc.).

4.1 Descripción de los Elementos Básicos

4.1.1 La Red

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

En TransCAD, la especificación de la red para este ejemplo debe realizarse a través de tres capas de información o "layers": una para los límites geográficos de las jurisdicciones (Estados) que componen el área de estudio (AMCM), otra para los arcos de la red de transporte modelada, y una tercera para los nodos que delimitan dichos arcos. Cada una de las capas anteriores puede alimentarse al TransCAD a través de una base de datos de Visual Fox Pro.

La información de las tres capas para el área de estudio, fue obtenida a partir de trabajos anteriores que abarcaron todo el país (Referencias 37 y 38). En cada caso, se tomó la base de datos electrónica correspondiente.

En relación con la capa de límites, el área de estudio se integró por el Distrito Federal y los Estados de Hidalgo, México, Morelos, Querétaro, Puebla y Tlaxcala. En cada registro de la base de datos de esta capa se almacenaron los atributos de cada una de las siete jurisdicciones (área, perímetro, etiqueta, etc.).

La capa de arcos quedó integrada por 1,324 arcos (114 correspondientes a autopistas de cuota, 882 a carreteras libres, 188 a conectores de centroide de la subred de carreteras, etc.). En cada registro de esta capa se almacenó la información correspondiente a cada arco (longitud, identificador, etiqueta, etc.).

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

La capa de nodos quedó constituida por un total de 1,046 nodos, de los cuales: 161 son centroides y 885 son nodos regulares. En cada registro de esta capa se almacenó la información correspondiente a cada nodo (coordenadas geográficas, identificador, etiqueta, Indicador de si el nodo es centroide o no, etc.). Cabe señalar que, en la red modelada, el identificador de cada nodo es un número de identificación. En el Anexo B se presenta el número de identificación asignado a cada uno de los 161 centroides.

Las tres capas anteriores fueron alimentadas a un archivo geográfico de TransCAD. La Figura 4.1 ilustra la representación en TransCAD del modelo de red considerado.

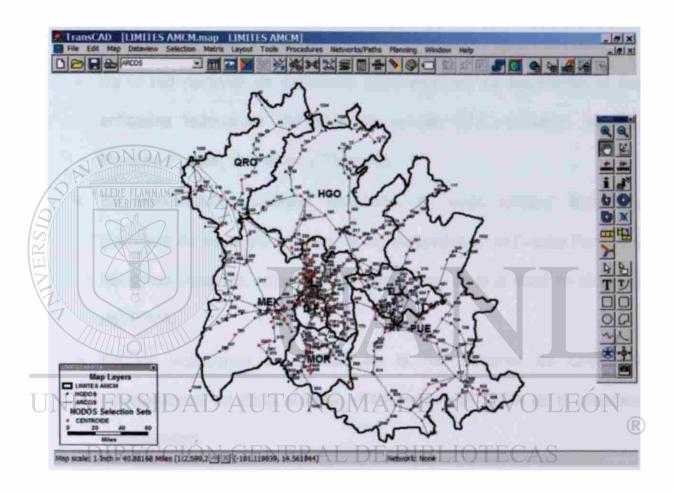


Figura 4.1 Representación en TransCAD del modelo de red del AMCM.

4.1.2 Los Aforos

Del archivo de Datos Viales de la SCT de 2004 (Referencia 39), se seleccionaron una serie de sitios de aforo con base en los siguientes criterios:

- De la red nacional de carreteras pavimentadas, se seleccionaron las entidades federativas del área de estudio (D.F., Hidalgo, México, Morelos, Puebla, Querétaro y Tlaxcala).
- Se seleccionaron distintas carreteras de cada entidad federativa (carretera de cuota y/o carretera libre) incidentes en el Distrito Federal y las zonas aledañas, entre las más importantes de la entidad en términos del TDPA.
- - En total, se seleccionaron 38 sitios de aforo. La Tabla 4.1 muestra la información obtenida de la Referencia 39 para cada uno de ellos.

Tabla 4.1

TPDA de las entidades federativas del área de estudio

800.	Ma, AFORO	LUSAR	Terú	CAPRETERA	101	TPDA
	1	MEIOCO - CUERNAVACA	CUOTA	CASETA DE COBRO	23.30	13,82
	2	MEXICO - CUERNAVACA	LIBRE	T.IZQ. TEPOZTLAN	71.88	5,91
D.F.	3	CHALCO - MIXOLIIC		MOCOLIC	10.00	6,38
	4	MEXICO - LA MARQUESA	CUOTA	PUENTE CONAFRUT	0.00	20,48
		SAN GREGORIO - CAXTEPEC		SAN GREGORIO	0.00	8,12
	•	MERICO - TOLUCA	3	LIBRAMENTO TOLUCA	82.20	31,76
	7	MERICO - LA MARQUESA	CUOTA	MEXICO-TOLUCA	19.30	11,87
		MEXICO - TIZAYUCA	CUOTA	OTUMBA-TIZAYUCA	53.46	4,02
WEST 20	•	MEXICO - QUERETARO	CUDTA	JILOTEPECHARVILLAS	107.00	14,18
	10	TOLUCA - CD. ALTAMIRANO		T.DER. ZINACATEPEC	10.21	10,52
	NID	MEXICO - PUEBLA	CUOTA	LOS REYES	20.00	39,87
	12	NAUCALPAN - TOLUCA		T DER LOMA LINDA	3.15	22,28
	ог 18 мм	LECHERIA - APAXICO	1	CUATUTITIAN	8.60	14,28
	ÆRITATIS	TLAKCO	LIBRE	APIZACO-TEJOCOTAL	23.91	5,26
	18	MEXICO - PACHUCA	CUOTA	LIBRAMENTO PACHUCA	80.60	19.32
MEDALED	10	MESCO - QUERETARO	CUOTA	CASETA DE COORO TEPOZILAN	43.01	21,76
	17	ENT COLONIA - PORTEZUELO	1	DOMQUILPAN	75.20	13,46
	18	VENTA DE CARPIO-T.C. (PACHUCA-TURPAN)		T C.PACHUCA-TUDPAN	84.08	4,76
	19	CUERNAVACA - ACAPULCO	CUOTA	CUERNAVACA	0.00	18,58
	20	SANTA BARBARA - IZLICAR MATAMOROS		CHATCO	0.00	16,04
MORELOS	21	BAN GREGORIO - CAXTEPEC		T DER YAUTEPEC	53.00	7,12
	22	BANTA BARBARA - IZUCAR MATAMOROB		T IZO. LIBRAIMENTO CUALITLA	77.06	18,20
	23	PUNTE DE IXTLA - IQUALA	CUOTA	PUENTE DE OCTLA	2.00	6,21
	24	AMOZOC - TEZNITLAN	1	PUEBLA-CORDOBA (CUOTA)	1.40	10,60
	26	APIZACO - TEJOCOTAL		APIZACO	0.00	7,00
PUEBLA	725	PUEBLA - HUAJUAPN DE LEON	IA	ATLIXCO	28.86	11,55
	27	MEXICO - PUEBLA	LIBRE	CHOULA	119.59	14,21
	26	LOS REYES - ZACATEPEC		TEXCOCO	23.02	80,46
	R 20 (LIB. NORTE QUERETARO	DE.	MERCO-QUERETARO	8.00	23,97
	30	SAN JUAN DEL RIO - XILITLA		CADEREYTA DE MONTES	47.90	2,50
QUERETARO	31	SAN JUAN DEL RIO - JOLITLA		JALAPAN DE SIERRA	170.30	1,06
	32	TOLUCA - PALMILLAS		ATLACOMMACO	95.00	7,08
	33	SAN JUAN DEL RIO - XILITLA		T.DER. LIB. SAN JUAN DEL RIO	6.20	4,56
	24	CALPULALPAN - EL OCOTE	1	CALPULALPAN	0.00	7,66
	36	VILLA ALTA - T.C. (PUEBLA - TLAYCALA)	1 =	PUEBLA-TLAXCALA	22.05	4,66
TLAXCALA	36	LOS REYES - ZACATEPEC	1	LIBRAMIENTO DE HLIAMANTLA	141 70	10.00
	37	PUEBLA-TLAXCALA	†	TLAXCALA	33.22	20,00
	- 34	SAN MARTIN TEMBLUCAN - TLAXCALA	1	SAN MARTIN TEXMELLICAN	000	13,85

La Figura 4.2 ilustra la ubicación de los 38 sitios de aforo seleccionados para este trabajo. Los números con los que se etiquetan los sitios de aforo en la

figura, corresponden al número secuencial dado a los mismos en la columna 2 de la Tabla 4.1.

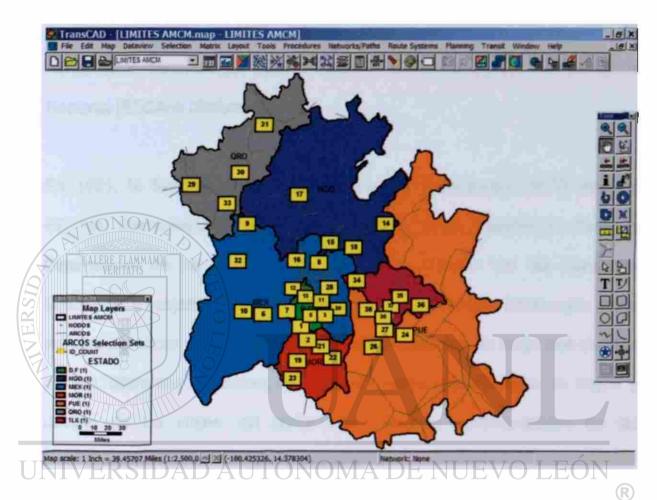


Figura 4.2 Representación en TransCAD de los 38 sitios de aforo seleccionados para el área de estudio.

4.1.3 La Matriz Semilla

Como ya se señaló en el Capítulo 3, el método SPME con asignación tipo SUE requiere de una matriz O-D semilla, sobre la que realiza una serie de ajustes iterativos con base en los aforos considerados, hasta obtener la matriz calibrada que, al ser asignada a la red, mejor reproduce los aforos.

Para el caso particular de este ejemplo, la matriz semilla fue generada a partir de una serie de estudios O-D realizados en estaciones de encuesta instaladas en carreteras dentro del área de estudio. Estos estudios O-D forman parte del formalmente denominado: Estudio Estadístico de Campo del Autotransporte Nacional (EECAN) (Referencia 40).

En 1991, la Secretaria de Comunicaciones y Transportes (SCT) inició el EECAN, denominado en sus etapas iniciales como: Estudio de Pesos y Dirnensiones de los Vehículos de Carga que Circulan por las Carreteras Mexicanas. El objetivo principal del EECAN ha sido generar información sobre las características más representativas de los vehículos de carga que circulan por las diferentes carreteras, los tipos de carga transportados, el origen y destino de los viajes, así como sobre algunas particularidades de las condiciones en que se realiza el transporte.

A partir de 1991, cada año se han realizado estudios en una serie estaciones de exploración instaladas en diferentes sitios de la red carretera nacional, que permiten obtener la información antes mencionada. Este trabajo utiliza la información correspondiente a las 10 estaciones de encuesta instaladas entre los años 1995 a 2003.

Los trabajos de campo que se realizan como parte del EECAN consisten en recopilar información en las carreteras seleccionadas, mediante una encuesta.

Hasta la fecha, la exploración de campo se ha llevado a cabo en sitios específicos o estaciones distribuidas por toda la red.

En general, en las estaciones se capta a todos los vehículos de carga que circulan por ellas, durante 24 horas, cuatro días consecutivos (martes a viernes). En primer lugar, se aplica un cuestionario a los conductores. Posteriormente, los vehículos se miden (en ocasiones) y pesan. Hasta 2002 se han instalado 155 estaciones, 10 en 1991; 3 en 1992; 15 en 1993; 18 en 1994; 21 en 1995; 11 en 1996; 20 en 1997; 13 en 1998; 7 en 1999; 4 en 2000 y 21 en 2001. En todas se ha aplicado la encuesta origen-destino.

Es importante señalar que en algunos años, como en 2002, las estaciones de campo no sólo se han instalado con objeto de estudiar el transporte de carga, sino también, por el interés de distintas dependencias de la SCT, se ha buscado investigar otros diversos aspectos de utilidad para esas dependencias, tales como el comportamiento de la demanda en las autopistas de cuota, el origen y destino de los automóviles y los autobuses, etc.

En 2002, por ejemplo, se incluyó en la encuesta a todos los vehículos (autos, autobuses y camiones); en el caso de los autos, se incluyó en el cuestionario el motivo del viaje (trabajo, escuela, compras, etc.), y en el caso de los autobuses, el número de pasajeros.

A partir del estudio en cada estación, se genera una base de datos en la que en cada registro se almacena la información correspondiente a cada vehículo encuestado. A su vez, en campos de dicho registro, se almacena la siguiente información para ese vehículo: sitio de origen del viaje, por población y entidad de origen; el sitio de destino del viaje, por población y entidad de destino; el tipo de vehículo (A, B o C según se trate de un automóvil, de un autobús o de un camión de carga); la cantidad y las unidades transportadas (p. ej. 40 pasajeros, 25 toneladas, etc.); y el tipo de carga, en caso de tratarse de un camión de carga.

Para este trabajo, se seleccionaron 10 bases de datos, correspondientes a 10 estudios O-D realizados en estaciones de encuesta instaladas de 1995 a 2003.

La Tabla 4.2 resume información general de cada una de las estaciones seleccionadas (p. ej. nombre, ubicación, fecha de encuesta y vehículos encuestados). El último renglón de la tabla indica que la muestra considerada para la obtención de la matriz semilla para este ejemplo se constituyó por 330,340 vehículos.

La Figura 4.3 ilustra la ubicación de las 10 estaciones. Los números con los que se etiquetan las estaciones en la figura, corresponden al número secuencial dado a los mismos en la columna 1 de la Tabla 4.2.

Tabla 4.2

Estaciones de encuestas O-D seleccionadas en el área de estudio

	Estastán		(Chicanita					
No.	Membre	Currotern	Trans	Пре	Man	Dis-Nes	Año	
1	Allecomulop	Tokson - Pelmilles	Pestaje - Allecomulco	Libro	86+100	28 Clal-01 Nov	1996	84,7%
2	El Relugio	Portezuelo - Palmilles	Jonacepe - Pelmilles	Libro	67+000	27-90 May	2008	24,00
3	Las Pajas	Neucelpan - Tokoe	T tzq. Chichicaspe - T.Der. Zolotepec	Libra	29+600	09-11 Jul	2003	31,000
4	San José	Pachuca - Tulendrigo	T.C. Verite de Carple / Tulencingo - T.Iza, Lille de Tulencingo	-	40-000	17-30 Oct	1665	00,000
5	Sen Mertin	México - Pueble	San Mertin Termetucan - Pueble	Cuole	91+000	12-15 Ago	2008	44,000
6	San Mateo	México - Pueble	Sen Mertin Termelucen - T.Der Cholule	Libro	81+800	05-00 Ago	2003	36,54
7	Singituten	Vente de Cerpio - T C. (Pachuos - Tulanoingo)	Piramides - T.C. (Peoluce - Tulanologo)	Custa	71+600	08-08 Aus	2009	36,436
8	Tehultzingo	Public Hustingen	tavour de Matemarons - Tenutzingo	Libro	147+000	22-26 Sep	1006	2,100
9	YATEDE FLA	Cummings - Cumillion	Yautepet - Coccyce	Libro	33-300	22-25 0ap	1986	8,171
10	Zumpengo	Iguala - Chilpandrap	Ent. Milpillas - Chilpanohingo	Libro	209+300	23-26 Sep	1996	10,140
				•	•		MA -	230,340

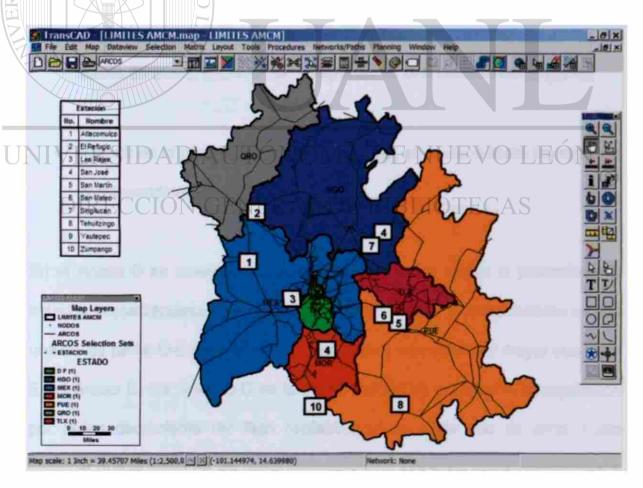


Figura 4.3 Representación en TransCAD de las 10 estaciones seleccionadas para el área de estudio.

El procedimiento seguido para la obtención de la matriz semilla a partir de las 10 bases de datos consideradas, fue el siguiente:

- Para cada registro de cada base de datos, a partir de la población y entidad de origen del viaje, de los 161 centroldes considerados se seleccionó como centroide de origen aquél geográficamente más cercano a dicha población, ingresándose en un campo su identificador.
 - El mismo procedimiento se realizó para registrar el identificador del centroide de destino.
- Una vez completado lo anterior para todos los registros de todas las bases de datos, éstas fueron integradas en una base de datos global.
- A partir de la base de datos global anterior, se contabilizaron los registros
 correspondientes a cada par O-D.

En el Anexo C se muestra la matriz semilla obtenida según el procedimiento anterior, presentándose en cada renglón la información correspondiente a cada uno de los pares O-D para los que se contabilizó flujo vehicular mayor que cero. En el Anexo C, los pares O-D de la matriz semilla se encuentran jerarquizados por orden decreciente del flujo contabilizado en cada uno de ellos. Cabe destacar que la suma de los flujos vehiculares de todos los pares resultó igual a 330,340 (vehículos encuestados en las 10 estaciones consideradas).

La Figura 4.4 muestra una representación gráfica, realizada en TransCAD, de los 36 pares O-D con mayor flujo contabilizado en ambos sentidos (con flujo en ambos sentidos superior a 1,000 vehículos). El flujo vehícular para todos los pares O-D se muestra en el Anexo C. Cabe señalar que el flujo total en ambos sentidos de los 36 pares en la Figura 4.4 (221,146 vehículos) representa el 66.94% del flujo contenido en toda la matriz semilla (330,340 vehículos).

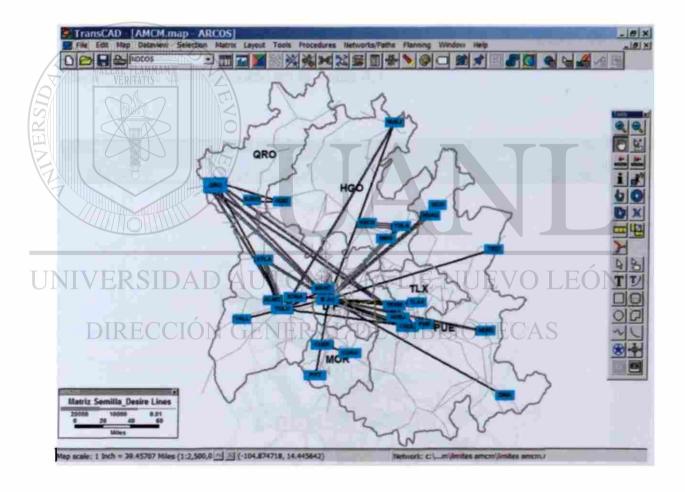


Figura 4.4 Representación en TransCAD de los 36 pares O-D con mayor flujo vehicular en ambos sentidos, obtenidos de la matriz semilla.

Posteriormente se realizó una asignación tipo SUE de la matriz semilla, a la red considerada. La Figura 4.5 muestra la representación gráfica de los flujos

asignados en todos los arcos, donde el ancho de la banda en cada arco es proporcional a la magnitud del flujo en los dos sentidos de dicho arco.

En la Figura 4.5 es evidente que los flujos de mayor magnitud resultantes de la asignación de la matriz semilla, se generan por las autopistas México-Querétaro, México-Puebla, México-Pachuca, México-Toluca, Toluca-Atlacomulco y Atlacomulco-Palmillas. Cabe señalar que en la Figura 4.5, en recuadros amarillos se muestra el número de los 38 sitios de aforo mencionados anteriormente en la Tabla 4.1.

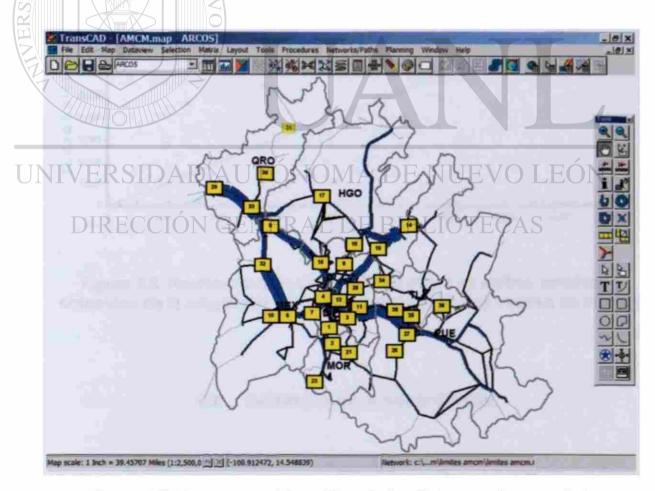


Figura 4.5 Representación gráfica de los flujos resultantes de la asignación de la matriz semilla.

La Figura 4.6 muestra una gráfica que compara los flujos en ambos sentidos obtenidos de la asignación de la matriz semilla, contra los valores de aforo (TDPA) seleccionados, para los 38 sitios marcados en recuadros amarillos en la Figura 4.5. Como es evidente en la figura, los valores de flujo asignado son en general muy diferentes a los flujos reales (aforos). Un dato relevante obtenido de este análisis es que los flujos asignados resultaron, en promedio, un 54% de los reales.

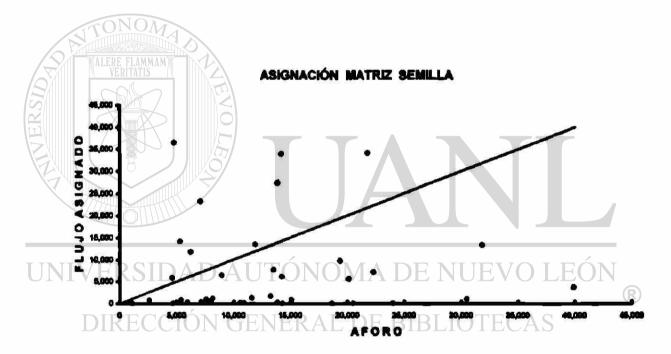


Figura 4.6 Representación gráfica de los flujos en ambos sentidos obtenidos de la asignación de la matriz semilla, Vs. los valores de aforo.

4.2 Calibración de la Matriz Semilla

Mediante el procedimiento del TransCAD que resuelve el SPME, se ajustó la matriz semilla para que en una asignación tipo SUE, dicha matriz reprodujese los aforos considerados.

La Figura 4.7 muestra, en una representación gráfica, los 75 pares O-D con mayor flujo en ambos sentidos (con flujo en ambos sentidos superior a 1,000 vehículos). El flujo vehícular para todos los pares O-D se muestra en el Anexo C. Cabe seflalar que el flujo total en ambos sentidos de los 75 pares en la Figura 4.7 (408,564 vehículos) representa el 68.23% del flujo contenido en toda la matriz ajustada (595,850 vehículos).

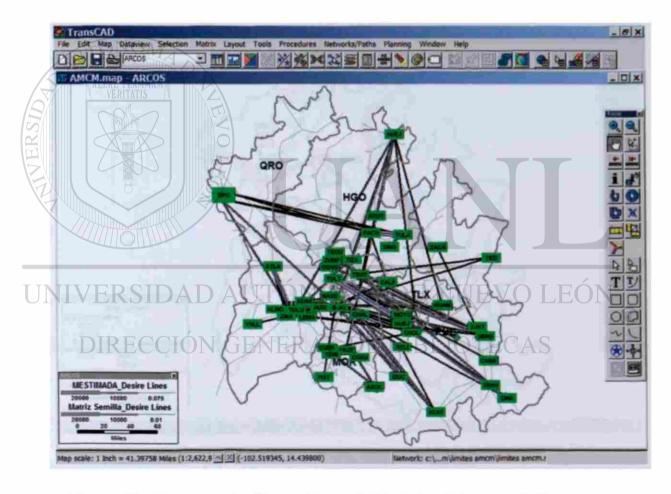


Figura 4.7 Representación en TransCAD de los 75 pares O-D con mayor flujo vehicular en ambos sentidos, obtenidos de la matriz estimada.

Como resultado de realizar la asignación tipo SUE de la matriz calibrada, sobre la red considerada, se obtuvo la Figura 4.8, en la cual se muestran los flujos asignados en todos los arcos.

Como puede observarse en la figura, los flujos de mayor magnitud resultantes de la asignación de la matriz estimada, al igual que cómo se obtuvo de la asignación de la matriz semilla, se generan por las autopistas México-Querétaro, México-Puebla, México-Pachuca, México-Toluca, Toluca-Atlacomulco y Atlacomulco-Palmillas.

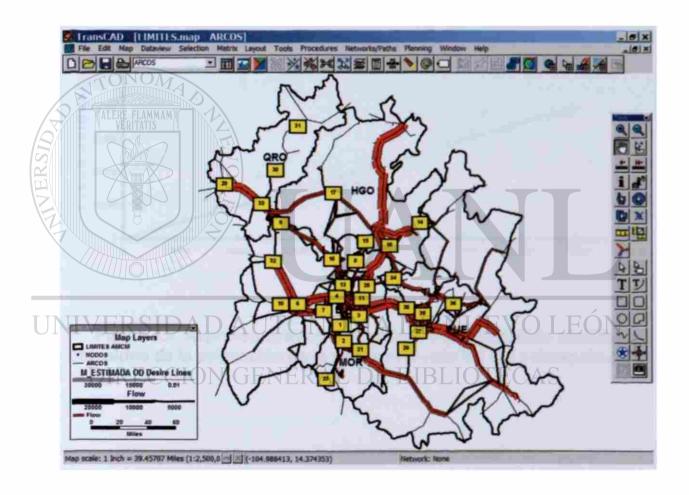


Figura 4.8 Representación gráfica de los flujos resultantes de la asignación de la matriz estimada.

Finalmente, la Figura 4.9 compara los flujos en ambos sentidos obtenidos de la asignación calibrada, contra los valores de TDPA en los 38 sitios considerados. Como es evidente en esta figura, después de la calibración de la matriz semilla,

los valores asignados contra los reales en los 38 sitios considerados son muy similares, mejorando la correlación entre ambos parámetros anteriores (entre los flujos asignados y los reales) y escalándose los flujos asignados (96%) hasta alcanzar valores similares a los de los flujos reales.

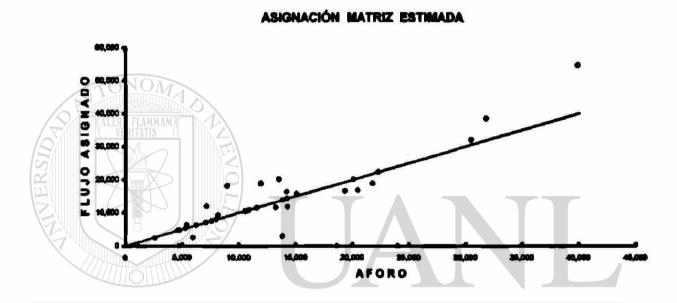


Figura 4.9 Representación gráfica de los flujos en ambos sentidos obtenidos de la asignación de la matriz estimada Vs. los valores de aforo.

Lo anterior ejemplifica las bondades del SPME en el modelo de asignación tipo SUE, para calibrar matrices O-D en problemas reales.

5. CONCLUSIONES Y RECOMENDACIONES

Como se ha mencionado en capítulos anteriores, la estimación de matrices O-D a partir de aforos vehiculares es de considerable importancia en la planeación de los sistemas de transporte.

Utilizando los métodos de estimación de matrices a partir de aforos vehiculares, pueden estimarse a menudo modelos de tránsito más baratos y más fáciles que con los estudios O-D que son más extensos y costosos.

En este trabajo se han descrito algunos métodos para estimar matrices de viajes a partir de aforos vehiculares. Dichos métodos pueden ocuparse de aforos con inconsistencias e incertidumbres, pudiendo ser implementados con cualquier método de asignación, incluso con el método de asignación "Equilibrio del Usuario Estocástico" (SUE). Si ocurren aforos inconsistentes, éstos no afectarán seriamente los resultados como en muchos otros métodos de estimación de matrices.

El primer método, SPME, es el más fácil de implementar, pero tiene una naturaleza más heurística que el segundo método, MPME. El MPME utiliza todos los aforos, a lo largo de todas las rutas, entre cada par de zonas para la

estimación; mientras que SPME sólo utiliza los aforos a lo largo del carnino óptimo. En estudios de casos prácticos, esto significa que MPME converge más fácilmente que SPME y que las soluciones dan mejores ajustes para los aforos y estimaciones más razonables para las matrices. Sin embargo, en ambos métodos se obtienen mejoras significativas, comparadas con la matriz semilla. Esto se da particularmente en el caso de redes donde ocurren a menudo elecciones múltiples de rutas, como en la mayoría de las áreas urbanas.

El principal aspecto a considerar para los planificadores, es que ambos métodos son bastante fáciles de llevar a cabo y convergen dentro de tiempos de cálculo razonables. Esto se ha logrado construyendo los métodos sobre supuestos y mecánicas bastante simples, en lugar de formularlos como programas matemáticos. SPME es más simple de implementar, debido a que puede utilizarse con los diferentes métodos de asignación.

Tanto SPME, como MPME dependen del modelo de la matriz semilla (si hay menos aforos que en los elementos de la matriz, como normalmente es el caso), pero ambos métodos pueden alterar dicho modelo significativamente para lograr el mejor ajuste con los aforos. Ésta es una ventaja en los análisis de bajo presupuesto, donde una matriz existente (a menudo antigua) debe ser actualizada para ser la base para estimar un nuevo modelo de tránsito, a fin de utilizarla como matriz pivote en el modelo o para ser utilizada directamente en la estimación de flujos para nuevos caminos.

Este trabajo muestra una metodología que se recomienda para generar mejores estimaciones de la demanda de transporte entre las diferentes zonas de un área determinada de estudio. La metodología mostrada es sencilla y por lo mismo fácil de utilizar en problemas reales, que suelen ser de tamaño considerable.

Se recomienda lograr mayores avances en trabajos futuros explorando la aplicación de métodos que mejoren la calidad de las estimaciones (p. ej. MPME), con niveles similares de versatilidad en la obtención de las soluciones.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

REFERENCIAS

Capítulo 1

- 1. Caliper Corporation, "Manual del Usuario TransCAD 4.5".
- 2. Trabajo Práctico Publicado en Internet "Estimación de la Demanda en Redes" http://www.fi.uba.ar/materias/6808/6808 Contenidos,htm.
- Manual Normativo SEDESOL, Tomo II "Manual de Conceptos y Lineamiento para la Planeación del Transporte Urbano", Programa de Asistencia Técnica en Transporte Urbano para las Ciudades Medias Mexicanas.
- 4. Box Paul C. y Joseph C. Oppenlander; "Manual de Estudios de Ingeniería de Tránsito"; Capítulo 9 Estudios de Origen y Destino; 4º Edición.
- 5. Louis J. Pignataro; "Traffic Engineering: Theory and Practice"; Capítulo 5 Origin and Destination Studies.
- 6. Radalat Egües Guido (1964), "Manual de Ingeniería de Transito", Capítulo XXV Estudios de Origen y Destino; Chicago, Illinois.
- 7. Ministerio del Transporte "Manual para Estudios de Origen y Destino de Transporte de Pasajeros y Mixto en Áreas Municipales, Distritales y Metropolitanas" http://www.mintransporte.gov.co/Servicios/Biblioteca/documentos/Documentos.htm Bogotá, Colombia 2001.
- Wilson, A.G. (1970), "Entropy in Urban and Regional Modelling"; Londres, Plon.
- 9. Novaes, A.G. (1982), "Model em Planejamento Urbano, regional e de Transportes"; Sao Paulo, Brasil.
- Sheffi, Y. (1985) "Urban Transportation Networks". Prentice Hall, Englewood Cliffs, NJ.
- 11. Sheffi, Y. and Powell, W.B. (1982) "An algorithm, for the Equilibrium Assignment Problem with Random Link Times". Networks 12, 191-207.

- 12. INRO Consultants (2000), "Equilibre Multimodal, Multimodal Equilibrium, (EMME/2)", "Strategic Transportation Análisis (STAN)". Montreal, Canada.
- 13. ESRI (2002), "ArciNFO GIS: Manual del Usuario".
- 14. Publicación en Internet, "Del Nodo a la Red, Problemas de Movilidad en la Ciudad de México y Soluciones Integrales" http://www.segundonivel.df.gob.mx/dvial/delnudoalared.htm

Capítulo 2

- 15. Ortúzar, J. de D. and Willumsen, L.G. (1990) "Modelling Transport". John Wiley & Sons, Chichester.
- 16. Sheffi, Y. (1985), "Urban Transporation Networks: Equilibrium Análisis with Nathematical Programming Methods". Prentice-Hall, Inc.
- 17. Robillard, P. (1975) "Estimating the O-D Matrix from Observed Link Volumes". Transportation Research, 9(2/3), 123-8.
- 18. Willumsen, LG. (1978) "Estimation of an O-D Matrix from Traffic Counts: a Review". Working Paper 99, Institute for Transport Studies, University of Leeds.
- 19. Lamond, B. and Stewart, N.F. (1981) "Bregman's Balancing Method". Transportation Research, 15B (4), 239-48.
- 20. Nielsen (1994) "A New Method for Estimating Trip Matrixes from Traffic Counts". Preprints Seventh International Conference on Travel Behaviour, Valle Nevado, June 1994, Chile.

Capítulo 3

- 21. Tamin, O.Z. and Willumsen, L.G. (1989) "Transport Demand Model Estimation from Traffic Counts". Transportation 16, 3-26.
- Yang, H., Ida, Y. and Sasaki, T. (1994) "The Equilibrium-Based Origin-Destination Matrix Estimation Problem". Transportation Research 28B, 23-33.
- 23. Sherali, H.D., Sivanandan, R. And Hobeika, A.G. (1994) "A linear programming approach for Synthesising Origin-Destination Trip Tables from Link Traffic Counts". Transportation Research 28B, 213-233.

- 24. Willumsen, L.G. (1981) "Simplified Transport Models Based on Traffic Counts". Transportation 10, 257-278.
- 25. Ben-Akiva, M. and Morikawa, T. (1989) "Data Fusion Methods and their Applications to Origin-Destination Trip Tables". In Work Conference on Transport Research (eds.), Transport Policy, Management and Tecnology Towards 2001, Western Periodicals Co., Ventura, CA.
- 26. Ben-Akiva, M. (1987) "Methods to Combine Different Data Sources and Estimate Origin-Destination Matrices". In N.H. Gartner and N.H.M. Wilson (eds.), Transportation and Traffic Theory, Elsevier Science, London.
- 27. Publicación en Internet, "Algoritmos de caminos más cortos entre nodos" http://www.ants.dif.um.es/asignaturas/redes/tema3/tema3.htm
- 28. Yang, H., Sasaki T., Ida, Y. and Asakura, Y. (1992) "Estimation of Origin-Destination Matrices from Traffic Counts on Congested Networks". Transportation Research 26B, 417-434.
- 29. Dial, R.B. (1971) 2A "Probabilistic Multipath Traffic Assignment Algorithm which Obviates Path Enumeration". Transportation Research 5, 81-111.
- 30. Daganzo, C.F. and Sheffi, Y. (1977) "On Stochastic Models of Traffic Assignment". Transportation Science 11, 253-274.
- 31. Sheffi, Y. and Powell, W.B. (1981) "A Comparison of Stochastic and Deterministic Traffic assignment Over congested Networks". Transportation Research 15B, 53-64.
 - 32. Nielsen, O.A. (1996) "Do Stochastic Traffic Assignment models Consider Differences in Road Users' Utility functions?" Proceedings 24th European Transport Forum, Brunel University, September 1996, UK.

GENERAL DE BIBLIOTECAS

- 33. Van Vuren, T. (1994) "The Trouble with SUE Stochastic Assignment Options in Practice". Proceedings 22nd European Transport Forum, University of Warwick, September 1994, UK.
- 34. Slavin, H. (1996) "An Integrated, Dynamic Approach to Travel Demand Forecasting". Transportation 23, 313-350.
- 35. Caliper (1996) "Travel Demand Modelling with TransCAD 3.0". Caliper Corporation, Newton.
- 36. Van Zuylen, H.J. and Willumsen, L.G. (1980) "The Most Likely Trip Matrix Estimated from Traffic Counts". Transportation Research 14B, 281-293.

Capítulo 4

- 37. Centeno Saad, Agustín G. (2003), "Modelo de Asignación Intermodal-Multiproducto para las Operaciones de Carga Terrestre por Autotransporte y Ferrocarril en la República Mexicana", Tesis para obtener el grado de Maestro en Ingeniería de Vías Terrestres, en la Universidad Autónoma de Chihuahua (U.A.CH.), Chihuahua, Chih.
- 38. Parra Torres, Mario A. (2003), "Desarrollo de un Modelo de Asignación Multimodal para el Análisis de los Flujos Vehiculares de Libramiento o Acceso al Área Metropolitana de la Ciudad de México", Borrador de tesis para obtener el grado de Maestro en Ingeniería de Tránsito, en la Universidad Autónoma de Nuevo León (U.A.N.L.), San Nicolás de los Garza, N.L.
- 39 Secretaria de Comunicaciones y Transportes, Subsecretaria de Infraestructura, Dirección de Servicios Técnicos, "Estudio de Datos Viales 2004".
- 40. Gutiérrez Hernández, José L., Mendoza Díaz, Alberto, "Estudio Estadístico de Campo del Autotransporte Nacional, Análisis Estadístico de la información Recopilada en las Estaciones Instaladas en 2002". Publicación Técnica No.31, Instituto Mexicano del Transporte (I.M.T.), Sanfandila, Qro., 2003.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

ANEXO A

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓ CAMINO IÓPTIMO ECAS

También llamado algoritmo de caminos mínimos, es un algoritmo para la determinación del camino más corto que une dos vértices (nodos) en un grafo (red) con peso (valor numérico) no negativo, dirigido (digrafos) y etiquetado (cada arista o arco tiene asociada una etiqueta o valor de cierto tipo).

La idea subyacente en este algoritmo consiste en ir explorando todos los caminos más cortos que parten del vértice de origen y que llevan a todos los demás vértices; cuando se obtiene el camino más corto que lleva al vértice de destino, se detiene el algoritmo. El algoritmo es el siguiente:

Paso 0: Iniciación

Sea el conjunto de nodos P que es el conjunto de nodos a los cuales ya NIVER IDAD AUTONOMA DE NUEVO LEON sabemos las distancias mínimas.

Sea 1 el nodo elegido para hallar su árbol divergente:

$$P = \{1\}$$
, $D_1 = 0$ (distancia al nodo 1 desde el nodo 1)

DIRECCIÓN GENERAL DE BIBLIOTECAS

 $D_{j}=d_{1j}$ $\forall_{f}\neq 1$ (distancia al nodo 1 desde el nodo j, si hay camino directo D_{j} es la d_{1j} de ese enlace y si no hay camino directo $D_{j}=\infty$, ya que entonces $d_{1j}=\infty$)

Paso 1: Encontrar el nodo más cercano a (1) y que no pertenezca a P

Es decir, encontrar:

$$i \notin P$$
 tal que $D_i = \min D_i \ \forall_i$, que no pertenezca a P.

 $P = P \cup \{i\}$ (se incluye el nodo más cercano en P); si P contiene todos los nodos, PARAR (algoritmo completo)

Paso 2: Actualización de etiquetas

Es decir, encontrar los nuevos D_j , $\forall_j \notin P$:

$$D_i = \min \left[D_j, D_i + d_{ij} \right]$$

Después de esto, ir al Paso1, es decir, D_j expresa la mínima distancia del nodo j a través de los nodos de P.

En cada iteración se encuentra la distancia mínima de un nodo al nodo origen. La complejidad por cada nodo es del orden de $N^{\,2}$ operaciones. Si queremos distancias a todos los nodos la complejidad es del orden de $N^{\,3}$ operaciones.

Este algoritmo es de gran importancia debido a que es uno de los algoritmos mas sencillos y eficientes para la resolución de problemas de camino mas corto que hacen de él uno de los más relevantes en la teoría de grafos.

- Obtiene la mejor ruta entre todo par de nodos.
- Trabaja con la matriz D inicializada con las distancias directas entre todo par de nodos, permitiendo la presencia de arcos de peso negativo.
- La iteración se produce sobre nodos intermedios, es decir, para todo
 elemento de la matriz se prueba si lo mejor para ir de i a j es a través de un
 nodo intermedio elegido o como estaba anteriormente, y esto se prueba con
 todos los nodos de la red. Una vez probados todos los nodos de la red como
 nodos intermedios, la matriz resultante da la mejor distancia entre todo par
 de nodos.

Es decir el algoritmo es el siguiente:

 D_{ij} es la matriz de distancias. d_{ij} es la distancia del enlace entre el nodo i y el nodo j.

Iteración

Para n = 0.1N-1

$$D_{ij}^{(n+1)} = \min \left[D_{ij}^{(n)}, D_{i-(n+1)}^{(n)} + D_{(n+1),i}^{(n)} \right]$$

- Empezando con el nodo 1 como intermedio (n=0), se prueba con todos los nodos como nodos intermedios, el último es con el nodo N como nodo intermedio (n = N-1), y así se van hallando las distancias mínimas.
- La última matriz es la matriz de distancias buscada, ya que se han probado todos los nodos intermedios.
- El algoritmo da sólo la menor distancia; se debe manejar información adicional para encontrar tablas de encaminamiento.
- Hasta no hallar la última matriz no se encuentran las distancias mínimas.
- Presenta una complejidad del orden de N^3 mayor que la de Dijkstra.

El inconveniente de este algoritmo radica en que los ciclos de peso negativos están prohibidos, a pesar de que resuelvan el problema en cuestión.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN ©
DIRECCIÓN GENERAL DE BIBLIOTECAS

Algoritmo de Bellman-Ford

- Soluciona el problema de la ruta más corta o camino mínimo desde un nodo origen, de un modo más general que el Algoritmo de Dijkstra, ya que permite valores negativos en los arcos.
- Encuentra la mínima distancia de un nodo dado al resto de los nodos, y si se
 lleva información adicional, proporciona las tablas de encaminamiento.
- Itera sobre el número de saltos, h, es decir, se busca el mejor camino, el de distancia más corta, con la restricción de llegar al destino en un número de saltos h (número de iteraciones).
- No encuentra las mejores rutas hasta que el algoritmo no se ha ejecutado por completo.
- Tiene una complejidad del orden de N³ por cada nodo que se realiza el algoritmo, es decir, un orden mayor que Dijkstra, pero su funcionamiento es parecido a un funcionamiento de vector de distancias, ya que conocemos a los vecinos a través de los vecinos (con la información que un nodo recibe de sus vecinos, puede estimar cuales son los caminos óptimos).

El algoritmo es el siguiente:

Iniciación

$$D_i^{(0)} = \infty \quad \forall_i \neq 1$$
$$D_i^{(0)} = 0$$

Lo anterior nos indica que, con cero saltos todos los nodos distan del nodo 1 infinito, salvo él mismo que dista cero.

Iteración

$$D_i^{(h+1)} = \min_{i} \left[D_j^{(h)} + d_{ij} \right] \quad \forall_i \neq 1$$

 $oldsymbol{D_{j}^{(h)}}$ Mejor distancia del nodo 1 al nodo j con la restricción de h saltos.

OBSERVACIONES:

- Este algoritmo funciona en teoría, pero tiene un gran problema en la práctica: aunque converge en la respuesta correcta, puede hacerlo de forma lentamente.
- En particular, reacciona con rapidez a las buenas noticias, pero con lentitud ante las malas.

ANEXO B

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

No.	Localidad	Entided Federative	id. Centroide	
	TLALPAN	DF	1	
2	ALVARO OBREREGON	DF	2	
	GUSTAVO ADOLFO	DF	3	
4	AZCAPOTZLAC	DF	4 500	
5	MIGUEL HIDALGO	DF		
	CUAUHTEMOC	DF	6	
7	VENUSTIANO CARRANZA	DF	7	
- 8	CUAJIMALPA BENITO JUAREZ	OF .	8	
10	IZTACALCO	DF		
11	COYOACAN	OF	10	
12	IZTAPALAPA	OF	12	
13	MAGDALENA CONTRERAS	DF	13	
14	XOCHIMILCO	OF	14	7
15	TLAHUAC	DF	16	
16	MILPA ALTA	DF	16	
17	HUEJUTLA	HGÒ	64	
18	ZIMAPAN	HGO	96	
TONO	CADEREYTA	QRO	100	
20	EZEQUIEL MONTES	QRO	105	
TALERE FLAMMAN 22	QUERETARO	QRO	109	
VERITATIA 23	TEQUISQUIAPAN EL PUEBLITO	QRO	124	
24	PEDRO ESCOBEDO	QRO	127 131	
25	IXMIQUILPAN	HGO	134	
26	SAN JUAN DEL RIO	ORO	141	
27	HUICHAPAN	HGO	144	
28	TENANGO DE DORIA	HGO	146	
29/	XICOTEPEC DE JUAREZ	PUE	149	
30	ATOTONILCO	HGO	153	
31	ACTOPAN	HGO	159	
32	PROGRESO DE ALVARO OBREGON	HGO	163	/
33	MIXQUIAHUAL	HGO	165	
34	HUAUCHINANG	PUE	166	
35 36	TEZONTEPEC AMEALCO	HGO QRO	169	,
ERS T 37A	PACHUCA	HGO	170	FÓN
38	TULANCINGO	HGO	197	LOIN
39	ACULCO	MEX	201	
40	PACHUQUILLA	HGO	203	
E (Cio)	TULA DE ALLENDE AL DE DI	D HGO	218	
42	CUAUTEPEC	HGO	221	
43	ATOTONILCO DE TULA	HGO	223	
44	SINGUILUCAN	HGO	227	
45	APAXCO	MEX	229	
46	ZACATLAN	PUE	230	8
47	JILOTEPEC TEPEJI DE OCAMPO	MEX HGO	234 235	
49	TEQUIXQUIAC	MEX	235	
50	TEZIUTLAN	PUE	248	
51	TIZAYUCA	HGO	250	
52	HUEHUETOCA	MEX	255	
53	ZUMPANGO	MEX	261	
54	ZITLALTEPEC	MEX	262	
56	ATLACOMULCO	MEX	268	Vi
56	CIUDAD SAHAGUN	HGO	271	9
57	COYOTEPEC	MEX_	276	
58	TEOLOYUCAN	MEX	283	
59	LOS REYES	MEX	285	
60	APAN	HGO	285	
	TEPOTZOTLAN	MEX	294	
81	MICH CHOO OCAMOO	NAC-W	an a	
62	MELCHOR OCAMPO	MEX	299	
	MELCHOR OCAMPO TEOTIHUACAN SAN MARTIN	MEX MEX	299 301 303	**

	No.	Localidad	Entided Federative	id. Controide	
	66	CUAUTITLAN DE ROMERO RUBIO	MEX	311	
	67	SAN PABLO D	MEX	312	
	68	TLAXCALANCINGÓ	PUE	314	
	69	TEYAHUALCO	MEX	315	
		TULTITLAN	MEX	319	
	71	CUAUTITIAN (ZCALL)	MEX	320	
	<u>72</u> 73	FUENTES COACALCO	MEX	326 328	
	74	TEPEXPAN	MEX	333	
	75	VILLANICOLAS	MEX	334	
	76	ECATEPEC	MEX	344	
	77	BUENAVISTA	MEX	348	
	78	CALPULALPAN	TLX	356	
	79	CIUDAD LOPEZ MATEOS	MEX	375	
	80	CHICONCUAC	MEX	376	
	81 82	TLAZALA TLALNEPANTI,	MEX	380	
j	83	TEXCOCO	MEX	387 401	
CONO	84	SANCTORUM	TIX	415	
	85	LIBRES	PUE	421	r
	86	NAUCALPAN	MEX	438	
ALERE FLAM VERITATI	MAM 87	COATLINCHAN	MEX	445	8
	- 88	APIZACO	TIX	462	
	<u> </u>	CHIMALHUACA CHICOLOAPAN	MEX	476	
	91	NEZAHUALCOYOTL	MEX	494	
NERS!	92	XONACATLAN	MEX	496	
	93	HUDQUILUCA	MEX	531	
	94	LOS REYES	MEX	532	
	95	ALMOLOYA DE JUAREZ	MEX	534	
	96	SAN PABLO A	MEX	547	
	97 96	HUAMANTLA CUAPIAXTLA	TLX	580 578	
	99	TLAXCALA	TIX	579	
	100	SAN MATEO	MEX	585	
	101	IXTAPALUCA	MEX	590	TÁNT
UNIVERS	102	SAN MARTIN A	PUE	613	EUN
	103	LERMA	MEX	629	
	104	TOLUCA	MEX	637	
DIRE(105	ZINACANTEPE DAL DE B	B MEX	645	
	107	CHALCO	MEX	647	
	108	OCOYOACAC	MEX	648	
	109	SANTA MARIA	PUE	657	
	110	SAN MATEO ATENCO	MEX	662	
	111	METEPEC	MEX	676	
	112 113	SAN RAFAEL CAPULHUAC	MEX	689 707	
	114	VALLE DE BRAVO	MEX _	709	-1
	115	HUEJOTZINGO	PUE	712	
	116	SANTIAGO TIANGUISTENCO	MEX	714	
8	117	SAN SALVADOR	PUE _	717	
	118	CALIMAYA	MEX	723	
	119	AMECAMECA	MEX	726	
	120 121	ACAJETE	PUE	730 732	
	122	SAN JUAN ATENCO	PUE	733	
	123	TENANGO	MEX	747	
	124	PUEBLA	PUE	757	
	125	CHOLULA	PUE	760	
1	126	SAN ANDRES	PUE	767	
	127	AMOZOC	PUE	776 783	
	128 129	OZUMBA CIUDAD SERDAN	PUE	783 786	
	130	TEMASCALTEPEC	MEX	790	
		I THEFT WATER IN LAND			9

No.	Localided	Enticled Federation	M. Centroids
131	ACATZINGO	PUE	794
132	TEPEACA	PUE	798
133	VILLA GUERRERO	MEX	810
134	TENANCINGO	MEX	815
135	ATLIXCO	PUE	822
136	COATEPEC HARINAS	MEX	825
137	CUERNAVACA	MOR	826
138	TECAMACHALCO	PUE	828
139	TEJUPILCO	MEX	844
140	JIUTEPEC	MOR	845
141	YAUTEPEC	MOR	846
142	TEMIXCO	MOR	854
143	EMILIANO ZAPATA	MOR	859
144	IXTAPAN DE LA SAL	MEX	860
145	CUAUTLA	MOR	863
146	CAÑADA MORELOS	PUE	872
147	CIUDAD AYALA	MOR	874
148	SANTA ROSA	MOR	891
149	XOXOCOTLA	MOR	896
150	ZACATEPEC	MOR	900
151	TLAQUILTENA	MOR	903
152	JOJUTLA	MOR	906
153	PUENTE DE DOLLA	MOR	907
154	IZUCAR DE MATAMOROS	PUE	910
155	TEHUACAN	PUE	920
156	AXOCHIAPAN	MOR	924
_ 157	SAN JUAN IXHUATEPEC	PUE	926
158	ATEXCAL	PUE	929
159	AJALPAN	PUE	930
160	ZINACATEPEC	PUE	934
161	ACATLAN	PUE	942

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

ANEXO C

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN BIRECCIÓN GENERAL DE BIBLIOTECAS

CENTON	CENTOES	FLUVO	
767	P	20,854	
197	186	11,958	
100	197	11,913	
	127	10,239	
200	637	9,530	
167	9	9,142	1
637	266	8,039	
127	907	6,755	
687	637	5,647 5,108	
613	757	5,010	
786		4,908	Ì
	260	4,794	1
613 787	712	4,386	
637	127	4,333	
634	8	4,000	
712	013	3,945	
288	9	3,738	
127	637	3,593	
100	637	3,308	1
100	325002	3,080	
MA687E F	AMMOMI	2,948	
NERI WERI	637	2,927	
57		2,877	1
	109	2,764 <u></u>	
	907	2,718	
200	584	2,508	
\	V 8	2,446	1
\Z\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	E4	2,415	i
618	•	2,130 2,126	
480	637	1,985	
637	430	1,871	
634	268	1,816	
498	9	1,765	
7 613	760	1,892	TIT
760	813	1,545	$A \cup 1$
637	466	1,479	
757	127	1,466	
109		1,433	GEN
	109	1,409	
187	227	1,376	
9	166	1,361	
760	9	1,249	
227 141	197	1,238	
64	637	1,230	
	786	1,203	
144	141	1,198	
168	9	1,194	
767	109	1,162	1
0	757	1,072	
767	637	1,084	
863	826	1,089	}
144	109	1,041	
826	188 863	1,038	
637	84	1,019	
788	613	916	
127	757	902	
100	170	886	
109	144	678	
013	230	884	
•	760	947	
) .			. 0

	CENTOR	CENTRES	PLUIG	ĺ
	201	657	613	
	186	100	812	
9	637	201	798	
	109	767	770	ď
	872	-	763	
	709	•	730	
	788	127	724 670	2
7	757	84	881	5
6	135	907	603	
7	•	496	840	
	2200		844	
	637	219	640	
	127	230 186	627 608	
	186	127	599	
	907	628	885	
	757	907	665	
	934	127	544	
	637	367	642	
	733	813	529	
	127	786	529 628	
	757	826	518	
	319	637	516	
	848	863	508	
	663	845	508	
	907	757	507	
	438	757	804 499	
	146	127	464	
	498	436	473	
	788	100	471	1
	367	887	469	
	712	1	469	
	420	907 712	463	
3	127	984	428	
	767	847	400	
	127	144	406	
ı	100	188	401	NI
	127	J_907.L./	400	1110
	767	344 438	380	
Ţ	141	T. 180 T	302	T TO
V,		246	361	BLIU
	234	109	364	
1	637	907	365	
	844	637	366	
5	109	197	362	
	844	9	334	
	188	186	332	
	757	7	390	
	0	2201	326	
	127	107	323	
3	84	757	322 321	2
	170	9	318	
-	826	127	213	
	186	140	311	
- 6	907	127	308	
- 9	344	766	307	
	344	197	307	
	822 934	637	307	
	822 934 757		307 300	
	622 934 767 271	687 942 197	300 283	
9	822 934 787 271 9	637 942 197 844	300 293 286	
	622 934 767 271	687 942 197	300 283	

100 807 272 100 124 270 165 9 200 616 127 206 187 787 206 187 787 206 187 787 206 187 787 206 187 787 206 187 787 206 187 787 206 187 100 250 579 127 288 197 801 269 201 9 265 100 127 264 140 140 262 227 166 262 246 127 260 637 107 266 280 107 246 141 837 243 166 9 246 280 107 246 141 837 243 166 9 242 167 401 240 757 307 240 967 637 240 967 757 239 7687 706 237 1685 227 236 709 637 200 127 625 232 107 100 220 127 579 229 134 100 225 767 100 237 165 227 266 167 9637 211 127 625 232 107 100 220 107 100 220 107 100 220 107 100 220 107 246 100 637 214 140 160 211 127 162 220 157 257 197 221 144 637 220 157 197 221 144 637 220 157 197 221 144 637 220 157 197 221 144 100 225 767 197 221 144 100 225 767 197 221 144 100 220 157 344 100 220 157 344 100 200 168 94 195 170 637 214 140 100 200 165 94 195 177 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 167 344 189 9 828 160 170 637 344 181 9 146 180 170 637 344 181	CHITCH	СЕНТОВ	PLUO	
106	108	907	272	
1883				
16				
197 787 288				
168 201 767 613 261 167 160 288 167 301 265 167 301 265 160 160 262 160 160 262 160 160 262 160 160 262 160 160 262 160 160 160 262 160		-		
767 613 261 167 100 288 679 127 288 167 301 265 201 9 266 9 168 264 140 127 268 140 140 140 262 227 168 262 246 127 260 637 107 260 637 107 260 637 107 263 141 857 243 166 9 246 141 857 243 168 9 242 813 461 141 857 243 168 9 242 813 622 242 757 436 242 167 401 240 757 367 238 766 167 238 766 167 238 766 167 238 766 167 238 766 167 238 766 167 238 766 167 238 767 108 227 166 227 236 700 657 234 127 626 232 107 109 237 106 557 234 127 626 232 107 109 237 106 557 234 127 626 232 107 109 225 757 197 221 144 657 220 157 197 221 144 657 220 157 197 221 144 657 220 157 197 221 144 657 220 157 197 221 144 657 220 157 197 221 158 166 211 127 246 210 157 157 257 158 169 210 159 168 160 157 344 160 168 221 190 168 146 160 168 127 140 190 168 127 140 190 168 127 140 190 168 146 160 169 268 167 167 344 169 168 127 140 190 168 127 140 190 168 146 160 177 344 160 186 127 140 190 186 146 160 177 344 160 187 344 160 188 160 199 266 167 199 166 199 266 167 199 266 169				
197 100 288 570 127 286 197 201 286 264 140 127 264 140 148 282 227 148 282 246				
197 201 208 107 201 201 108 254 140 140 140 252 244 140 140 252 246 140 140 252 246 140 140 252 246 140 140 252 246 127 260 262 246 127 260 262 262 246 127 246 246 260 167 246 246 260 247 246 246 260 247 246 246 260 247 246 246 260				
107 301 205 201 201 0 205 0 108 254 140 140 140 252 167 250 252 247 140 140 140 252 260 252 247 140 140 0 252 250 250 250 250 250 250 250 250	100			
201 9 285 9 186 284 148 127 284 148 127 284 148 148 282 167 288 282 227 186 282 227 186 282 246 127 280 285 286 247 146 9 246 285 247 146 9 246 285 242 245				
9 196 254 140 127 264 140 127 264 140 148 262 197 260 262 227 136 262 246 127 260 637 197 260 637 197 260 266 127 260 637 197 266 266 197 266 268 197 266 268 197 266 268 197 266 261 197 266 261 197 266 262 242 757 436 242 167 401 240 757 367 240 942 637 260 942 637 260 943 197 236 462 9 237 637 700 237 166 227 236 709 637 234 127 626 232 907 109 230 127 578 229 134 109 225 757 197 221 144 537 220 167 637 240 167 637 240 167 637 240 168 227 236 709 637 234 127 626 232 907 109 230 127 578 229 134 109 225 757 197 221 144 537 220 167 637 217 360 637 214 146 166 211 127 146 166 211 127 146 166 211 127 146 166 211 127 146 166 190 166 146 190 166 146 190 166 146 190 166 268 167 366 167 366 166 160 167 364 166 167 366 167 366 166 160 167 364 160 168 166 160 168 169 190 166 579 712 266 177 366 166 177 367 267 186 166 160 190 166 166 190 166 166 160 177 364 160 190 166 166 160 190 166 166 160 166 166 160 177 366 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 366 166 160 177 366 166 160 177 367 267 177 166 166 160 177 366 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 177 166 166 160 177 367 267 17				
140 127 284 140 148 282 1907 289 282 227 188 282 246 127 280 637 107 280 637 107 280 634 881 247 146 9 246 148 9 246 148 187 248 148 9 242 148 187 248 148 187 248 148 187 248 157 408 9 242 157 401 240 157 401 240 157 367 240 167 401 240 1757 367 240 167 401 240 1757 367 240 167 401 240 1757 367 240 167 401 240 1757 367 240 167 401 240 1757 367 240 167 401 240 167 401 240 167 401 240 167 401 240 167 401 240 167 401 240 167 401 240 167 401 240 167 401 240 167 401 240 167 401 240 167 228 167 228 168 227 228 168 227 228 168 227 228 1767 109 229 134 100 225 1767 107 221 144 657 220 1567 657 217 169 634 214 140 657 221 144 657 220 1567 657 217 169 634 214 140 160 201 160 160 200 160 160 190 160 160 190 160 160 190 160 160 190 160 160 190 160 160 190 160		168	1100,1300,130	
140	140			
107 288 262 227 186 262 246 127 250 637 107 250 637 141 157 243 144 153 144 155 156 157 156 157 156 157	140			
227 186 262 246 127 200 637 107 280 924 863 247 146 9 248 200 107 248 200 197 243 165 9 242 813 622 242 757 486 242 197 401 240 757 367 240 907 637 240 907 637 240 942 757 239 786 197 238 482 9 237 637 708 237 185 227 238 709 537 234 127 626 232 907 109 230 127 579 229 134 100 225 757 197 221	197	289		
246 127 280 637 197 280 637 197 280 624 683 247 146 9 246 288 197 246 141 837 243 166 9 242 141 837 243 166 9 242 167 401 240 757 436 242 167 401 240 757 367 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 637 240 607 608 227 608 197 238 608 197 238 609 637 241 609 220 160 637 217 609 637 217 609 637 217 609 637 217 609 637 210 600 637 220 600 637 220 600 637 220 600 637 220 600 637 220 600 637 220 600 637 220 600 637 220 600 637 220 600 637 220 600 600 600 600 600 600 600 600 600 600 600	227	185		
107 280 104 104 105 104 105 104 105 104 105	246			
924 881 247 146 9 248 288 197 248 141 537 248 103 9 242 813 522 242 757 436 242 197 401 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 637 240 907 109 237 106 227 228 709 637 241 105 227 228 134 109 225 757 197 221 144 637 220 1507 637 217 160 634 216 301 637 216 9 634 214 100 637 210 100 637 210 100 637 210 100 637 210 100 637 210 100 637 210 100 637 210 100 637 210 100 637 210 100 637 210 100 637 210 100 637 210 100 637 210 100 637 141 210 100 637 141 210 107 344 160 109 200 106 04 105 127 140 190 108 140 190 109 246 100 100 200 106 04 106 107 344 189 108 123 190 109 246 109 1		197		
146 0 246 200 107 246 141 857 243 166 0 242 813 622 242 757 458 242 197 401 240 907 657 240 907 657 240 907 657 240 902 757 238 402 0 237 166 227 236 709 657 234 127 626 232 907 100 230 127 579 229 134 109 225 767 197 221 144 657 220 197 637 217 380 657 217 380 657 217 380 657 217 380 657 217 380 657 217 380 657 217 109 634 216 9 634 216 9 637 217 109 637 217 109 637 217 109 638 211 127 246 210 657 141 210 6579 712 208 613 767 207 246 100 200 186 64 196 127 140 190 186 140 190 186 140 190 186 140 190 186 140 190 186 140 190 186 140 190 186 140 190 186 140 190 186 140 190 186 140 190 186 140 190 186 140 190 187 344 189 9 628 167 308 168 190 579 787 186 628 9 166 579 108 184 9 122 1182 9 185 181	904			
141	146			
141	200			
108				
813 622 242 757 438 242 167 401 240 757 367 240 907 637 240 907 637 240 942 757 238 786 197 238 482 9 237 185 227 235 709 537 234 127 625 232 907 109 230 127 579 229 134 109 225 757 197 221 144 637 221 144 637 200 637 217 109 534 216 301 637 216 9 634 216 301 637 216 9 634 216 301 637 216 9 634 216 301 637 216 9 636 221 141 120 637 141 210 637 214 148 160 211 127 246 210 637 220 613 767 220 613 767 220 613 767 220 613 767 220 613 767 220 613 767 220 613 767 220 613 767 220 613 767 220 613 767 220 613 767 320 614 196 190 615 146 190 616 579 717 186 626 9 166 6579 109 184 6 144 160 637 344 181 6 148 180 637 344 181 6 185 185 637 344 181 6 185 185				
757 458 242 1497 401 240 757 597 240 907 657 240 942 757 238 786 197 238 462 9 237 196 227 236 709 237 196 227 236 709 257 234 127 625 232 907 109 230 237 127 578 229 134 109 225 757 197 221 144 657 220 1567 657 217 360 657 217 360 657 217 109 534 216 301 657 217 109 534 216 301 657 211 127 246 210 637 141 210 6579 712 208 613 767 207 246 109 200 186 64 196 187 148 190 188 148 190 188 148 190 188 148 190 188 148 190 188 148 190 188 148 190 188 148 190 186 223 190 186 224 190 187 344 189 9 828 188 190 579 757 186 628 9 196 579 109 184 9 144 189 9 185 186 187 398 181 9 183 181				
167 401 240 757 367 240 907 637 240 942 757 238 462 9 237 236 462 9 237 236 462 9 237 236 462 9 237 236 462 9 237 236 462 9 237 236 237 236 237 236 237 236 237 236 237 236 237 236 237 236 237 236 237 237 236 237 237 239 230 237 237 239 230		436		
757 367 240 907 637 240 942 757 239 786 197 238 462 9 237 637 706 237 196 227 196 227 196 227 197 228 127 626 232 907 109 230 127 579 229 134 106 225 757 197 221 144 637 220 197 637 217 380 637 217 380 637 217 380 637 217 380 637 217 109 534 216 201 637 216 8 634 216 201 637 214 146 169 211 127 246 219 637 141 210 579 712 208 613 767 2207 246 109 200 186 64 195 127 140 190 186 146 180 196 186 190 196 123 190 186 223 190 186 223 190 187 344 189 9 826 188 190 246 190 190 246 190 190 190 196 146 190 196 579 757 186 583 624 190 197 344 189 9 826 186 9 196 579 197 186 186 187 308 187 308 188 199 109 248 187 308 188 199 109 248 187 308 188 199 109 248 187 308 188 199 109 248 187 308 188 199 109 248 187 308 188 199 109 248 187 308 188 199 109 248 187 308 188 199 109 248 187 308 188 199 109 248 187 308 188 199 109 184 9 144 189 200 723 182	197			
907 657 240 942 767 239 786 197 236 462 9 237 657 709 237 165 227 236 709 6537 234 127 628 232 907 109 230 127 579 229 134 109 225 767 197 221 144 657 220 1907 637 217 380 657 217 109 634 216 301 657 216 9 494 214 100 657 210 146 169 211 127 246 210 657 141 210 657 712 208 613 767 257 246 109 200 186 64 195 127 149 190 186 146 190 186 223 190 186 146 190 190 246 190 190 246 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 246 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 246 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 366 190 190 367 344 190 190 368 190 190 3	757			
942 787 229 786 197 238 482 9 237 637 709 237 186 227 236 709 537 234 127 628 232 907 109 230 127 579 229 134 109 225 757 197 221 144 637 220 190 637 217 380 637 217 380 637 217 380 637 217 109 534 216 9 634 214 100 637 210 9 794 214 100				
786 197 238 462 0 237 637 709 237 196 227 236 709 637 234 127 628 232 907 109 230 127 628 232 907 109 229 134 109 225 767 197 221 144 637 220 197 837 217 380 637 217 109 634 216 301 637 216 9 634 214 100 637 214 146 189 211 127 246 210 637 141 210 637 141 210 637 141 210 637 141 210 637 141 210 637 141 210 637 148 199 109 200 186 64 196 127 149 190 186 146 190 186 146 190 186 127 344 189 9 828 160 9 828 167 308 168 169 579 767 186 626 9 166 579 767 186 626 9 166 579 109 184 9 144 189 9 828 167 308 168 169 579 767 186 626 9 166 579 109 184 9 144 189	942			
462 9 237 637 700 237 106 227 236 709 637 234 127 626 232 907 100 230 127 579 229 134 109 225 787 197 221 144 637 220 167 637 217 300 637 217 300 637 217 109 534 216 301 637 216 9 634 214 100 637 214 140 185 211 127 246 240 637 141 240 579 712 208 613 767 237 246 109 200 186 64 195 127 149 190 186 140 190 186 223 190 186 244 189 9 826 166 9 826 166 579 767 186 826 9 166 579 767 186 826 9 166 579 707 186 826 9 166 579 109 134 9 144 183 200 723 182 9 183 181 637 344 181 9 185 181 637 344 181 9 185 181 637 344 181 9 185 181 637 344 181 9 185 181 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 181 9 185 185 637 344 185 9 185 185 637 344 185 9 185 185 637 344 185 9 185 185 9 185 185 9 185 185 9 185 185 9 185 185 9 185 185 9 186 180				
637 708 237 166 227 236 709 637 234 127 625 232 907 109 230 127 578 229 134 109 225 134 109 225 134 109 221 144 637 221 144 637 220 167 837 217 360 637 217 169 534 216 301 637 216 9 634 214 100 637 214 148 168 211 127 246 210 637 141 210 637 141 210 637 712 268 613 767 267 266 100 200 166 64 196 127 149 190 166 146 190 166 223 190 166 146 190 167 344 189 9 826 168 9 8 166 579 787 186 826 9 166 579 787 186 826 9 166 579 109 184 9 144 183 200 723 182 9 183 181				
106 227 236 709 637 234 127 626 232 907 109 230 127 579 229 134 109 225 757 197 221 144 637 220 1597 637 217 380 637 217 380 637 217 109 534 216 201 637 219 9 634 214 100 637 214 148 160 211 127 246 210 637 712 208 613 767 2087 246 109 200 166 64 196 127 149 190 186 140 190 186 140 190 186 223 190 186 140 190 186 224 190 197 344 189 9 828 168 9 828 168 9 109 266 579 717 186 626 9 166 579 7187 186 622 913 182 9 183 181				
700 6537 234 127 626 232 907 109 230 127 579 229 134 100 225 757 197 221 144 637 221 144 637 217 380 637 217 380 637 216 9 634 216 301 637 216 9 634 214 146 160 211 127 246 210 637 141 210 637 141 210 637 712 208 613 767 287 246 100 200 186 64 195 127 149 190 186 146 190 187 344 188 9 100 288 167 358 188 190 579 787 186 626 9 166 579 109 184 9 144 160 200 723 182 9 183 181	186			
127 628 232 907 100 230 127 579 229 134 109 225 757 197 221 144 857 220 167 837 217 300 657 217 109 534 216 301 657 216 9 464 214 100 657 214 146 166 211 127 246 210 637 141 210 679 712 208 613 767 287 246 100 200 186 64 195 127 149 190 186 223 190 186 223 190 186 223 190 186 223 190 187 344 189 9 828 168 109 266 167 366 168 160 579 757 166 520 9 166 579 767 166 520 190 166 579 767 166 520 190 166 579 767 166 520 190 166 579 767 166 520 100 166 579 767 166 520 100 166 579 767 166 520 723 162 522 163 182	-	_		
907 100 230 127 578 229 134 109 225 787 197 221 144 857 220 157 217 380 657 217 109 534 216 201 657 214 148 169 211 127 246 210 637 141 210 6579 712 208 613 767 2257 246 109 200 185 64 105 127 140 190 186 140 190 186 140 190 186 140 190 186 123 140 180 180	127			
127 578 229 134 109 225 787 197 221 144 837 220 167 837 217 380 637 217 109 534 216 201 637 214 148 169 211 127 246 210 637 141 210 637 141 210 637 141 210 637 141 210 637 141 80 613 767 287 246 109 200 188 64 105 127 140 190 188 148 189 188 148 189 189 828 188 190 248 189 190 248 187 356 188 189 109 184 9 109 248 187 356 188 189 109 184 9 109 248 187 356 188 189 109 184 9 109 248 187 356 188 189 109 184 9 109 184 9 109 184 9 109 184 9 109 185 186 186 187 358 188 189 199 189 109 248 187 358 188 189 109 189 109 248 187 358 188 189 109 184 9 1144 189 1185 185 1185 185 1185 185 1185 185 1185 185 1185 185 1185 185				
134 108 225 787 197 221 144 837 220 167 837 217 380 637 217 109 534 216 201 637 216 201 637 214 140 637 214 140 637 216 201 637 214 140 160 211 127 246 210 637 141 210 579 712 208 613 767 257 246 109 200 186 84 195 127 149 190 188 146 190 198 129 190 198 146 190 198 146 190 198 146 190 198 146 190 198 146 190 198 146 190 198 146 190 198 148 190 198 148 190 198 148 190 198 148 190 198 148 198 199 188 188 199 188 188 199 188 189 199 188 188 199 188 189 199 188 189 199 189 184 9 144 189 9 184 9 144 189 9 185 186 186 187 308 188 199 579 787 186 828 188 199 579 787 186 828 188 189 9 188 189 9 188 189 9 188 189 9 188 189 9 188 189 9 188 189 9 188 189 9 188 189 9 188 189 9 188 189 9 188 189 9 188 189				
787 197 221 144 637 220 197 837 217 380 637 217 109 634 216 301 637 216 9 834 214 100 637 214 100 637 214 100 637 214 100 637 214 100 637 214 100 637 214 100 637 210 127 246 210 637 141 210 637 141 210 657 712 208 613 767 207 246 100 200 186 64 195 127 140 190 186 146 190 188 223 190 188 148 190 190 344 189 9 828 168 9 829 168 9 109 248 167 308 168 160 579 767 186 628 9 166 579 100 184 9 144 169 200 723 162 637 344 189	134			
144 637 220 1907 637 217 380 657 217 109 634 216 301 637 216 9 634 214 100 637 214 100 637 214 100 637 214 100 637 214 100 637 214 100 637 210 127 246 210 637 141 210 679 712 208 613 767 207 246 109 200 186 64 195 127 149 190 186 146 190 188 223 190 188 223 190 188 223 190 190 3 188 190 344 189 19 628 167 305 168 190 579 787 186 628 9 166 579 109 184 9 144 189 9 120 723 162 200 723 162 637 344 189	787	197		
380 637 217 109 534 216 210 637 216 9	144	637	220	
109 534 216 R 201 637 216 R 9 4934 214 100 637 214 146 169 211 127 246 210 637 141 210 637 141 210 637 712 208 613 767 287 246 100 200 188 64 195 127 149 190 186 146 190 186 223 190 883 524 190 197 344 189 9 828 188 910 9 188 109 268 167 358 168 160 579 787 185 628 9 166 579 109 184 9 144 163 200 723 162 637 344 181 9 188 180	197	837	217	
301 637 216 9	380	637	217	
9 A 934 214 100 637 214 140 185 211 127 246 210 637 141 210 637 141 210 679 712 208 613 767 207 246 100 200 186 64 195 127 149 190 186 146 190 186 223 190 803 924 190 187 344 189 9 828 188 910 248 197 355 188 190 579 757 186 620 9 196 579 100 184 9 144 189 9 144 189 9 144 189 9 144 189 9 144 189 9 144 189 9 148 187	100	534	216 (R	
100	ž	637	218	
146 166 211 127 246 210 637 141 210 679 712 208 613 767 287 246 100 200 186 64 195 127 149 190 186 223 190 883 924 190 167 344 189 9 828 168 160 579 787 186 620 9 166 579 108 184 9 144 189 9 144 189 9 146 180 9 184 9 144 189		√ 954	214	
127 246 219 637 141 210 579 712 208 613 767 207 246 109 200 186 84 195 127 140 190 198 140 190 198 223 190 883 624 190 167 344 189 9 828 188 910 248 167 398 188 169 579 757 186 528 9 166 579 109 184 9 144 189 9 144 189 9 144 189 9 144 189	100	637	214	
637 141 210 579 712 208 613 767 207 246 100 200 186 84 195 127 140 190 186 146 190 186 223 190 186 223 190 187 344 188 9 828 188 910 248 167 308 168 160 579 767 186 626 9 166 579 100 184 9 144 189 9 144 189 9 144 189	146	160	211	
579 712 208 613 767 207 246 109 200 186 64 195 127 149 190 186 140 190 188 223 190 803 924 190 9 828 189 9 828 148 910 9 188 109 248 167 308 148 190 579 787 186 820 9 106 579 109 184 9 144 183 200 723 182 9 183 181 637 344 181 9 146 180	127	246	210	
613 767 207 246 109 200 186 64 195 127 149 190 186 140 190 186 140 190 188 223 190 883 924 190 197 344 189 9 628 169 9 188 167 308 168 190 579 767 186 620 9 166 579 109 184 9 144 189 9 144 189 9 148 180 9 144 189	637	141		
246 100 200 186 64 195 127 149 190 186 146 190 186 146 190 188 223 190 883 924 190 197 344 189 9 828 188 910 248 167 306 188 190 579 797 186 826 9 166 579 109 184 9 144 183 200 723 182 9 183 181	579	712	208	
186 84 195 127 140 190 186 146 190 186 146 190 188 223 190 883 924 190 187 344 188 9 826 188 910 248 167 356 186 196 579 787 186 620 9 106 679 109 184 9 144 169 206 723 182 9 183 181		767	207	
127 140 190 190 198 148 140 190 198 223 190 190 190 190 190 190 190 190 190 190	111-22-22-2	100		
186 146 190 188 223 190 883 924 190 197 344 189 9 828 188 910 9 188 109 246 167 356 166 190 579 757 185 628 9 166 679 109 184 9 144 169 206 723 182 9 183 181				
188 229 190 883 924 190 197 344 189 9 828 188 910 9 188 109 248 167 398 168 160 579 757 166 626 9 166 579 100 184 9 144 169 200 723 182 9 183 181 637 344 181				
883 524 190 167 344 189 9 828 188 910 9 188 109 246 167 395 186 160 579 757 186 626 9 165 579 100 184 9 144 180 206 723 182 9 183 181 637 344 181 9 146 180				
167 344 189 9 189 189 189 189 189 189 189 189 1		1116516695		
9 828 188 910 9 189 109 248 187 395 188 190 579 787 186 828 9 195 579 100 184 9 144 180 200 723 182 9 183 181 637 344 181 9 146 180				
910 9 188 109 248 187 308 188 190 579 787 186 826 9 196 579 100 184 9 144 180 200 723 182 822 913 182 9 183 181 637 344 181 9 146 180			189	
109 246 167 306 168 160 579 757 166 626 9 166 579 109 184 9 144 169 200 723 162 622 013 182 9 183 181 637 344 161 9 146 180				
395 166 160 579 787 186 626 9 166 579 100 184 0 144 160 200 723 162 622 613 182 9 183 181 637 344 181 9 146 180				
579 787 186 826 9 106 579 109 184 9 144 160 200 723 162 822 613 182 9 183 181 637 344 181 9 146 180				
826 8 106 579 109 184 0 144 160 200 723 162 822 013 182 9 183 181 637 344 181 0 146 180	-			
579 109 184 9 144 160 200 723 162 622 613 162 9 183 181 637 344 181 9 146 180				
9 144 160 208 723 162 422 613 162 9 183 151 637 344 161 9 146 180				
200 723 162 622 613 182 9 183 181 637 344 181 9 146 180				
622 613 182 9 188 181 637 344 181 9 146 180				
9 185 181 637 344 181 9 146 180	The sales are			
637 544 181 9 146 180				
9 148 180				
114 694 160		ر — نسخ		
	119	- 03/	(40)	

CENTOR	CENTOES	PLUJO		
697	834	180		
	629	175	1	
197	290 788	174		
854	846	171		ŀ
227		100		
801	197	195		
127 201	615	164		
863	266 907	164		ļ
344	637	160		
629	637	160		
657	144	160		
197	368	158		
757	319	157		
844	907	150		
288	201	154		
679 100	637 579	182		
767	401	190		۱
248	637	149		
368	197	140		
679	AM 628	140		
436 K	127	146		
767	757	140		
189	197	146 /	\	
250	197	144		
188	144	142		
637	100	142		
907	863	141		
127	634	140		
180	788	138		
197	150	138	\	
	942	136		
637 910	629 942	136		
7 634	127	132	TTT	
266	3 834	131	$A \cup I$	
144		130		
637 733	757	129		
622	942	126	GEN	١
360	495	125		
127	134	123		
712 672	733 637	122		
629	9	121		
672	127	121		
84	907	118		
301 864	924	118		
149	637	117		
712	570	117		
127	438	116		
900	285 863	116		
942	910	110		
942	9	116	1	
197	271	114		
767 436	186 829	114		
934	186	113		
234	637	112		
863	900	111		
924 637	907 757	109		
Apple 1				۱
626	109 221	109		l

CENTON	Сентова	FLUJO	ĺ
100	230	167	
216	127	100	
124	127	105	
376	167	106	
218	109	104	
994	344	104	
144	166	103	
100	109	103	
201	144	108	
366		103	
439	266	102	
288	496	101	ì
159	127	88	
637	934	98	
,	223	97	
013	7	97	
_,	141		
141	994	90	
687	831	98	
141	767	95	
221		86	
657	234	96	
765	244	B4	1
637	149	93	
149	109	_ 62	1
197	679	DY .	
280	127	91	
730	712	N N	
788 534	828	91	
64	201	80	
109	197 218		
184	141	85	
141	134	85	
462	127	85	
560	9	88	
613	647	86	
84	526	86	
109	140	84	
534 1	100	84	NIT
_197	J 334 /	133	INU
120	406	83	
907	84	\$3	
127	388	- 67	IIO
757	100/1		
144	201	80	
201	534	80	
200	127	70	
210 786	197 367	79	
109	288	78	
767	141	79	
127	672	78	
134	197	76	
816	100	76	
816	288	76	
64	579	75	
924	7	76	
934	367	78	
127	210	74	
311	637	74	
9	301	8	
141	•	73	
780	100	73	
788	757	73	
034	84	73	3
127	286 476	72	
100	280	71	
197	215	77	
845	683	71	

СВИТОВ	СЕНТОВВ	PLULO
250	100	70
200	499	70
284	880	70
167	134	
360	127	
681 626	798	00
197	- 44	67
203	197	- 67
801	420	67
100		86
127	100	**
367	107	65
100 679	816 780	86
767	579	
934	947	- - 2
100	629	64
188	780	84
200	628	
303	107	84
613	637	64
846	637	- 44
163	190	65
872	109	63
186	767	62
757	700	ez
230	186	91
626	195	61
127	250	80
712	828	- 60
846	757	•••
100	159	50
186	657	
401	140	80
767	767	59
786	844	50
186 / 7	246	(SB)
284	ノ 816/L	
462	109	59 (R)
810 828	127	- 80
229	197	57
	310	<u> </u>
934 934	828	57
942	822	57
570	230	86
786 846	166	.86 .56
	306	56
637	320	36
798	7	.86
676	637	54
786	141	
109	672 462	
127 579	344	59 55
788	907	53
020	942	53
127	629	82
757	730	122
767	848	==
610 626	109	52 52
234	496	51
344	127	61
579	20	81
767	712	51
196	. 64	51

CENTOR	Сентова	PLUJO
144	64	80
197	303	80
319 712	197	80
733	9	80
907	288	60
907	788	_ 66
854	436	60
127	344	
198	218 221	- 4
430	301	
462	197	-
637	246	-40
847	187	
712 780	757 637	40
798	907	- ** -
84	144	
227	188	48
834	141	40
834 934	767	46
200	14 SO 7	46
A 328 F	AM 637	47
637 RT	13844	47/
733	733	47
846	848	47
907	924 934	47
149	401	
246	197	46
401	168	40 /
723	200	40.
733 757	780 311	46
7 948	9	40
907	934	46
924	9	46
166	227	46
197	141	44
153	197	44
301	127	- 4 -
613	934	4 NT
757	783	
826 131	848 144	48
186	153	48
201	186	43
570	7_	48
9	848	42
197	924 525	42
844	168	- 2
462	712	42
498	234	42
709	404	2
942 246	185	41
844	149	41
829	127	41
757	822	41
229	637	40
462 579	64 647	40
613	127	40
637	311	40
786	401	40
100	757	
141 319	786 629	30

401 637 26 723 637 767 268 36 767 268 36 7767 328 36 7767 328 36 7767 36 64 100 26 700 268 700	
767 288 38 38 767 328 38 776 38 38 776 9 38 38 776 38 38 776 38 38 776 38 38 776 38 38 776 38 38 776 38 38 776 38 38 776 38 38 776 38 38 38 776 38 38 38 776 38 38 38 38 776 38 38 38 776 38 38 38 38 38 38 38 38 38 38 38 38 38	
767 828 30 778 30 778 9 30 30 30 30 30 30 30 30 30 30 30 30 30	
776 9 36 64 100 88 290 637 86 200 709 38 700 288 36 712 637 36 524 401 36 131 166 37 103 478 37 103 478 37 227 227 37 204 637 37 367 406 37 766 64 57 197 907 36 197 907 36 246 54 36 257 828 36 127 367 36	
64 108 38 280 280 687 86 288 709 38 709 38 709 38 709 38 709 38 709 38 709 38 709 38 709 38 712 687 38 37 185 201 37 227 227 227 227 227 227 227 227 227	
280 637 36 288 709 38 700 288 38 712 637 38 834 401 38 131 186 37 163 476 37 186 201 37 227 227 37 244 637 37 786 64 37 786 64 37 197 907 36 198 36 198 36 198 36 198 36 198 36 198 36 198 36 198 36 198 36	1
208 709 38 700 208 36 700 208 36 712 637 24 824 401 36 131 168 37 163 476 37 186 201 37 227 227 27 204 637 37 367 406 37 766 84 37 663 908 37 766 84 37 672 913 27 197 907 36 197 934 36 367 629 26 637 828 36 127 367 36 108 109 36 208 767 36 637 828 36 657 438 36 657 439 36	ŀ
700 288 36 712 637 28 834 401 36 131 186 37 163 476 37 188 201 87 227 227 37 284 637 37 286 637 37 786 84 37 872 613 37 197 907 36 197 909 36 100 36 100 36 100 36	
712 637 36 534 55 579 438 57 579 438 587 36 587 588 587 588 587 588 587 588 587 588 587 588 587 588 588	- 1
\$24	- 1
131 188 37 163 478 37 166 201 37 227 227 37 284 637 37 367 488 37 786 84 37 663 808 37 872 613 87 197 907 38 197 934 38 246 84 36 357 828 38 127 367 34 168 100 36 208 767 36 657 438 36	ŀ
186 201 87 227 227 87 204 637 87 367 466 37 766 64 37 663 805 87 672 613 87 197 907 36 197 934 26 246 84 36 367 629 36 127 367 34 168 109 35 208 757 35 679 438 36 657 672 36	ŀ
227 227 37 204 637 27 367 400 37 786 84 37 663 805 37 872 613 37 197 907 36 197 934 26 246 84 38 367 629 26 637 826 36 127 367 34 160 100 35 208 757 35 679 438 26 637 872 36	- 1
294 657 87 587 408 37 788 64 87 883 898 37 872 613 87 197 907 36 197 954 26 246 84 36 397 629 36 127 387 36 108 109 36 208 757 36 679 438 36 657 872 36	
\$97 498 37 786 64 \$7 863 908 37 872 613 \$7 197 907 36 197 934 38 246 64 38 307 629 36 127 387 36 108 109 36 208 757 36 679 438 36 657 629 36	ľ
786 84 87 863 908 37 872 613 37 197 907 36 197 934 38 246 84 38 307 929 26 127 387 36 108 109 36 208 767 36 679 438 36 657 428 36	
863 805 37	
872 613 87 197 907 36 197 934 36 246 84 36 307 629 36 637 826 36 127 367 36 109 109 36 208 767 36 637 439 36 637 872 36	Ų
197 907 36 197 934 26 246 64 36 367 629 36 637 828 36 127 387 36 100 36 208 767 36 579 430 36 637 872 36	
197 934 36 246 84 36 367 629 36 637 628 36 127 367 34 160 100 36 208 767 36 637 430 36 637 872 36	Į
246 84 38 367 829 26 637 828 36 36 127 387 36 109 36 208 767 36 637 879 36 637 879 36 637 872 36	Į.
\$67 629 36 637 628 36 127 367 34 160 100 36 208 767 36 637	Ì
637 828 36 127 367 36 160 100 36 200 767 36 679 430 36 637 872 36	
127 367 36 100 100 35 200 767 36 679 430 36 637 872 36	ŀ
100 100 36 200 757 36 579 439 36 637 872 36	f
208 767 36 679 438 36 637 872 36	t
579 438 36 637 872 36	t
	İ
700 100 35	- [
760 579 36	
788 647 36	
828 9 36	
891 869 35	I .
942 828 85 84 401 34	
84 401 34 127 401 34	
261 197 34	-
401 127 34	-
435 170 34	TT 1
613 776 34	٧U
629 250 34	Ī
662 637 84	- [
678 280 34	$T \cap$
	10
767 9 34	
786 579 34	1
828 149 84 828 879 94	
826 579 34 983 891 34	ŀ
920 127 34	ŀ
934 197 34	ŀ
9 663 33	[
64 127 33	ŀ
109 64 33	ľ
109 462 83	ľ
197 208 89	
757 767 28	
800 907 35	
920 637 83	
64 248 32	
127 863 32 197 462 32	- 1
197 462 32 218 141 32	- 1
230 757 32	ŀ
306 637 32	- 1
613 100 32	1
629 109 22	
637 294 32	ľ
676 9 32	F
757 194 32	

CENTON	CENTOEN	FLUID	Ì
786	430	*2	8
844	626	22	
984	813	- 12	
942	907	- 22	
100	712	81	
140	626	31	
105	127	35	ř.
248	7	31 31	ļ.
260	84	31	
468	810	81	
637	676	31	
712	422	31	
767	984	21	
815	637	M	
64	629	30	
163	127	20	E
438	786	30	
709	767	- 30	ė
767	844	70	
344	266	30	
863	942	30	,
900	128	>0	i i
127	163	28	
127	E(20)	20	
141	197	20	
144	170	29	ŀ
144	844	20	ri.
246	767	29	k,
200	100	20	
200	144	20	e e
401	84	20	l
496	367	26	
613	344	29	
687	712	29	
637	723	20	
920	344	29	
1 1 7 <i>(</i>	676	26	c
100	188		į.
100	844	25	
186	907	28	(R)
720	A 629	20	
1 228	167	20	
344	629	29	
613	072	26	
700	127	_24	
615	709	28	l.
907	197	20	E.
924	848	28	
934	268	20	
221	188	27	
319	197	27	ľ
496	891	27	
637	879	27	
637	082	27	
760	100	27	
790	828	27	
820	100	27	
84	210	26	
163	790 109	26	
197	261	2	
238	127	2	
436	820	28	4
613	64	28	
613	367	20	
613	430	28	
645		26	

CENTOR	CENTRES	FLUXO
920	84	24
127	64	26
159	141	25
246	319	26
208	246	26
305	227	25
367	127	25
570	367	25
579	907	26
613	825	25
629 627	319	25
767	218 218	26 26
A63	863	- 25
924	757	25
98	109	24
127	498	24
127	709	24
108	301	24
197	223	24
197 813	246	24
623	709	24
ALOO7 FL	MM 942	24
924	110 828	24
942	127	24
0 70	572	23 <
109	700	23
127	429	23
127	166 286	28
140	907	23 7
186	634	23/
197	319	23
203	9	23
	140	23
246	436	_ 23
271	186	23
319	127	23
344	1408	23 /
401	227	28
862	9	23
790	○92 1 T.	20
J 520	C637 T	J 23 (
E26	844	23
9	238	22
100	127	22
127	319 159	22
170	144	72
197	367	72
218	637	22
230	127	22
236	258	_ 22
236	687	22
534	141	22
802	127	22
714 767	127 712	22
776	613	- 22
828	613	22
863	846	22
900	846	_ 22
907	144	22
907	579	22
109	344	21
127	100 301	21 21
144	197	21

CENTON	CENTORS	FLUID	ļ
168	344	21	3
106	401	- 21	
186	280	21	
248	647	21	
248	E20 -	21	
301	186	21	
438	676	21	
462	637	24	
496	344	21	
613	783	211	
700	984	21	
704	9	21	
864	907	21	
872	64	21	
872 920	310	21	
9	401	21	Ni.
100	776 169	20	
127	148	20	
148	210	20	
100	160	20	
197	186	20	
246	367	20	e e
301	100	20	
401	188	20	
430	197	20	
534	170	20	
613	910	20	
637	108	20	
679	127	20	
676	4	20	
712	109	20	
723	9	20	
757	798	20	
780	127	20	
768	712	20	
846	88	20	
880	286	20	
907	149	20	
9	767 766 A	19	
100	1920	10	
127	760	19	
141	248	18	
144	709		TTO
166	637	10	LIU
197	246	19	0
218	64	19	
227	148	10	r.
227	223	10	
240	907	19	
200	367	19	
344	186	110	
490	127	19	
629	397	10	
733	767	10	
788	804	10	
626	826	10	
844	127	10	
844 963	757 854	19	
972	907	19	
907	860	10	0
-	723	16	
84	250	- 14	
84	534	18	
109	109	18	
127	153	16	
127	880	18	
134	04	16	
148	227	10	
226	144	16	

CHMTYDHI	CENTRES	PLULO
246	700	29
300	344	- # -
344	290	- 19
380	301	10
436	844 984	10
462	7	10
013	620	19
629 709	816	# 1
700	907	- 10
760	733	18
766 760	733	16
760 844	420	19
880	127	10
672 672	280	18
907	700	19
920	647	10
7 64	167	17
64	344	17
100	80	17
127	644	17
149	141	17
160	197	17
188	100	17
246	401 678	17
401	786	17
480	728	17
613	798	17
709	188	17
780	438	17
796	268 197	17
704	942	17
	246	U 17
900	924 166	17
920	013	17
1934.7	788	17
109	146	16
100	163	
109	466	16 16
127	613 610	16
127	942	10
141	679	16
183	220	16
218	376 149	16
250	165	16
200	844	16
344	109	16
482	797	16
613	319	16
687 637	308	16
037	920	10
847	637	10
709 726	367 	10
757	_ 663	16
780	328	16
622	767	10

CENTON	CENTOES	FLOUD	l
963	000	_ *	
672	438	10	
7	127	16	1
80	127	18	ł
127	712	16	1
163	837	16	1
159	227	15	1
100	628	15	l
170	439 163	15	ł
197	613	15	
344	206	15	1
578	366	16	1
360	629	15	l
579 613	197	10	
629	167 531	16	l
637	534	16	l
767	140	_ 10	
767	482	16]
767	678	16	
787	500	16	l
ALTO FI	910 MM 700	16	ł
RIT	113 834	16	i
	127	16	1
872	387	16 <	1
834	700	15	
934 934 109 109 127 188	788	15	_
100	810	14	
127	714	14	ł
150	637	14/	1
1885	109	*	1
168	280	14	l
170	534 334	14	ł
197	163	14	ł
197	221	14	1
218	108	14	דידו
1236	DIDI	XL14 /	$r \cap 1$
246 246	712	14	
286	319	14	
200	127		JEN
401	100	14	
401	288	14	1
834	185	14	
813	613 942	14	1
657	229	14	t
637	266	14	
637	383	14	l
637	942	14	l
767	438 170	14	
786	783	14	1
815	64_	14	1
822	934	14	l
900	767	14	ŀ
907	709	14	ł
907	672 828	14	
984	218	14	1
942	963	14	1
64	350	13	l
100	188	13	
109	166 230	13	
153	401	19	1
189	64	13	1

Į Ca	MORE	CENTRES	FLULD
	167	86	13
! —	227	189	13
_	280	100	13
_	230	388	18
-	200	141	15
-	280	166	18
	280	780	13
-	255 268	607	13
-		572	13
	200 200	109	13
-	319	200	13
_	367	709	13
_	438	201	13
	462	230	13
	534	9	13
	637	402	13
	647	700	13
	720	579	13
	760	344	13
_	786	844	13
	826	188	13
	826	430	13
	820	712	13
	846	766	13
11	963	637	13
	872	141	13
	7	200	12
25-	9	534	12
	84	134	12
	64	208	12
_	84	815	12
_	96	637	12
	100	236	12
\mathbf{L}	109	200	12
	108	613	12
	141	625	12
-	170	266 826	12
-	188	301	12
	186	1401	12
ΗН	197	144	12
- F	197	146	12
	201	934	12
	230 🗡	227	12
NJ5	230	344	12
	208	301	12
	200	401	12
	208	676	12
	271	230	12
	310	140	12
	367	200	12
	401	183	12
	579	141	12
	570	822	12
	579	863	12
_	613	788	12
_	687	760	12
	647	84	12
_	700	197	12
	749		7.6
	712 723	1115/2002	
	723	438	12
	723 767	438 230	12 12
	723 767 790	438 230 108	12 12 12
	723 767 790 810	438 230 100 700	12 12 12
	723 767 790 810 825	438 230 108 709 168	12 12 12 12
	723 767 790 810 826 844	439 230 109 709 188 108	12 12 12 12 12
	725 767 790 810 826 844	439 230 109 709 168 109	12 12 12 12 12 12
	723 767 790 810 825 844 905	438 230 109 709 188 109 907 246	12 12 12 12 12 12
	725 767 790 810 826 844	439 230 109 709 168 109	12 12 12 12 12 12

CENTOR	CENTRES	FLUID
108	438	11
127	230	11
127	160	11
144	766	11
148	301	11
140	565 344	11
186	700	11
167	235	11
201	197	11
227	201	11
227	401	11
226	140	
281 281	697	11
266	64	11
271	227	_11
301	397	11
319	670	11
378	148	11
276	100	11
207	168	11
496	534	11
	862	11
679	301	11
613	401	11
613	783	11
948 947	149	11
712	844	11
714	637	11
789	822	11
788	629 767	11
822	7	11
626	280	
826 826	798	11
844	786	11
T 664	√ 900	11
1 863	197	11
691 907	767 401	11
907	846	11
910	013	11
920 920	197 310	11
834	170	11
984 984	311	11
804	698 200	10
-;-	798	10
	815	10
100	907	10
127	127	10
127	822	100
127	825	10
134	140	16
141	163	10
141	534	10
144	534	10
163	260 301	10 10
183	141	10
170	994	10

LIO

R

CENTOR	СЕНТИВ	PLU10
180	712	10
197	197	10
197	430	10
201	709	10
280	197	10
236	197	10
260	149	10
285	197	10
319	301	
344		10
344	709	10
378	786	10
	230	10
462	647	10
462	769	10
498	334	10
534	436	10
554	637	10
534	709	10
637	124	10
_637	134	10
837	846	10
637) / 860 ·	10
637	803	10
847	712	10
L 647 L	MM 767	10
576	367	10
700	64	10
709	319	10
700	579	10
709	526	10
712	246	10
714	200	
757		10 /
	900	10
767	908	10
786	144	10
760	248	10
_ 822	127	10
628	170	10
826	401	10
844	144	10
645		10
845	1757 L	10
848	934	10
663	767	10
863	994	10
672		J 10 C
872	197	10
872	401	10
920	7	10
920	907	10
934	328	10
834	934	10
942	700	10
9		
	319	
64	169	9
04	227	_ •
96	9	
127	105	. 0
127	234	
134		•
148	189	B
148	301	9
146	169	-,
180	168	9
169	223	-
185	197	0
100	189	- ;
170	907	•
186	368	-
186	825	- ;
197		
1986	7 _	9
197	709	9

	CENTON	СЕНТОВЬ	PLUJO
	167	620	
	227	344	
	230 230	64 301	-
	236	167	
	345	206	•
	301	319	-;-
	303	106	
	314	626	
	366 378	169	÷
	307	186	-
9	462	760	
	498 531	127	_:_
	579	319	•
	570	783	
	579	910	
	613	907 626	-:-
	676	246	
	709	144	
	712	100	9
	717	9	•
	767	260	•
C.	757 760	301	•
75 0	760	319 626	9
	706	100	
20	786	301	
	844	824	0
	P08	9	-
a d	872	763	•
	872 907	984 613	•
1	920	367	-i -
	942	700	
UT		908	
	8	438	1
	_64	760	
ENF	84	B44	BIB
	100	197	1
	100	462	
	105	697	
	100	707	8
	127	236	
	141	140	8
	141	100 200	8
	141	462	<u> </u>
	141	826	
	189	907	
	189	786	
	100	356	
	170	815 169	- 3
	165	271	-:-
	197	160	
	167	872	-
	201 227	815 163	- : -
	227	250	-i-
al a	227	766	
ì	234	266	÷
,	248	613	

LIO

CENTON	СВИТОВВ	FLLLIO
246	760	-
290	280	
204	189	
201	274 025	
201	128	
271		
200	100	_ i
306	107	
310 333	807	
334	127 720	-1-
344	140	
386	370	
376	229	
997 401	223	
401	220	-
401	712	-
421	127	
430	109	
482	227	
496	100	8 -
534	- N	-
579	100	-
013	311	8
629	141	_ •
629	294 788	-:-
687	223	
037	281	
657	847	
637	625	
846 847	298 127	
847	198	
862	106	
676	100	
712	386	_ 8
712	786	
767	303	
767	470	-
767	790	
1700 -/ A	107	
767	760	-
766	280	
796	311	
786	400	
786	786	8
786	849	
810	201	-:-
815		i
626	141	8
844	160	
880	401 109	-
880	430	- 8 -
863	64	-
863	109	
872	100	
907	201	_ •
920 924	438 127	
934	280	_:
934	301	i
9	306	7
- 64	141	7
64	169	7

CENTON	CENTRES	FLILLO
64	847	7
100	894	
100		
	163	_ 7
108	860	7
134	298	7
144	218	7
146		
	109	. 7
140	269	_ 7
140	94	7
149	227	7
140	281	
		7
149	844	7
100	218	7
180	109	7
186	260	7
166	844	7
197	149	7
167	320	7
197	712	7
197	10,110,000	
	663	7
218	144	7
218	907	7
236	64	7
240		
	141	7
LL246 LLA	IMA 303	\/ 7 \
246	767	7
250	148	7
37.863.77.77	20000	
250	183	7<
271	64	_ 7
311	816	7
311	907	7
- 3541 - 1170011		
320	498	7.7
344	301	(7)/
366	837	7/
367	149	77
415	613	7
415	712	
438	942	7
496	7	7
406	401	7
631	T 829 A	T 7 A
631	1725	
534	234	7
690	7	7
679	728	7 7
E-18-1		
637 L	230	JIY C
627	816	7
647	907	7
678	219	7
709	786	7
712	7	7
712	872	7
, ,,		
	954	
712	934	
712 723	319	7
712		
712 723 723	319	7
712 723 723 757	319 334 223	7 7
712 723 723 757 767	319 334 223 248	7 7 7
712 723 723 767 767 767	319 334 223 246 284	7 7 7 7
712 723 723 757 767	319 334 223 248	7 7 7
712 723 723 767 767 767 767	319 334 223 246 294 760	7 7 7 7 7
712 723 723 757 767 767 767 787	319 334 223 246 294 760 462	7 7 7 7 7
712 723 723 757 767 767 767 760 780	319 334 223 246 294 760 462 767	7 7 7 7 7 7
712 723 723 757 767 767 787 780 780 788	319 334 223 246 294 780 462 767 218	7 7 7 7 7 7 7
712 723 723 757 767 767 767 760 780	319 334 223 246 294 760 462 767	7 7 7 7 7 7
712 723 723 757 757 757 757 760 760 766	319 334 223 246 284 780 462 787 218 294	7 7 7 7 7 7 7 7
712 723 723 757 767 767 767 767 760 760 760 766 766	319 334 223 246 284 780 462 767 218 294	7 7 7 7 7 7 7 7 7
712 723 723 757 757 757 757 750 760 760 786 786 784	310 334 223 246 294 780 462 787 218 294 127	7 7 7 7 7 7 7 7 7 7
712 723 723 757 757 757 757 757 780 780 786 764 610 815	319 334 223 246 284 780 462 767 218 294	7 7 7 7 7 7 7 7 7 7 7
712 723 723 757 757 757 757 750 760 760 786 786 784	310 334 223 246 294 780 462 787 218 294 127	7 7 7 7 7 7 7 7 7 7
712 723 723 757 757 757 757 750 760 760 786 786 794 610 815	319 334 223 246 294 760 462 767 218 284 127 64 438 637	7 7 7 7 7 7 7 7 7 7 7 7
712 723 723 757 757 757 757 750 780 780 786 786 786 810 815	319 334 223 246 294 790 462 797 218 284 127 84 438 637	7 7 7 7 7 7 7 7 7 7 7 7
712 723 723 757 757 757 757 760 780 780 788 786 810 815 622 622	319 334 223 246 294 780 462 787 218 294 438 637 828 9	7 7 7 7 7 7 7 7 7 7 7 7 7 7
712 723 723 757 757 757 757 750 760 760 760 760 760 815 610 815 622 622	319 334 223 246 294 780 462 787 218 294 438 637 826 9	7 7 7 7 7 7 7 7 7 7 7 7
712 723 723 757 757 757 757 760 760 760 760 766 766 815 622 622	319 334 223 246 294 780 462 787 218 294 438 637 828 9	7 7 7 7 7 7 7 7 7 7 7 7 7 7

CHITTO	CENTRES	PLUIO	ï
196	1 104	7	
864	883	7	
1803	844	7	
120	789	7	
934	144	7	
834	629	7	
994	864	- 9 -	
854	910		
M2	100	-;-	
7	687		ļ
-			1
-	134	•	
-			
	344		ļ
1	679	•	ł
9	625	•	1
- 1	1864		
84	310		
64	498		
	560		
100	900		
109	665	9	
100	714		
109	625	6	
124	757		
127	201	8	
127	201	6	
127	676	6	
127	723	- 6 -	
127	628	- 8	
134	201	-6	
161	166	6 -	
141	200	i	
141	907	8	
145	807	6	
140			
	847	6	
140	888	-	
153	109		
163	818	8	
188	767	_ 6	
159	144	8	
160	N ST A		
170	200	LOL	TAO:
186	134	8	
186	218	6	
188	200	$\mathbf{D}^{\bullet}\mathbf{D}$	LIO
T 1887	013	DID	LIU.
188	847	8	
197	660		
197	799		
201	495		
201	907	-	
218	786	8	•
221	- 1	i	ì
221	207	8	
227	84	- 6	
227	127		
227	334	6	ł
227	637	165	
		_ •	ł
280	260	. 8	
230	647	•	
236	100	•	
290			
261	127		1
256	170	8	
208	308	6].
209	B10	8	1
268	128	6	
280	141	- 6	
301	100		
301	140	8	
301	227		
391	246		

CENTOR	CENTRES	PLUL D
301	280	
354	709	
344	246	-
366	401	
206	787	
368	760	•
401	127	
401	246	
401	360	8
430	144	
402	916 141	•
462	984	
408	109	·
408	201	•
534	344	-
679 813	709 185	•
618	728	•
629	344	Ť
629	694	•
637	98	•
837 887	380	-
847	230	
862	780	
676	201	•
709 709	201	•
700	610	
712	127	8
712	796	0
714	197	
728 738	127	
757	186	
757	306	Ť
790	647	_ B
703	520	
780	629	8 (
790	127	·
815	100	
	V 613	6
826 829	880	-
844	344	-
B44	534	-
844	844	•
846	942	•
800	903 591	•
907	141	
910	994	
920	712	0
920 924	767	6
924	498	8
934	822	•
942	813	8
	620	6
-	140	6
- BA	230	6
- 64	301	-
84	700	6
64	080	6
96	672 197	6
100	144	8

CENTOR	CENTRES	FLUUO	
100	766		
109	221	8	
109	319		
109	357		d
109	_ 680 _		
127	724	-	
134	100		
134	786	6	
141	84 96	- 5	
141	180	5	
144	131	- 8	
144	236	5	
144	757	- 3	
144	934	- 5	
148	401	6	
140	134	5	P
140	153	-i-	
140	280	- 5	
140	378	- 3	
140	478	6	
163	250	Ť	
183	344	- 5	
169	826	-	
ALLIOS LLA	127	1	l,
105	141	4	
100	7	5	
100	141	100	
168	305	150	
188	124		
180	131	8	
188	465	\$77	
188	822	(5)/	
197	160	-8	
197	333	/8	
201	248	8	
201	757	- 8	
203	160		(
221	109	4	2
227	221	- 6	E)
230	246	T & X	TITA
236	1 140 /		\cup 1 (
240	250	6	5
288	148	5	
200	△140 ⊤∠		ENIE
201	146		TINI
301	203	5	
301	250		
301	406		
303	246	8	
311	629	_ \$	
319	723		8
319	815		Į.
320	676		
394	127	. 6	
334	618		
334	676	- 6	
344	9		
360	901	6	
401	436 767	6	8
401	822	6	
401	907	6	
415	9	6	9
438	84	-:-	Ø.
436	149	5	l,
436	712	8	9
490	197	6	
521	387	5	
801	496		
551	662	6	0
579	401		
	-WI	_ •	l .

CENTOR	Сентрев	FLUJO	
679	813	6	
090	767		
813	218	- 6	
647	8_	6	
662	267	_ 6	
678	907		
T09	230		
709	863		
712	250	_ 6 _	
725	367	6	
757	144	- 5	,
787	201	6	
767	726	- 6	
760	223		
780	401		
760	415		
760	726	_ •	
767	679		
787	728	6	
783	197		
786	462		,
786	663		
799	013		
816	234		
822	733		
825	430		
826	637		
844	709		'
846	637		
880		- 6	
860	637		
672	156	- 6	
900	907	- 6	b
907	100		
907	319	- 6	
910	246		
820	141	_ 6 _	
929	767	- 5	
204	140		
934	235		
834	200		
942	1 844 1		110.
	579	5	e.
943	637		
RAI		$\mathbf{R}^{\mathbf{I}}\mathbf{R}$	
1/0.71	196	שינים	
9	726	4	1)
64	367		
84	613	4	E(-
98	907	4	
100	127		
100	236	-i-	
100	303	4	i
100	815	4	1
100	626	-	
106	534	-	
106	815	4	
100	234		
100	590		
109	847	4	
109	676	4	
109	790		
109	942	4	
127	169	4	
127	227	4	i)
127	531	-	É
127	648	- }-	
127	848	4	
127	926	4	Ki
141	367	4	6
144	430		
1000			,

CENTON	CENTOES	PUUJO
144	679	4
148	64	4
146	250	4
146	271	4
148 _	757	4
149	223 236	#
140	709	-;-
159	8	\dashv
180	146	
139	230	4
189	709	4
163	149	4
163	100	4
160	141	4
170	460	4
170	796 105	
188	183	-
186	170	-
	670	- 4
186	728	4
188	920	4
160	942	4
197	230	4
197	714	4
197	1239	4
201	127	4
201	218	4
201	236	4
201	436	4
201	828 880	-
203	344	
203	401	-
218	166	4/
218	634	4
216	712	4
218	757	4
221	250	, 4
221	344	141
227	141	
227	476	_4_0
229	613	_4_
230	367	4
230 /	637	4
234	127 301	4
234	829	4 -
236	234	4
236	709	\dashv
246	144	
246	100	
246	679	4
248	726	4
246	783	4
250	862	4
250	934	_4
266		4
269	141	4
266	230	
200	224	4
266	333	4
	378	
266 266	476 579	- 4
	848	4
286	682	4
288	714	- i -
200	863	-
271	149	

289	CENTON	СВПОВ	FLILIO	1 3
288 787 4 289 728 4 301 934 4 303 221 4 305 9 4 306 9 4 306 148 4 311 676 4 319 64 4 319 700 4 319 700 4 319 700 4 319 700 4 330 64 4 344 133 4 344 133 4 344 203 4 344 319 4 358 150 4 378 100 4 378 100 4 378 100 4 378 100 4 378 100 4 378 100 4 380 9 4 401 9 677 4 679 100 14 687 100 14 688 141 4 688 1581 4 689 141 4 688 1581 4 689 141 4 689 1581	12000000000000000000000000000000000000	250 140 2010 042		
284 723 4 301 984 4 301 984 4 303 221 4 305 9 4 306 9 4 311 678 4 319 64 4 319 100 4 319 700 4 320 64 4 333 197 4 334 682 4 344 203 4 344 203 4 344 319 4 386 230 4 378 100 4 37				
301				
306	301		4	
206 148 4 211 676 4 319 64 4 319 168 4 319 790 4 320 64 4 333 197 4 334 982 4 344 183 4 344 319 4 388 180 4 389 230 4 378 100 4 378 100 4 378 100 4 378 100 4 378 100 4 378 100 4 378 100 4 378 227 4 388 180 4 401 9 4 401 148 4 401 148 4 401 148 4 401 148 4 401 148 4 401 148 4 401 148 4 401 148 4 401 148 4 402 708 4 403 707 4 478 637 4 688 707 4 688 707 4 688 708 4 689 249 4 689 248 4 689 248 4 689 248 4 689 248 4 689 248 4 689 248 4 689 248 4 689 249 4 689 24 4 689 24 4 689 249 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 249 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 249 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 24 4 689 249 4 689 24	203	221	4	
211 678 4 319 64 4 319 108 4 319 700 4 319 700 4 319 300 64 4 330 64 4 330 197 4 334 183 4 344 203 4 344 319 4 385 190 4 386 230 4 379 100 4 379 100 4 379 100 4 370 100 100 100 100 100 100 100 100 100 1			4	
319			1	
319				
319 700 4 319 760 4 320 760 4 320 64 4 321 767 4 324 723 4 344 183 4 344 203 4 344 319 4 326 189 4 327 100 4 328 127 4 328 140 148 14 329 148 140 148 14 320 148 140 148 14 320 148 140 148 14 320 148 140 148 14 320 148 140 148 14 320 148 140 148 14 320 148 140 148 14 320 178 188 14 320 177 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 320 172 14 321 172 14 322 122 14 323 1531 14 323 1531 14 323 1531 14 323 1531 14 323 1531 14 323 1531 14 323 1531 14 333 1531 14 334 153 1531 14 335 1531 1531 1531 1531 1531 1531 1531	201000-0			
319 760 4 329 64 4 339 167 4 384 682 4 344 183 4 344 2189 4 388 230 4 379 227 4 370 227 4 370 227 4 370 227 4 370 227 4 370 2288 4 401 140 4 401 140 4 401 140 4 401 9 4 401 934 4 401 934 4 402 788 4 402 788 4 402 788 4 402 788 4 402 788 4 408 341 4 800 712				
330 64 4 331 1977 4 334 982 4 344 183 4 344 303 4 344 319 4 365 180 4 368 230 4 379 100 4 379 227 4 380 9 4 380 9 4 380 9 4 380 9 4 401 146 4 401 146 4 401 148 4 401 148 4 401 148 4 401 148 4 401 148 4 401 148 4 402 786 4 402 786 4 402 786 4 403 324 4 402 787 4 580 767 <th></th> <th></th> <th></th> <th></th>				
SSS		-		
\$44	393			
344		(602	4	
344 319 4 388 190 4 378 100 4 379 100 4 370 227 4 380 406 4 380 4 4 380 288 4 401 148 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 402 788 4 402 784 4 402 784 4 402 784 4 402 784 4 403 328 4 534 844 4 580 767 4 637 901 4 637 903 4 637				
388 189 4 388 230 4 379 109 4 379 227 4 580 288 4 380 9 4 380 9 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 402 344 4 402 344 4 402 788 4 402 788 4 402 704 4 408 328 4 800 757 4 637 822 4 637 822 <th></th> <th></th> <th></th> <th></th>				
388 230 4 379 100 4 379 406 4 360 9 4 360 9 4 360 9 4 360 9 4 401 9 4 401 148 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 401 934 4 415 167 4 415 757 4 438 924 4 402 788 4 402 788 4 402 788 4 402 788 4 402 787 4 403 338 4 834 344 4 880 712 4 879 301 4 637 302	-			
378 108 4 379 227 4 370 408 4 380 9 4 380 9 4 401 148 4 401 148 4 401 148 4 401 148 4 401 148 4 401 148 4 401 167 4 415 167 4 415 167 4 422 344 4 482 785 4 482 785 4 482 907 4 478 637 4 483 141 4 483 344 4 483 344 4 580 127 4 637 301 4 880 712 4 637 324 4 637 324 4 637 32				
379				
\$70	A STATE OF			
S80	370			
401 9 4 401 148 4 401 700 4 401 934 4 415 167 4 415 757 4 438 924 4 462 344 4 462 788 4 462 907 4 478 687 4 468 326 4 584 844 4 580 757 4 660 757 4 659 301 4 613 531 4 629 246 4 637 901 4 637 901 4 637 901 4 637 901 4 637 901 4 637 700 4 637 924 4 647 700 4 682 280 4 679 334 4 707 127 4 707 288 4 708 714 4 709 672 4 712 416 4 709 714 785 4 716 787 280 4 714 785 4 717 787 280 4 714 785 4 717 787 280 4 714 785 4 717 787 280 4 714 785 4 717 787 280 4 714 785 4 717 787 280 4 714 785 4 717 787 280 4 714 785 4 7787 280 4 7787 280 4 7787 280 4 7787 280 4 7787 280 4 7787 280 4 7787 280 4 7787 280 4 7787 280 4 7787 280 4 7787 280 4 7787 280 4	300	9	1	
401 148 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11P/15/1/10 a /m	MA 200	PA .	
401 709 4 401 984 4 415 197 4 415 757 4 438 924 4 452 344 4 462 785 4 482 907 4 478 987 4 478 987 4 478 987 4 488 141 4 498 328 4 534 844 4 580 757 4 580 757 4 679 301 4 613 531 4 629 248 4 637 903 4 637 903 4 637 900 4 670 334 4 707 127 4 707 288 4 707 127 4 707 288 4 709 714 4 718 709 714 4 719 717 280 4 711 712 900 4 714 725 788 4 757 230 4 757 235 4 767 954 4 767 957 954 4 767 957 954 4				
401				
415 197 4 415 757 4 415 757 4 438 924 4 452 344 4 452 786 4 452 907 4 478 637 4 488 328 4 534 844 4 880 127 4 580 767 4 579 301 4 613 531 4 629 346 4 637 106 4 637 106 4 637 760 4 646 127 4 647 760 4 682 208 4 677 760 4 682 208 4 707 127 4 708 218 4 709 218 4 709 634 4 709 714 4 709 672 4 712 416 4 709 672 4 714 726 4 714 726 4 714 726 4 717 728 728 4 717 729 729 4 718 729 729 729 729 729 729 729 729 729 729		7		
415 757 4 438 924 4 462 344 4 462 786 4 462 907 4 478 637 4 488 344 4 880 141 4 880 1541 4 880 767 4 880 768 4 887 760 4 887 760 4 887 760 4 887 760 4 888 4 888 4 888 4 889 708 714 4 889 708 714 4 889 708 714 4 889 714 788 4 712 890 4 714 788 4 714 788 4 787 230 4 714 788 4 787 230 4 787 230 4 787 235 4 787 235 4 787 235 4				3
438 924 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
482 344 4 482 788 4 482 907 4 478 837 4 488 141 4 488 328 4 534 844 4 580 757 4 580 757 4 613 531 4 613 531 4 613 531 4 613 531 4 613 531 4 613 531 4 613 531 4 629 248 4 637 106 4 637 10	200000			
482 907 4 478 687 4 488 141 4 488 328 4 534 844 4 580 127 4 580 757 4 580 757 4 667 301 4 683 388 4 6837 801 4 6837 822 4 6837 823 4 707 127 4 708 672 4 708 672 4 712 680 4 714 785 4 712 580 4 714 785 4 712 787 2285 4 787 2285 4 787 2285 4 787 2831 4 780 7837 828 4	482			
478 687 4 488 141 4 488 328 4 534 844 4 580 127 4 580 757 4 570 301 4 580 712 4 613 581 4 629 245 4 637 105 4 637 822 4 637 822 4 637 822 4 637 822 4 647 760 4 662 286 4 667 760 4 662 286 4 670 334 4 707 127 4 708 672 4 708 672 4 712 415 4 712 580 4 714 785 4 714 785 787 230 4 714 785 787 230 4 757 230 4 767 787 235 4 760 757 831 4 760 757 831 4 760 757 831 4	462		4	
408		907	/4	
466 326 4 534 844 4 580 127 4 680 767 4 6679 301 4 613 531 4 623 248 4 637 806 4 637 806 4 637 806 4 637 700 4 682 280 4 679 334 4 707 127 4 707 288 4 708 714 4 708 672 4 712 416 4 712 900 4 714 785 4 787 280 4 787 280 4 787 280 4 787 280 4 787 280 4 787 280 4 787 280 4 787 280 4 787 280 4 788 4	A THE STATE OF THE			
884 844 4 880 127 4 980 767 4 679 301 4 680 712 4 613 581 4 637 905 4 637 906 4 637 924 4 637 700 4 646 127 4 647 760 4 682 280 4 670 334 4 707 127 4 708 218 4 708 218 4 709 534 4 709 714 4 700 4 4 700 4 4 700 4 4 700 4 4 700 4 4 700 4 4 700 4 4 700 4 4 700 4 4 700 4 4 700 4 4 700 4 4 728 788 4 787 </th <th></th> <th></th> <th></th> <th></th>				
880 127 4 580 767 4 579 301 4 580 712 4 613 531 4 629 346 4 637 105 4 637 822 4 637 822 4 637 760 4 645 127 4 646 127 4 647 760 4 682 286 4 679 334 4 707 127 4 707 286 4 708 218 4 709 218 4 709 634 4 709 672 4 712 416 4 712 980 4 714 785 4 714 785 4 787 230 4 787 230 4 787 230 4 787 230 4 787 235 4 787 235 4 787 235 4 787 235 4				
\$60				
679 301 4 880 712 4 613 581 4 629 245 4 637 105 4 637 924 4 637 822 4 637 824 4 645 127 4 647 760 4 682 268 4 670 334 4 707 286 4 708 218 4 709 248 4 709 244 4 709 274 4 709 274 4 712 416 4 712 590 4 714 735 4 787 230 4 787 235 4 757 654 4 760 757 4 760 75	-			TIT
613 531 4 629 246 4 637 106 4 637 106 4 637 822 4 637 822 4 637 822 4 637 824 4 646 127 4 647 760 4 682 268 4 670 334 4 707 127 4 708 218 4 708 401 4 708 672 4 712 416 4 712 590 4 714 728 4 714 728 4 728 798 4 757 230 4 757 230 4 757 230 4 757 230 4 757 230 4 760 757 831 4 760 757 831 4 760 757 831 4	E 579	301		UIU
629 348 4 637 106 4 637 613 4 637 822 4 637 822 4 637 824 4 646 127 4 647 760 4 682 268 4 670 334 4 707 127 4 708 401 4 708 672 4 712 416 4 712 416 4 712 590 4 714 728 798 4 757 230 4 757 230 4 757 230 4 757 230 4 760 757 831 4 760 757 831 4 760 757 834 4			4	
657 905 4 657 613 4 657 613 4 657 822 4 657 824 4 646 127 4 647 760 4 662 266 4 707 286 4 708 401 4 708 672 4 709 714 4 709 672 4 712 415 4 712 590 4 714 785 4 787 225 4 787 220 4				
837 813 4 837 822 4 837 822 4 837 824 4 846 127 4 847 760 4 862 286 4 870 334 4 707 127 4 708 218 4 708 401 4 708 672 4 708 672 4 712 416 4 712 580 4 714 785 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4				ENE
837 822 4 837 924 4 846 127 4 847 760 4 852 256 4 870 334 4 707 127 4 709 218 4 709 401 4 709 672 4 712 416 4 712 590 4 714 728 74 714 728 4 728 788 4 757 220 4 757 230 4 757 230 4 757 230 4 757 230 4 757 231 4 760 757 831 4 760 757 834 4				
637 924 4 646 127 4 647 760 4 682 286 4 679 334 4 707 127 4 707 286 4 708 218 4 709 634 4 708 714 4 708 672 4 712 416 4 712 980 4 714 785 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4				
846 127 4 847 760 4 882 280 4 679 334 4 707 127 4 709 218 4 709 218 4 709 634 4 709 714 4 709 714 4 709 714 4 709 672 4 712 416 4 712 990 4 714 230 4 725 798 4 787 230 4 787 235 4 757 631 4 760 757 4 780 828 4				
692 289 4 678 33.4 4 707 127 4 707 288 4 708 218 4 709 401 4 708 634 4 708 672 4 712 415 4 712 890 4 714 230 4 714 728 4 728 788 4 728 788 4 757 235 4 757 235 4 760 757 631 4 760 757 654 4 760 757 654 4				
678 33.4 4 707 127 4 707 288 4 708 218 4 709 401 4 709 534 4 709 714 4 709 672 4 712 415 4 712 800 4 714 230 4 714 788 4 725 798 4 787 235 4 787 831 4 780 757 4 780 787 4	847	760	4	
707 127 4 707 288 4 708 218 4 708 401 4 708 634 4 708 672 4 712 415 4 712 900 4 714 728 4 714 728 4 725 728 4 757 235 4 757 631 4 760 757 651 4 760 757 654 7			No. of Concession, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, Name of	
707 288 4 708 218 4 708 401 4 708 634 4 708 672 4 712 415 4 712 890 4 714 738 4 714 738 4 715 798 4 757 230 4 757 231 4 760 757 831 4 760 757 838 4				
700 218 4 700 401 4 700 401 4 700 534 4 700 714 4 700 672 4 712 415 4 712 800 4 714 738 4 714 738 4 728 798 4 757 230 4 757 235 4 767 230 4 767 230 4				
708 401 4 708 534 4 709 714 4 709 872 4 712 416 4 712 590 4 714 785 4 718 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4	and the second second			
709				
709 714 4 709 672 4 712 416 4 712 590 4 714 220 4 714 785 4 728 798 4 787 220 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4 787 230 4				
712 415 4 712 990 4 714 230 4 714 785 4 725 798 4 787 230 4 787 230 4 787 285 4 787 881 4 787 881 4 787 881 4	709			
712 990 4 714 220 4 714 785 4 714 785 4 725 798 4 757 230 4 757 235 4 757 851 4 760 757 4 760 828 4				
714 230 4 714 785 4 728 798 4 787 230 4 787 235 4 787 285 4 787 831 4 787 834 4 780 757 4				
714 785 4 725 798 4 767 230 4 767 235 4 767 285 4 767 881 4 760 757 4 760 826 4				
725 768 4 757 230 4 757 235 4 757 235 4 757 831 4 760 757 4 760 757 4				
787 230 4 787 235 4 787 831 4 787 884 4 780 757 4 780 828 4				
787 235 4 757 831 4 767 854 4 760 757 4 760 828 4				
757 851 4 757 854 4 760 757 4 760 828 4				3
757 854 4 760 757 4 760 828 4			-	
760 826 4			-	
767 169 4				
	767	160	4	

	СВИТОРВ	CENTOES	PLUJO	. 1
	778	857	4	
1	788	170	-	
	786	201	4	
	766	225	4	
	798	303	4	
	766	615		
	760 764	*	4_	
	788	797 108	4	
	790	767		1
	810	100	4	•
	810	170	4	
	815	141	4	
	615	170	4	
	816	201	4	
	622	109	4	
	822	496	4	
	622	847	4	
	822	829	4	
	628	144	4	
	629	788	4	
	628	864	4	
	626 844	907	4	
	844	141	4	(
	844	319	-	
	848	679	4	
100	846	798	4	
•	864	908	4	
	863	146	4	
	863	708	4	
	672	144	4	
	872 872	479 847	4	
	891	820		
	900	•	4	
	900	900	4	
	907	170	4	
	907	227	4	1
HT	907	822		NITE
OI	71907 U	1 V 120 1		
	920	186	4	
	D 620 T	208		ТОТ
ENE	T 920	303	13 (13 (1	
	920	311	4	
	634	146	4	3
	954	303	4	
	934	894	4	
	934 934	712 760	4	
	834	848	4	
	942	170		
	942	227	4	
-1	942	628	4	
		100	•	
	7	942	3	
	9	189	3	
	- 64	165	-;-	
	84	221	3	
	64	271	3	
	_ 84	303	3	
	_ 86	141		
	100	301	3	
	105	188		
e ²	109	201	3	
	109	271	-;	
	109	303	3	
	109	794	8	

CENTOR	CENTOES	NTT10
134	227	3
141	146	3
141	494	3
141	672	a
144	344	3
148	366	3
146	476	8
146	613	3
140	197	3
140	808	
140	436	3
149	712	3
149	766	_ 3 _
163	160	3
183	246	3
183	366 629	3
159	106	•
189	367	3
163	227 767	3
168	160	-;-
168	197	3
168 168	286 334	3
188	767	-;
169	146	
170	134	3
186	203	3
197	290	3
197	498 780	3
208	188	3
221	100	
223	803	
223	185	3 (
223	197	3
27	286	3
227	366	3
227	159	3
290	401	3
	128	3
294 296	311 767	3
236	907	3
246 246	189	3
246	246 211	3
250	170	3
250 250	230 844	3
255	496	3
266	134	3
271	146	-
200	230	3
284	227	3
294 294	496 602	3
301	64	- :
301	344	
301	401 831	3

CENTON	CENTRES	FLUID
303	230	3
203	788	3
306	691	
311	197	-
319	344	÷
319		
	662	\$
329	166	
333	637	3
338	826	3_
334	•	3
334	227	3
334	629	3
344	813	
		3_
344	780	3
366_	168	3
366	280	3
386	305	3
366	712	3
378	168	-;-
200		
380	319	3
-	676	3
367	/100	3
367	144	3
317	221	7 3
TA 3076 FL	AMM767	3
397	780	3
367	934	3
401	141	3 /
	7 19 12001	3331
401	828	3
431	146	3
438	319	3
430	767	3.7/
452	148/	37
462	246	3/
462	401	3
495	757	- 3-
496		
	788	8
408	907	
534	144	
534	629	3
534	907	1
580	712	3
579	186	3
579	248	3
579	311	3 7
579	328)3 (
579	767	3
579	788	3
570	798	3
579	846	3
613	141	3
629	329	3
629	334	3
629	872	3
637	146	3
637	163	3
637	378	
845	334	-;-
-		
646	367	3
847	100	8
647	934	3
647	942	3
862	767	3
709	201	3
712	148	3
712	197	3
712	436	3
77-77-7		
712	780	
723	197	3
730	9	3
733	127	3
	776	

CENTOR	Carross	PLULO	
733	884	8	
767		3	
767	468		
787	218		
700	368	3	
700	590	·	
780	709	1	
780	712	8	
767	7 7	3	
776	319	3.	
776	733	_ 1	
700	366	_ 1	
788 788	845		
798	654 672	3	7
794	100	-;-	
798	127	÷	
798	141	3	
615	218	3	
822	579	8	
<u>822</u>	622	3	
822	848	3	
822	907	3	
825 825	197		
828	462	3 3	
620	647	3	
828	186	3	
844	149	-	
844	294	3	
844	498	3	
846	728	3	
846	798	3	
846	109	3	
864	767	3	
064	846	3	
864	891	_ 8	
863	783	3	
872	230	3	VITTE
872	1V700-1		JUL
872	712	3	
801	646	3	
907	159	BIBI	LOT
907	230		
907	906	3	
910	186	3	
910	907	3	
920	236	. 3	
920	709	3	
924	788	3 -	
930	942	- ; -	
934	134	- ; -	b)
934	153	_ i	
934	366	8	
954	579	3	
942	64	3	
942	647		
942	709	_ 3 _	
7	9	3 -	
+ +	109	2 2	
7	146	2	
7	498	2	1
7	700	2	
7	712	2	
7	722	2	
-	163		ù.
9	216	2	

CHINTON	CENTRES	LYTHO
	234	2
•	226 326	2 2
-	367	2
	531	2
•	730	2
9	788	2
	790	2
	925	2
84	930	2 2
84	163	- 2
64	201	2
64	266	2
84	646 714	2
64	717	2
64	810	2
8	826 628	2 2
- 64	942	2
96	149	2
96 96	534	2
96	766 860	2 -
100	134	2
100	250	2
100	200	2
100	496 534	2 2
100	879	2
100	707	2
100	844	2 2
100	301	2
100	333	2
109	378 646	2
109	646	2 2
109	723	2
/100	_ 628 V	⊥ 2
109	910 924	2 R
100	930	2
L 124 /	141	2
124	197 634	2
124	637	2 2
124	844	2
127	221	2
127	229 306	2 2
127	378	2
127	380	2
127	576 707	2 2
127	783	2
127	790	2
127	906	2
181	134	2 7
181	248	2
131	462	2 -
181	579 637	2
191	786	2 2
191	984	2
184	163	_ 2
184	301 534	2 2
141	127	2
	77 77 77	

CENTURE	CENTRES	FLUID	t)
141	153	2	
141	170	2	
141	223	2	
141	201	2	
141	122	2	
141	844	2	
141	800	_ 2	
144	7	2	
144	105	2	
144	160	2	0
144	227		
144	401	2	S.
144	660	2	
140	96	2 2	
148	127		
148	134	2	5
146	203	2	
146	240	2	S .
146	863	-;-	
148	934	2	
140	100	2	
140	170	7.2	
THE CONTRACT	230	+ 2	
TA 140 L	AM 248	2	
140 /11	1110726	2-\	
3	620	2	
149	694	2 <	
163	77	2	
163	A 141	2	
153	163	2	
153	203	2	
163	223	2 /_	Ï
153	303	2	
183	384	_ 3	
153	679	2	ġ.
189	468 579	2	
169	757	2 2	
189	934	2	
7 105	04	2	TTT
166	140		$A \cup I$
165	767	2	
100	134	2	
100	150	△12 ⊤	
	186		JEIN
180	203	2	Š
100	223	2	
100	230	2	
100	271	2	B C
100	570	2	
168	367	2	V
160	712		ļ.
166	728	_2_	
169	9	2	
180	907	2	ii.
170	218	2 2	
170	246	2	
170	280	2	į.
170	300	2	n Q
170	662		2
170	678	2	
170	723	3	2
170	757		
170	810		6
185	229	2	
188	234	2	
188	236	2	0
188	367	2	rg
	476	2	V1
186	410	- 4	

CENTON	сыпрез	PLUID	
165	767	2	з ,
185	872	_ 1	
197	230	2	Š.
197	200	2	
197	305	2	
197	679	2	
197	844	2	
197	900	2	
201	154	2	1
201	201		
201	260).
201	201		
201	260		
201	319	_ 2	
201	629	_ 2	
201	640	2	
201	670		
201	714		.)
201	763	2_	
201	790		
201	810		
201	626	2	
201	844	2	
201	883		
203	926		
	227	2	
203	200	2	
203	301	2	9
203	334	2_	
203	726	2	
203	757	2	
218	9	_ 2	
218	100	2	
218	221	2	
218	230	2	
218	334	2	
218	367	2	
218	826	2	
221	134	2	
221	303	2	
221	319	2	
221	401	2	
223	144	2	
223	246	D2D	
227	100	BiB	
227	240	2	
227	303		
227	303	2 2	
227	430	2	
227	757	2	1
227	907	2	
229	168	2	
229	227	2	
229	436	2	
230	134	2	
230	271	1	
230	436	2	
230	590	2	
230	813	ż	
230	712		i e
230	728	2	
234	144	2	
234	186	2 -	
234	197	2	
234	201	2	
234	438	2	
236	127	2 2	9
235	834	2	
236	637	2	,
236	788	2	
236			
440	141	2	

CENTON	CENTRES	PLUJO
236	170	2
238	894	2
236	767	
246	227	
240	230	2
246	236	2
246	462	_ 2
240	470	_ 3
240	860	
248 248	766 766	2 2
240	822	
248	844	1
246	864	2
250	105	2
250	180	_ 2
250 250	201 223	2
250	227	
260	246	2
260	534	2
250	815	_ 2
250	907	2
281	109	2 2
281	221	2 2
261	301	- 2 -
200	183	2
288	227	2
269	250	2
266	276	2
289	328 847	2
260	780	-
206	790	2/
208	864	2
256	924	2
271	127	2
271	163 246	2
271	401	12
271	768	2 (1
271	920	2
200	260	2
1286 / /	301	2 ,
200	679 622	2 2
294	189	
294 294	197	2
	201	2
301	160	2
801 801	201 218	2
301	223	2 2
301	234	-
301	613	2
301	780	2
303	149	
303	100	_ 2 _
303	301	2 2
306	127	
306	169	2
311	- 64	2
311	127	2
311	245	
311 311	266 344	2
319	246	2
310	787	2
310	766	2

СВИТОК	CENTRES	PULLIO
319	626	2
326	170	. 2
328	230	2
828	286	2
326	828	2
333	170	3
333	709	2
334	266	2
334	301	
334	834	2
334	709	2
334	714	2
334	828	2
344	100	2
344	170	2
344	201	2
344	218	2
344	662	2
344	757	2
344	776	2
305	134	2
366	140	2
366	206	2
300	344	2
MAISSO, PL	579	12
308 RIT	622	2
353	907	121
378	127	12
378	146	1 2
378	258	- 2
378	847	- 2
TOWNS TO SERVE THE PROPERTY OF		WILLIAM TO A
378	786	2.7/
378	815	1/2)/.
380	109	2/
380	862	2
380	844	
380	863	
367	141	2
307	170	
367	234	2
387	301	12 A
367) 17h2//	XL2 /
367	816	2
367	826	2
367) \2 C
J 397 L		713 (
367	907	2
401	100	2
401	170	2
401	201	2
401	203	2
401	496	2
401	780	2
401	846	2
416	200	2
421		2
439		2
430	141	2
462	144	2
462	170	2
462	288	2
462	367	2
462	430	2
462	613	2
462	828	2
476	127	2
476	188	2
470	197	2
498	170	2
498		2
	579	
498	676	2 2
408	709	

GENT	roni	CENTRES	PLUMO
46		826	2
_ 44		820	2
(A)	_		2
61		201	2_
63		768	2
63	_	828	2
63		100	-
63		218	2
65		236	2
63		250	-
63	и	367	2
63		634	2
66		64	2
66		185	2
66		216	2
06		344	2_
56		607	2
60		780 783	2 2
67		201	2
57		462	2
57	_	476	2
57		691	2
57	0	962	2
57	_	844	2
57		864	2
57		942	_ 2 _
		200	2_
86		767	2
61		788	2
81		223	2-
81	_	271	2
91		301	2
01	3	476	2
61	3	679	2
61	3	380	2
61		662	
. 61		794	
JT () S	7.0	003	
82		234	2
62		401	2
		883	1201
LNLIG		131	31231
63		159	2
63		360	2
63	_	714	2
63		728	2
60	_	798	
63	_	828	_ 2
63		848 854	2 2
63		910	2
64		109	2
84		328	2
64	16	401	2
64	6	709	2
64	_	168	2
64		268	
64		670	2
64	_	709	2
64		846	_ 2 _
64		109	2 2
84	_	201	2
64		206	2
	_	310	2
-		394	2
		709	2
	2	747	2
	_		

	CENTON		PLUJO
	676	124	2
	678	301	2
	709	140	2
	709	170	- 2 -
	709	223	1
	708	246	2
	700	294	2
	708	311	2
1	709	334	2
r .	700	344	<u>-</u> -
	700	676	2
	709	760	2
	712	100	2
	712	461	2
	712	728	2
	712	730	2
	712	920 842	2 2
	714	<u> </u>	
ja .	714	144	2
	714	149	2
	714	170	2
	714	219	2
	714 714	495 907	2
	723	84	- 2
	723	109	- 2
	723	141	2
	723	294	2
	723	460	
	720	197 230	_ 2
	728 728	767	2 2
	728	760	- <u>i</u> -
	726	767	7 2
	726	840	2
	728	907	2
TT TT	790	230	2
NUE	733	319	2
	733	402	2(p)
	733	647	-
IOT	/733 ∧	962	2
	733	2 120	2
	767	227	_ Z
	767 767	234 368	2 2
	767	629	2
	767	620	2
	767	820	2
	760	. 64	2
	760	100	2
	760	134	
	780	230	2
	700	200	2
	760	328	2 -
	760	760	2
	760	776	2
	760	769	2
	760	766 794	2
	760	822	2
4	760	872	
	760	934	<u></u>
	767	100	2
	767	367	2
4	767	629	_ 2
	767	637	
		776	2

CENTON	CENTRES		0
SSSERVICE AND	SESS COMPOSED	FULLO	l i
140	100	1	li .
140	163	1	ľ
140	208	1	1
149	271	i	f
140	311	1	
149			ł
140	319		ł
	367		1
148	466	_ 1	
140	560	1	in or
149	826	1	
149	900	1	
163	64	1	1
163	124	1	fi .
163	144	1	
163	100		(
			K.
163	218	1	e e
163	238		
163	286	1	
183	847	1	6
163	942	1	lo .
189	100	1	
100	201	1	ľ.
180	248		
163	33250		ł
163 R	LAM 64 M.T.	1/1/	Į.
163VER	TAT 148		
163	193	1	\
163	246	1	I:\
166	186	1	
108	84	- i	V .
108	144	-	l
160	146	1	/
166			V
	140	4 10	
166	235	1	c.
108	248	1/	l
100	281		
100	311	1	l
100	476	1	
168	613	1	1
160	847	1	1
100	714	1	
166	863	AD	$\Delta \square \square$
			101
188	834		l .
169	146		
169	108		CIEN
169	201	<u>U1</u>	JEI'
170	109	1	
170	462	1	I
170	942	1	1
166	165	1	i
186	203		
186	236	1	ļ
186	319	1	
166	462	1	l
166	560	1	
186	798	1	
186	846	1]
197	100	1	l.
197	201	-i	
197	229	1	i
2000000			
197	294	1	
197	415	1	ľ:
197	532	1	5
197	723	1	ľ
197	733	1	ľ
107	822	1	l.
197	846	-;	ľ'
		1	i
	910		
167	200		
167	824	1	ł
197	942	_ 1	
167			

Сантон	CENTRES	PLUJO	
203	223	1	
203	230		
203	768 928	_!_	
218	148		
218	150	-	
210	170	1	
210	201	i	
218	223	_1	
218	246	1	
218	708	1	
218	900		
221	127		'
221	216 366	1	İ
221	438	1	
221	907	-1-	
221	934	+-	
223	149	1	
223	498	_1_	
223	780	1	
227	163	1	
227	294		
227	804		
229 229	109		
229	134	1	
229	144	4	
229	203	-	
229	676	- i -	
229	709	A 1	
229	860	1	
230	7	1	
230	100		
230	201		
230	218		
230	230	1	
230	334		
230	476	-	
230	579	T1\ T	ATT
230	700		NU
230	780	1	
230	934	1	j
234	109	1	I IO
C 234 A	367		LIU
234	880	- 1	
236	223	1	
235	227		
236	308	- i	
236	344	1	1
236	439	1	
236	834	1	
246	140	4	
246	153		
246	201	1	
246	203	1	
246	291		•
246	288	-	
246	301	-	
246	334	-	Ò
246	714	1	
248	900	1	
250	221	_1_	P
260	578_	1	
250	767		
266	829		
261 261	223 _ 468	1	
261	709	1	
22.			

CENTON	СВІТОВО	PLUJO
261	766	1
204	218	_ 1
271	712	1
271	109	+
271	221	•
271	223	
271	847	1
276	766	
200	221	
286	700	_
294	907	1
301	7	i
301	221	1
301	670	1
303	169	1
303	637	1
303	847	i
306	579 109	=‡-
319	141	
310	221	_ i
310	319	_ 1
319	380 834	_ !
319	712	1
310	794	i
319	626	
319	880	1
328	127 301	1
328	629	<u> </u>
328	663	1
383	406	1
344	712	
344	eda	1
344	907	
366	141	1
366	153	1
366	221	1
356	307	_1_
366 366	462 013	1
306	828	1
305	846	
378	401	1
387	170	1
367	223	
367	246	1
387	825	1
367	846 908	1
267	934	1
401	159	1
415	245	1
436 436	248 344	1
436	780	1
498	B25	
462	186	. 1
482	776 930	1
462	942	1
476	109	1
476	767	1
470	760	1

CENTOR	Самправ	PLUMO	
479	144	1	
400	994	1	
831	197	1	
631 691	200 430	_ !	
631	579	1 1	
634	149		
634	246	1	
634	788	. 1	Ì
634	868	1	
800	107		
580	613 647	. 1	
880	822	1	
579	308	- ;	
679	900	1	
579	908	1	
579	834	1	
890	64	_11	
590	197	1	,
890	438 760	1	
913	166		
013	200) i -	
TAI0132 FL	MM 306	1	
B13	113 328	1	
613	462	(0.1)	
013	720	1<	
013 829	260		
637	236	1	
637	783		
637	794	(1)	1
837	810	1/-1/	
637	908	/ 1	
045	319	1	
046	344	1	
847 862	248 197	-1-	
662	344		
676	197	T	TITT
678	294		UIUI
678	498	1_1	
678	822	1	
707	149		FNI
700	150		
700	229		
709	250	1	
709	682	1	
709	B42		
712	159	1	
712	169 319	1	l
712	580		
712	667	- i -	
712	662	1	į
712	700	1	
712	717	_ !	
712 712	907	1 1	
712	907	1	
714	163	1	
714	108	1	
723	306	1	
723	344		
723	682	1	
728	942	1	
733	100	_!_	
733 767	828 159	1	
101	415	1	c c

CENTON	CENTRES	FLULO		ĺ
757	534			ŀ
757	714			ŀ
757	794	4		ŀ
757	980			ŀ
767	672	7		ŀ
757	990			ŀ
780	246	-		ŀ
780	200	-		ŀ
780	303		ŕ	ŀ
780	717	•		ŀ
780	907	4		ŀ
780	924	1		ŀ
767	201	1		ŀ
767	462	1		ľ
767	767	1		ſ
767	786			C
767	900	1		ľ
767	920	1		ľ
778	261	_ 1		
776	767	1		ĺ
776	626			Ĺ
789	140			Ĺ
783	767	1_		Ĺ
783	860			Ĺ
763	824			Ļ
786	189	1		ŀ
786 788	676	1		ŀ
786	723			ŀ
786	798	1		ŀ
786	900			ŀ
790	430	4		ŀ
794	230	- 1		ŀ
794	813			ŀ
794	942	11		ŀ
798	236	1		١
798	637	1	9	t
798	728			ľ
798	767	ļ		ľ
796	763	1		I
790	786			Ĺ
71700	798		JUL	Ĺ
790	859	_ 1		ļ
798	900	1		ŀ
798		NAI R	IOT	ŀ
810	134	01:DT	101	ŀ
815 822	798 153	1		ŀ
822	168	1	Y.	ŀ
822	186	1		ŀ
822	230			ŀ
822	301	1		ŀ
822	367	1		ŀ
822	401	1		ŀ
822	462	-		ŀ
822	712	1		ŀ
822	783	1		ŀ
822	798	1		ŀ
822	844	1		t
826	144	1		ľ
826	169	1		r
828	218	4		ľ
828	210	1	i.	ľ
826	498	1		ľ
826	728	1		ſ
626	790	•		ſ
826	891	1		ĺ
826	908	1		Ĺ
826	127	1		ļ
828	169			ŀ
828	802	1		ŀ
824	844	1		1

СШПОМ	CENTRES	ruso
628	810	1
84	218	1
844	229	-
844	246	
844	579	1
B44	924	\dashv
846	149	1
845	197	1
845	401 872	1
845	804	1
846	64	1
846 846	127 301	1
848	647	_;
846	720	1
046 046	769 864	1
848	891	1
946	900	1
846	903	1
846	637	1
864	679	1
864	786	1
864	908	1
860	149	1
88	197	1
680	766	1
880	834	1
863	100	1
863	160	-1
863	166 246	1
863	301	1
563	320	
863	344	
983	676	1(R)
863	766	
963 A	874	1
963	910	1
672	246	_1
872 872	531 579	1
872	733	
672	822	1
872 872	864 863	1
872	909	1
672	942	1
874	872	1
891	0	1
886	826	1
900	88	1
800	140	1
900	845	1
900	920	1
903	828 846	
903	963	1
903	907	1
908	100	1
907	169	1

907	236	1
907	360	1
907	482	1
907	405	1
907	629	1
907	676	1
907	714	1
907	726	1
907	891	1
907	900	1
907	1028	1
910	7	1
910	149	1
910	401	1
910	767	
910	798	1 1
910	822	1
910	846	1
910	663	1
910	924	1 1
910	930	1
920	100	1
920	230	71
11 920 %	7 305 L	OX
/ 920	AM (679	
920	728	
920	864	1 1
920	924	1
920	942	1
924	B4	1 1
924	109	1
924	189	1/
924	401	
924	942	1/1/
928	0	1
929	760	1
930	109	1
930	757	1_
930	822	1
930	907	1
930	910	A 1
934	98	A 1)
934	100	1
994	203	1
934	223	hi-
934	333	
934	590	1 1
004	714	1 1
934	726	- ! -
934	815	1
934_	942	1
942	109	1
942	149	1
942	189	1
942		1
	230	
942	712	1
943		1 1
942	726	1
942	767	1

834 * AMUS PLUUD

UANL

UTÓNOMA DE NUEVO LEÓN

SENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

