State-Level Output Supply and Input Demand Elasticities for Agricultural Commodities

Pedro A. Villezca-Becerra and C. Richard Shumway

Abstract. Own- and cross-price production elasticities, estimated in four major agricultural States (California, Iowa, Texas, and Florida), measure the sensitivity to price changes of as many as 25 individual crop and livestock output supplies and six input demands While most responses were highly inelastic, a wide range of elasticities occurred across States The range was generally greater for crop supplies than for livestock supplies or input demands The wide range of elasticities demonstrates the need for economic analysis to focus on specific groups of producers when assessing distributional consequences of policy changes

Keywords Demand, elasticity, multistage, State, supply

Domestic and international policy simulations require estimates of agricultural output supply and input demand relationships For example, successful GATT negotiations hinge on how producers in the United States and elsewhere respond to changes in market prices and withdrawal of outputand input-distorting government incentives. The relative ments of alternative environmental policies depend on producers' input choices Secondary (or indirect) effects on outputs or inputs other than the one(s) directly targeted by a particular policy instiument are sometimes as great as the direct effects How producers are affected can vary with scale of operation, resources, and geographic location Understanding intercommodity and distributional consequences demands reliable estimates of own- and closs-price commodity supplies and input demands for important groups of producers

Yet, because of computational burden and data limitations, empirical research on intercommodity relationships has generally concentrated on estimates at a national or regional level for highly aggregated categories (Ball, 1988, Huffman and Evenson, 1989, Shumway and Alexander, 1988) ¹ Policy inferences from such studies have been limited to the aggregate effects of agricultural policies, often ignoring geographic and commodity distributional effects

Because of the large number of agricultural commodifies produced and inputs used and because of the heterogeneity of production in most areas of the country, complete output supply and input demand elasticity matrices can be derived only if estimation models can be simplified Simplification in model specification becomes necessary to conserve degrees of freedom in estimation and to reduce collinearity Analytic simplification is justifiable whenever data are consistent with certain theoretical and structural properties For example, when production is nonjoint in inputs, commodity supplies are independent of other output prices. When production is separable, quantities can be aggregated and production analysis can be performed in stages with subsets of variables and with the aggregates without distorting the disaggregated results Sepaability is particularly crucial since, without the ability to perform multistage modeling, estimating all commodity cross-price elasticities from a given data set is often impossible. Each of these properties permits specification of individual econometric models that require estimation of fewer parameters Therefore, we require less information from the usually limited and imperfect data available

This article exploits the analytic simplification opportunities permitted when production data exhibit reasonable consistency with homothetic sepaiability and/or nonjointness properties. The objective is to estimate complete matrices of output supply and input demand elasticities for four major, geographically separated, agricultural States (California, Iowa, Texas, and Florida), each of which produces a large number of commercial agricultural products. Both own- and cross-price elasticities will be computed at the individual commodity level

Model Specification

We assumed that the collection of producers in each State behaved like a price-taking, profit-

Villezca-Beceira, formerly a research assistant at Texas A&M University, is a professor of agricultural economics, Universidad Autonoma Chapingo, Mexico Shumway is a professor of agricultural economics, Texas A&M University, College Station Appreciation is extended to Robert Evenson and Christopher McIntosh for access to the extensive State level data series compiled by them and their associates, and to Teofilo Ozuna, Oral Capps, and reviewers for many helpful suggestions and comments on earlier drafts of this paper This material is produced with the U S Department of Agriculture under agreement #58-3AEM-8-00104

 $^{^1} Sources$ are listed in the references section at the end of this article

maximizing firm with a State-level aggregate production function, and modeled each State as though it was a perfectly competitive firm. We assumed regularity conditions on the production function to assure that a twice-continuously-differentiable dual profit function could be derived. Application of Hotelling's lemma to the profit function yielded a set of output supply and input demand functions for each State Based on the results of functional form tests conducted by Ornelas, Shumway, and Ozuna (1991), who used U.S. agricultural data, we modeled the aggregate State-level restricted profit function by using the normalized quadratic functional form

$$\pi = b_{0} + \sum_{i=1}^{m} b_{i}p_{i} + \sum_{i=m+1}^{n} b_{i}z_{i}$$

+ 05 ($\sum_{i=1}^{m} \sum_{j=1}^{m} b_{ij}p_{i}p_{j}$
+ $\sum_{i=m+1}^{n} \sum_{j=m+1}^{n} b_{ij}z_{i}z_{j}$)
+ $\sum_{i=1}^{m} \sum_{j=m+1}^{n} b_{ij}p_{i}z_{j}$, (1)

where π is profit (receipts less variable costs) divided by the price of netput (input or output) 0, p_1 , p_m are the output and variable input prices divided by the price of netput 0, z_{m+1} , z_n are fixed input quantities and other nonplice exogenous variables, and b_0 , b_1 , and b_u are parameters

To maintain consistency with the competitive theory and a twice-continuously-differentiable technology, linear homogeneity of the profit function in prices was applied through normalization (that is, dividing profit and prices by the price of netput 0), and symmetry (reciprocity) conditions among the first-derivative equations were imposed via linear parameter restrictions Convexity was maintained by using the Cholesky factorization (Lau, 1978) Monotonicity was not maintained but was checked at each observation The estimation system consisted of the first-derivative output supply and input demand equations

$$\partial \pi / \partial p_{i} = x_{i} = b_{i} + \sum_{j=1}^{m} b_{ij} p_{j} + \sum_{j=m+1}^{n} b_{ij} z_{j},$$

for $i = 1, ..., m,$ (2)

where x_1 , x_m are the netput quantities, positively measured for outputs and negatively measured for inputs

By subtracting these price-weighted supply and demand equations from the normalized restricted profit function, we obtained the numeraire equation (the quantity supplied of netput 0)

$$\begin{aligned} \mathbf{x}_{0} &= \pi - \sum_{i=1}^{m} p_{i} (\partial \pi / \partial p_{i}) = \mathbf{b}_{0} \\ &+ \sum_{i=m+1}^{n} \mathbf{b}_{i} \mathbf{z}_{i} - 0.5 (\sum_{i=1}^{m} \sum_{j=1}^{m} \mathbf{b}_{ij} p_{i} p_{j}) \\ &+ 0.5 (\sum_{i=m+1}^{n} \sum_{j=m+1}^{n} \mathbf{b}_{ij} \mathbf{z}_{i} \mathbf{z}_{j}), \end{aligned}$$
(3)

which is a quadratic function in normalized prices and fixed inputs

When the underlying technology is homothetically separable in a partition of variables, data within the partition can be consistently aggregated and consistent multistage choices can be conducted Assuming the same functional form as for the aggregated model, the normalized quadratic suboptimization (second-stage) model for the separable partition, s, was

$$\pi_{s} + b_{0s} + \sum_{i=1}^{m} b_{is} p_{is} + \sum_{i=m+1}^{n} b_{is} z_{is}$$

$$+ 0 5(\sum_{i=1}^{m} \sum_{j=1}^{m} b_{ijs} p_{is} p_{js}$$

$$+ \sum_{i=m+1}^{n} \sum_{j=m+1}^{n} b_{ijs} z_{is} z_{js})$$

$$+ \sum_{i=1}^{m} \sum_{j=m+1}^{n} b_{ijs} p_{is} z_{js} + c_{s} q_{s}$$

$$+ \sum_{i=1}^{m} c_{is} p_{is} q_{s} + \sum_{i=m+1}^{n} c_{is} z_{is} q_{s}$$

$$+ 0 5 d_{s} q_{s}^{2}. \qquad (4)$$

where π_s is normalized profit for the subset, p_{1s} , p_{ms} are the normalized prices within the separable subset, $z_{m+1,s}$, z_{ns} are the exogenous variables not included in the homothetic separability tests, q_s is the aggregate netput quantity index of the separable subset, and b_{0s} , b_{1s} , b_{1ys} , c_s , c_{1s} , and d_s are parameters

Applying Hotelling's lemma to equation 4, we obtained the system of allocation equations

$$\partial \pi_{s} / \partial p_{1s} = x_{1s} = b_{1s} + \sum_{j=1}^{m} b_{ijs} p_{js} + \sum_{j=m+1}^{n} b_{ijs} z_{js} + c_{1s} q_{s}, \quad \text{for } i = 1, \dots, m, \quad (5)$$

where x_{1s} , x_{ms} are the allocation equations for the suboptimization model By subtracting the price-weighted allocation equations from equation 4, we determined the quantity supplied of netput 0 (numeraire equation) of the subset

$$\begin{aligned} \mathbf{x}_{0s} &= \pi_{s} - \sum_{i=1}^{m} p_{is} \partial \pi_{s} / \partial p_{is} = b_{0s} \\ &+ \sum_{i=m+1}^{n} b_{is} z_{is} - 0.5(\sum_{i=1}^{m} \sum_{j=1}^{m} b_{ijs} p_{is} p_{js}) \\ &+ 0.5(\sum_{i=m+1}^{n} \sum_{j=m+1}^{n} b_{ijs} z_{is} z_{js}) \\ &+ c_{s} q_{s} + \sum_{i=m+1}^{n} c_{is} z_{is} q_{s} + 0.5 d_{s} q_{s}^{2}, \end{aligned}$$
(6)

which is a quadratic function in the normalized prices, aggregate index, and other exogenous variables

Third-stage suboptimization models were formulated whenever the suboptimization model, equation 4, included an aggregate price index among the normalized prices within the separable subset These models were constructed following the pattern described in equation 4, and their allocation equations were obtained from their derivatives as in equations 5 and 6

Data and Variable Specification

Annual State-level data compiled by Evenson and others (1986) for the period 1951-82, and updated to 1986 by McIntosh (1989a), supported this article Output prices and quantities were included for as many as 14 field crops, four vegetables, four fruit crops, and seven livestock commodities, plus residual crop and livestock categories that consisted of other commercial food and fiber production for the given State Variable input prices and quantities were included for fertilizer, pesticides, hired labor, machinery operating inputs, miscellaneous variable inputs, and capital services Quantity data were included for the fixed input categories, land and family labor The aggregate models included such exogenous variables as expected output prices, current variable input prices, and quantities of the fixed inputs (land and family labor), time, temperature, precipitation, and effective diversion payments

Because of the large number of individual outputs (as many as 25 in some States) and input categories (8) and the limited number of data observations available (36), it was at first necessary to aggregate the data Based on common nonrejected nonparametric separability tests using 1956-82 data for each of these States, this aggregation included four output categories and three variable input categomes (Lim and Shumway, 1992) The output aggregates were crops, meat animals, milk-poultry, and other livestock The meat animals category included cows and calves, hogs and pigs, and sheep and lambs The milk-poultry category included milk, eggs, broilers, and turkeys The other livestock category included all remaining commercial food animal commodities not included in the meat animal or milk-poultry aggregates The variable input categories were labor-capital, materials, and pesticides The labor-capital category included hired labor, machinery operating inputs, and capital services The materials category included fertilizer and miscellaneous variable inputs We aggregated all price categories using the Tornqvist index

The variable-input category, pesticides, and the two fixed-input categories, family labor and land, were not aggregated further in the aggregate models Pesticide price and quantity data were provided by McGath (1989) at the Economic Research Service A weighted average of effective diversion payments for farm program crops was constructed using profit shares in the respective States as weights

Villezca and Shumway's (1992) findings furnished final aggregate models built to be consistent with nonrejected parametric hypothesis tests of nonjointness and/or homothetic separability. They tested these structural properties in all four States using three different functional forms. They concluded that shortrun output category supply equations in California can be specified as functions only of their own prices, prices of variable inputs, and quantities of the nonprice exogenous variables. The same conclusion applies to crops and other livestock in Texas and Iowa, and to crops and meat animals in Florida. No justification was found for a higher level of data aggregation than already maintained in the initial model design.

Guided by Lim's (1989) findings, 1-year lagged output prices were used as the expected market prices In using a procedure adapted from Romain (1983), we expected prices of farm piogiam commodities (corn, milk, cotton, soighum, barley, wheat, oats, soybeans, rice, sugarbeets, peanuts, and tobacco) to be specified as weighted averages of the anticipated market price and effective support price. The weights were dependent on the relative magnitudes of the expected market prices and support prices McIntosh's (1990) findings favored the use of this specification in three of the States The specification of effective diversion payments and effective support prices followed Houck and Ryan (1972) The simple average of the maximum and minimum values of these variables compiled by McIntosh (1989b) were used in the specification

Weather variables were cropland-weighted State averages of monthly temperature and totals of monthly precipitation for critical growing months or for the calendar year (Teigen and Singer, 1988) Exploratory analysis was conducted to determine which weather variable specification provided the greatest explanatory power in each State. The weather variables chosen were annual average temperature and annual total precipitation in California, April-May average temperature and July-August total precipitation in Iowa, March-April average temperature and June-July total precipitation in Texas, and March-April average temperature and June-August total precipitation in Florida

Second-stage suboptimization, employing corresponding price and quantity disaggregated data, was conducted for crops, meat animals, milkpoultry, materials, and labor-capital categories in each State Third-stage suboptimization models covered crop categories that had to be aggregated in the second stage due to the large number of individual crops for a given State Nonprice exogenous variables included in all suboptimization models were the same as in the aggregate models, except for land and family labor For the multistage model structure, as in the case of the aggregate models, we aggregated the data into output and variable input categories based on the separability test results obtained by Lim and Shumway (1992) Since neithen the weak separability tests conducted by them nor the homothetic separability tests conducted by Villezca and Shumway (1992) on the aggregate models included the nonprice exogenous variables of temperature, precipitation, time, or effective diversion payments, these variables were included in all the multistage choice models for each State

Estimation Procedure

For the first-stage (aggregate) models, systems of four output supply equations (crops, meat animals, milk-poultry, and other livestock) and two input demand equations (materials and pesticides) were estimated for each State as specified in equation 2 The capital-labor input price was used to normalize profit and all other output and variable input prices Because of high collinearity in some State models, neither the profit function, equation 1, nor the numeraire, equation 3, was included in the aggregate systems of estimation equations Nevertheless, because of shared parameters and homogeneity restrictions, all price elasticities for the numeraire equations were derived from the estimated systems

Systems of output supplies and input demands estimated for the second-stage suboptimization (allocation) models, as specified in equations 5 and 6, are detailed for each State in table 1 Because of the large number of crops, we estimated third-stage suboptimization models for at least one crop category in each State The numerance, equation 6, was included in each estimated suboptimization model system estimated Because of high collinearity in several models, parameters on the quadratic terms of the nonprice exogenous variables were not estimated in any of the suboptimization models. This exclusion reduced the flexibility of the functional form used for the suboptimization models by imposing closs-equation restrictions on comparative statics among the fixed inputs at the point of approximation

Erioi terms associated with each model were assumed to be additive and independently and identically distributed with mean zero and a constant contemporaneous covariance matrix. The covariance matrix that transformed the observation

matux came from the iterative version of Zellner's seemingly unrelated regression (ITSUR) Using the procedure SYSNLIN ITSUR in the SAS package, the variance-covariance matrix was iterated until it stabilized for each model The Cholesky factorization allowed imposition of the nonlinear inequality restrictions for maintaining convexity. With the convexity restrictions imposed, and using the observation matrix transformed by the iterated covariance matrix, we employed a reduced-gradient nonlinear program (Talpaz and others, 1989) by using the algorithm code MINOS 5.1 (Murtagh and Saunders, 1983) to obtain least squares estimates that satisfied curvature properties for each system of output supply and input demand equations Model estimates were subject to homogeneity, symmetry, and convexity in prices and nonrejected nonjointness hypotheses

Results

Table 2 shows summary statistics for the aggregate and each suboptimization model for each State A 0.05 level of significance was used throughout this study in drawing conclusions from hypothesis tests Curvature properties were tested against the nonconvex alternative using the test from Talpaz and others, and were not significantly violated in any State for any aggregate or suboptimization model For the aggregate models, two nonsignificant monotonicity violations occurred in California, six jointly significant violations in Iowa, no violations in Texas, and three nonsignificant violations in Florida Among the 27 suboptimization models, monotonicity was significantly violated in only three (California feed and food grains, Texas oil crops, and Flouda meat animals) Consequently, one set of model estimates in each State significantly violated the implications of the competitive theory for individual firms However, all significant violations were limited to the first six observations of the data period No significant violations occuried at the most recent observation (for which elasticities were derived)

Given the model specification, the number of significant parameter estimates varied from 26 percent in the Iowa crops suboptimization model to 72 percent in the Iowa labor-capital suboptimization model Across models, the proportion of significant parameter estimates was 33 percent in California, 36 percent in Iowa, 40 percent in Texas, 33 percent in Florida, and 36 percent in all States combined

Multistage model estimates at the most recent observation (1986) produced disaggregated price elasticities for each State Equations 2, 5, and 6 determined the elasticities for individual commodities

Model	California	Iowa	Texas	Florida
Second-stage allocation			ops	
antication	Feed and food grains (A) Fruit and vegetables (A) Cotton Sugarbeets Hay Other crops (R) (N)	Feed and food grains (A) Soybeans Apples Hay Potatoes Other crops (R) (N)	Feed and food grains (A) Oil crops (A) Vegetables (A) Oranges Grapefruit Hay Other crops (R) (N)	Fruit and vegetables (A) Tobacco Soybeans Peanuts Corn Sugarcane Other crops (R) (N)
		Meat	anımals	
	Cattle Hogs Sheep (N)	Cattle Hogs Sheep (N)	Cattle Hogs Sheep (N)	Cattle Hogs (N)
		Milk-	poultry	
	Mılk Eggs Broılers Turkeys (N)	Mılk Eggs Broılers Turkeys (N)	Mılk Eggs Broılers Turkeys (N)	Mılk Eggs Broılers (N)
		Mat	erials	
	Fertilizer Miscellaneous variable Inputs (R) (N)	Fertilizer Miscellaneous variable Inputs (R) (N)	Fertilizer Miscellaneous variable Inputs (R) (N)	Fertilizer Miscellaneous variable Inputs (R) (N)
	-	Labor	-capital	
	Hired labor Capital services Machinery operating (N)	Hıred labor Capıtal services Machinery operating (N)	Hıred labor Capıtal services Machinery operating (N)	Hired labor Capital services Machinery operating (N)
Third-stage allocation		Feed and food grains		Fruit and vegetables
	Wheat Rice Corn Barley Oats (N)	Wheat Corn Sorghum Oats (N)	Wheat Rice Corn Barley Sorghum Oats (N)	Oranges Grapefruit Tomatoes Lettuce Potatoes (N)
	Fruit and vegetables		Vegetables	
	Apples Grapes Grapefruit Oranges Onions		Onions Lettuce Tomatoes Potatoes (N)	
	Lettuce Tomatoes Potatoes (N)		<i>Oil crops</i> Cotton Soybeans Peanuts (N)	

Table 1—Output supply and input demand equations estimated for multistage suboptimization models in the four States

A=aggregate category for which a higher level allocation model is estimated R=residual aggregate category for which no further allocation can be estimated N=the numeraire

and inputs by applying the chain rule of calculus (tables 3-10) (Appendix table 1 summarizes all own-price elasticities) Because of the large commercial agricultural output of these States, the supply elasticities reported here are the most detailed and comprehensive ever to appear in economic literature Without the ability to do multistage modeling, it would have been impossible to estimate cross-price elasticities for such a large number of commodities from these data ² All cross-price

⁴Estimating all cross-price elasticities by a single model would be possible if the time series data were pooled across States A sufficient condition for pooling the data is identical technologies across the pooled States Although not tested here, this hypothesis was rejected by Polson and Shumway for all pairs of States in two contiguous production regions

Table 2Summary statistics of multistage	e models in the four States
---	-----------------------------

			Monotor	ncity	Percent of
State	Model	Convexity, F-statistic	Number of violations ²	χ ² statistic	significant parameters ¹
Calıforma	Aggregate	0 70	2	1 53	26 9
	Crops	05	0		34 7
	Meat animals	1 28	0		38 9
	Milk-poultry	1 53	0		26 9
	Materials	3	0		36 4
	Labor-capital	3	0		61 1
	Feed and food grains	19	1	5 861	30 0
	Fruit and vegetables	39	0		32 4
lowa	Aggregate	1 20	6	49 77 ¹	317
	Crops	42	0		25 5
	Meat animals	41	0		33 3
	Milk-poultry	85	3	63	34 6
	Materials	3	2	1 13	27 3
	Labor-capital	3	0		72 2
	Feed and food grains	05	0		476
l'exas	Aggregate	29	0		39 7
	Crops	57	0		30 5
	Meat animals	38	0		38 9
	Milk-poultry	11	0		26 9
	Materials	Э	0		45 5
	Labor-capital	3	Ō		66 7
	Feed and food grains	76	1	2 68	37 3
	Vegetables	04	Ō		53 8
	Oil crops	0002	5	29 4 91	52 6
lorida	Aggregate	49	3	7 24	30 2
	Crops	20	3	55	310
	Meat animals	12	Ō		54 5
	Milk-poultry	33	1	003	44 4
	Materials	1	Õ		36 4
	Labor-capital	3	Ō		33 3
	Frut and vegetables	92	2	7 271	28 6

⁴Significant at 0.05 level

²Number of violations of monotonicity from a possible total of 36 times the number of equations estimated in the respective model 3 Unconstrained estimates satisfied convexity restrictions

elasticities were estimated To conserve space, however, some columns of elasticities are not reported in tables 3-10 because all elasticities in the column were zero to the third decimal place Standard errors are not reported for these elasticities, being both complex and merely approximate Nearly all of the elasticity estimates in each table were computed as a nonlinear function of parameters

Output supply and input demand elasticities varied widely across States Weighted averages of the expected market price and effective support price acted as the expected output prices of farm program commodities, so differences in response to government programs and market price information are reflected by the wide range of own- and cross-price elasticities across States

Crop Supply Elasticities

Nearly all own-price output supply elasticities were inelastic in each State Exceptions included wheat

and apples in Iowa, barley and oats in Texas, and tobacco and soybeans in Florida With very few exceptions, cross-price output supply elasticities were also inelastic Similarities among own-price responses (differences of 0 2 or less) across all States comprised potatoes, tomatoes (not produced in Iowa), and the other-crops residual category Similarities across pairs of States numbered wheat, rice, corn, grapefruit, oranges, onions, and cotton in California and Texas, oranges and lettuce in California and Florida, and soybeans and hay in Iowa and Texas Some of these responses were virtually the same (differences of 0 05 or less) in some State pairs, such as potatoes in California and Iowa. grapefruit, corn, and tomatoes in California and Texas, potatoes and tomatoes in California and Florida, and the other-crops residual category in Texas and Florida

The signs of the cross-price elasticities indicated a wide variety of shortrun competitive and comple-

☆ Table 3—Crop supply elasticities, California, 1986

									Elast	acity wit	h respe	ct to the	pince of	1								
Item	Wheat	Rice	Com Bailey	Oats	-	Sugar beets	Hay	Oniona	Lettuce	Toma toes	Pola- Loes	Apples	Grapes	Oranges	Grape- fruit	Other crops	Fer t- ilizer	Misc inputs	Pest- Icides	Hired labor	Capital serv	Mach opei
Wheat	0 070	0 052	0 045 0 021	0 001		0 170	-0 034	0 002	0 006	0 008	0 003	0 001	0 012	0 006	0 001	0 037	-0 006	-0 070	0 021	-0 173	-0 068	-0 052
Rice	037	072	- 049 014	030	- 028	093	- 019	001	003	004	001		007	003		020	- 003	- 038	012	- 094	- 037	- 029
Corn	015	- 086	344 - 129	- 114	- 009	028	- 006		001	001			002	001		006	- 001	- 012	004	- 029	- 011	- 009
Barley	009	013	- 254 181	075	- 006	021	- 004		001	001			002	001		005	- 001	- 009	003	- 022	- 009	- 007
Oats	-019	821	-2 462 830	857	- 007	025	- 005		001	001			002	001		005	~ 001	- 010	003	- 025	- 010	- 008
Cotton	- 006	- 005	-004 - 002		674	- 202	-127	- 006	- 023	- 030	- 010	- 003	- 047	-024	- 003	150	- 006	- 067	020	- 165	- 065	- 050
Sugarbeets	093	071	057 027	002	- 671	396	062	005	018	023	008	003	037	019	002	-152						
Hay	- 040	-031	-024 - 012	-001	- 916	143	758	089	345	447	152	051	698	363	038	-1 740	- 005	- 065	019	- 159	- 063	- 048
Onions					~ 027	005	037	013	015	011	003	008	031	023	019	- 060	- 001	- 012	004	- 029	- 011	- 009
Lettuce					- 011	002	015	001	082		025	-018	046	- 047	- 010	- 032		- 003	001	- 011	- 005	- 003
Tomatoes					- 046	009	063	006	025	068	008	011	058	015	021	- 137	- 002	~ 020	006	- 050	- 020	- 015
Polatoes					- 009	002	013	- 003	076	- 019	130	- 008	027	- 093	- 069	- 027		- 004	001	- 010	- 004	- 003
Apples					- 013	003	018	015	- 186	088	- 022	096	- 126		195	- 039		- 006	002	- 011	- 006	- 004
Grapes					- 047	010	065	008	052	037	018	- 00 1	083	037	- 014	- 140	- 002	- 021	006	- 051	-020	-015
Oranges	- 001				- 067	014	093	013	002	043	005	006	100	149	002	- 201	- 002	- 030	009	- 073	- 029	-022
Grapefruit	- 001	- 001			- 075	015	104	046	- 258	227	~ 140	157	- 120	026	109	- 224	003	- 033	010	- 081	-032	- 025
Other crops					006	- 002	- 026	- 002	-008	- 010	- 003	- 001	- 015	- 008	-001	217	- 002	- 030	009	- 073	~ 029	- 022

¹Blanks = elasticity was zero to third decimal place

Table 4—Livestock supply and input demand elasticities, California, 1986

													Ela	sticity wi	th resp	ect to th	с рпсс с	ı Ti												
Item	Wheat	Rice	Corn	Barley		Sugar beets	Нау	Οπίσης		Toma toes		Apples	Grapes	Oranges		Оther сторч		Hog-	Sheep	Milk	Egg×	Broil urs	Tur kcys	Other Jive stock	Furi ilizer	Misc inputs		Hired (labo r	•	
Cattle										-									0.005						-0 027		0 ()52	0 095	0.035	0 029
Hogs																	- 179		041							-001				
Sheep																	- 031	024	007							-001				
Milk																				0.042	0.007				- 007	- 086	020	008	003	002
Eggs																						- 133								
Brotlers																					- 139				-010				005	
Turkeys																				082	071	- 104	068		-014	- 170	040	016	006	- 005
Other hvestock																								0 022	012	144	019	- 116	- 046	- 031
Furtilizer	0.001	0 001	0 001		0 004	0.001		0 001	0.002	0.003	0.001		0 005	0.003	3	0.030	053	002	003	037	006	005	004	- 002	- 032	- 224	042	031	012	009
Misc input-	001	001	001		005	100		001	003	004	001		006	003	3	038	067	002	003	047	005	007	005	- 002	- 024	- 299	053	040	016	012
Pesticides	- 003	- 003	- 002	- 001	- 011	- 003	-0.002	- 002	- 007	-010	- 003	-0.001	- 015	- 008	3 -0 003	- 091	~ 057	- 003	-004	-088	-015	-012	- 009	- 003	- 035	422	- 091	010	004	003
Hared Jabor	006	004	003	002	019	005	002	E00 S	019	016	006	002	025	013	3 001	l 153	- 033	- 001	-002	- 007	-001	- 001	- 001	003	005	065	002	- 705	180	223
Capital																														
SERVICES	005	004	003	002	017	004	001	003	012	015	005	002	024	019	2 001	142	- 030	- 001	- 002	- 007	-001	- 001	- 001	003	005	060	002	507	-1.068	281
Machinery																														
opurating	008	006	005	002	028	007	003	005	019	025	008	003	038	020	002	2 230	- 049	-002	- 003	-011	- 002	-002	- 001	005	005	048	003	732	341	-1 528

¹Blanks = elasticity was zero to third docimal place

Table 5—Crop supply elasticity

					Elast	icity with r	espect to th	e price of i					
ltem	Wheat	Corn	Oats	Soy- beans	Нау	Pota- toes	Apples	Other crops	Fert- ılızer	Misc inputs	Pest- 1cides	Capital serv	Mach oper
Wheat Corn Oats Soybeans Hay Potatoes Apples Other crops	2 079 - 002 - 049 -0 001	$\begin{array}{r} -1\ 593\\ 010\\ 045\\ 003\\ -\ 040\\ 129\\ -\ 567\\ -\ 014 \end{array}$	$ \begin{array}{r} -0 \ 471 \\ 001 \\ 013 \\ - \ 001 \\ 002 \\ - \ 009 \end{array} $	$\begin{array}{c} 0 \ 007 \\ 004 \\ 005 \\ - \ 119 \\ 427 \\ -1 \ 602 \\ - \ 054 \end{array}$	$-0\ 001$ $-0\ 003$ 095 $-\ 396$ 345 037	-0 014 170 699 - 013	$-0\ 001\ 008\ 451\ 3\ 542\ -\ 027$	-0 002 074 - 783 -2 405 072	-0 003 - 002 - 002	-0 021 - 012 - 012 - 002 - 003 - 001 - 001	-0 002 - 001 - 001	0 003 002 002	0 002 001 001

¹Blanks = elasticity was zero to third decimal place

Table 6-Livestock supply and input demand elasticities, Iowa, 1986

						_	Ela	asticity	with res	pect to	the pric	e of '						
Item	Corn	Oats	Soy- beans	Other crops	Cattle	Hogs	Sheep	Mılk	Eggs	Broil- ers	Tur- keys	Other lıve- stock	Fertı- lızer	Misc inputs	Pesti- cides	H1red labor	Capital serv	Mach oper
Cattle					0 142	0 195	0 007	-0 051	-0 007	-0 001	-0 006		-0 034	-0 267	0 032	-0 001	-0 005	-0 003
Hogs					022	097	- 002		- 002		- 002		-012	- 091	011		- 002	- 001
Sheep					282	- 285	048	- 007	- 001		- 001		- 004	- 035	004		- 001	
Mılk					-058	- 116	- 001	119	016	006	005		- 008	- 063	-042	013	084	044
Eggs					- 155	- 309	- 003	308	165	- 002	- 078		-022	- 169	-112	035	224	117
Broilers								257	- 045	261	- 473							
Turkeys					- 048	- 097	- 001	014	- 122	- 076	307		-007	- 053	- 035	011	070	037
Other																		
livestock												2433	247	1 931	-1 007	- 337	-2 143	-1 124
Fertilizer	0 035	0 001	0 015	0 001	087	174	001	018	003		002	- 008	- 570	130	006	010	063	033
Misc inputs	019		008		047	094	001	010	001		001	- 005	037	- 274	003	005	034	018
Pesticides	018		007		- 056	-112	- 001	066	009	001	008	024	004	033	- 040	003	022	012
Hired labor	- 005		- 002		002	004		- 026	-004		- 003	010	009	068	004	- 921	1 833	- 967
Capital																0-+	- 000	001
services	- 008		- 003		003	005		-037	- 005	- 001	- 004	014	012	097	006	301	-1 047	666
Machinery											•••		•		000			000
operating	- 005		- 002		002	004		- 025	- 004		- 003	010	008	066	004	- 314	1 330	-1 069

¹Blanks = elasticity was zero to third decimal place

😤 Table 7—Crop supply elasticities, Texas, 1986

									Ela	sticity v	nth resp	ect to the	price of	1					_			
ltem	Wheat	Rice	Corn	Barley	Sorghum	Oats	Soy- beans	Peanuts	Cotion	Нау	Οηιοπε	Lettuce	Toma- toes	Pota- toes	Oranges	Grape- fiuit	Other crops	M150 Inputs	Pest- 1cides	H11 ed labor	Capital sei v	Mach opei
Wheat	0 190	0 052	0 158	0 002	0 220	0 009	-0 0 16	-0 058	-0 376	0 023	-0 001			~0 001	-0 010	-0 030	-0 161		0 003	-0 001	-0 002	-0 002
Rice	094	187	- 211	002	122	099	- 008	- 027	-175	011	- 001				- 005	- 014	- 075		001		- 001	- 001
Согп	160	- 049	370	- 021	177	- 094	- 014	- 050	- 323	020	- 001				- 009	- 026			003	- 001	- 002	
Bailey	178	092	-2.065	3 949	-1 939	354	- 015	- 052	- 338	021	- 001			- 001	- 009	- 027	- 145		003	- 001	- 002	- 002
Sorghum		005	- 009	- 016	011	009																
Oats	730	953	-1 893	092	1 106	1341	- 061	- 214	-1 385	086	- 004			- 002	. – 038	- 110				- 004	- 007	
Soybeans	- 212	- 056	- 179	- 002	- 245	- 009	059	265	521	- 036	- 038	-0 003	-0 004	- 018	026	038	- 103	001		- 003		
Peanuts	- 033	- 009	- 028		- 039	- 001	039	206	- 111	- 006	- 006		- 001	- 003	004	006	- 016		002	- 001	- 001	
Cotton	- 162	- 043	- 137	- 002	- 188	- 007	016	- 042	590	- 028	- 029	-002	- 003	- 014	020	029	- 079			- 003		
Hay	098	026	083	001	113	004	- 012	- 042	- 270	015	014	001	001	007	- 008 –	- 016			005	- 002	- 004	- 003
Onions	- 003	- 001	- 003		- 004		- 008	- 030	- 191	010	201	- 048	- 004	~ 053		001	135					
Lettuce	- 010	- 003	- 008		- 011		- 024	- 083	- 537	027	- 531	340	141	321		001	378					
Tomatoes											- 113	117	094	098	3							
Potatoes	- 005	- 001	- 004		- 006		- 012	- 043	-277	014	-152	061	- 016			001	195					
Oranges	- 901	- 240	- 763	- 009	-1 042	- 039	178	628	4 068	- 166	- 014		- 001	- 006		201	$-2\ 137$			- 011		
Grapefruit	-2527	- 674	$-2\ 140$	- 024	-2 924	- 109	246	866	5612	- 324	016		001	007		415	1 369			- 006		
Other crops	- 038	- 010	- 032		- 044	- 002	- 002	- 007	- 043	- 001	011	001	001	005	- 006	004	164		001		001	- 001

¹Blanks = elasticity was zero to third decimal place

Table 8-Livestock supply and input demand elasticities, Texas, 1986

								-	Ela	asticity w	ith resp	ect to the	price of	1								
Item	Wheat	Rice	Corn	Sorghum	Peanuts	Cotton	Нву	Onions	Other crops	Cattle	Hogs	Sheep	Milk	Eggs	Broil- eis	Turkeys	Fert- ilizei	Misc inputs	Pest 1c1des	H11ed labor	Capital seiv	Mach oper
Cattle																		0 001			-0 001	
Hogs										-0 010	0 013	-0 003	-0 001		-0 001		0 001	005	0 001	-0 001	-0.002	-0 002
Sheep										002	- 004	001										
Milk													051	-0.012	- 029	0 001	- 002		- 006	0 004	0 009	
Eggs										- 002			- 013	031	055		- 018	- 173		0 037	0 072	
Broileis										- 002			- 023	028	087		- 014	- 129		0 027	0 054	0 044
Turkeys										- 010			164	052	- 189	285	- 079	- 749	- 202	0 159	0 313	0 258
Other hvestock																		001	- 001		0 001	0 001
Feitilizer										- 004			058	022	037	003	- 383	292	-024	0 018	0 036	0 030
Misc inputs										- 005			079	030	050	003	025	- 149	- 032			
Pesticides	-0 004	-0 001	-0 004	-0 005	-0 001	0 009	-0 001	-0 001	-0 013	- 005			078	030	049	003	- 046	- 437	-210	0.126		
Hired labor	001			001		001			002	0 02			- 024	- 009	- 015	- 001	014	133	049	-1085	0 094	0 837
Capital services						001			001	001			- 018	- 007	- 011	– 001	011	099	037	0 063	-0 954	0 775
Machinei y opei ating	001		001	L 001		002			002	002			- 032	-012	- 020) - 001	019	178	066	0 558	0 912	-1 677

Blanks = elasticity was zero to third decimal place

 Table 9—Crop supply elasticities, Florida, 1986

							Elastı	city with	respect to th	ie price of	1						
Item	Corn	Soy- beans	Peanuts	Sugar- cane	To- bacco	Lettuce	Toma- toes	Pota- toes	Oranges	Grape- fruit	Other crops	Fert- ılızer	Misc inputs	Pest- icides	Hıred labor	Capital serv	Mach oper
Corn	0 560	-0 062	0 512	-0 157	0 512	-0 006	-0 068	-0 012	-0 152	-0 035	-1 088		-0 001		-0 001	-0 001	
Soybeans	- 088	1 408	364	- 518	- 092	- 015	- 168	- 029	- 375	- 085	- 391	-0 001	- 004		- 003	- 002	-0 001
Peanuts	206	103	651	- 008	- 090	005	052	009	117	027	-1072		-				0.001
Sugarcane	- 009	- 021		113	007	001	015	003	034	008	- 088	- 006	- 024	-0 002	- 016	- 010	- 005
Tobacco	514	- 065	- 223	106	1 079	- 018	- 194	- 033	- 434	- 09 9	- 630		- 001		- 001	•-•	000
Lettuce	- 008	- 016	021	040	- 026	010	036	- 014	090	- 044	031	- 011	- 046	- 004	- 030	- 019	- 010
Tomatoes	- 007	-012	016	031	- 020	003	023	- 002	050	- 013	024	- 008	- 036	- 003	- 023	- 015	- 008
Potatoes	- 004	- 007	009	017	- 011	- 008	- 018	117	- 116	057	013	- 004	- 019	- 002	- 013	- 008	- 004
Oranges						002	007	- 010	019	- 018						000	001
Grapefruit	- 006	-011	014	028	- 018	- 007	- 026	019	- 049	117	022	- 007	- 032	- 003	- 021	- 013	- 007
Other crops	- 013	- 003	- 032	- 012	- 007		005	001	010	002	162	- 010	- 044	- 004	- 029	- 018	- 009

¹Blanks = elasticity was zero to third decimal place

Table 10-Livestock supply and input demand elasticities, Florida, 1986

									E	lasticity	with re	spect to	the pinc	e of 1							-		
Item	Corn	Soy- beans	Peanuts	Sugar- cane	To- bacco	Lettuce	Toma- toes	Pota- Loes	Oranges	Grape fruit	Other crops	Cattle	Hogs	Milk	Eggs	Bioil- ers	Other live- stock	Fert- ilizer	Misc inputs	Pest- 1c1des	Hired labor	Capital serv	Mach opei
Cattle							-				-	0 060	0 004					-0 005	-0 023	-0 059	0 012	0 007	0 004
Hogs												073	006					- 006	- 028	- 072	014	009	
Mılk														0 063	0 058	-0 120	0 005	002	007	- 003	- 006	- 004	- 002
Eggs														168	153	- 317	012	004	018	- 009	- 015	- 009	
Bioilers														-292	- 267	559							
Othei livestock														015	006	007	110	- 005	- 021	- 104	- 005	- 003	- 002
Fei tilize:	0 001	0 001	0 001	0 008	0 001		0 005	0 001	0 010	0 002	0 037	003		- 001	- 001	- 001	001	- 233	116	- 016	033	021	011
Misc inputs	002	002	004	028	002	0 001	0 015	003	034	008	125	011	001	- 004	- 002	- 002	004	- 026	- 370	- 056	112	071	037
Pesticides	001	001	001	008	001		005	001	010	002	037	089	006	007	003	003	064	- 041	- 176	- 165	073	046	024
Hired labor	002	001	003	020	001	001	011	002	025	006	090	- 006		004	002	002	001	029	123	025	- 962	312	308
Capital																							
services	001	001	002	012	001	001	007	001	015	003	056	- 004		002	001	001	001	018	076	016	552	- 684	- 078
Machinery																						001	0.0
operating	001		001	007			004	001	008	002	031	- 002		001	001	001		010	042	009	1 130	- 127	-1 119

Blanks = elasticity was zero to third decimal place

mentary production relationships ³ A few similanities, however, were found across some States In California, Texas, and Florida, relationships were competitive between oranges and potatoes and between potatoes and tomatoes Complementarity occurred between lettuce and tomatoes In California and Texas, where the most similarities were found, results revealed complementary relationships among wheat, lice, barley, and oats, and competitive relationships between rice and corn and between coin and barley All feed and food grains were gross substitutes to cotton Other relationships showed complementarity between oranges and grapefruit, grapefruit, onions, and tomatoes, lettuce and tomatoes, potatoes and lettuce, and competitiveness between potatoes and tomatoes and potatoes and onions All vegetables were gross complements to hay and gross substitutes to cotton and the other-crops residual category Hay and cotton were also gross substitutes Fewer consistent cross-price production relationships played out between California and Florida and between Texas and Florida Cross-price relationships in Iowa were least similar to those in other States

Livestock Supply Elasticities

With only one exception (in Iowa), all own-price livestock elasticities were inelastic, ranging from 0 007 to 0 25 in California, 0 05 to 2 43 in Iowa, 0 001 to 0 29 in Texas, and 0 01 to 0 56 in Florida All cross-price livestock output elasticities were inelastic in each State Although not as varied in magnitude as the crop elasticities, the elasticities for livestock also reflected considerable variation across States Similar own-price elasticities (that is, differences of 0.2 or less) were observed for milk and eggs and spanned all States, for hogs, sheep, and broilers in California, Iowa, and Texas, for cattle in California, Iowa, and Florida, for the otherlivestock residual category in California and Florida, and for turkeys in Iowa and Texas Virtually the same elasticities (differences of 0 05 or less) covered California, Texas, and Florida for milk, California and Iowa for cattle, hogs, and broilers, California and Texas for sheep, and Iowa and Floiida for eggs

Closs-price elasticities showed consistent signs across some States Milk and turkeys qualified as shortrun gross complements and broilers and turkeys as shortrun gross substitutes in California, Iowa, and Texas Gross substitutability occurred between eggs and broilers in California, Iowa, and Florida Gross complementarity was observed between milk and broilers in California and Iowa, eggs and turkeys in California and Texas, cattle and hogs, and milk and eggs in Iowa and Florida Gross substitutability marked hogs and sheep in Iowa and Texas, and milk and broilers in Texas and Florida Since the estimation of the aggregate models for each State was performed maintaining nonjointness for at least the crops category, no livestock-crop nor crop-livestock cross-price elasticities were derived

Input Demand Elasticities

Own-price input demand elasticities were also generally inelastic in each State A common exception was machinery operating inputs, which langed from -107 in Iowa to -168 in Texas Own-price elastic responses also influenced capital services in California and Iowa and hired labor in Texas Across States, similar elasticities spanned miscellaneous variable inputs and pesticides in all States, capital services in California, Iowa, and Texas, hired labor in Iowa, Texas, and Florida, fertilizer in Iowa and Texas and in Texas and Florida, and machinery operating inputs in California and Texas and in Iowa and Florida Nearly identical elasticities turned up in some States miscellaneous variable inputs, pesticides, and capital services in California and Iowa, pesticides in Texas and Florida, and hired labor and machinery operating inputs in Iowa and Florida

Except for two elasticities in Iowa and one in Florida, all cross-price input demand relationships were inelastic. They ranged from 0.002 to 0.97 in absolute value. The signs of these elasticities revealed that all variable inputs were shortrun gross substitutes, except for fertilizer-miscellaneous variable inputs in California, hired labor-machinery operating inputs in Iowa, fertilizer-pesticides and miscellaneous variable inputs-pesticides in Texas, and fertilizer-pesticides, miscellaneous variable inputspesticides, and capital services-machinery operating inputs in Florida

Output-input relationships showed that increases in the prices of inputs generally caused quantities of crops to decrease in all States, except for pesticides in California and Texas, capital services

³When all inputs and outputs are variable, economic incentive for a joint technology (in which one firm produces multiple out puts) exists only if outputs are longrun gross complements Inputs must also be gross complements if multiple inputs are used economically by the same firm in the long run There are two reasons why gross complementarity of either outputs or inputs is not a theoretical implication in the current context First, our analysis is short run Family labor and land are treated as fixed inputs The impact of allocatable fixed inputs (such as labor and land) on shortrun cross-price output relationships is opposite to that of technical interdependence (which gives rise to joint production in the long run) Second, our analyses are for State aggregates rather than for individual firms Externalities can give rise to either competitive or complementary relationships at the community (or larger geographic) level when they do not exist in the firm

and machinery operating inputs in Iowa, and miscellaneous variable inputs in Texas Because of symmetry restrictions on price parameters within a model, input demands generally increased as crop prices increased Output-input responses for livestock showed a wide variation across States regarding the direction of the relationships between the quantities of livestock categories and the prices of several inputs and vice versa

Conclusions

1

Disaggiegated parameter estimates for multipleoutput production relationships in California, Iowa, Texas, and Florida came from dual models that were consistent over most of the data period with competitive theory, nonrejected analytic simplifying assumptions (nonjointness), and multistage choice (homothetic separability) Linear homogeneity, symmetry, and convexity restrictions were maintained in the estimation Monotonicity was checked at every observation and was significantly violated by only four of the 31 models estimated and only at early observations in the data period Convexity was not rejected by any model

The multistage parameter estimates were used to derive full matrices of disaggregated elasticities Multistage modeling allowed these elasticities to be computed at the most detailed and comprehensive level ever to appear in economic literature

A wide diversity among output supply and input demand elasticities was observed across States Nearly all output supply elasticities for crops were inelastic and showed a wider variation across States than did livestock supplies or input demands With only one exception, all livestock supply elasticities were also inelastic A common pattern regarding the magnitude of the own-price supply elasticities (differences of 0 2 or less) across all States occuried only for potatoes, tomatoes, the other-crops residual category, milk, and eggs Other important similarities were observed across pairs of States

Input demand elasticities were generally inelastic A common exception was machinery operating inputs, which showed an elastic response in all States Own-price elasticities for miscellaneous variable inputs and pesticides appeared similar in all States Important similarities in other elasticities were found in two or three States Output-input relationships across States showed that, in general, crop supplies decreased as input prices increased, and input demands increased as crop prices increased

References

Ball, VE 1988 "Modeling Supply Response in a Multiproduct Fiamework," American Journal of Agricultural Economics Vol 70, No 4, pp 813-25

Evenson, R, and others 1986 "State-Level Data Set for US Agriculture, 1949-1982" Unpublished data, Yale University, Economic Growth Center, New Haven, CT

Houck, J P, and M E Ryan 1972 "Supply Elasticities of Corn in the United States The Impact of Changing Government Programs," American Journal of Agricultural Economics Vol 54, No 2, pp 184-91

Huffman, EW, and ER Evenson 1989 "Supply and Demand Functions for Multiproduct US Cash Grain Forms Biases Caused by Research and Other Policies," American Journal of Agricultural Economics Vol 71, No 3, pp 762-63

Lau, Lawrence 1978 "Testing and Imposing Monotonicity, Convexity and Quasi-Convexity Constraints," in *Production Economics A Dual Approach to Theory and Applications* (M Fuss and D McFadden, eds) Vol 1, Appendix A 4, Amsterdam North Holland, pp 133-216

Lim, H 1989 "Profit Maximization, Returns to Scale, Separability, and Measurement Erroi in State-Level Agricultural Technology" Ph D dissertation Texas A&M University, College Station

Lim, H, and C R Shumway 1992 "Separability in State-Level Agricultural Technology," American Journal of Agricultural Economics Vol 74, No 1, pp 120-31

McGath, C 1989 "Pesticides Expenditures, State Estimates, 1949-1987" Unpublished data U.S Dept Agr, Econ Res Serv

McIntosh, C S 1990 "Evaluating Alternative Methods of Including Government Policy Information for Multiproduct Supply Analysis" Working paper University of Georgia, Athens

McIntosh, C S 1989a "State-Level Data Set for 16 States, 1983-1986" Unpublished data University of Georgia, Athens

McIntosh, CS 1989b Specification of Government Policy Variables for Feed Grains, Wheat, Soybeans, Rice, Cotton, Peanuts, Tobacco, Sugar Beets and Milk 1950-1986 FS89-61, Div Agr Econ, University of Georgia, Athens Murtagh, BA, and MA Saunders 1983 Minos 51 User's Guide Tech Rept No 83-20 Stanford University, Stanford, CA

Ornelas, F, C R Shumway, and T Ozuna 1991 "Functional Form Selection and Dual Profit Function for U S Agriculture" Paper presented at the Southern Association of Agricultural Economics annual meetings, Fort Worth, TX

Polson, RA, and CR Shumway 1990 "Structure of South Central Agricultural Production," Southern Journal of Agricultural Economics Vol 22, No 2, pp 153-63

Romain, R F J 1983 "A Commodity Specific Policy Simulation Model for U S Agriculture" Ph D dissertation Texas A&M University, College Station

SAS Institute, Inc 1984 SAS/ETS User's Guide Version 5 Edition Cary, NC SAS Institute Inc

Shumway, CR, and WP Alexander 1988 "Agricultural Product Supplies and Input Demands Regional Comparisons," American Journal of Agricultural Economics Vol 70, No 1, pp 153-61

Talpaz, H, WP Alexander, and CR Shumway 1989 "Estimation of Systems of Equations Subject to Curvature Constraints," Journal of Statistical Computation and Simulation Vol 32, pp 201-14

Teigen, LD, and F Singer 1988 Weather in US Agriculture Monthly Temperature and Precipitation by State and Farm Production Region, 1950-1986 SB-765 US Dept Agr, Econ Res Serv

Villezca, PA, and CR Shumway 1992 "Multiple-Output Production Modeled with Three Functional Forms," Journal of Agricultural and Resource Economics Vol 17, No 1, pp 13-28 Appendix table 1—Output supply and input demand own-price elasticities, 1986

·			_	
Output	a 1			
or	Calı-	т	<i>m</i>	71
input	forma	Iowa	Texas	Florida
Wheat	0 070	2 079	0 190	NA
Rice	072	NA	187	NA
Corn	344	010	370	0 560
Barley	181	NA	3 949	NA
Sorghum	NA	NA	011	NA
Oats	857	013	1341	NA
Soybeans	NA	005	059	1 408
Peanuts	NA	NA	206	651
Cotton	674	NA	590	NA
Sugarbeets	396	NA	NA	NA
Sugarcane	NA	NA	NA	113
Hay	758	095	015	NA
Tobacco	NA	NA	NA	1 079
Onions	013	NA	201	NA
Lettuce	082	NA	340	010
Tomatoes	068	NA	094	023
Potatoes	130	170	246	117
Apples	096	3542	NA	NA
Grapes	083	NA	NA	NA
Oranges	149	NA	260	019
Grapefruit	409	NA	415	117
Other crops	217	072	164	162
Cattle	133	142	000	060
Hogs	138	097	013	006
Sheep	007	048	001	NA
Milk	042	119	051	063
Eggs	094	165	031	153
Broilers	246	261	087	559
Turkeys	068	307	287	NA
Other livestock	022	2433	000	110
Fertilizer	-032	- 570	- 383	- 233
Miscellaneous	- 299	- 274	- 149	- 370
Pesticides	-091	- 040	- 210	- 165
Hired labor	- 705	- 921	-1.085	- 962
Capital services	-1.068	-1047	- 954	- 684
Machinery operating	-1528	-1 069	$-1\bar{6}77$	-1 119

NA = not applicable