REVIEW ARTICLE

Emerging cardiovascular molecular imaging approaches

Cory Siegel, MD,1 Matthias Nahrendorf, MD, PhD,1 Ralph Weissleder, MD, PhD.1∗

1Center for Systems Biology and Harvard Medical School, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.

Abstract
New molecular imaging technologies, in particular optical ones, are increasingly used to understand the complexity and heterogeneity of cardiovascular diseases. While ‘omic’ approaches can provide us with comprehensive ‘snapshots’ of biomarkers, imaging studies can be used to understand the spatiotemporal activity of these markers in vivo. Imaging has also advanced clinically, and will ultimately allow us to determine disease activity and therapy response. In addition, newer developments will likely have an impact on our understanding of biology at the systems level, promote earlier clinical diagnosis and accelerate drug development.

KEY WORDS
Cardiovascular; Molecular imaging; Nanotechnology; Fluorescence.

PALABRAS CLAVE
Cardiovascular; Imagen molecular; Nanotecnología; Fluorescencia

Nuevas técnicas moleculares de imagen cardiovascular

Resumen
Nuevas tecnologías de imagen molecular, en particular las denominadas ópticas, están siendo usadas con mayor frecuencia para entender lo complejo y heterogéneo de las enfermedades cardiovasculares. Por un lado el acercamiento "proteómico" nos provee imágenes completas e “instantáneas” de biomarcadores de un padecimiento, y los estudios de imagen pueden ser usados para entender la actividad en el espacio y tiempo de estos marcadores in vivo. Las imágenes también han avanzado clínicamente, lo que finalmente nos permitirá determinar la actividad de un padecimiento y su respuesta al tratamiento. Además, los nuevos desarrollos probablemente tendrán un impacto en nuestra comprensión de la biología de estos sistemas, promoviendo el desarrollo de métodos de diagnóstico temprano y poder acelerar el desarrollo de drogas.

∗Corresponding author: Ralph Weissleder, MD PhD. MGH-CSB, CPZN-5206 185. Cambridge. Street Boston, MA 02124. Telephone: 617-726-8226. Fax: 617-726-5708. E mail: rweissleder@mgh.harvard.edu
Emerging cardiovascular molecular imaging approaches

Introduction
Prevention and early detection are increasingly important components of clinical cardiovascular care, because preventive strategies can save lives and are more cost effective. To implement these strategies, sensitive, specific and molecular-based imaging tools are needed that allow timely and specific diagnosis and risk stratification. A number of emerging molecular imaging techniques promise to achieve these goals, based on technological advances of equipment and the development of new imaging probes. Biomarkers of disease severity include inflammation, thrombosis, apoptosis, necrosis, remodeling, and angiogenesis, all common to diverse diseases such as atherosclerosis, myocardial infarction, heart failure, and stroke.

Several recent reviews have described molecular imaging of cardiovascular disease.1-6 This review aims to complement and update with a focus on emerging imaging strategies that show the greatest promise and those likely to be rapidly translated into clinical practice.

Preclinical advances
A wide array of cardiovascular molecular imaging applications is about to emerge from preclinical advances. Novel agents have been developed that report on specific molecular targets, increasing the sensitivity and specificity of existing imaging modalities (Table 1). The keys to a successful reporter in this regard are twofold. One aspect must be a sensitive detection mechanism, while the other is targeting the desired biologic process via affinity ligand binding or reporter activation. Successful agents often harness amplification strategies such as chemical ones (increased relaxivity of magnetic nanoparticles, fluorescence dequenching) or biological ones (cellular trapping, pretargeting). Advances in nanotechnology now allow for the attachment of multiple ligands for heightened affinity, as well as multiple reporters per nanoparticle. In the cardiovascular imaging arena, the most commonly used detection platforms are magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging such as fluorescence molecular tomography (FMT) and catheter based sensors (fluorescence, optical coherence tomography -OCT-).

Magnetic resonance imaging
Magnetic resonance imaging does not involve ionizing radiation, and provides good anatomic detail with outstanding tissue contrast. It allows for relative quantification of targets and is a very versatile technology. It uses inherent amplification mechanisms, since not the reporter itself, but rather its interaction with many surrounding protons is detected. Molecular MRI relies on 2 major classes of agents: T1-type probes that contain paramagnetic gadolinium (Gd) chelates, and T2-type magnetic nanoparticles. While the latter mostly decrease the proton signal in T2 weighted sequences, newer approaches are being explored to overcome the disadvantage of signal decay, such as bright iron techniques.7,8 Clinical molecular MRI has also been successful: for instance, a fibrin sensing gadolinium chelate was used to image vascular thrombotic complications9 (Figure 1). Here, the relative abundance of the imaging target affords sufficient sensitivity. Other appro-

| Table 1. Selected Targeted Cardiovascular Molecular Imaging Agents |
|---|---|---|
| Biologic Process | Target | Agent | Modality |
| Atherosclerosis | Macrophages | MLP’s | MRI |
| | | MPO-Gd | MRI |
| | | NII177 | MRI |
| | Proteases | 64Cu-TNP | MRI |
| | | 18F-CLIO | MRI |
| | | Prosense, MMPsense | MRI |
| | | VINP-28 | MRI |
| Thrombosis | Fibrin | EP-2104R | MRI |
| Myocardial Infarction | Apoptosis | AniCLUO | MRI, Optical |
| | Factor XII | FXII-111In | MRI, Optical |
| | | CLIO-VT680 | MRI, Optical |
| | Macrophages | |

based contrast agents for vascular imaging in renally-impaired patients where there is concern for NSF.

Magnetic nanoparticles

The high relaxivity of magnetic nanoparticles make them a promising platform for molecular MRI. Here, the propensity of these particles to be taken up by innate immune phagocytes is exploited. This allows for effective targeting and high contrast, particularly in the imaging of inflammatory cells in conditions such as atherosclerosis, infarction, and transplant rejection. However, large amounts of nanoparticles are often required to target macrophages (> 5 mg Fe/kg). For example, Korosoglou et al 2008 were able to identify macrophage laden atherosclerotic plaques in rabbits with the use of monocrystalline iron-oxide nanoparticles (MION-47) and an MRI method known as inversion recovery with ON-resonant water suppression (IRON)-MRI (Figure 3). One limitation of this study was the use of a total iron dose of 500 µmol Fe/kg, equivalent to a dose of 13 mg Fe/kg, well above the recommended dose of the FDA. However, superparamagnetic nanoparticles have been used for clinical imaging of cancer metastasis and in patients with atherosclerotic lesions in the carotid arteries.

A variety of preclinical studies have explored the versatility of nanoparticles for targeted imaging by attaching affinity ligands to the shell of nanoparticles. The size, physical properties, attachment of affinity ligands, and conjugation to fluorochromes are all characteristics of an expanding library of nanoparticles that allow for customization of these particles to specific clinical needs. For example, the cross-linked, aminated surface of the magnetic nanoparticle CLIO allows for the attachment of fluorochromes, and thus the potential for MR-optical imaging with magneto-fluorescent nanoparticles (MFNPs). The MNFP conjugate CLIO-VT680 has been used for macrophage targeting, quantification of cellular distribution on MFNP’s, and MR sensing of inflammation in mouse atheroma. MR-optical imaging has also been used in the targeting of apoptotic processes, using annexin as an affinity ligand for phosphatidylserine in the cell membrane, an early marker for apoptosis. The annexin-V-based nanoparticle AnxCLIO acts as a reporter for both MR and NIRF and has been used in vivo to identify regions of cardiomyocyte apoptosis in mice. Annexin has also been used to target apoptosis with SPECT imaging in animal models and patients, and shows promise in PET imaging with 18F-labelled annexin.

The cell surface adhesion molecule VCAM-1 has also been used as a target for MNP’s, given its expression on activated endothelial cells, smooth muscle cells, and macrophages early in the inflammatory process of atherosclerotic plaques.

Among the next generation of magnetic nanoparticles are carboxymethyl dextran nanoparticles, some of which are already seeing clinical use. Ferumoxytol is an example of this, and already has been shown to have a favorable safety profile in phase I and II clinical trials for use as iron-replacement therapy in anemia. As it was achieved for sensitive T1 targeted imaging involve signal amplification through activatable Gd-chelates (Figure 2).

Recently, although Gd-DTPA has been used for decades, there has been concern over the risk of nephrogenic systemic fibrosis (NSF), a disorder associated with the use of gadolinium-based contrast agents in patients with renal insufficiency. Therefore, techniques that reduce the required quantity of gadolinium and increase detection sensitivity are of great interest. Ultrasmall superparamagnetic nanoparticles with sufficient T1 effects such as ferumoxytol have been proposed as alternatives to gadolinium based contrast agents for vascular imaging in renally-impaired patients where there is concern for NSF.
Emerging cardiovascular molecular imaging approaches designed specifically for anemia therapy in patients with chronic kidney disease, it retains its favorable safety profile in patients with chronic renal impairment. It has characteristics that improve upon the prior generation prototype, ferumoxtran-10, which was successful in several clinical trials. With a blood half-life of 10-14 hours, increased signal in the vasculature secondary to a greater T1 shortening, and the ability to be given as an injectable bolus, ferumoxytol is among the more promising of this generation of nanoparticles. Recent patient studies reveal applications in the identification of malignant lymph node metastasis by MR, for imaging of brain tumors and as a vascular contrast agent for use in MR angiography. Ultrasmall superparamagnetic particles have also been shown to have a role in imaging of atherosclerotic plaques in both animal and patient studies.

Gadolinium-based agents
One of the interesting examples for clinical molecular MRI is the fibrin-specific contrast agent EP-2104R. Originally tested in several animal models, it has advanced to a Phase II study in human subjects with known intra-cardiac or intra-arterial thrombi. This compound is a small peptide with 4 Gd-chelate moieties that binds to fibrin, but not to circulating fibrinogen. Results show that in the majority of patients, signal enhancement of the thrombus was visualized with high contrast to the background tissue, and when compared with precontrast imaging (Figure 1). Additionally, based on data from animal studies, this technique could be useful for detection of pulmonary embolism and deep vein thrombosis.

Another recent innovation using MRI uses a “smart” gadolinium chelate sensitive to the activity of myeloperoxidase (MPO), an enzyme known to be present in high levels within atherosclerotic plaque and produced by macrophages and neutrophils. The agent is activated by radicalization in the presence of MPO, and then undergoes polymerization resulting in increased T1 relaxivity. The activated agent also crosslinks to surrounding proteins, effectively trapping the molecule in areas of high MPO activity.

Figure 2. Targeted MR imaging of myeloperoxidase (MPO) activity using an activatable MPO-Gd chelate in injured myocardium in mice. A Time course of MPO-Gd signal showing bright and persistent signal enhancement over 2 hours on day 2 after MI. B Conventional MR imaging with Gd-DTPA over same time period, showing progressive reduction in signal intensity over the 2 hour period. C Graphical representation comparing contrast-to-noise ratios (CNR) for MPO-Gd and Gd-DTPA imaging of the myocardial septum showing longer duration of high signal with MPO-Gd. Adapted with permission.
activity, all of which results in increased enhancement on T1-weighted MRI. We have shown the agent enables detection of MPO activity in infarcted myocardium (Figure 2) and allows for the monitoring of atorvastatin’s anti-inflammatory effects. This demonstrates the agent’s potential for detection of myocardial inflammation and monitoring of pharmaceutical response. Recently, the agent was used to visualize cerebral inflammation secondary to stroke. Given the increased myeloperoxidase activity in atherosclerotic plaque, it is also an attractive modality to image vulnerable inflammatory atherosclerotic lesions.

Computed tomography
There have been few targeted contrast agents for CT, most likely due to the low sensitivity of this modality. Therefore, CT has been primarily employed in hybrid imaging to add anatomical information to PET, CT and optical sensing. However recently, Hyafil et al described a nanoparticulate contrast agent for CT, N1177. This compound is composed of crystalline iodinated particles dispersed with surfactant that targets macrophages in atherosclerotic plaques, potentially enhancing the use of CT for identification of at-risk inflammatory lesions. The nanoparticulate formulation achieved a signal amplification that allowed molecular sensing in these experiments. An important aspect of this work is that coronary CT currently has the technological edge when it comes to resolution; however, radiation exposure needs to be carefully balanced against the benefits of screening.

Nuclear imaging
Nuclear imaging modalities such as SPECT and PET potentially have high sensitivity for detecting reporters at low concentrations. PET imaging is also fully quantitative, which facilitates efficient comparison of imaging
Figure 4. 18FDG PET/CT imaging of human aortic atherosclerosis.

A. Coronal CT (left), PET (middle) and fused PET/CT (right) images showing 18FDG uptake (arrow/arrowheads) in descending thoracic aorta. B. Transaxial CT (left), PET (middle), and fused PET/CT (right) images showing 18FDG uptake in descending thoracic aorta (arrow/arrowheads). Note high background uptake in myocardium of left ventricle. Adapted with permission72

Figure 5. PET/CT imaging for macrophages using labeled nanoparticles.

A-F. Multimodality 64Cu-TNP imaging of atherosclerosis in apoE$^{-/-}$ mouse. 64Cu-TNP distributes to atherosclerotic lesions. A and B PET-CT shows enhancement of the posterior aortic root (arrow). C-F. En face Oil Red O staining of the excised aorta depicts plaque-loaded vessel segments, which colocalize with areas of high 64Cu-TNP uptake on autoradiography. G-K. 18F-CLIO imaging of mouse 2h after injection. G. Coronal CT image. H. Coronal PET image. I. Fused PET/CT imaging. J. 3D reconstruction of fused PET/CT images. K. In vitro PET imaging of 18F-CLIO showing detection threshold of 0.025µg Fe/mL. Liver ROI denoted by asterix and blood pool ROI by arrow. A-F adapted with permission58. G-K adapted with permission78.
biomarkers longitudinally or between patient populations. However, these modalities provide little anatomic detail. Therefore, especially for imaging of small targets such as atherosclerotic plaques, both require localization with other modalities, such as CT or MRI. Clinical hybrid PET-CT systems are currently installed rapidly, and overcome the paucity of anatomical data in stand-alone nuclear imaging efficiently. To lower exposure to radionuclides, probes should have high affinity to their target and favorable, rapid pharmacokinetics that decrease exposure of vulnerable organs. For example, SPECT/CT was used to image monocyte trafficking to atherosclerotic lesions in rabbits using a protease-sensitive agent. Additionally, in a study on transglutaminase activity in healing myocardial infarcts, it was possible to monitor Factor XIII activity in vivo using SPECT imaging with a Factor XIII

Figure 6. Enzyme activated fluorescent reporter and use in catheter-based NIRF detection.
affinity peptide (\(^{111}\text{In-DOTA-FXIII}\)).\(^{69}\) Progress in detection technology, especially in CT imaging, may also help to lower radiation dose. PET-MRI imaging is technically more challenging and therefore likely less cost effective, however, it offers anatomical information without adding radiation exposure as in PET-CT. Currently, and the first clinical PET-MRI systems are being installed.

18F-fludesoxiglucosa –FDG-

Since it is approved for oncologic imaging, \(^{18}\text{FDG-PET imaging has been a recent focus for cardiovascular imaging.}^{18}\text{FDG is a radio-labeled glucose analog that undergoes intracellular hexokinase-mediated phosphorylation after transport into metabolically active cells.}^{61}\) It is enriched in tissue with high metabolic activity, and therefore accumulates in cancer cells. Macrophages, key cells in atherosclerotic lesion development and complication,\(^{62}\) also have rather high metabolic rates, therefore,\(^{18}\text{FDG uptake has been proposed for imaging of atherosclerosis.}^{63}\) \(^{18}\text{FDG imaging with this tracer has already been performed in humans in multiple anatomic regions, including the carotid arteries,}^{64-66}\) peripheral arteries of upper\(^{67}\) and lower\(^{70}\) extremities, in addition to the aorta (Figure 4).\(^{71,72}\) Uptake of \(^{18}\text{FDG on PET imaging was described as correlating to the occurrence of cardiovascular events in patients.}^{73}\) and the signal intensity of \(^{18}\text{FDG-PET uptake in atherosclerotic plaques was attenuated by simvastatin therapy.}^{74}\) Yet, there are several limitations, including lack of specificity to atherosclerosis and accumulation in other metabolically active tissue. For example, imaging of the coronary arteries may prove difficult, as myocardium takes up \(^{18}\text{FDG readily (Figure 4). Also, imaging in the diabetic population is complicated and requires tight glucose and insulin control.}^{75}\) This is particularly problematic since diabetes is one of the major risk factors for atherosclerosis.

Nanoparticle positron emission tomography imaging

The use of macrophage-specific PET probes overcomes the problem of specificity and background signal seen in current \(^{18}\text{FDG-PET imaging.}^{58}\) Recently, we described the development of macrophage-targeted PET agents utilizing long-circulating, dextran-coated nanoparticles.\(^{58}\) The agent, \(^{64}\text{Cu-TNP, acts as a trimodality reporter in PET, MRI, and fluorescence, with a magnetic nanoparticle base conjugated to chelated \(^{64}\text{Cu and a near-infrared fluorochrome.}^{58}\) In a mouse model of atherosclerosis, the detection threshold was 5 \(\mu\)g Fe/mL on T2-weighted MRI and 0.1 \(\mu\)g Fe/mL for PET-CT in the imaging phantom. The iron concentration used for PET imaging was 1.5mg Fe/kg, well below the maximum dose of magnetic nanoparticles approved by the FDA (2.6 mg Fe/kg). In apoe\(^{-/-}\) mice, atherosclerotic plaques in the aorta were identified readily in-vivo on PET-CT (Figure 5A-F). This study used small amounts of \(^{64}\text{Cu and the copper was chelated, limiting its reactivity and toxicity. Additionally animal studies did not show evidence of toxicity for \(^{64}\text{Cu, which previously has been used in humans.}^{76,77}\) Building further on this concept, we have also developed a trimodality reporter nanoparticle using \(^{18}\text{F labeled iron nanoparticles (\(^{18}\text{F-CLIO). In contrast to \(^{64}\text{Cu,}^{18}\text{F is readily available, has a greater PET detection sensitivity than \(^{64}\text{Cu and a shorter half-life, reducing the radiation exposure}^{78}\) (Figure 5G-K).**

Optical imaging

Optical imaging is frequently used in preclinical research, since it is versatile, efficient and can be quantitative. The fluorochrome indocyanine green (ICG) is FDA approved for ophthalmic retinal angiography. Fluorochromes are non-toxic, and therefore promise to be of value for clinical translation. Near infrared wavelengths have the best properties for light transmission (< 8 cm) and autofluorescence is minimal at NIR wavelengths. We anticipate that fluorescent agents will play a major role for endoscopic and intraoperative imaging as well as for superficial structures, such as carotid arteries.

The use of fluorescent protease sensors for the identification and characterization of inflamed atherosclerotic lesions is highly promising. Matrix metalloproteinase (MMP) and cysteine protease activity increases in atherosclerotic plaques, and may be well suited to the identification of plaques at risk for rupture, given their enzymatic role in extracellular matrix degradation.\(^{64}\) There are fluorescent reporters that minimally fluoresce in an inactivated quenched state, but when in proximity of proteases, undergo enzymatic cleavage and become highly fluorescent (Figure 6A).\(^{79}\) These reporters have been used in vivo to identify inflammatory atherosclerotic lesions.\(^{30,81}\) To use protease sensors in humans, an endovascular optical probe capable of detecting intravascular fluorescent signal is necessary.\(^{82}\) We therefore developed a catheter system capable of detecting fluorescence and which has a floppp radiopaque tip (for simultaneous detection by x-ray angiography), and a maximum outer diameter of 0.48 mm.\(^{83}\) Using a commercially available NIR protease sensitive fluorescent reporter, this catheter detects arterial atheromata in rabbits in vivo (Figure 6B-G). The study used vessels of similar caliber to human coronary arteries (rabbit iliac vessels), and a fluorescent reporter sensitive to the protease cathepsin B, which is associated with inflammation seen in atherosclerosis.\(^{30,83,84}\)

Another optical modality seeing expanded use is optical coherence tomography (OCT). Similar in principle to ultrasound, but using infrared wavelengths, OCT achieves a high resolution (microns) and is able to penetrate several millimeters into tissue.\(^{85}\) OCT for intravascular imaging of atherosclerosis has been suggested, and recently has been used to identify macrophages in atherosclerotic tissue using iron oxide nanoparticles.\(^{38}\) It has also been used to explore intracoronary atherosclerotic lesions in human patients.\(^{87,89}\) Combination of this technology with advances in molecular imaging techniques (i.e. molecular probes) may enable identification and characterization of vulnerable plaques.
Conclusion

Preclinical molecular imaging has developed a rich variety of targeted imaging tools, which are already accelerating basic research and drug development. While the field matures, it starts to focus on improved translatability of these techniques. Advantages of a given technique will have to be balanced with potential radiation exposure and probe toxicity, especially in preventive measures when relatively healthy patients are exposed. Promising clinical studies indicate that these goals can be achieved, and that clinical translation can enable early and specific diagnosis of diseases such as atherosclerosis and heart failure.

References

Emerging cardiovascular molecular imaging approaches

