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We have derived an expression for the physical mass and width of the ρ-meson in vacuum
from its spectral function, calculated in the vector meson dominance model when a ρ0

meson couples to two virtual pions π+–π−. The propagator is computed after evaluating
the ρ-meson self-energy. The real part of the ρ-meson self-energy is given by a divergent
integral and needs to be regularized; the regularization is done by using a double sub-
tracted dispersion relation. The result leads to a closed analytical expression which allow
us to evaluate the spectral function in a closed way. The physical mass, defined as the
magnitude of the four-momentum |k| for which the spectral function S(k2) attains its
maximum value, is obtained, and it gives a value of 770 MeV, which is in total agreement
with the reported experimental value of the ρ-meson mass.
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1. Introduction

The study of the ρ-meson properties in vacuum and in nuclear matter has recently

attracted growing attention because of the strong evidence that the ρ-meson masses

change in a nontrivial way in nuclear medium, compared with its properties in

free space.1 Also, the dilepton production rate in relativistic heavy-ion collision is

strongly influenced by the ρ-meson properties in hot and dense nuclear matter.2

Particularly, the mass of vector mesons is of wide interest due to the possibility of

direct observation of the nuclear medium effects, associated with partial restoration

of chiral symmetry in dense nuclear matter.3

Both mass and width are important properties of unstable particles. There is no

unique way of defining and determining theoretically these two quantities. For some

authors, as in Ref. 4, the mass of a particle is defined as the pole in its complete

propagator; this definition is also used in Refs. 1, 5 and 6. On the other hand,
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authors in Refs. 7 and 8 make use of the spectral function to define the mass of a

particle. In Refs. 9 and 10, the S-matrix formalism is used to determine the mass

and width of the meson. In this work, the spectral function of a ρ-meson in vacuum is

studied when the meson couples strongly to two virtual pions. The ρ–π interaction is

introduced in the formalism by considering the meson as a gauge boson. Defining the

physical mass of the ρ-meson as the magnitude |k| of the four-momentum, for which

the ρ-meson spectral function gets its maximum, we find a closed expression for the

regularized self-energy function, and thus we obtain an exact analytical function for

the physical mass of the ρ-meson. The ρ-meson self-energy is calculated in the one-

loop level and the propagator is computed by summing over ring diagrams, in the

so-called chain approximation,11 i.e. we calculate the self-energy to one-loop order.

To carry out the summation we use the Dyson equation. Since the real part of the

self-energy is ultraviolet divergent, it is regularized by using a double subtracted

dispersion relation which preserves the gauge invariance of the theory. This is the

main point of this work, offering an approach different from other contributions

where the ρ-meson physical mass is calculated. The use of a double subtracted

dispersion relation allow us to get a closed expression for the self-energy function.

Our result differs slightly from that obtained in Ref. 8, but the difference is due to

the fact that they use dimensional regularization in their calculations.

2. Formalism

We will use the definition of the physical mass of a particle in terms of its spectral

function. This method of calculation is used extensively in the literature,7,12,13

and it is well established. To evaluate the physical mass of the ρ-meson it is

necessary to calculate its dressed propagator Dµν(k) in vacuum, where k is the

four-momentum of the propagating ρ-meson. We need the expression for the

dressed-meson propagator D(k), which is obtained from the Dyson equation,

D(k) = D0(k) + D0(k)Σ(k)D(k), where

D0µν(k) =

[

− gµν +
kµkν

(m0
ρ)

2

]

1

k2 − (m0
ρ)

2 + iε
(1)

is the free propagator of the ρ-meson, and Σ(k) is the self-energy of ρ. The self-

energy Σ(k) contains all the information about the interactions of the meson with

the quantum vacuum. Thus, to calculate Σ(k), we must first specify the dynamical

content of our model.

Our starting point is the Lagrangian density L that describes the π–ρ

dynamics,14

L = (Dµπ)∗(Dµπ) − m2
ππ∗π −

1

4
ρµνρµν +

1

2
m0

ρ

2
ρµρµ ; (2)

here, π is the charged pseudoscalar meson field; ρµ is the neutral ρ-meson field; the

tensor

ρµν ≡ ∂µρν − ∂νρµ (3)
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is the field tensor for the ρ-meson, and

Dµ ≡ ∂µ − igρT · ρµ (4)

is the covariant derivative, with 2T = τ as the Pauli matrices in the isospin space,

and ρ as the meson field which is a vector in the isospin space. The quantities m0
ρ

and mπ in Eq. (2) are the bare ρ-meson mass and the π-meson mass, respectively.

The equation of motion for the ρ-meson field is written as

∂µρµν + m0
ρ

2
ρν = gρJ

ν , (5)

where

Jµ ≡ iπ∗∂µπ − iπ∂µπ∗ − 2gρρ
µπ∗π . (6)

On the other hand, the equation of motion for the pion fields reads

∂µπ + i
gρ

2
ρµπ = 0 (7)

and

∂µπ∗ − i
gρ

2
ρµπ∗ = 0 . (8)

Combining Eqs. (5), (7) and (8), we arrive at

∂µJµ = 0 . (9)

The current Jµ(x) is therefore conserved, and, according to Eq. (5), the ρ-meson

couples to a conserved current. Furthermore, taking the divergence of Eq. (5) leads

to ∂µρµ = 0, which implies that the ρ-meson field is transverse.

The interaction between the pions and the mesons are introduced through the

covariant derivative

(Dµπ)∗(Dµπ) = (∂µ − igρρµ)π∗(∂µ − igρρ
µ)π ;

thus, the interaction Lagrangian is given by

Lρπ = −gρρµJµ ,

where the minus sign comes from the definition of Jµ. The explicit form of Lρπ is

Lρπ = igρρ
µπ∗∂µπ − igρρ

µπ∂µπ∗ + g2
ρρµρµπ∗π . (10)

The propagation of a bare ρ-meson is represented by its free propagator

iD0
Fµν(k) =

[

−gµν +
kµkν

(m0
ρ)

2

]

i

k2 − (m0
ρ)

2 + iε
, (11)

schematically represented as a wavy line.

The influence of the interaction of the ρ-mesons with virtual pions is introduced

through the modification of the free propagator in the one-loop approximation;
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Fig. 1. Feynman diagrams associated with the two terms in Eq. (12), both contributing to the
ρ-meson self-energy. The wavy line represents a neutral ρ-meson, and the dashed line represents
a charged pion.

this is shown graphically in Fig. 1. These two Feynman diagrams contribute to the

ρ-meson self-energy. The wavy line represents the ρ0-meson propagator and the

dashed lines represent the charged pions. The contribution of these diagrams to

the modified propagator is written as

iD′

Fµν(k) = iD0
Fµν(k) + iD0

Fµα(k)(−iΣαβ(k))iD0
Fβν(k) ,

where iD′

Fµν(k) and iD0
Fµν(k) are the modified and the free Feynman propagators,

respectively, and −iΣαβ(k) is the ρ-meson self-energy tensor corresponding to the

two diagrams in Fig. 1. The analytical expression for the self-energy is

−iΣµν(k) = g2
ρ

∫

∞

−∞

d4q

(2π)4
(2q − k)µ(2q − k)ν

[q2 − m2
π + iε][(q − k)2 − m2

π + iε]

− 2g2
ρ

∫

∞

−∞

d4q

(2π)4
gµν

[q2 − m2
π + iε]

. (12)

The first term on the right-hand side of this expression arises from the ρππ-vertex,

which is given by the first two terms in Eq. (10), and the last term in Eq. (12)

comes from the vertex, which is given by the last term in Eq. (10).

The above expression for the modified propagator is calculated to second-order

approximation, but going to farther orders, we can compute the full meson prop-

agator. We will calculate the full propagator in the chain approximation, which

consists of an infinite summation of the one-loop self-energy diagrams. The analyt-

ical expression for the full meson propagator iDFµν(k) is

iDFµν(k) = iD0
Fµν(k) + iD0

Fµα(k)(−iΣαβ(k))iDFβν(k) .

This expression is known as Dyson equation. The solution of this equation, in matrix

notation, is

D(k) = (D0(k)−1 − Σ(k))−1 =
1

k2 − (m0
ρ)

2 − Σ(k)
. (13)

We can see from the structure of iΣµν(k) that it is symmetric, which is to say,

Σµν(k) = Σνµ(k). After some algebraic work we can prove the transversality prop-

erty of Σµν(k), which is expressed as kµΣµν(k) = kνΣµν(k) = 0. This property,
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combined with the Lorentz invariance and the fact that the self-energy has tenso-

rial structure, uniquely determines the form of the self-energy8:

Σµν(k) =

[

−gµν +
kµkν

k2

]

Σ(k) . (14)

Multiplying Eq. (14) by gµν we obtain that Σ(k) = − 1

3
gµνΣµν(k).

Now, if we work in the ρ-meson rest frame, i.e. kµ = (k0,0) , we can note that,

as a consequence of the symmetry of the integrand, Σµν(k) is diagonal, and that

Σ00(k) = 0. Thus, the three spatial terms Σii(k) are equal to each other.

Carrying out the integration of Σ(k) in Eq. (12) with respect to q0 by using the

Cauchy residue theorem, and integrating in the q0 complex plane, we obtain

Σ(k2) =
g2

ρ

6π2

∫

∞

0

d|q|q2 3k2
0 − 8q2 − 12m2

π
√

q2 + m2
π[k2

0 − 4(q2 + m2
π) + iε]

. (15)

The real and imaginary parts of Eq. (15) can be separated with the use of the

well known formula 1

x+iε
= P 1

x
− iπδ(x). The integration for the imaginary part is

readily obtained, and it gives

Im Σ(k2) = −
g2

ρk
2
0

48π

(

1 −
4m2

π

k2
0

)
3

2

(16)

for k2
0 > 4m2

π, and zero for k2
0 < 4m2

π. We note that in Eq. (16) the characteristic

threshold value k2
0 > 4m2

π for the production of real π+π− pairs for the ρ-field.

On the other hand, the real part of Σ(k2) is ultraviolet divergent. We regularize

the real part of Σ(k2), Re Σ(k2), by following the standard procedure of subtracting

infinites:

Re Σ(k2) = Re Σ(k2) − Re Σ0(k
2) + Re Σ0(k

2) , (17)

where Re Σ0(k
2) is an infinite quantity, chosen conveniently to cancel the infinite

terms of Re Σ(k2). Replacing Eq. (17) into Eq. (13) we obtain

D(k) = −
1

k2 − m2
ρ − Re ΣR(k2) − i Im Σ(k2)

, (18)

where we have defined the finite difference Re ΣR(k2) = Re Σ(k2) − Re Σ0(k
2) as

the regularized real part of the ρ-meson self-energy, and the renormalized mass mρ

as m2
ρ = (m0

ρ)
2 + Re Σ0(k

2) (see Ref. 1). Thus, the spectral function S(k2) of the

ρ-meson can be written as17

S(k2) = −
2 Im Σ(k2)

[k2
0 − m2

ρ − Re ΣR(k2)]2 + [Im Σ(k2)]2
. (19)

We calculate Re ΣR from the double subtraction relation15

Σ(t) = −
t2

π

∫

∞

0

Im Σ(t′)

t′2(t′ − t) − iε
dt′ , (20)
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which is a convergent integral. Again, by using 1

x+iε
= P 1

x
− iπδ(x), we obtain that

the regularized real part ΣR(k2) of Re Σ(k2) can be written as

Re ΣR(k2) = −
g2

ρk
2
0

48π2
P

∫

∞

4m2
π

(1 −
4m2

π

x′
)

3

2

x′(x′ − k2
0)

dx′ . (21)

This integral is convergent16 and can be solved analytically, leading to the

expression

Re ΣR(k2) = −
g2

ρk2
0

24π2

{

1

3
+

√

1 −
4m2

π

k2
0

+
1

2

(

1 −
4m2

π

k2
0

)
3

2

Ln

∣

∣

∣

∣

∣

√

1 −
4m2

π

k2

0

− 1
√

1 −
4m2

π

k2

0

+ 1

∣

∣

∣

∣

∣

}

; (22)

this is the main result of this work. Substituting Eqs. (16) and (22) into the ex-

pression for the spectral function S(k2) given by Eq. (19), we arrive at a closed

expression for the spectral function. The parameters in Eq. (19) are the ρ-meson

mass mρ which we take as 770 MeV, the experimental value of the ρ-meson mass,

and the bare ρππ coupling constant gρ = 6.058; both quantities were chosen in

order to adjust the position and the height of the peak in the electromagnetic form

factor F (k2). The plot of the spectral function given by Eq. (19) is shown in Fig. 2,

where we have used Fermi units. As it can be noted, the maximum of S(k2) is in 3.9

fm−1, which corresponds to 770 MeV, in accordance with the reported experimental

value for the mass of the ρ-meson.18 We also measured the width Γ of the peak of

2 4 6 8

k0 (fm
-1)

0

0.1

0.2

0.3

0.4

0.5

0.6

s(
k 0) (

fm
2 )

Fig. 2. Spectral function s(k) for the ρ-meson in vacuum.
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the spectral function at half of its height; we obtained a value of Γ = 165.8 MeV,

a value somewhat wider than that of 149 MeV reported in Ref. 18.

3. Conclusion

We have studied the propagation of a ρ-meson in vacuum and calculated its phys-

ical mass and its width. From our calculations, we have succeeded in obtaining a

value for the ρ-meson physical mass which is in full agreement with that measured

experimentally. The use of a double subtraction relation has allowed us to evaluate

the regularized part of the ρ-meson self energy Re ΣR(k2), giving a closed analytical

expression. On the other hand, the result in the calculation of the width of ρ in

free space from the spectral function is about ten percent larger than that reported

elsewhere. The fact that we can obtain the physical mass of the ρ-meson by con-

sidering that it couples in vacuum to two virtual pions, is a strong evidence that

the ρ-meson is a two-pion resonance.
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