UNIVERSIDAD AUTONOMA DE NUEVO LEON facultad de ciencias químicas

"ANALISIS QUIMICO DE MATERIALES SULICOALUMINOSOS POR FLUORESCENCIA DE RAYOS-X"

POR

Q.I. JORGE A. CABRIALES GARCIA

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE MAESTRIA EN CIENCIAS CON ESPECIALIDAD EN QUIMICA ANALITICA

MAYO 2002

TM 25521 FCQ 2002 C3

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE CIENCIAS QUÍMICAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN POR DIRECCIÓN GENERAL DE BIBLIOTECAS

Q.I. JORGE A. CABRIALES GARCIA

COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE MAESTRÍA EN CIENCIAS CON ESPECIALIDAD EN QUÍMICA ANALÍTICA

MAYO 2002

١ TM 25521 FCQ 2002 C3 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

÷

300921

"ANÁLISIS QUÍMICO DE MATERIALES SILICOALUMINOSOS POR FLUORESCENCIA DE RAYOS-X"

Aprobación de la Tesis:

UNIVERSIDA<u>D AUTÓNOMA DE NUE</u>VO LEÓN Dra. Blanca Nájera Martínez Revisor y Sinodal DIRECCIÓN GENERAL DE BIBLIOTECAS

Dra. Rocío Castro Ríos Revisor y Sinodal

Dra. Cecilia O. Redríguez González Coordinadora de la Escuela de Graduados en Ciencias

PREFACIO

Esta tesis es presentada a la Universidad Autónoma de Nuevo León para optar al grado académico de Maestro en Ciencias con Especialidad en Química Analítica. La investigación fue llevada a cabo bajo la asesoría del M.C. Alejandro García García. El objetivo de este trabajo es desarrollar una metodología de análisis químico, basado en fluorescencia de rayos-X, que permita realizar análisis de materiales silicoaluminosos con relativa rapidez y flexibilidad, abarcando la gran variedad de minerales que los contienen con precisión aceptable. La información generada por este método servirá como base para el diseño y desarrollo de mezclas para la síntesis de clinker de cemento portland y de otros tipos de clinkers especiales. El producto final de esta tesis es el método desarrollado y su campo de aplicación, con sus ventajas y limitaciones bien definidas, que constituya una alternativa real para el análisis espectroquímico de materiales silicoaluminosos.

DIRECCIÓN GENERAL DE BIBLIOTECAS

ÍNDICE GENERAL

	1
	Dź-
	Pag.
RESUMEN	viii
CAPÍTULO I. INTRODUCCIÓN	
1.1. Proceso de elaboración de cemento portland	2
1.2. Materiales silicoaluminosos	4
1.3. Métodos de análisis de materiales silicoaluminosos	7
1.3.1. Análisis vía húmeda	7
1.3.2. Análisis por fluorescencia de rayos-X	12
1.3.2.1. Efecto matriz	15
CAPÍTULO II. PARTE EXPERIMENTAL	10
2.1. Instrumentos y equipos	22
2.2. Materiales y reactivos	22
UNIV2.3. Preparación de estándares NOMA DE NUEVO	LEO23
2.3.1. Preparación de los reactivos	23 R
2.3.2. Preparación de los estándares	23
2.4. Preparación de especimenes	25
2.5. Curvas de calibración	28
2.5.1. Evaluación estadística de la calibración	29
2.5.1.1. Parámetros estadísticos de la calibración	30
2.5.1.2, Valores anómalos	32
2.6. Validación del Método	34
2.6.1, Linealidad	35
2.6.1.1. Prueba de significación <i>t</i>	36
2.6.1.2. Prueba de significación F	37
2.6.1.3. Análisis de residuales <i>d</i> i	38

×

ÍNDICE GENERAL

	' Pág.
2.6.2. Límite de detección LD y límite de cuantificación LC	40
2.6.3. Exactitud del Método	41
2.6.4. Precisión del método	42
TONOM	
CAPÍTULO III. RESULTADOS Y DISCUSIÓN	
3.1. Preparación diluida 0.5:9.5	44
3.1.1. Preparación de especímenes	44
3.1.2. Calibración	45
3.1.2.1. Evaluación de la calibración	47
3.2 Preparación concentrada 2:8	50
3.2.1. Preparación de especímenes	50
3.2.2. Evaluación de la calibración	52
3.2.3. Validación del método	55

UNICAPÍTULO IV. CONCLUSIONES TÓNOMA DE NUEVO LEÓ⁶⁶

CAPÍTULO V. TENDENCIAS DE ANÁLISIS L DE BIBLIOTEC	AS 69
ANEXO A	74
ANEXO B	96
ANEXO C	98
ANEXO D	105

BIBLIOGRAFÍA

115

ÍNDICE DE FIGURAS

Figura		, Pág
1.1.	Diagrama de producción de cemento portland	3
1.2.	Diagrama para el análisis químico vía húmeda	9
1.3.	Generación de rayos-X secundarios	13
1.4.	Efectos de absorción e incremento debidos a la matriz	18
2.1.	Posible resultados obtenidos en el análisis de residuales	39
3.1.	Curvas de calibración obtenidas para SiO_2 (a) y SO_3 (b) empleando la preparación 0.5:9.5	48
3.2.	Curvas de calibración obtenidas para SiO ₂ (a) y SO ₃ (b) empleando la preparación 2:8	53
3.3.	Gráficas de análisis de residuales obtenidas para el SiO ₂ (a) y el TiO ₂ (b). Preparación 2:8	56

TINI ⁵ 17E	Equipos portátiles disponibles en el mercado	TEAN
UN 5.2.	Esquema del equipo CHEMIN	72

DIRECCIÓN GENERAL DE BIBLIOTECAS

A.I.	Curva de calibración SIO ₂	/4
A.2.	Curva de calibración Al ₂ O3	76
A.3.	Curva de calibración Fe2O3	78
A.4.	Curva de calibración CaO	80
A.5.	Curva de calibración MgO	82
A.6.	Curva de calibración SO₃	84
A.7.	Curva de calibración Na2O	85
A.8.	Curva de calibración K2O	87
A.9.	Curva de calibración TiO2	89

INDICE

ÍNDICE DE FIGURAS

			۴	
	Figura			Pág.
	A.10.	Curva de calibración P2O5		91
	A.11.	Curva de calibración Mn2O3		93
	C.h	Gráfica de análisis de residuales obtenida para SiO2		98
/	C.2.	Gráfica de análisis de residuales obtenida para Al ₂ O ₃		98
0	C.3.	Gráfica de análisis de residuales obtenida para Fe2O3		99
7	C.4.	Gráfica de análisis de residuales obtenida para CaO		99
	C.5.	Gráfica de análisis de residuales obtenida para MgO		100
	C.6.	Gráfica de análisis de residuales obtenida para SO3		100
	C.7.	Gráfica de análisis de residuales obtenida para Na2O		101
	C.8.	Gráfica de análisis de residuales obtenida para K2O		101
	C.9.	Gráfica de análisis de residuales obtenida para TiO2		102
Ś	C.10.	Gráfica de análisis de residuales obtenida para P2O5		102
	C.11.	Gráfica de análisis de residuales obtenida para Mn2O3		103

VERSIDA

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

99

ÍNDICE DE TABLAS

		7	Pág.	ŝ
	1.1.	Materiales usados en la elaboración de cemento portland	· 3	
	1.2.	Ejemplos típicos de rocas ígneas, sedimentarias y metamórficas y algunos minerales que las conforman	6	
	1.3.	Composición química media de diversas rocas	7	
	1.4.	Desarrollo cronológico de la espectrometría de rayos-X	16	
	TTO	NOMA		
	2.1.	Composición porcentual para la serie de 10 estándares.	26	
\mathbb{R}	2.2. ^{ALER}	Composición porcentual para la serie de 14 estándares.	27	
SID	5			
H	3.1. 🖓	Errores de preparación obtenidos para la dilución 0.5:9.5	49	
5	3.2.	Errores de preparación obtenidos para la preparación 2:8	53	
E	3.3.	Resultados de la prueba F para la evaluación de datos anómalos	54	F
Y	3.4.	Parámetros estadísticos evaluados para las curvas de calibración	54	
	3.5.	Resultados obtenidos en la evaluación de linealidad	56	/
	3.6.	Límite de detección y cuantificación del método	57	
	3.7	Concentraciones obtenidas para muestras certificadas evaluadas	59	
UN	IVE	con la curva de calibración	EÓN	[
	5.0	comparación de la composición teórica de un clinical preparado	00	(
	DI	con un anélicie por EPV en una cuma de materiales costificades		
	DIF	NIST)	
	3.9	Precisión del instrumento para análisis de materiales	61	
	2 10	Benetibilidad intra encavo obtenida para la muestra NCEDC72221	62	
	5.1V. 7 11	Validación de la matodología de apólicis para matoriales	62	
	5.11.	silicoaluminosos por fluorescencia de rayos-X	05	
	4.1.	Error del método de análisis de arcillas por XRF	66	

ÍNDICE DE TABLAS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

vi

RESUMEN

En este trabajo se describe el desarrollo y validación de un método de análisis por fluorescencia de rayos-X para materiales silicoaluminosos,

Se puede cuantificar SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, SO₃, Na₂O, K₂O, TiO₂, P₂O₅ y Mn₂O₃ en los intervalos de concentración en los que los materiales silicoaluminosos suelen emplearse en la industria cementera.

Para la validación del método se determinaron la linealidad, el límite de detección, el límite de cuantificación, la exactitud y la repetibilidad del instrumento e intra-ensayo.

UNIVERSIDAD AUTONOMA DE NUEVO LEON

La simulación de la matriz de un material a partir de estándares sintéticos proporciona, en el desarrollo de métodos analíticos, la ventaja de trabajar en los intervalos de concentración en los que los materiales de interés se presenten.

INTRODUCCIÓN

1.1. PROCESO DE ELABORACIÓN DE CEMENTO PORTLAND

El clinker del cemento portland se manufactura a partir de, fundamentalmente, dos materias primas, la primera de las cuales está constituida por material calcáreo (como fuente de calcio) principalmente; la segunda de ellas la forma un material arcilloso (como fuente de aluminio y silicio). Estos componentes deben mezclarse en la proporción adecuada y molerse finamente. La mezcla denominada harina cruda pasa a un horno rotatorio en donde se calienta lentamente hasta el punto de sinterización. El producto formado, llamado clinker, se enfría, se mezcla con yeso y se muele hasta obtener un polvo muy fino, que constituye el cemento portland¹⁻³. El esquema de producción correspondiente se

presenta en la figura 1.1. NIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Para la elaboración de cemento portland se puede usar una variedad considerable de materiales, algunos de los cuales se listan en la tabla 1.1; sin embargo, el número de fuentes disponibles para tal efecto, se puede reducir si los materiales contienen cantidades apreciables de compuestos que afecten la calidad del cemento, tales como, MgO, Pb, Zn y sus compuestos, fosfatos, sulfatos, sulfuros, álcalis, etc³.

- 22

FUENTE DE CALCIO	FUENTE DE ALUMINIO	FUENTE DE SILICIO
Caliza petrificada	Diáspora E B	Arena sílica
Tizas	Pizarras	Arenisca cuarcítica
Mármol	Esquistos	Cuarcita
Cretas	Caolines	Pizarra
Margas	Tobas	Diatomita
Conchas de ostras	Bauxita	
Arena de Arganito	Gramito	

De la misma forma en que la presencia de ciertos compuestos afecta la calidad del cemento, el empleo de una proporción inadecuada de los materiales de partida impactará en la calidad del producto final, es decir, una pequeña variación en las relaciones establecidas para los componentes principales, puede ser suficiente para cambiar las características de quemado, la formación correcta del clinker de la mezcla o las propiedades del cemento^{1,2}.

Lo anterior obliga a llevar a cabo un control de calidad estricto sobre las materias primas, así como la dosificación de las mismas, para lo cual es importante conocer su composición química.

1.2. MATERIALES SILICOALUMINOSOS

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Las materias primas que se emplean en la industria del cemento se encuentran en la naturaleza en un gran número de variedades, formando parte de la corteza terrestre.

Estos materiales se forman a través de mecanismos muy diversos de entre los cuales podemos mencionar:

- 1. Solidificación del magma, dando lugar a la formación de rocas ígneas.
- Desgaste de las rocas ígneas debido a la acción del viento y el agua, formando las rocas sedimentarias.
- Efectos de calor, presión, fluidos y gases químicamente activos sobre las rocas, originando las rocas metamórficas^{4,5}.

La corteza terrestre, hasta una profundidad de 16 Km, está compuesta por un 95% de rocas ígneas, y un 5% de rocas sedimentarias (4% de pizarra, 0.75% arenisca y 0.25% caliza)⁶, las cuales están formadas, casi en su totalidad, por compuestos de oxígeno, en especial silicatos de Al, Na, K, Ca, Mg y Fe.

La tabla 1.2 lista ejemplos típicos de rocas ígneas, sedimentarias y metamórficas y algunos de los minerales que las conforman.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Dada la amplia diversidad de minerales que conforman las rocas de la corteza terrestre, éstas presentan una composición química variable, como puede verse en la tabla 1.3.

El análisis químico de este tipo de materiales, que se emplean en la industria del cemento, se lleva a cabo por el método tradicional de vía húmeda, el cual es un método laborioso y lento para generar resultados, debido a la dificultad para disolver este tipo de materiales, así como a la

2

serie de pasos a seguir para la separación y cuantificación de los diferentes elementos que los conforman. Tales características han motivado el desarrollo de nuevos métodos de análisis más prácticos y rápidos

Tabla 1.2. Ejemplos típicos de rocas ígneas, sedimentarias y metamórficas y algunos minerales que las conforman⁵.

ONOM		
ÍGNEAS	SEDIMENTARIAS	METAMÓRFICAS
VER ATIS Granito	Pizarra	Gneis
Gabro	Arenisca	Esquisto
Peridotita	Caliza	Mármol
Basalto	Conglomerado	Cuarcita
Riolita, etc		Pizarra dura, etc
Constraint and a second second	MINERALES CARACTERÍSTICOS	nation and a second second second second
Ortoclasa	Cuarzo	Estaurolita
Pertita	Calcita	Cianita
Microclina	Minerales arcillosos	Andalucita
Plagioclasa	Minerales de	Sillimanita
	precipitados	
IR COCCUARZO OF	químicos y orgánicos	T Cordierita C
Nefelina	Halita	Granate
Leucita	Silvita	Zoisita
Horblenda	Yeso	Wollastonita
Augita	Anhidrita	Tremolita
Biotita	Glaucomita	Clorita
Muscovit <u>a</u>	Pedernal	Grafito
Olivino	Carbonatos	Talco, etc
Materia vítrea, etc	Dolomita, etc	17

-

	Componente	Roca ígnea	Material (% Pizarra blanda	5 P/P) Arenisca	Caliza
	SiO ₂	59.14	58.10	78.23	5.19
	Al ₂ O ₃	15.34	15.4	4.77	0.81
	Fe ₂ O ₃	3.08	4.02	1.07	0.54
	FeO	_ 3.80	2.45	0.30	-
	CaO	5.08	3.11	5.50	42.57
	MgO	3.49	2.44	1.16	7.89
	SO₃	-	0.64	0.07	0.05
1	N Na ₂ O	3.84	1.30	0.45	0.05
	K ₂ O	3.13	3.24	1.31	0.33
ALE	E FLAMTIO2	1.05	0.65	0.25	0.06
	P2O5	0.30	0,17	0.17	0.04
	BaO	0.06	0.05	0.05	-
	CO ₂		2.63	5.03	41.54
6	H ₂ O	1.15	5.00	1.63	0.77
$\left \right\rangle$	8 C	<u> </u>	0.80		

Tabla 1.3. Composición química media de diversas rocas⁵.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 1.3. Métodos de análisis de materiales silicoaluminosos DIRECCIÓN GENERAL DE BIBLIOTECAS

1.3.1. ANÁLISIS VÍA HUMEDA

El análisis químico de aluminosilicatos por vía húmeda, método clásico de descomposición de la muestra y cuantificación de sus óxidos por separado o en serie, se realiza en un tiempo aproximado de 8 horas para los materiales calcinados y más de 24 hrs. Para los materiales crudos.

Lo anterior hace que el análisis por vía húmeda sea impráctico si consideramos que en la mayor parte de las plantas de la industria del cemento, la toma de muestras y su correspondiente análisis se realiza cada hora. Así, con esta metodología, de ser necesaria una corrección al proceso, ésta se realizaría después de que pasaran 8 o 24 horas de producción, tiempo en que se habrían generado cantidades considerables de producto fuera de especificación.

Además, el análisis por vía húmeda, es un proceso difícil que requiere de un analista que tenga un amplio conocimiento de la química involucrada en las operaciones así como suficiente destreza para llevar a

IN Cabo el trabajo^{7_9} DAUTÓNOMA DE NUEVO LEÓN

La serie de pasos que se involucran en el análisis vía húmeda se muestran en la figura 1.2. Las reacciones involucradas en el proceso se listan a continuación⁸⁻¹¹.

Los materiales se disuelven realizando una fusión alcalina y posteriormente una disolución en HCl.

Figura 1.2. Diagrama para el análisis químico vía húmeda

2

El residuo insoluble se somete a una doble evaporación, hasta sequedad de la solución de ácido clorhídrico para convertir todo el dióxido de silicio a su forma insoluble; el residuo de la doble sequedad se extrae con HCI, se filtra y se calcina el sólido.

$$SiO_2 + H_2O \stackrel{H^*}{\leftrightarrow} H_2SiO_3 (gel)$$

 $H_2SiO_3 + residuo \stackrel{A}{\leftrightarrow} SiO_2 + residuo + H_2O$

La determinación del óxido de silicio se realiza por volatilización del mismo a partir del residuo insoluble, con ácido fluorhídrico; el porcentaje de SiO2 se calcula a partir de la diferencia de masa obtenida.

 SiO_2 + residuo + $6HF \stackrel{H^+}{\leftrightarrow} H_2SiF_6 \cdot 2H_2O$ + residuo $H_2SiF_6 \cdot 2H_2O$ + residuo $\stackrel{A}{\leftrightarrow} SiF_4 \uparrow$ + 2HF + $2H_2O$ + residuo

Los iones aluminio y fierro se precipitan, a partir del filtrado obtenido de la determinación de sílice, con NH₄OH. El precipitado se calcina y pesa a la forma de óxidos metálicos (R_2O_3). El Fe₂O₃ se puede determinar por separado, realizando una titulación con una solución de $K_2Cr_2O_7$. El valor del porcentaje de Fe₂O₃ se resta al del R_2O_3 para obtener el porcentaje de Al₂O₃.

$$R^{3+} + OH^{-} \leftrightarrow R(OH)_{3}$$

$$2R(OH)_{3} \stackrel{\Delta}{\leftrightarrow} R_{2}O_{3} + 3H_{2}O$$

$$2Fe^{3+} + Sn^{2+} \leftrightarrow 2Fe^{2+} + Sn^{4+}$$

$$6Fe^{2+} + Cr_{2}O_{7}^{2-} + 14H^{+} \leftrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_{2}O$$

El filtrado obtenido de la precipitación del R_2O_3 se utiliza para la determinación del óxido de calcio. El CaO se precipita como oxalato, se

filtra y calcina. $Ca^{2+} + C_2O_4^{=} \leftrightarrow CaC_2O_4$ $CaC_2O_4 \stackrel{4}{\leftrightarrow} CaO + CO_2 \uparrow$ El óxido de magnesio se obtiene a partir del filtrado de la determinación del óxido de calcio, precipitándolo como un fosfato de magnesio y amonio, el cual posteriormente se calcina y pesa a la forma de pirofosfato de magnesio.

$$Mg^{2+} + NH_{3} + 6H_{2}O + HPO_{4}^{2-} \leftrightarrow MgNH_{4}PO_{4} \cdot 6H_{2}O$$
$$2MgNH_{4}PO_{4} \cdot 6H_{2}O \stackrel{\Delta}{\leftrightarrow} Mg_{2}P_{2}O_{7} + 2NH_{3} + 7H_{2}O$$

-

1.3.2. ANÁLISIS POR FLUORESCENCIA DE RAYOS-X

El análisis químico de materiales silicoaluminosos, usando el método tradicional de vía húmeda, es invariablemente complicado por la dificultad de llevar los materiales a solución. Como vía alterna a este análisis se inició el desarrollo de métodos analíticos instrumentales que ofrecieran ventajas con respecto a los frecuentemente tediosos métodos tradicionales¹².

De entre los diversos métodos instrumentales, el método de fluorescencia de rayos-X, se considera como más adecuado, debido a las ventajas que presenta, como son: rapidez en el análisis, fácil preparación de la muestra y no-destrucción de la misma, etc.

La espectrometría de fluorescencia de rayos-X es un método de análisis cualitativo y cuantitativo para elementos químicos basado sobre la medición de las longitudes de onda y las intensidades de las líneas espectrales emitidas por excitación secundaria. El rayo primario procedente de un tubo de rayos-X irradia la muestra, excitando cada elemento para emitir líneas espectrales secundarias, teniendo longitudes de onda características de cada elemento e intensidades relacionadas a su concentración¹²⁻¹⁴. La figura 1.3 muestra un esquema de la interacción de los rayos-X con la materia. El desarrollo de espectrómetros de emisión de rayos-X para análisis elemental comenzó a finales de los 50's y principios de los 60's, aunque la espectroscopia de rayos-X surge en 1911 cuando Barkla obtuvo la primer evidencia positiva del espectro de emisión de rayos-X característicos. La tabla 1.4 presenta el desarrollo cronológico de la espectrometría de rayos-x.

Figura 1.3. Generación de rayos-X secundarios

-

Entre las ventajas de la técnica de espectroscopia de fluorescencia de rayos-x podemos mencionar:

- 1) Selectividad.
- 2) Técnica no destructiva.
- 3) Análisis de sólidos, pastillas, polvos, líquidos o incluso gases,

de materiales tanto metálicos como minerales, cerámicos, plásticos, textiles, papel, etc.

4) Método relativamente rápido.

- 5) Mejoría en el control de proceso.
- 6) Análisis para amplios intervalos de concentración.
- 7) Análisis multielemental para elementos con número atómico

mayor al del flúor.

5) Técnica sensitiva, con buena precisión y exactitud.

UNIVE Las desventajas que présenta son: A DE NUEVO LEÓN

1) Dificultad para el análisis de elementos ligeros con número ® DIRECCIÓN GENERAL DE BIBLIOTECAS atómico menor al del flúor.

- La medición se realiza sobre una delgada capa superficial (≤ 0.01 mm).
- 3) Las relaciones entre intensidad y concentración pueden ser seriamente afectados por la matriz (efecto matriz).
- 4) Los estándares empleados para el análisis cuantitativo deben tener la misma composición química de la muestra, así como

ser preparados de la misma forma en la que ésta sea preparada (pastilla, polvo, fundido, líquido).

1.3.2.1. EFECTO MATRIZ

En condiciones ideales la Intensidad de un elemento A en una Matriz M (*IAM*) sería dada por la siguiente ecuación¹³:

$$I_{AM} = W_{AM} I_{AA} \tag{1}$$

donde: *Wam* es la fracción en peso del analito A en la matriz M y *la* es la intensidad de la línea del analito en su forma pura.

Debido a posibles interferencias de la matriz, la ecuación anterior comúnmente no se puede aplicar; el parámetro I_{AM} está dado en función de los parámetros anteriores y de la matriz misma. Esta dependencia se puede expresar como: $I_{AM} = f(W_{AM}, I_{AA}, M)$ (2)

La influencia que la matriz ejerce sobre *I_{AM}* es lo que generalmente se conoce como efecto matriz.

	e internet	abla 1.4. Desarrollo cronológico de la espectrometría de rayos-X13
	1895	W.C. Roentengen descubre los rayos-X
	1896	J. Perrin midió la intesidad de los rayos-X usando una cámara de
		ionización
	1909	C.G. Barkla evidenció los bordes de absorción
	1911	C.G. Barkla notó evidencia de las series de líneas de emisión las cuales
	i.	designó como K, L, M, N, etc
	1912	M.Von Laue, W. Friedrich y E.P. Knipping demostraron la difracción de
		rayos-X por cristales
	1913	W.L. y W.H. Bragg construyeron el espectrómetro de rayos-X de Bragg
	1913	H.G.J. Moseley mostró la relación entre la longitud de onda de las líneas
	TONC	espectrales y el número atómico estableció que las líneas del cobre son
E		más fuertes que las líneas del zinc en un espectro de rayos-X de un
	ALERE FLAN	espectroquímico cualitativo v cuantitativo
<u>I</u>	1913	W. D. Cooldige introduce el tubo de rayos-X de filamento caliente y alto
SS	<u> 100</u>	vacío
E	1913-	M. Siegbahn efectuó su trabajo clásico de medición de longitud de onda
Z	23	de los espectros de rayos-X de los elementos químicos
EN	1922	A. Hadding aplica por primera vez el análisis químico a minerales con
		espectro de rayos-X
	1923	D. Coster y G. Von Hevesy descubren el hafnio, el primer elemento que
	- 1004	fue identificado por su espectro de rayos-X
IINI	1924 7 E D C	w. Soller construyo un espectrometro de rayos-x usando colimadores
UNI	1928	H Geiger v W Muller desarrollaron el detector de tubo lleno de gas con
	1520	alto grado de confiabilidad
	1928	R. Glocker y H. Schreiber aplicaron espectrometría de rayos-X de
		emisión secundaria (Fluorescencia)
	1948	H. Friedman y L.S. Bircks construyeron el prototipo del primer
		espectrómetro de emisión secundaria comercial
	1 9 49	R. Castaing y A. Guinier construyeron el primer espectrómetro electro-
		probe de rayos-X de emisión primaria
	60's	Se comenzo a utilizar la técnica analítica de fluorescencia de rayos-X en
		de un control químico con una velocidad de recruesta alta a fin de
		mantener la composición química de la mezcla de materiales baio
		ciertos límites que determinan el potencial de la calidad del cemento a
		producir

×

-

El efecto matriz puede manifestarse, ya sea por una diferencia en la absorción de la radiación primaria y/o fluorescente (efecto de absorción), o como un incremento en la intensidad de la radiación (efecto de incremento).

Los efectos de absorción e incremento pueden explicarse a través de la figura 1.4.

La absorción primaria ocurre debido a que todos los elementos que conforman la matriz pueden absorber los fotones de la fuente primaria, así la radiación primaria disponible para la excitación del analito (A) puede ser modificada por otro elemento (B) de la matriz, la figura 1.4 (a) muestra un esquema de la absorción de radiación primaria. La absorción secundaria ocurre cuando la radiación emitida por el analito (A) es absorbida por otro elemento en la matriz (B), el esquema de este efecto es mostrado en la figura 1.4 (b). La figura 1.4 (c) muestra el efecto

secundaria emitida por otro elemento (B) de la matriz^{13,14}.

-

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN 1.3.2.2. ELIMINACIÓN DEL EFECTO MATRIZ. DE BIBLIOTECAS

El efecto matriz o efecto absorción-incremento que afecta la relación entre la intensidad y la concentración se puede eliminar a través de diversos métodos, dentro de los cuales se pueden mencionar los siguientes: 1) estandarización interna, 2) dilución, 3) método de películas delgadas, 4) correcciones matemáticas, etc^{12,13}.

Los primeros tres métodos son considerados como métodos físicos ya que requieren de un pre-tratamiento de la muestra. Estos métodos han sido desplazados por los métodos de corrección matemática y son aplicados a problemas analíticos particulares en el cual la rapidez de la determinación no es primordial.

Entre los diferentes métodos de corrección matemática se podría mencionar dos de los más empleados: 1) el método del parámetro fundamental, 2) el método de coeficientes empíricos^{12,15}.

El método del parámetro fundamental parte de la relación matemática entre la intensidad de un elemento específico con las concentraciones individuales de todos los componentes en la matriz del material analizado, es decir $h_{\rm f} = f(C_{\rm I}, C_{\rm J},..., C_{\rm n})$, ecuación desarrollada inicialmente por Sherman¹⁵. La ecuación involucra parámetros físicos tales como: la superficie de la muestra, los campos de fluorescencia de los distintos componentes, los coeficientes de absorción de masa para la radiación primaria y fluorescente, etc. El método involucra el establecimiento de una serie de ecuaciones que tengan como incógnitas las concentraciones de los componentes. La resolución de las ecuaciones debido a su complejidad se realiza por un procedimiento iterativo. La principal limitante de este método es que para algunos elementos no son conocidos todos los parámetros físicos involucrados en las ecuaciones. El método de los coeficientes empíricos, al igual que el método del parámetro fundamental, establece una relación entre la intensidad de un elemento con las concentraciones de los componentes de la matriz. A diferencia del método anterior, este método involucra el establecimiento de una serie de ecuaciones que contenga las concentraciones de los componentes individuales junto con coeficientes de corrección (α_{ij}) adecuados que reflejan la influencia de la composición sobre la intensidad fluorescente de todos los componentes. La determinación de los coeficientes α_{ij} puede realizarse con el uso de estándares y empleando métodos de regresión múltiple.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

PARTE EXPERIMENTAL

2.1. INSTRUMENTOS Y EQUIPOS

- Espectrómetro de rayos-X, S4 Explorer Bruker
- Perladora, Claisse Fluxy

Horno eléctrico Termolyne 62700

Horno eléctrico de alta temperatura Termolyne 46200.

2.2. MATERIALES Y REACTIVOS

- SiO₂ patinal marca Merck.

UN-VAI2O3 grado reactivo marca JT Baker. A DE NUEVO LEON

- Fe₂O₃ grado reactivo marca JT Baker.
- CaCO3 anhidro grado reactivo marca JT Baker.
- MgCO3 anhidro grado reactivo Baker & Adamson.
- CaSO4 anhidro grado reactivo marca JT Baker.
- Na₂C₂O₄ grado reactivo marca JT Baker.
- K2CO3 anhidro grado reactivo marca JT Baker.
- TiO₂ grado reactivo marca JT Baker.
- (NH₄)₂HPO₄ grado reactivo marca JT Baker.

- MnO₂ grado reactivo marca JT Baker.
- Li₂B₄O₇ spectramelt A10 marca Merck.
- LiBO2 Metaborato (50:50) marca Claisse
- Acetona grado reactivo marca DEQ.
- Crisoles de porcelana
- Crisoles de platino

2.3.

PREPARACIÓN DE ESTÁNDARES

2.3.1. PREPARACIÓN DE LOS REACTIVOS

Los reactivos se secaron en una estufa a 110 °C con el objeto de eliminar las moléculas de agua. El Fe₂O₃ se calentó a 600 °C en un horno eléctrico durante una noche para asegurar que todo el Fe presente estuviese oxidado, posteriormente se realizó una titulación con K₂Cr₂O₇ para determinar la cantidad de Fe³⁺ presente en el reactivo.

2.3.2 PREPARACIÓN DE LOS ESTÁNDARES

A partir de los reactivos secos, se prepararon dos series de 10 y 14 estándares con intervalos de composición, tales que, simularan las matrices de los materiales que conforman la corteza terrestre y que comúnmente son empleados como materia prima en la industria del cemento.

Una vez, establecidas las composiciones de cada estándar se calcularon las cantidades de reactivos que deberían ser pesadas. Los reactivos se pesaron y mezclaron en un mortero de ágata, para facilitar la homogeneización de la mezcla se agregó un poco de acetona.

Se empleó 1 g de cada estándar para la determinación de la pérdida por ignición, la cual se llevó a cabo empleando crisoles de porcelana y sometiendo las muestras a una temperatura de 950 °C durante 1 hora, inicialmente, y posteriormente durante 15 minutos hasta obtener un peso constante. Conocido el porcentaje de pérdida por ignición de cada estándar y considerando la pureza de los reactivos usados, así como los gramos utilizados de cada reactivo en la preparación del estándar, se recalcularon las concentraciones, en porcentaje, de los elementos en su forma de óxidos en base ígnea. La composición final de los estándares se muestra en las tablas 2.1 y 2.2.

-

2.4. PREPARACIÓN DE ESPECÍMENES

4

El método de preparación de especímenes empleado fue el método de fusión con bórax, el cual es considerado el más efectivo para la preparación de especímenes homogéneos. Este método fue propuesto por Claisse en 1957 e involucra una fusión de la muestra con un exceso de tetraborato de sodio o litio y formación de una perla sólida. La reacción guímica en el fundido convierte las fases presentes en la muestra en un vidrio homogéneo de dimensiones controlables¹⁶.

Se trabajaron dos curvas de calibración con diferente fundente, dilución y peso final del espécimen. Los estándares se prepararon por triplicado, con una relación 0.5:9.5 estándar calcinado-tetraborato de litio para la curva con estándares diluidos y con un peso final del espécimen de 7.5 g, el mínimo necesario para llenar el molde de platíno. La curva con menor dilución se preparó con relación 2:8 estándar calcinado-fundente, donde el fundente empleado fue una mezcla 50:50 de tetraborato-metaborato de litio y masa final del espécimen de 10 g, la cantidad máxima recomendada para el llenado del molde de platino.

ICTD 10

1

Tern an

	310_01	202010	310,43	210_04	210-02	510_00	310_0/	510_00	310_09	210-10
510 ₂	\$9.22	60.91	62.86	64.44	66.17	67.81	69.22	71.21	72.65	74.43
Al ₂ 0 ₃	21.31	19.12	17.08	14.86	12.70	10.47	8.23	6.17	3.95	1.82
Fe _z O ₃	3.11	3.52	3.97	4.44	4.95	5.40	5.86	6.40	6.88	7.37
CaO	7.41	6.86	6.01	5.36	4.53	3.82	3.64	2.42	1.72	1.02
MgO	1.43	2.32	2.98	3.73	4.52	5.22	5.94	6.62	7.56	8.19
509	1.05	1.06	0.86	0.67	0.59	0.49	0.39	0.27	0.16	0.05
NazO	0.85	1.01	1.50	2.01	2.45	2.97	3.47	4.03	4.53	4.99
K20	4.99	4.44	3.87	3.46	2,91	2.49	1.84	1.35	0.83	0.31
πο₂	0.08	0.24	0,36	0.54	0.69	0.88	1.04	1.16	1.37	1,51
P205	0.53	0.46	0.41	0.36	0.31	0.25	0.19	0.14	0.08	0.04
Mn ₂ O ₃	0.03	0.05	0.09	0.12	0.18	0.19	0.20	0.23	0.27	0.28
Suma	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
SIO2	13.1553	13.6686	14.0811	14.5696	15.0413	15.5665	16.0681	16.5251	17.1249	17.5319
Al ₂ O ₃	4.7348	4.2919	3.8264	3.3586	2.8864	2.4031	1.9110	1.4320	0.9313	0.4291
Fe ₂ O ₃	0.6916	0.7898	0.8882	1.0041	1.1248	1.2391	1.3608	1.4843	1.6217	1.7356
CaO	1.6456	1.5402	1.3472	1.2112	1.0307	0.8774	0.8443	0.5614	0.4047	0.2403
MgO	0.3171	0.5211	0.6683	0.8425	1,0285	1.1985	1.3785	1.5374	1.7820	1.9293
SO3 AMMA	0.2326	0.2377	0.1934	0.1524	0.1346	0,1129	0.0894	0.0624	0.0373	0.0114
NazO	0.1882	0.2268	0.3361	0.4551	0.5558	0.6826	0.8055	0.9361	1.0673	1.1766
K _z O –	1.1076	0.9957	0.8666	0.7829	0.6614	0.5718	0.4263	0.3127	0.1959	0.0728
TiO ₂	0.0175	0.0545	0.0817	0.1224	0.1566	0,2015	0.2405	0.2690	0.3233	0.3559
P205	0.1185	0,1036	0.0927	0.0824	0.0699	0.0584	0.0441	0.0313	0.0200	0.0083
Mn ₂ O ₃	0.0069	0.0122	0.0196	0.0272	0.0400	0.0425	0.0454	0.0542	0.0627	0.0650
Suma	22.2160	22.4422	22.4013	22.6083	22.7300	22.9544	23.2139	23.2058	23.5710	23.5560
PARA 20g c	le STD BJ.	ET I								
SIO2	11.8816	12.2119	12.556	12.8851	13.2398	13.6072	13,9397	14.2574	14.6163	14.9312
Al ₂ 03	4.2962	3.8517	3.4267	2.9824	2.5503	2.1077	1.6623	1.2375	0.7943	0.3624
Fe ₂ O ₃	0.6267	0.708	0.7947	0,891	0.9934	1.0868	1.1845	1.2849	1.3888	1.4831
CaCO ₃	2.3913	2.1965	1.9322	1.745	1.474	1.2484	1.2109	0,7983	0.5766	0.3513
MgCO;	0,6491	1.055	1.3504	1.6884	2.0516	2.3742	2.71	3.0058	3.4467	3.7235
CaSO ₄	0.3613	0.3652	0.2966	0.2318	0.2037	0.1697	0.1334	0.0926	0.0548	0.0167
Na ₂ C ₂ O ₄	0.3674	0.438	0.6478	0.8698	1.0574	1.2896	1.5103	1.7455	1.9688	2.1657
K ₂ CO ₃	1.4671	1.3046	1.1332	1.0154	0.8538	0.733	0.5424	0.3956	0.2452	0,0909
TIO2	0.0158	0.0487	0.0728	0.1082	0.1378	0.1761	0.2086	0,232	0.2758	0.303
(NH4)2HPO4	0.1993	0.1722	0.1538	0.1355	0.1144	0.0949	0.0711	0.0503	0.0318	0.0131
MnO ₂	0.0069	0.012	0.0192	0.0265	0.0388	0.0409	0.0434	0.0515	0.0589	0.0609
Suma	27 2657	22 3638	22 3834	22 5791	22 715	22 9285	23 2166	23 1514	23.458	23 5018
PP	9.718	10.6933	10.8664	11.5974	12.0121	12.6218	13.2809	13.7572	14.6828	14.8681
		- (
	the second se		The second second		 The task to be apply 	0.0054	0.0056	0.0057	0.0059	0.0060
alsioz	0.0048	0.0049	0.0050	0.0052	0.0053	0.0054	0.0056	0.0037	0.0058	0,000

Tabla 2.1. Composición porcentual para la serie de 10 estándares.

ICTD A4

CTD AL

ICTR 02

1000 07

10770 06

LETT OT

La ma

÷

	STD_01	STD_02	STD_03	STD_04	STO_05	STD_06	STD_07	STD_08	STD_09	STD_10	STD_11	STD_12 5	TO_13	STD.
5102	\$7.11	60.18	62.78	68,43	67.34	65.60	70.10	73.87	73.68	75.49	56.90	77.75	77.60	
AI203	22.03	19.95	17.94	11.63	13.18	10.51	8.35	3.97	4.05	1.82	25.56	3.88	7.71	
Fe2O3	3.52	3.51	4,00	4.51	5.03	5.42	5.96	5.49	6.99	7.52	1,57	14.90	10.12	
CaO	10.05	B.33	6.50	5.90	3,95	4.42	3.60	2,77	1.91	1.02	1,94	0.50	0.10	
MgO	1.19	1.83	2.47	3.15	3.81	4.38	5.04	5.71	6.29	5.95	9.32	0.05	0.47	
\$03	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	
Nazo	0.50	1.00	1.50	2.03	2.55	3.00	3.53	4.03	4.50	5.04	0.05	0.30	0.08	
K20	4.99	4.46	3.95	3.32	2.96	2.39	1.94	1.37	0.86	0.30	1.01	0.49	1.02	
T 02	0.05	0.21	0.38	0.55	0.72	0.86	1.04	1.36	1.35	1.53	2.57	1.97	2.01	
P2O5	0,52	0.47	0.41	0.37	0.32	0.25	0.25	0.20	0.09	0.03	1.01	0.06	0.80	
Mn2Q3	0.03	0.06	0.09	0.12	0.15	0.18	0.20	0.24	0.27	0.30	0.05	0,10	0.08	
Suma	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
5102	12.97	13.63	14,33	15.30	15.07	15.74	15.09	17.00	17.26	17.56	12,95	15.96	15.73	
AI203	5.00	4,52	4.10	2.60	2.95	2.41	1.92	0.91	0.95	0,42	5.82	0.80	1.56	
Fe203	0.80	0.80	0.91	1.01	1,13	1.24	1.37	1.49	1.64	1,75	0.36	3.06	2.05	1
CaO	2.28	1.89	1,48	1.32	0.88	1.01	0.83	0.64	0.45	0.24	0.44	0.10	0.02	1
MgO	U-0.27	0.42	0.56	0.70	0.85	1.00	1.16	1.31	1.47	1.62	2.12	0.01	0.10	
SO3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1
NaZO	0.11	0,23	0.34	0.45	0.57	0.69	0.81	0.93	1.06	1.17	0.01	0.06	0.02	
620	CDC 113	1,01	0.90	0.74	0.65	0.55	0.45	0.31	0.20	0.07	0.23	0.10	0.21	1
TIOZ	0.01	0.05	0.09	0.12	0.15	0.20	0.24	0.31	0.32	0.36	0.59	0.40	0.41	1.
P2O5	0.12	0.11	0.09	0.08	0.07	0.06	0.06	0.05	0.02	0.01	0.23	0.01	0.16	
Mn2O3	0.01	0.01	0.02	0.03	0.03	0.04	0.05	0.06	0.06	0.07	0.01	0.02	0.02	t –
	22.71	22.65	22.83	22.36	22.38	22.94	22.96	23.01	23.43	23.26	22.77	20.53	20.27	1
PARA 20g de S	STD B.I.	\mathbb{R}		0										
SiO2	11.4818	12,0928	12,5753	13.4986	13.2571	13.7423	13.9720	14.6635	14.7249	15.0262	11.2720	15.7809	15,4630	1
AI203	4,4495	4.0265	3.6096	2.3030	2.6038	2.1119	1.6692	0.7870	0.8096	0.3585	5.0892	0.7846	1,5393	
Fe2O3	0.7101	0.7078	0.8031	0.8930	0.9935	1.0890	1.1922	1.2926	1.4020	1.5019	0.3121	3.0339	2.0223	
Ca(103	3.5702	2.9969	2,2990	2.0548	1.3732	1.5642	1.2663	0.9701	0.6732	0.3571	0.6799	0.1792	0.0355	1
undo 3						and the second se			_		1 1001	0,0010	0,2135	
MgCQ3	0.5438	0.8346	1.1205	1.4085	1.6979	1.9887	2,2745	2.5669	2.8500	3,1389	4.1864	0.0210		
MgCO3 CaSO4	0.5438	0.8346	0.0000	1,4085	1.6979	1.9887	2,2745	2.5669	2,8500	0.0000	0.0000	0.0000	0.0000	
MgCQ3 CaSO4 Na2C2Q4	0.5438	0.8346	1.1205 0.0000 0.6483	1,4085 0.0000 0.8664	1.6979 0.0000 1.0841	1.9887 0.0000 1.2970	2.2745 0.0000 1.5200	2.5669 0.0000 1.730s	2,8500	0.0000 2.1657	0.0000	0.0000	0.0000	-
MgCQ3 CaSO4 Na2C2Q4 K2CQ3	0.5438 0.0000 0.2186 1.4723	0.8346 0.0000 0.4333 1.3146	1.1205 0.0000 0.6483 1.1605	1,4085 0.0000 0.8664 0.9591	1.6979 0.0000 1.0841 0.8542	1.9887 0.0000 1.2970 0.7010	2.2745 0.0000 1.5200 0.5672	2.5669 0.0000 1.7308 0.3976	2,8500 0.0000 1,9459 0.2520	0.0000 2.1657 0.0889	4.1864 0.0000 0.0248 0.2936	0.0000	0.0000	
MgCO3 CaSO4 Na2C2O4 K2CO3 TIO2	0.5438 0.0000 0.2186 1.4723 0.0102	0.8346 0.0000 0.4333 1.3146 0.0426	1.1205 0.0000 0.6483 1.1605 0.0752	0.0000 0.8564 0.9591 0.1081	1.6979 0.0000 1.0841 0.8542 0.1408	1.9887 0.0000 1.2970 0.7010 0.1732	2,2745 0.0000 1.5200 0.5672 0.2063	2,5669 0,0000 1,730s 0,3976 0,2700	2.8500 0.0000 1.9459 0.2520 0.2707	3.1389 0.0000 2.1667 0.0889 0.3048	4.1864 0.0000 0.0218 0.2936 0.5096	0.0000	0.0000 0.0344 0.2995 0.4001	
MgCO3 CaSO4 Na2C2O4 K2CO3 TIO2 (NH4)2HPO4	0.5438 0.0000 0.2186 1.4723 0.0102 0.1940	0.8346 0.0000 0.4333 1.3146 0.0426 0.1740	1.1205 0.0000 0.6483 1.1605 0.0752 0.1536	1.4085 0.0000 0.8664 0.9591 0.1081 0.1345	1.6979 0.0000 1.0841 0.8542 0.1408 0.1174	1.9887 0.0000 1.2970 0.7010 0.1732 0.0950	2,2745 0.0000 1.5200 0.5672 0.2063 0.0913	2.5669 0.0000 1.7308 0.3976 0.2700 0.0743	2.8500 0.0000 1.9459 0.2520 0.2707 0.0338	3.1389 0.0000 2.1667 0.0889 0.3048 0.0111	4.1864 0.0000 0.0248 0.2936 0.5096 0.3721	0.0000 0.1295 0.1466 0.4000 0.0222	0.0000 0.0344 0.2995 0.4001 0.2978	
MgCO3 CaSO4 Na2C2O4 K2CO3 TIO2 (NH4)2HPO4 MnO2	0.5438 0.0000 0.2186 1.4723 0.0102 0.1940 0.0067	0.8346 0.0000 0.4333 1.3146 0.0426 0.1740 0.0132	1.1205 0.0000 0.6483 1.1605 0.0752 0.1536 0.0198	1,4085 0.0000 0.8664 0.9191 0.1081 0.1345 0.0264	1.6979 0.0000 1.0841 0.8542 0.1408 0.1174 0.0331	1.9887 0.0000 1.2970 0.7010 0.1732 0.0950 0.0397	2,2745 0,0000 1,5200 0,5672 0,2063 0,0913 0,0442	2,5669 0,0000 1,7308 0,3976 0,2700 0,0743 0,0530	2.8500 0.0000 1.9459 0.2520 0.2707 0.0338 0.0595	3,1359 0,0000 2,1667 0,0889 0,3048 0,0111 0,0561	4.1864 0.0000 0.0248 0.2936 0.5096 0.3721 0.0112	0.0210 0.0000 0.1295 0.1466 0.4000 0.0222 0.0223	0.0000 0.0344 0.2995 0.4001 0.2978 0.0175	
MgC03 CaS04 Na2C204 K2C03 TIO2 (NH4)2HP04 MnO2 Suma	0.5438 0.0000 0.2186 1.4723 0.0102 0.1940 0.0067	0.8346 0.0000 0.4333 1.3146 0.0426 0.1740 0.0132	1.1205 0.0000 0.6483 1.1605 0.0752 0.1536 0.0198	1,4085 0.0000 0.8664 0.9591 0.1081 0.1345 0.0264	1.6979 0.0000 1.0841 0.8542 0.1408 0.1174 0.0331 22.16	1,9887 0,0000 1,2970 0,7010 0,1732 0,0950 0,0397	2,2745 0,0000 1,5200 0,5672 0,2063 0,0913 0,0442 22,80	2,5669 0,0000 1,7308 0,3976 0,2700 0,0743 0,0530 22,81	2,8500 0.0000 1,9459 0,2520 0,2707 0.0338 0.0595	3.1389 0.0000 2.1657 0.0889 0.3048 0.0111 0.0661	4.1864 0.0000 0.0248 0.2936 0.5096 0.3721 0.0112	0.0000 0.1295 0.1466 0.4000 0.0222 0.0223	0.0000 0.0344 0.2995 0.4001 0.2978 0.0175 20.323	
MgCO3 CaSO4 Na2C2O4 Na2C2O4 K2CO3 TIO2 (NH4)2HPO4 MnO2 Suma PPI	0.5438 0.0000 0.2186 1.4723 0.0102 0.1940 0.0067 22.66 11.52	0.8346 0.0000 0.4333 1.3146 0.0426 0.1740 0.0132 22.60 11.31	1.1205 0.0000 0.6483 1.1605 0.0752 0.1536 0.0198 222.46 12.30	1,4085 0,0000 0,8664 0,9591 0,1081 0,1345 0,0264 22,25 11,81	1.6979 0.0000 1.0841 0.8542 0.1408 0.1174 0.0331 22.16 12.08	1,9887 0,0000 1,2970 0,7010 0,1732 0,0950 0,0397 22,80 12,70	2.2745 0.0000 1.5200 0.5672 0.2063 0.0913 0.0442 22.80 13.21	2,5669 0,0000 1,7308 0,3976 0,2700 0,0743 0,0530 22,81 13,76	2,8500 0.0000 1,9459 0,2520 0,2707 0,0338 0,0595 23,02 14,72	3.1389 0.0000 2.1657 0.0889 0.3048 0.0111 0.0651 23.02 14.46	4.1864 0.0000 0.0248 0.2936 0.5096 0.3721 0.0112 22.75 13.03	0.0210 0.0000 0.1295 0.1466 0.4000 0.0222 0.0223 20.52 1.17	0.0000 0.0344 0.2995 0.4001 0.2978 0.0175 20.323 1.74	
MRCO3 CaSO4 CaSO4 Na2C2O4 K2CO3 TIO2 NH02 NH02 Suma PPI AlSiO2	0.5438 0.0000 0.2186 1.4723 0.0102 0.1940 0.0067 22.66 11.52	0.8346 0.0000 0.4333 1.3146 0.0426 0.1740 0.0132 22.60 11.31	1.1205 0.00000 0.6483 1.1605 0.0752 0.1536 0.0198 22.46 12.30	1,4085 0,0000 0,8664 0,9591 0,1081 0,1345 0,0264 22,255 11,81	1.6979 0.0000 1.0841 0.8542 0.1408 0.1174 0.0331 22.16 12.08	1,9887 0,0000 1,2970 0,7010 0,0950 0,0950 0,0397 22.80 12.70	2.2745 0.0000 0.5572 0.2063 0.0913 0.0442 22.80 13.21	2,5669 0,0000 1,730s 0,3976 0,2700 0,0743 0,0530 22,81 13,76	2,8500 0,0000 1,9459 0,2520 0,2707 0,0338 0,0595 23,02 14,72	3.1389 0.0000 2.1667 0.0889 0.3048 0.0111 0.0651 23.02 14.46	4.1864 0.0000 0.0248 0.2936 0.5096 0.3721 0.0112 , 22.75 13.03	0.0000 0.1295 0.1466 0.4000 0.0222 0.0223 20.52 1.17	0.0000 0.0344 0.2995 0.4001 0.2978 0.0175 20.323 1.74	

Tabla 2.2. Composición porcentual para la serie de 14 estándares.

ECAS 5102 A1203 Fe203 CaCO3 MgCO3 CaSO4 Na2C204 K2CO3 TIO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.11 0.00 SID2 Al2O3 Fe2O3 CaO MgO SO3 0.00 0.00 0.00 0.00 99.40 0.00 99.9 0.00 0.02 56.58 0.00 0.00 0.0 99.53 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-

R

La mezcla se fundió en crisoles de platino, los cuales se colocaron en la perladora Claisse Fluxy, en la cual, éstos son soportados sobre mecheros de gas con la ayuda de unas pinzas. Se emplea un programa de calentamiento gradual para obtener las pastillas de vidrio (perla). Cuando las muestras se encuentran completamente fundidas, el instrumento vacía el líquido en moldes circulares de platino. Una vez enfriado el fundido la perla se extrajo del molde, etiquetó y almacenó para posteriormente llevar a cabo el análisis.

2.5. CURVAS DE CALIBRACIÓN Las curvas de calibración se elaboraron empleando un espectrómetro de fluorescencia de rayos-X secuencial Bruker S4 Explorer.

El S4 Explorer emplea un tubo de Rh de 1000 W, que trabaja en un intervalo de 20 - 50 kV y 5 - 50 mA; un intercambiador de filtros (Pueden ser empleados 10 diferentes); dos colimadores con ángulos de apertura de 0.23 y 0.46°; un intercambiador de cristales para LiF200, PET y OVO-55; un detector proporcional Ar-CH4 para un intervalo de energía de 0.1 - 8 keV (Be - Cu); un detector de centelleo Nal para energías mayores a 4 keV (Sc - U). Los estándares se midieron y se obtuvieron las Intensidades netas para cada elemento, a partir de las cuales el software obtiene las intensidades corregidas por efecto matriz. Las intensidades corregidas son graficadas contra la concentración para generar la curva de calibración.

2.5.1 EVALUACIÓN ESTADÍSTICA DE LA CALIBRACIÓN

Una vez establecidas las curvas de calibración es importante fundamentar los resultados proporcionados por las mismas para lo cual es necesario considerar las siguientes preguntas estadísticas:

1. ¿Es lineal la gráfica de calibración?

2. ¿Cuál es la mejor línea recta que pasa por los puntos?

3. Si la calibración es lineal, ¿cuáles son los errores estimados y los límites de confianza para la pendiente y la ordenada al

origen de la recta?

- ¿Existen valores anómalos en los datos experimentales que deban ser eliminados?
- 5. ¿Cuál es el límite de detección del método?

Los cálculos y consideraciones estadísticas para responder esta serie de preguntas son discutidos a continuación, con excepción de los puntos referentes a la verificación de la linealidad y el cálculo del límite de detección, los cuales serán discutidos en la sección 2.6 de este capítulo.

2.5.1.1. PARÁMETROS ESTADÍSTICOS DE LA CALIBRACIÓN

Suponiendo que existe una correlación lineal entre la señal analítica y la concentración, la mejor línea recta que pasa a través de los puntos es calculada por el método de mínimos cuadrados.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Una vez definida la recta de regresión a emplear, los errores aleatorios en los valores de la pendiente y la ordenada en el origen son calculados a través de la siguiente serie de ecuaciones^{17,18}.

El primer dato estadístico a determinar es la desviación estándar residual *sy*, parámetro que proporciona información sobre la dispersión de los valores medidos alrededor de la línea de regresión y es calculado a partir de la siguiente ecuación:

$$s_{\gamma} = \left\{ \frac{\sum_{i} \left(\gamma_{i} - \gamma_{i} \right)^{2}}{n-2} \right\}^{\frac{1}{2}}$$
(2.1)

donde: y_i es el valor experimental, y_i son los valores obtenidos a partir de la recta de regresión y (*n*-2) son los grados de libertad con *n* igual al número de pares de datos empleados en el cálculo de regresión.

Conocido el valor de s_y el cálculo de las desviaciones estándar para la pendiente (s_m) y la ordenada al origen (s_b) y los límites de confianza LC_m y LC_b son dados por:

$$S_{m} = \frac{S_{v}}{\left\{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}\right\}^{\frac{1}{2}}}$$
(2.2)

UNIVERSIDAD AUTONOMA DE NUEVO LEON DIRECCIÓN GENERAL $_{2}DE_{1}^{2}BIBLIOTECAS$ $s_{b} = s_{v} \left\{ \frac{i}{\nabla (1 - \nabla)^{2}} \right\}$ (2.3)

$$s_{\mu} = s_{\mu} \left\{ \frac{\sum_{i} n_{\mu}}{n \sum_{i} (x_{i} - \overline{x}_{i})^{2}} \right\}$$
(2.3)

$$LC_m = m \pm ts_m \tag{2.4}$$

$$LC_b = b \pm ts_b \tag{2.5}$$

donde: x_i son los valores experimentales, \overline{x}_i es el promedio de los valores experimentales y *t* es un parámetro estadístico obtenido a partir de tablas para un nivel de confianza deseado y n-2 grados de libertad.

De igual forma se calculan parámetros adicionales que caracterizan la calibración, éstos son la desviación estándar y la desviación estándar relativa o coeficiente de variación, los cuales son calculados a partir de las ecuaciones listadas a continuación.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

2.5.1.2. VALORES ANÓMALOS

En el desarrollo de situaciones experimentales es frecuente detectar valores que difieren del resto de manera aparentemente inexplicable. Estas medidas se conocen como resultados anómalos, los cuales en algunos casos pueden ser atribuidos a errores humanos.

ν.

En la evaluación de curvas de calibración, pueden presentarse pares de datos que no se ajusten a la calibración propuesta, dichos pares de datos pueden ser eliminados si se comprueba mediante una prueba estadística que son valores anómalos y que no son solamente una desviación aleatoria de los datos¹⁸.

La eliminación de valores anómalos en la calibración se llevó a cabo bajo dos consideraciones, basadas en el error de preparación obtenido para los materiales empleados en la curva de calibración. De acuerdo a esto se consideraron puntos anómalos aquellos valores cuya desviación absoluta fuese mayor al error de preparación promedio obtenido para el elemento calibrado; en situaciones en las que se obtuvo un error de preparación pequeño se eliminaron los estándares con mayor error hasta obtener para la calibración una desviación estándar residual *sy*, igual al error de preparación promedio.

El valor ensayado *TV*, por sus iniciales en inglés, es calculado a partir de la siguiente ecuación:

$$TV = \frac{(n_1 - 2)s_{\nu_1}^2 - (n_2 - 2)s_{\nu_2}^2}{s_{\nu_2}^2}$$
(2.8)

33

donde: n_1 son los pares de datos iniciales de la calibración; n_2 son los pares de datos empleados en la calibración después de eliminar los posibles valores anómalos; s_{y1} y s_{y2} son las desviaciones estándar residual calculadas para n_1 y n_2 respectivamente.

Los posibles valores anómalos serán eliminados si el valor de TV obtenido es mayor que el valor F reportado en tablas para un nivel de significación deseado a $v_7 = 1$ y $v_2 = n-2$ grados de libertad.

Una vez definidos los parámetros estadísticos que definen la calibración, se llevó a cabo la validación del método, para lo cual se emplearon una serie de estándares certificados. El procedimiento llevado a cabo para la validación del método se describe a continuación^{19,20}.

2.6.

VALIDACIÓN DEL MÉTODO

2.6.1. LINEALIDAD

Como primer punto, se determinó el coeficiente de correlación rpara conocer si los puntos experimentales se ajustaban a la línea recta definida, considerando que un valor de r = 0.999 es generalmente aceptado como evidencia del ajuste de los datos²⁰.

Sin embargo, la determinación de *r* es solo el primer paso dentro de la evaluación de la linealidad y no el único a ser considerado, siempre es necesario acompañar este dato de la representación gráfica de los datos y realizar otros ensayos estadísticos.

Para este trabajo, además del parámetro r y la representación

gráfica, la verificación de linealidad se realizó aplicando las pruebas estadísticas de significación *t*, F y el análisis de residuales. DIRECCIÓN GENERAL DE BIBLIOTECAS

(2.9)

2.6.1.1. PRUEBA DE SIGNIFICACIÓN t

La prueba de significación *t* permite evaluar a través del valor de la pendiente *m* la hipótesis nula de que el valor verdadero de *m* es 0, o lo que es lo mismo que no existe correlación entre la concentración y la respuesta analítica.

La aplicación de esta prueba conlleva el cálculo del valor *t* a partir de la siguiente ecuación:

 $t = \frac{m}{s_m}$

El criterio para rechazar la hipótesis nula y concluir que existe una

correlación y que el valor de *m* es aceptable, es que |t| sea mayor que el valor *t* crítico tabulado, para un nivel de significación deseado y n-2 grados de libertad²¹. GENERAL DE BIBLIOTECAS

(2.10)

2.6.1.2. PRUEBA DE SIGNIFICACIÓN F

entre éstas²¹.

La prueba F permite determinar si la relación entre dos variables dependiente e independiente, que presentan un valor de r^2 alto ocurre por azar. La hipótesis nula para este prueba es que la relación entre las variables ocurre como un hecho aleatorio, es decir no existe correlación

El valor F es calculado a partir de la siguiente ecuación:

MS

F =

donde: el término MS está dado por $MS = \sum (\hat{y} - \overline{y})$

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Si el valor obtenido para F es mayor que el F tabulado a un nivel de significación deseado para $v_1 = k$, siendo k = no. de variables, y $v_2 = n - (k+1)$, la hipótesis nula se rechaza y se concluye que la ecuación de regresión puede ser aplicada a los datos observados y que, por lo tanto, la correlación entre las variables no es un hecho aleatorio.

2.6.1.3. ANÁLISIS DE RESIDUALES

Ē.

El análisis de residuales permite evaluar si la función y=mx + baplicada al modelo de calibración describe adecuadamente los valores observados.

El residual d_i es definido como la distancia vertical que existe entre los datos experimentales y la línea de regresión.

$$d_i = y_i - \dot{y_i} \tag{2.11}$$

Los residuales *d*_i son distribuidos entre valores positivos y negativos, si el modelo de regresión es correcto. Si los residuales presentan una tendencia, entonces el modelo de regresión debe ser verificado. La figura 2.1 muestra gráficos que pueden ser obtenidos en un análisis de residuales^{18,19,21}.

Figura 2.1. Resultados obtenidos en el análisis de residuales, el modelo de ajuste es correcto si se obtiene una gráfica como la presentada en *a*); gráficas como *b*) *y c*) son indicativas de que el modelo de ajuste debe ser verificado; la gráfica presentada en *d*) es obtenida para los casos en los que es necesario un ajuste de segundo orden.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

×

2.6.2. LÍMITE DE DETECCIÓN (LD) Y LÍMITE CUANTIFICACÍON (LC)

El límite de detección (LD) de un método esta definido como la cantidad mínima de analito que puede ser detectada.

En espectrometría de rayos-X el LD es directamente proporcional a la pendiente (*m*, dada en unidades de %/Kcps) y a la raíz cuadrada de la razón intercepto / tiempo de medición¹⁶.

 $LD = \frac{3}{m} \times \sqrt{\frac{b}{t}}$ (2.12)

Los resultados para el LD se obtuvieron aplicando esta ecuación y los tiempos de medición empleados en el análisis de cada elemento.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN El límite de cuantificación (LC) de un método definido como la

cantidad mínima de analito que puede ser cuantificada, se obtuvo empleando la siguiente ecuación^{19,20}.

$$LC = 3LD \tag{2.13}$$

2.6.3. EXACTITUD DEL MÉTODO

La exactitud o error de un método es la diferencia entre el valor medido y el valor verdadero de una muestra. La determinación de la exactitud se llevó a cabo empleando una serie de materiales certificados, los cuales cubrían el intervalo de concentración de trabajo.

Los materiales certificados se prepararon empleando el mismo procedimiento usado con los estándares y fueron leídos en la curva de calibración. Los valores obtenidos en base ígnea se recalcularon a base original y se compararon con los valores reportados en el certificado.

El error del método es el promedio obtenido de los errores para cada muestra los cuales se calcularon empleando la siguiente ecuación^{19,20}: DAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS $ERROR = |C_{EXP} - C_{CERT}|$ (2.14)

donde: C_{exp} es el valor experimental recalculado a base original C_{cert} es el valor reportado por el certificado.

2.6.4. PRECISIÓN DEL MÉTODO

La precisión de un método analítico es la magnitud de la dispersión obtenida a partir de análisis múltiples de una muestra homogénea.

En el estudio de precisión del método es importante evaluar la precisión del instrumento o repetibilidad, así como la precisión o repetibilidad intra-ensayo²⁰.

La precisión del instrumento se evaluó realizando 10 mediciones consecutivas de los materiales certificados. La precisión es reportada como la desviación estándar relativa (DER) de las mediciones realizadas.

La precisión intra-ensayo se evaluó preparando para un material certificado 8 réplicas, que son analizadas en la curva de calibración. La DER de las réplicas se calcula y reporta como precisión.

RESULTADOS

3.1. PREPARACIÓN DILUIDA 0.5:9.5

3.1.1. PREPARACIÓN DE ESPECÍMENES

Los altos puntos de fusión que presentan los materiales empleados para la elaboración de los estándares, así como la temperatura (950°C) a la cual opera la perladora fueron inicialmente una limitante para trabajar con una preparación concentrada.

Durante el desarrollo del trabajo se diseñaron experimentos en los que se varió la dilución y la masa total del espécimen, con la finalidad de determinar el método de preparación que proporcionara los mejores especimenes en cuanto a homogeneidad y reproducibilidad. La preparación 0.5:9.5 estándar:tetraborato de litio para una masa total de 7.5 g cumplió con estos requisitos debido a lo cual se trabajaron los estándares con está preparación.

3.1.2. CALIBRACIÓN

Una vez que los especímenes estuvieron preparados se procedió a la medición de los mismos en el espectrómetro Bruker S4 Explorer.

Las curvas de calibración son obtenidas a través del software del equipo, empleando la siguiente ecuación de cálculo.

$$C_{i} = C_{0i} + m_{i} \times I_{i} \times (1 + \sum \alpha_{ij} \times C_{j})$$
(3.1)

donde: C_i e I_i son la concentración e Intensidad del elemento calibrado; C_{0i} es la ordenada al origen; m_i es la pendiente, C_i e I_i son la concentración e Intensidad de los elementos en la matriz y el término $(1 + \alpha_{ij}xC)$ es el término de corrección por efecto matriz, en el cual α_{ij} son los factores de corrección para los efectos de absorción e incremento²².

DIRECCION GENERAL DE BIBLIOTECAS

El software desarrollado por Bruker emplea el método del parámetro fundamental para llevar a cabo la corrección por el efecto matriz.

Inicialmente calcula los valores iniciales para las concentraciones a partir de las intensidades medidas; una vez que se tienen dichos valores de concentración, se emplean para realizar el método iterativo en la ecuación de Sherman, en la que a partir de las concentraciones de los elementos, se obtiene la intensidad corregida por efecto matriz, la cual será empleada en la ecuación 3.1; el proceso de iteración se lleva a cabo hasta que la diferencia entre el valor de concentración obtenido a través de la ecuación del parámetro fundamental C_{XRF} y la concentración química del estándar, C_{QUIM} sea mínima.

Cabe mencionar que este software permite realizar la corrección por efecto matriz a cada estándar y muestra, por lo cual se puede emplear en un intervalo amplio de concentración, a diferencia de otro software, los cuales trabajan con la concentración promedio del intervalo y determinan la corrección para ese valor medio, lo que los hace aplicables a un intervalo pequeño de concentración, debido a que las desviaciones serán mayores en los extremos del intervalo.

UNIVERSIDAD AUTONOMA DE NUEVO LEON

Como puede ser visto en la ecuación 3.1, debido a que /es el valor DIRECCIÓN GENERAL DE BIBLIOTECAS medido y *C*/ es la concentración que será calculada para un analito, la ecuación de regresión se representa en como:

$$C_i = m I_{icorr} + b \tag{3.2}$$

donde: C_i es la concentración de la muestra problema, I_{icorr} es la Intensidad corregida por efecto matriz para el elemento i y b es la ordenada al origen, de acuerdo a esta ecuación se realizó la evaluación a las curvas de calibración, aún y cuando la representación gráfica se presenta de la forma usual, l corregida con respecto a concentración.

3.1.2.1. EVALUACIÓN DE LA CALIBRACIÓN

Se obtuvo una calibración con 10 estándares que contenían diferentes proporciones de SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, SO₃, Na₂O, K₂O, TiO₂, P₂O₅ y Mn₂O₃.

Las curvas de calibración para cada óxido, se evaluaron inicialmente sólo de forma visual mostrando una linealidad aceptable para todos los óxidos con excepción del SO₃, cuya gráfica de calibración presentó una dispersión alta para los datos experimentales obtenidos, la figura 3.1 muestra la gráfica correspondiente al SiO₂ y al SO₃.

Considerando los resultados obtenidos para el SO₃ se decidió preparar una serie de 14 estándares sin este óxido con la finalidad de emplear esta segunda serie si el SO₃ en procedimientos posteriores continuaba presentando la misma dispersión.

47

Figura 3.1. Curvas de calibración obtenidas para SiO₂ (a) y SO₃ (b) empleando la preparación 0.5:9.5.

El error de preparación se determinó para cada óxido como una diferencia de los valores obtenidos entre réplicas, los resultados son presentados en la tabla 3.1.

El error de preparación alto obtenido para el SiO₂, que es el compuesto mayoritario en las muestras a analizar, hizo esta preparación poco prometedora para el análisis, este error es atribuido a la baja dilución con la que se trabajó ya que debían ser pesadas cantidades pequeñas de material, 0.375 g, para preparar el espécimen.

óxido	Error de Preparación (diferencia)
SIO2	0.680
Al203	0.210
Fe2O3	0.170
CaO	0.120
MgO	0.080
SO3	0.150
NazO	0.110
K2O	0.097
TiO ₂	0.018
P2O5	0.011
Mn2O3	0.008

Tab	a	3.1	Errores	de	preparación	obtenidos	para	la	dilución	0.5:1	0.9	15
2010000000000	10.00		- V. B. 1001 46 (B. 1960)						COOLER CONTRACTOR CONTRACTOR			

Debido a los resultados obtenidos en el error de preparación, antes de iniciar el proceso de validación, se evaluó la exactitud del método, para lo cual se analizaron muestras certificadas. Las diferencias entre los valores reportados y los valores certificados fueron altas (> 0.5 %). CCIÓN GENERAL DE BIBLIOTECAS

Los resultados obtenidos en el estudio de exactitud sumados a los errores de preparación, fueron el punto de partida para no considerar éste método como viable para el análisis, así como para llevar a cabo el desarrollo de un método de preparación de especímenes con menor dilución que permitiera disminuir los errores por pesada y proporcionara mejores resultados. 3.2. PREPARACIÓN CONCENTRADA 2:8

3.2.1. PREPARACIÓN DE ESPECÍMENES

Entre las variables que pueden ser consideradas para el desarrollo del método de preparación de especímenes se encuentran la temperatura, la dilución empleada, la cantidad de material y el fundente²³.

Para el desarrollo de un nuevo método de preparación para el análisis de materiales silicoaluminosos, la temperatura, un factor importante en la fusión, no pudo ser incrementada más de 950°C por limitaciones del equipo de fusión. Las bajas diluciones no ofrecían resultados aceptables; la cantidad de material a usar no pudo ser menor de 7.5 g ya que se corre el riesgo de no llenar por completo el molde; así, el fundente, único factor por analizar, fue cambiado para el desarrollo de una nueva preparación, la que se llevó a cabo empleando una mezcla 50:50 de metaborato de litio-tetraborato de litio.

La selección de este fundente se basó en un estudio realizado por Claisse²⁴ en el cual se muestra que los óxidos ácidos como Al₂O₃, SiO₂, son más fácilmente fundidos cuando se emplea metaborato de litio (LiBO₂) o una mezcla de metaborato-tetraborato, específicamente en este estudio la mezcla 50:50 presentó mejores resultados en fusión, tanto para óxidos básicos como ácidos.

Una vez seleccionado el fundente se realizó una serie de experimentos variando la dilución y manteniendo como masa total 10 g para definir la nueva preparación. En este desarrollo experimental, la relación 2:8 muestra: fundente fue la preparación que proporcionó especimenes reproducibles y homogéneos.

Establecido el nuevo método, se prepararon un total de 22 estándares, de los cuales 8 eran de la serie inicial de 10 estándares y 14 de la segunda serie sin contenido de SO₃. La preparación se realizó por triplicado, lo que dio un total de 66 especímenes.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

3.2.2. EVALUACIÓN DE LA CALIBRACIÓN

La curva de calibración fue elaborada con la nueva preparación y empleando los 22 estándares por triplicado. Los estándares se midieron en el S4 Explorer y se obtuvieron las correspondientes curvas de calibración para cada óxido.

La evaluación visual de las curvas de calibración mostró mejores resultados para esta preparación y al igual que antes, se apreciaba una linealidad aceptable en los resultados. La figura 3.2 muestra las curvas de calibración obtenidas para SiO₂ y SO₃, el que, cabe mencionar, mostró una menor dispersión en los datos para esta preparación; el resto de los óxidos así como una tabulación de los resultados obtenidos se muestran en el anexo A.

UNIVERSIDAD AUTONOMA DE NUEVO LEON

El error de preparación, como puede ser visto en la tabla 3.2, DIRECCIÓN GENERAL DE BIBLIOTEGAS presentó mejores resultados para esta preparación, de acuerdo a lo esperado.

Antes de determinar los parámetros que definen las curvas de calibración, se procedió a la eliminación de los valores anómalos, bajo los criterios antes utilizados. Los resultados obtenidos se presentan en la tabla 3.3.

	n 1	Sy1	Π2	Sy2	TV	F	criterio	anómalos
SiOz	66	1.094	46	0.134	4225	7.15	desv > error prep	Si
Al203	66	0.490	55	-0.061	4080	7.16	sy = error prep	Si
Fe2O3	66	0.088	46	0.029	539	7.26	sy = error prep	Si
CaO	66	0.298	56	0.032	5507	7.15	sy = error prep	Sí
MgO	66	0.048	54	0.0232	225	7.17	sy = error prep	Si
SO3	24	0.013	21	0.0088	27	7.51	sy = error prep	Si
NazO	66	0.070	56	0.053	58	7.15	sy = error prep	Si
K2O	66	0.183	61	0.036	1591	7.09	sy = error prep	Si
TiO2	66	0.183	56	0.006	59352	7.15	sy = error prep	Si
P2O5	59	0.008	43	0.004	187	7.3	sy = error prep	Si
Mn2O3	58	0.013	39	0.005	336	7.39	sy = error prep	Si

Tabla 3.3. Resultados de la prueba E para valore:	s anomalos.
---	-------------

Una vez eliminados los valores anómalos, se determinaron los parámetros que caracterizan las curvas de calibración, los cuales son listados en la tabla 3.4.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

_ DIR		ONG	- H'NH-	$\mathbf{R} \mathbf{A}$	DF_	RIRI		HCAS	
	m	S m	LC +/-	Ь	56	LC +/-	5 y	desv std	cv
SIDE	1.0950	0.003	0.02	0 109	0.109	1 445	0.134	0.122	0.22
3102	1.0350	0.003	0.02	0.103	0.195	1.775	0.154	0.122	0.22
AI203	0.3710	0.0004	0.003	-0.068	0.015	0.107	0.061	0.164	0.23
Fe2O3	0.3213	0.001	0.004	0.041	0.013	0.094	0.029	0.090	0.15
CaO	0.2823	0.001	0.004	-0.091	0.010	0.071	0.045	0.159	0.38
MgO	0.2317	0.0003	0.002	-0.327	0.007	0.05	0.023	0.099	0.10
SO3	0.5136	0.004	0.03	-0.086	0.004	0.028	0.009	0.018	0.91
Na ₂ O	0.2957	0.001	0.01	-0.343	0.015	0.107	0.053	0.179	0.53
K2O	0.2277	0.0008	0.01	-0.076	0.008	0.057	0.036	0.158	0.40
TiO ₂	0.3253	0.00050	0.004	-0.079	0.002	0.014	0.006	0.019	0.19
P2O5	0.5640	0.002	0.01	-0.048	0.001	0.007	0.005	0.009	1.02
Mn2O3	0.2382	0.002	0.01	-0.036	0.002	0.014	0.005	0.021	0.57

Tabla 3.4. Parámetros estadísticos evaluados para las curvas de calibración.

3.2.3. VALIDACIÓN DEL MÉTODO

El primer paso en la validación del método fue la verificación de la linealidad, la cual se llevó a cabo evaluando el coeficiente de correlación, y realizando las pruebas estadísticas t, F y el análisis de residuales.

Los resultados obtenidos para la evaluación de la linealidad del método son presentados en la tabla 3.5, en la cual podemos observar que la mayoría de los óxidos presentan valores de r > 0.999 y explican más de un 99.9 % de la varianza o dispersión de los datos; los estadísticos t y F son mayores a los reportados en tablas para un nivel de significación del 99% y n-2 grados de libertad por lo cual se puede concluir que las gráficas obtenidas son lineales en el intervalo de concentración trabajado. Las tablas t y F son incluidas en el Anexo B.

UNIVERSIDAD AUTONOMA DE NUEVO LEON

El análisis de residuales respalda los resultados obtenidos con los estadísticos t y F. Las gráficas de residuales para SiO₂ y SO₃ son mostradas en la figura 3.3, los resultados de los óxidos restantes se muestran en el anexo C.

	n	s r >	t	t rep	F	F гер	Varianza explicada
SIO2	46	0.9998	341	2.576	11662	7.26	99.96
Al203	55	0.99990	819	2.576	670300	7.16	99.98
Fe ₂ O ₃	46	0.9999	500	2.576	250244	7.26	99.98
CaO	60	0.9998	433	2.576	187673	7.10	99.96
MgÔ	54	0.9999	801	2.576	642069	7.17	99.98
SO3	21	0.9994	126	2.576	16127	8.18	99.88
Na ₂ O	56	0.9995	231	2.576	53398	7.15	99.90
K2O	61	0.9997	290	2.576	84421	7.09	99.94
TIO2	56	0.9999	705	2.576	497631	7.15	99.98
P2O5	43	0.9998	327	2.576	107447	7.3	99.96
Mn2O3	39	0.9982	102	2.576	10386	7.39	99.64

Tabla 3.5. Resultados obtenidos en la evaluación de linealidad.

۵ì

Figura 3.3. Gráficas de análisis de residuales obtenidas para el SiO₂ (a) y el SO₃ (b) empleando la preparación 2:8.

El siguiente paso en la validación, una vez que se ha verificado la linealidad, es determinar el LD y el LC de cuantificación del Método, que son listados en la tabla 3.6.

óxido	LD %	LC %
SIOz	0.01	0.04
Al203	0.004	0.01
Fe2O3	0.001	0.002
CaO	0.002	0.01
MgO	0.01	0.02
SO3	0.003	0.01
Na2O	0.01	0.03
K20	0.002	0.01
TiO2	0.003	0.01
P2O5	0.003	0.01
Mn2O3	0.001	0.003

Tabla 3.6. Límite de detección y cuantificación del método.

La evaluación de la exactitud se llevó a cabo analizando en la calibración 6 muestras certificadas. Los resultados obtenidos se muestran en la tabla 3.7.

Los valores obtenidos para las muestras certificadas presentan, para los elementos mayoritarios, un error que se encuentra dentro del nivel de incertidumbre reportado en el certificado. Los certificados de los materiales empleados son incluidos en el Anexo D.
Cabe mencionar que en un inicio, al evaluar la exactitud, se presentaron errores > 0.4 % para las muestras con contenido de SiO₂ > 70%, los cuales fueron minimizados realizando cambios en los parámetros de la línea analítica del Si, después de dichos cambios los resultados para SiO₂ mejoraron y los errores obtenidos fueron menores a las variaciones reportadas para los datos certificados.

El material certificado NCSDC73319 presentó un error alto para MgO, que fue repetitivo en análisis duplicados. Para facilitar el análisis de este elemento y descartar que fuese un error del método se procedió a realizar un cambio en la matriz del material.

La arcilla certificada se mezcló con carbonato de calcio puro; la mezcla se calcinó a 1450 °C para obtener un clinker cuya matriz es menos compleja de analizar que la de una arcilla, razón por la que en la industria del cemento una forma de llevar a cabo la verificación de la calidad de las materias primas es a través del análisis del clinker obtenido.

Si existiese algún error en la concentración de alguno de los componentes de las materias primas éste impactaría en la composición del mismo.

Muestra	SIO ₂	Aí203	Fe ₂ O ₃	CaO	MgO	SO3	Na ₂ O	K ₂ O	TiO2	P ₂ O ₅	Min ₂ O ₃
GBW 3103	66.49	13.12	4.68	3.24	1.89	0 .0 2	1.86	2.51	0.66	0.10	0.09
cerfificado	66.64	13.28	4.64	3.23	1.84	0.03	1.81	2.50	0.66	0.11	0.10
+/	0.18	0.12	0.07	0.11	0.08	0.10	0.06	0.09	0.03	0.01	0.03
error abs	0.15	0.16	0.04	0.01	0.05	-0.01	0.05	0.01	0.00	0.00	0.01
GBW 3103 + NIST 98b (1:1)	61.89	20.13	3.11	1.66	1.26	0.01	0.98	3.01	1.02	0.07	0.05
cerfificado	61.83	20.15	3.16	1.67	1.22	0.01	1.01	2.94	1.00	0.09	0.06
TORY	0.28	0.27	0.04	0.06	0.05	0.01	0.04	0.09	0.03	0.01	0.02
error abs	0.06	0.02	0.05	0.01	0.04	0.00	0.02	0.07	0.02	0.01	0 .0 1
NCS DC 73319	62.59	14.07	5.13	1.72	1.82	0.01	1.70	2.64	0.80	0.15	0.25
cerfificado	62.60	14.18	5.19	1.72	1.18	0.08	1.66	2.59	0.81	0.17	0.25
+1-	0.22	0.21	0.13	0.08	0.12	NC	0.05	0.06	0.04	0.01	0.01
error abs	0.01	0.11	0.06	0.00	0.64	0.08	0.04	0.05	0.01	0.02	0.00
NCS DC 73321	74.43	12.06	2.00	1.25	0.57	0.01	2.72	3.06	0.37	0.06	0.04
cerfificado	74.72	12.24	2.00	1.27	0.58	0.03	2.71	3.04	0,37	0.07	0.04
+/-	0.29	0.14	0.07	0.06	0.05	0.00	0.08	0.07	0.02	0.01	0.00
error abs	0.29	0.18	0.00	0.02	0.01	0.03	0.01	0.02	0.00	0.01	0.01
NCS DC 73323	52.65	21.48	12.56	0.04	0.65	0.08	0.12	1.54	1.05	0.07	0.20
cerfificado	52.57	21.58	12.62	0.10	0.61	0.10	0.12	1.50	1.05	0.09	0.20
VED CH	0.25	0.23	0.27	NC	0.08	0.01	0.03	0.07	0.05	7 0.01	0.02
error abs	0.08	0.10	0.06	0.06	0.04	<u>-0</u> .02	0.00	0.04	0.00	0.02	0.00
NCS DC 73326	58.81	11.81	4.47	8.38	2.39	0.02	1.76	2.46	0.65	0.14	0.09
cerfificado	58.61	11.92	4.48	8.27	2.38	0.03	1.72	2.42	0.63	0.18	0.09
+/~	0.20	0.23	0.07	0.18	0.10	0.01	0.07	0.07	0.01	0.01	0.00
error abs	0.20	0.11	0.01	0.11	0.01	0.01	0.04	0.04	0.02	0.04	0.00

IVERSID,

ГЛ

Tabla 3.7. Concentraciones obtenidas para muestras certificadas evaluadas en la curva con preparación 0.5:9.5.

El clinker obtenido empleando la arcilla certificada, como materia prima, se analizó en una curva de calibración de estándares NIST. La composición teórica del clinker y los resultados obtenidos se presentan en la tabla 3.8.

23

La composición teórica es la que debería ser obtenida de acuerdo a la mezcla de un 24.34 % de arcilla y 75.66 % de carbonato de calcio.

Los datos presentados en la tabla 3.8 permiten concluir que el valor obtenido para MgO en la curva de calibración es aceptable y que existe un error en el valor certificado reportado, que muy posiblemente sea debido a un error de impresión más que un error en el análisis; se notificará a los proveedores de estos materiales para que ellos a su vez informen sobre este hecho al instituto emisor del certificado que en esta caso es el China National Analysis Center for Iron Steel.

Tabla 3.8. Comparación de la composición teórica de un clinker preparado con la arcilla certificada NCSDC73319 y los resultados obtenidos en un análisis por FRX en una curva de materiales certificados NIST.

		clinker teorico	clinker experimental	NCSDC 73319	certificado	desv	
VE	SiO2	23.75	24.19	A 62.71	62.60	-0.11	ΕÓ
	Al203	5.38	5.44	14.10	14.18	0.08	
БТ	Fe2O3	1.97	10 1.98 T	5.13	5.19	0.06	
	CaO	66.71	67.76	1.67	1.72	0.05	
	MgO	0.45	0.56	1.45	1.41	-0.04	1
	Na2O	0.63	0.63	1.63	1.66	0.03	
	K2O	0.98	1.01	2.62	2.59	-0.03	

UNIN

Evaluadas las muestras certificadas y verificada la calibración se procedió a realizar el estudio de precisión. Las muestras certificadas fueron medidas 10 veces consecutivas para evaluar la repetibilidad del instrumento, el promedio, desviación estándar y desviación relativa son listados en la tabla 3.9.

La repetibilidad intra-ensayo se evaluó preparando 8 pastillas del material NCSDC73321 y evaluándolas en la curva de calibración, se obtuvieron el promedio, desviación estándar DE y la desviación estándar relativa DER y se reportan en la tabla 3.10.

Muestra	\$Ю ₂	Al ₂ 0 ₃	Fe ₂ O ₃	CaO	MgO	SO3	Na ₂ Q	K20	TiQ ₂	P ₂ O ₅	Mn ₂ O ₃
GBW 3103PROM	66.46	13.14	4.69	3.23	1.87	0.01	1.85	2.50	0.67	0.10	0.0
DE	0.02	0.02	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.0
DER	0.03	0.14	0.17	0.25	0.68	-21.63	0.70	0.26	0.44	1.65	0.9
GBW 3103 + NIST 98b (1:1) PROM	61,94	20.16	3.21	1.67	1.29	0.01	1.05	3.02	1.03	0.07	0.05
DE	0.03	0.02	0.01	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.0
DERERSIDA	0.04	0.10	0.18	0.22	0.77	10.61	0.67	0.18	0.37	1.92	1.3
NCSDC73319 PROM	62.67	14.06	5.14	1.71	1.82	0.01	1.69	2.64	0.81	0.15	0.2
DEJDECOI	0.02	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.0
DERIKEUUT	0.03	0.08	0.18	0.50	0.28	10.84	0.71	0.29	0.42	1.95	0.5
NCSDC73321 PROM	74.44	12.05	2.00	1.24	0.58	0.01	2.73	3.06	0.37	0.06	0.0
DE	0.03	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.00	0.0
DER	0.04	0.04	0.21	0.29	0.88	21.55	0.42	0.35	0.52	1.98	1.76
NCSDC73323 PROM	52.67	21.40	12.57	0.03	0.65	0.08	0.19	1.53	1.06	0.07	0.2
DE	0.02	0.02	0.02	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.0
DER	0.04	0.11	0.12	4.47	0.62	5.73	3.14	0.40	0.29	1.55	0.54
NCSDC73326 PROM	58.85	11.777	4.4586	8.365	2.394	0.019	1.7696	2.45	0.65	0.1522	0.0858
DE	0.018	0.011	0.0069	0.009	0.012	0.001	0.0059	0.01	0.003	0.0028	0.0015
DER	0.028	0.0849	0 1409	0.101	0 456	7 039	0.3041	0.38	0.354	1 6471	1 6777

UN

La precisión o repetibilidad se reporta como la DER o CV, un criterio reportado para la evaluación de éste parámetro es que la repetibilidad del instrumento debe ser menor al 1% mientras que la precisión intra-ensayo deber ser menor al 2%¹⁹, considerando este criterio los resultados obtenidos en este estudio son aceptables.

Tabla 3.10. Repetibilidad intra-ensayo obtenida para la muestra NCS DC 73321.

TALEDE I	SiO2	AJ ₂ 0 ₃	Fe ₂ O ₃	CaO	MgO	SO3	Na ₂ O	K ₂ 0	TIO ₂	P205	Mn ₂ O ₃
1 VCF	74.45	1.98	11.86	1.23	0.58	0.019	2.72	3.05	0.36	0.06	0.03
2	74.40	2.02	12.06	1.24	0.57	0.02	2.68	3.06	0.37	0.06	0.03
3	74.65	2.01	12.09	1.24	0.56	0.02	2.71	3.07	0.37	0.06	0.03
4	74.20	2.02	11.98	1.23	0.57	0.02	2.70	3.04	0.37	0.06	0.03
5	74.19	2.00	12.02	1.24	0.57	0.02	2.65	3.03	0.37	0.06	0.03
6	74.14	1.99	11.99	1.23	0.56	0.02	2.66	3.02	0.37	0.06	0.03
7	74.18	2.00	12.10	1.24	0.57	0.02	2.65	3.03	0.37	0.06	0.03
8	74.16	1.99	12.06	1.23	0.56	0.02	2.66	3.04	0.37	0.06	0.03
PROM	74.30	2.00	12.02	1.23	0.57	0.02	2.68	3.04	0.37	0.06	0.03
DE	0.18	0.01	0.08	0.00	0.01	4E-04	0.03	0.02	0.00	0.00	0.00
DER	0.25	0.69	0.63	0.38	1.51	1.96	1.01	0.50	0.75	1.77	1.53

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Evaluados los parámetros necesarios para la validación de métodos analíticos, los resultados de la validación del método de análisis por fluorescencia de rayos-X de materiales silicoaluminosos se presentan de forma resumida en la tabla 3.16.

	intervalo lineal %	Limite de Detección	Límite de Cuantificación	Exactitud	Precisión del Instrumento	Precisión Intra- ensayo	Error de Preparación
SIO ₂	54.3 - 77.6	0.01	0.04	0.13	0.12	0.25	0.20
Al ₂ 0 ₃	1.82 - 25.56	0.004	0.01	0.14	0.09	0.69	0.01
Fe ₂ O ₃	3.52 - 14.9	0.001	0.002	0.04	0.17	0.63	0.01
CaO	0.1 - 10.05	0.002	0.01	0.04	0.97	0.38	0.01
MgO	0.05 - 9.32	0.01	0.02	0.14	0.61	1.51	0.01
SO3	0.05 - 1.06	0.003	0.01	0.04	5.69	1.96	0.01
Na _z O	0.06 - 5.04	0.01	0.03	0.03	0.99	1.01	0.01
K ₂ O	0.3 - 4.99	0.002	0.01	0.04	0.31	0.50	0.01
TiO ₂	0.05 - 2.57	0.003	0.01	0.01	0.40	0.75	0.01
P2O5	0.03 - 1.01	0.003	0.01	0.02	1.78	1.77	0.01
Mn ₂ O ₃	0.05 - 0.27	0.001	0.003	0.01	1.14	1.53	0.01

Tabla 3.11. Validación de la metodología de análisis para materiales silicoaluminosos por fluorescencia de rayos-X.

De forma adicional se evaluó el método para análisis de materiales silicoaluminosos en el espectrómetro Philips Venus 200, el que trabaja en canales fijos y con un canal goniométrico; el tubo que emplea es de Cr y trabaja a 50 kV y 4 mA de forma continua; emplea un detector de centelleo para energías altas, un detector de flujo para elementos ligeros como Na, Mg, P, etc, un detector sellado de Kr para elementos de energías intermedias como K, Fe, etc; Los cristales que emplea son PX1, LiF200 y PET.

Como se mencionó anteriormente, durante la evaluación de la exactitud en S4 Explorer, se observó para SiO2 errores altos, ante estos resultados se evaluó la curva de calibración en Venus 200 en el cual se

obtuvieron para todos los casos, un error menor a la incertidumbre reportada por el certificado, a partir de estos datos se analizaron las condiciones de trabajo para SiO₂ empleadas en el S4 Explorer, al realizar cambios en las condiciones analíticas de la línea de Si y reevaluar la calibración, se pudo efectuar la validación del método.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

CONCLUSIONES

÷.

Se implementó, desarrolló y validó un método para análisis de materiales silicoaluminosos por fluorescencia de rayos-X a partir de estándares sintéticos.

El método permite determinar los óxidos de interés para la industria del cemento en los intervalos de concentración y con los errores mostrados en la tabla 4.1. El método desarrollado es aceptable y presenta errores menores a los permitidos por la norma ASTM C114.

Óxido	Intervalo de concentración	Error	Error ASTM C114
SiO2 CTT	54.3 - 77.6	A_0.13	0.201_0
Al ₂ 0 ₃	1.82 - 25.56	0.14	0.20
Fe ₂ O ₃	3.52 - 14.9	0.04	0.10
CaO ECC	ON 0.1-10.05 AL D	<u>0.04</u>	OTE 0.30S
MgO	0.05 - 9.32	0.14	0.20
SO3	0.05 - 1.06	0.04	0.20
Na ₂ O	0.06 - 5.04	0.03	0.10
K ₂ O	0.3 - 4.99	0.04	0.05
TiO ₂	0.05 - 2.57	0.01	0.05
P2O5	0.03 - 1.01	0.02	0.03
Mn ₂ O ₃	0.05 - 0.27	0.01	0.03

Tabla 4.1. Error del método de análisis de arcillas por XRF.

Es factible simular la matriz de diversos materiales a partir de estándares sintéticos, lo cual proporciona la ventaja de realizar curvas de calibración en intervalos de concentración que estén acordes a necesidades particulares y no limita a trabajar únicamente en los intervalos de concentraciones en los que los materiales certificados estén disponibles.

El método de preparación de espécimen es un factor sumamente importante en el desarrollo del método, si bien una baja dilución proporciona la ventaja de disminuir el efecto matriz, ésta afecta los errores de preparación y la exactitud del método. Las preparaciones concentradas son más fácilmente reproducibles y proporcionan resultados más exactos.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

TENDENCIAS

La versatilidad de la instrumentación de la técnica de fluorescencia de rayos-X, aunada a los avances tecnológicos, ha permitido llevar a cabo el desarrollo de métodos que satisfagan la amplia variedad de necesidades que se presentan en el campo del análisis.

Como un ejemplo se puede citar la necesidad industrial de llevar a cabo un control de proceso que garantice la calidad del producto final, la cual fue el punto de partida para el desarrollo de sistemas de fluoresencia de rayos-X para análisis en línea.

Los sistemas de análisis en línea permiten generar registros de la calidad del producto, lo que a su vez contribuye a mantener el control del proceso dentro de las especificaciones requeridas, además, otorgan las mismas ventajas de análisis que los equipos de Fluorescencia convencionales. El análisis de sólidos, líquidos polvos, slurries, etc. es rápido del orden de 5 – 10 minutos. La determinación de una amplia variedad de elementos desde el Mg al U puede ser llevada a cabo y como técnica no destructiva permite que la muestra analizada en línea sea reincorporada al proceso después del análisis²⁵⁻²⁷.

Como otro ejemplo esta la necesidad de la realización de análisis de campo que dio origen al desarrollo de equipos de fluorescencia de rayos-X portátiles.

Los equipos portátiles son capaces de analizar hasta 24 elementos incluyendo los 8 metales de la RCRA, en menos de un minuto; permiten analizar suelos, polvos o residuos sólidos. Son comúnmente empleados en estudios de contaminación de suelos y dentro de este campo permiten: determinar un plan de muestreo, realizar una rápida localización de las fuentes de contaminación, establecer fronteras de contaminación, delimitar las regiones de alta y baja contaminación, etc²⁸⁻³⁰.

Los equipos portátiles dado su tamaño (21.00 cm x 7.6 cm x 4.8 cm) y su peso (1.13 Kg.) son prácticos, utilizan fuentes radioactivas como fuente de ionización. Trabajan en un intervalo de temperatura desde -7 hasta 49 °C para humedades relativas desde 0 hasta 95%. La figura 5.1 muestra dos modelos de equipos portátiles.

El aporte de estos equipos dentro del análisis de campo es de suma importancia, incluso se encuentra establecido un método para análisis de campo con equipos de fluorescencia de rayos-X portátiles por la EPA (Enviromental Protection Agency)³¹.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Otra aplicación de los equipos portátiles ha sido llevada a cabo por (R) la NASA para los estudios de los constituyentes minerales de planetas, asteroides y cometas. La mineralogía lleva las historias de presión, temperatura, fugacidad de oxígeno y química de solución, las cuales en conjunto con las historias de sedimentación, actividad ígnea, superficial, metamorfismo, erosión impacto aunadas la Y а determinación química y mineralógica proporcionan información sobre el origen y evolución de estos cuerpos.

Los considerables avances en la tecnología de Fluorescencia de rayos-X y Difracción de rayos-X han permitido el desarrollo de un equipo simultáneo FRX/DRX llamado CHEMIN (Chemical-Mineralogical) diseñado para caracterizar la composición elemental y la mineralogía de granos pequeños o polvos, es un equipo ligero < 1Kg de peso y un volumen de 500 cm³ capaz de detectar elementos químicos con 4< Z < 92. Un esquema del CHEMIN es presentado en la figura 5.1, este equipo es el empleado por la NASA³².

Figura 5.2. Esquema del equipo CHEMIN

CURVAS DE CALIBRACIÓN Y TABULACIÓN DE RESULTADOS

	No.	Estándar	Ineta	Conc.	Conc. XRF	Desv	Desv Rel	I gruesa	L Corf	
	22	Tesis_Arc_Stc_10 A	83.457	74.43	74,464	0.034	0.0458	83.457	67.873	
	23	Tesis_Arc_Stc_10-B	83.918	74.43	74.874	0.444	0.5964	83.918	68.248	
	24	Tesis_Arc_Stc_10 C	83.229	74.43	74.261	-0.169	-0.227	83.229	67.687	
	25	Tesis_Arc_Stc_sS_01 A	62.011	57.11	56.783	-0.327	-0.5731	52.011	51.701	
	26	Tesis_Arc_Stc_sS_01 B	62.617	57.11	57.334	0.224	0.3931	62.617	52.205	k.
	27	Tesis_Arc_Stc_55_02 A	71,685	60.18	65.359	5.179	8.6054	71-685	59.5 45	
	28	Tesis_Arc_Stc_s5_02 B	71.433	60.18	65.131	4.951	8.2263	71.433	59.336	
	30	Tesis_Arc_Stc_sS_03 B	69.233	62.78	62.987	0.207	0.3303	69.233	57.376	
	31	Tesis_Arc_Stc_s5_04 A	76.365	68.43	68.397	-0.033	-0.0488	76.365	62.323	
	32	Tesis_Arc_Stc_sS_04 B	76.606	68.43	68.612	0.182	0.266	76.606	62,52	
	33	Tesis_Arc_Stc_s5_05-A	73.96	67.34	66.837	-0.503	-0.7454	73.96	60.897	
	34	Tesis_Arc_Stc_s5_05 B	73.586	67.3 4	66.5	-0.84	-1.246 7	73.586	60.589	
	35	Tesis_Arc_Stc_s5_06 A	76.205	68.6	68.542	-0.058	-0.0841	76.205	62.457	
15	36	Tesis_Arc_Stc_s5_06 B	76.568	68.6	68.868	0.268	0.39	76.568	62.754	
	37	Tesis_Arc_Stc_sS_07 A	78.348	70.1	70.29	0.19	0.2713	78.348	64.055]
	38	Tesis_Arc_Stc_sS_07 B	78.166	70.1	70.127	0.027	0.0386	78.166	63.906	
V	39	Tesis_Arc_Stc_sS_08 A	83.299	73.87	74.02	0.15	0.2031	83.299	67.467	
	40	Tesis_Arc_Stc_sS_08 B	83.244	73.87	73.971	0.101	0.137	83.244	67.422	
\sim	41	Tesis_Arc_Stc_sS_09 A	82.493	73.68	73.596	-0.084	-0.1145	82,493	67.079	
Ř	42	Tesis_Arc_Stc_s5_09 B	82.644	73.68	73.73	0.05	0.0676	82.644	67.202	
巴()	43	Tesis_Arc_Stc_sS_10 A	84.959	75.49	75.593	0.103	0.1361	84.959	68.905	4
	44	Tesis_Arc_Stc_s5_10-8	85.13	75.49	75. 744	0,254	0.3368	85.13	69.044	
	45	Tesis_Arc_Stc_sS_11 A	60.632	56.9	57.033	0.133	0.2337	60.632	51,93	
	46	Tesis_Arc_Stc_sS_11 B	60.725	56.9	57.12	0.22	0.3867	60.725	52.009	
	47	Tesis_Arc_Stc_sS_12 A	87.928	77.76	77.864	0.104	0.134	87.928	70.983	
	48	Tesis_Arc_Stc_sS_12 B	87.638	77.76	77.608	-0.152	-0.1951	87.638	70.749	
	49	Tesis_Arc_Stc_sS_13 A	87.427	77.6	77.495	-0.105	-0.1353	87.427	70.645	
	50	Tesis_Arc_Stc_sS_13 B	87.531	77.6	77.586	-0.014	-0.0174	87.531	70.729	
TINIT	51	Tesis_Arc_Stc_sS_14 A	57.125	54.3	54.46	0.16	0.2948	57.125	49.576	Км
UNIV	52	Tesis_Arc_Stc_sS_14 B	57.045	54.3	54.384	0.084	0.1545	57.045	49.507	UN
	53	Tesis_Arc_Stc_sS_01 C	62.117	57.11	56.879	-0.231	-0.4048	62.117	51.789	
	5 4	Tesis_Arc_Stc_sS_02 C	71.224	60.18	64.94	4.76	7.9103	71.224	59,162	
L	55	Tesis_Arc_Stc_sS_03-C	68.601	62.78	62.415	-0.365	0.5817	68,601	56.852	
	56	Tesis_Arc_Stc_sS_04 C	76.174	68.43	68.227	-0.203	-0.2972	76.174	62.168	
	5 7	Tesis_Arc_Stc_sS_05-C	73.319	67.34	66.26	-1.08	-1:6035	73.319	60.369	
	58	Tesis_Arc_Stc_sS_06 C	76.165	68.6	68.507	-0.093	-0.1362	76.165	62.424	
	59	Tesis_Arc_Stc_sS_07 C	77.715	70.1	69.72 4	-0.376	-0.536 4	77.715	63.538	
	60	Tesis_Arc_Stc_sS_08 C	82.445	73.87	73.265	-0.605	-0.8196	82.446	66.776	
	61	Tesis_Arc_Stc_sS_09 C	82.269	73.68	73.397	-0,283	-0.3838	82.269	66.897	
	62	Tesis_Arc_Stc_sS_10 C	84.607	75.49	75.281	-0.209	-0.2773	84.607	68.62	
	63	Tesis_Arc_Stc_sS_11 C	60.097	\$6.9	56.532	-0.368	-0.6465	60.097	51.472	1
	6 4	Tesis_Arc_Stc_sS_12 C	87.165	77.76	77.191	-0.569	-0.7317	87.165	70.367	
	65	Tesis_Arc_Stc_sS_13-C	86.857	77.6	76.991	-0.609	-0.7846	86.857	70.184	
	66	Tesis_Arc_Stc_sS_14 C	56.851	54.3	54.2	-0.1	-0.1846	56,851	49.338	

Tabla A.1. Resultados obtenidos para la curva de calibración de SiO2 (continuación).

76

No.	Estándar	Ineta	Conc.	Conc. XRF	Desv	Desv Rel	i gruesa	1 con
29	Tesis_Arc_Stc_s5_03 A	42.547	17.94	17.783	-0.157	-0.873	42.547	48.142
30	Tesis_Arc_Stc_sS_03 B	42.585	17.94	17.799	-0.141	-0.785	42.585	48.185
31	Tesis_Arc_Stc_sS_04 A	27.487	11.63	11.527	-0.103	-0.889	27.487	31,264
32	Tesis_Arc_Stc_sS_04 B	27.58	11.63	11.566	-0.064	-0.549	27.58	31.371
33	Tesis Arc Stc sS_05 A	31.095	13.18	13.101	-0.079	-0.597	31.095	35.512
34	Tesis_Arc_Stc_sS_05 B	31.219	13.18	13.154	-0.026	-0.199	31.219	35.653
35	Tesis_Arc_Stc_sS_06 A	24.817	10.51	10.492	-0.018	-0.169	24.817	28.474
36	Tesis_Arc_Stc_s5_06 B	24.962	10.51	10.554	0.044	0.421	24.962	28.641
37	Tesis_Arc_Stc_sS_07 A	19.561	8.35	8.298	-0.052	-0.626	19.561	22.554
38	Tesis_Arc_Stc_sS_07 B	19.742	8.35	8.375	0.025	0.297	19.742	22.762
39	Tesis_Arc_Stc_sS_08 A	9.411	3.97	3.98	0.01	0.242	9.411	10.906
40	Tesis_Arc_Stc_s5_08 B	9,397	3.97	3.974	0.004	0.094	9,397	10.89
41	Tesis_Arc_Stc_sS_09A	9.482	4.05	4.026	-0.024	-0.587	9,482	11.032
A 42	Tesis_Arc_Stc_sS_09 B	9.482	4.05	4.026	-0.024	-0.594	9.482	11.031
43	Tesis_Arc_Stc_sS_10 A	4.409	1.82	1.847	0.027	1.511	4.409	5.154
44	Tesis_Arc_Stc_sS_10 B	4.411	1.82	1.848	0.028	1.552	4.411	5.156
45	Tesis_Arc_Stc_sS_11 A	60.507	25.56	25.559	-0.001	-0.005	60.507	69.117
46	Tesis_Arc_Stc_sS_11 B	60.66	25.56	25.623	0.063	0.247	60.66	69.291
47	Tesis_Arc_Stc_sS_12 A	9.247	3.88	3.892	0.012	0.305	9.247	10.669
48	Tesis_Arc_Stc_s5_12 B	9,218	3.88	3.879	-0.001	-0.016	9.218	10.635
49	Tesis_Arc_Stc_sS_13 A	18.528	7.71	7.755	0.045	0.58	18.528	21.089
50	Tesis_Arc_Stc_sS_13 B	18.265	7,71	7.644	-0.066	-0.857	18.265	20.79
51	Tesis-Arc_Stc_s5_14A	53.692	23.08	23,25	0.17	0.737	53.692	62.889
52	Tesis_Arc_Stc_sS_14 B	53.579	23.08	23.201	0.121	0.524	53,579	62.756
53	Tesis_Arc_Stc_s5_01-C	51.991	22.03	21.595	-0.435	-1.976	51.991	58.423
54	Tesis_Arc_Stc_sS_02-C	42.418	19.95	17.655	-2.295	-11.502	42.418	47.797
55	Tesis_Arc_Stc_s5_03 C	42.223	17.94	17.648	-0.292	-1.63	42.223	47.776
56	Tesis_Arc_Stc_sS_04 C	27.458	11.63	11.515	-0.115	-0.992	27.458	31.232
57	Tesis_Arc_Stc_sS_05 C	30.762	13.18	12.961	0.219	-1.665	30.762	35,132
58	Tesis_Arc_Stc_sS_06 C	24.83	10.51	10.498	-0.012	-0.116	24.83	28.489
59	Tesis_Arc_Stc_sS_07 C	19.681	8.35	8.349	-0,001	0-0.013	19,681	22.692
60	Tesis_Arc_Stc_sS_08 C	9.38	3.97	3.966	-0.004	-0.092	9,38	10.87
61	Tesis_Arc_Stc_sS_09 C	9.542	4.05	4.052	0.002	0.05	9.542	11.101
62	Tesis_Arc_Stc_sS_10 C	4.448	1.82	1.864	0.044	2.433	4.448	5.2
63	Tesis_Arc_Stc_sS_11 C	60.35	25.56	25.492	-0.068	-0.266	60.35	68.937
64	Tests_Arc_Stc_s5_12 C	9.232	3.88	3.885	0.005	0.139	9.232	10.652
65	Tesis_Arc_Stc_sS_13 C	18.363	7.71	7.685	-0.025	-0.321	18.363	20.902
66	Tesis Arc Stc sS 14 C	\$3.554	23.08	23.19	0.11	0.477	53,554	62.727

Tabla A.2. Resultados obtenidos para la curva de calibración de Al₂O₃ (continuación).

	No	Estandar	Ineta	Conc.	Conc. XRF	Desv	- Desv Rel	I gruesa	Icon	
	23	Tesis_Arc_Stc_10 B	135.63	7.37	7.337	-0.033	-0.452	137.34	22.739	
	24	Tesis_Arc_Stc_10 C	135.01	7.37	7.303	-0.067	-0.91	136.72	22.635	
	25	Tesis_Arc_Stc_s5_01 A	57.1	3.52	3.482	-0.038	-1.079	58.81	10.789	
	26	Tesis_Arc_Stc_sS_01 B	57.99	3.52	3.537	0.017	0.47	59.7	10.958	
	27	Tesis_Arc_Stc_sS_02 A	52.92	3.51	3.157	-0.353	-10.068	54.63	9.78	
	28	Tesis_Arc_Stc_s5_02 B	52.68	3.51	3,142	-0.368	-10,481	54.39	9.735	
	29	Tesis_Arc_Stc_s5_03 A	68.05	4	3.973	-0.027	-0.68	69.76	12.31	
	30	Tesis_Arc_Stc_sS_03 B	68.78	4	4.015	0.015	0.379	70.49	12.442	
	31	Tesis_Arc_Stc_sS_04 A	77.68	4.51	4.5	-0.01	-0.228	79.39	13.944	
	32	Tesis_Arc_Stc_s5_04 B	77.53	4.51	4.491	-0.019	-0.415	79.24	13.918	
	33	Tesis_Are_Stc_s5_05 A	86.45	5.03	4,893	-0.137	-2.727	88.16	15.163	
	34	Tesis-Arc.Stc.sS.05-B	86.52	5.03	4.897	-0.133	-2.648	88.23	15.175	
	35	Tesis_Arc_Stc_sS_06 A	95.28	5.42	5.406	-0.014	-0.258	96.99	16.754	
N	36	Tesis_Arc_Stc_sS_06 B	96.01	5,42	5.448	0.028	0.512	97.72	16.883	
	37	Tesis_Arc_Stc_sS_07 A	105.99	5.96	5.955	-0.005	-0.089	107.7	18.455	
	38	Tesis_Arc_Stc_sS_07 B	105.97	5.96	5.953	-0.007	-0.115	107.68	18.45	
	39	Tesis_Arc_Stc_s5_08 A	116.22	6.49	6.473	-0,017	-0.267	117.93	20.061	
	40	Tesis_Arc_Stc_s5_08 B	116.89	6.49	6.51	0.02	0.308	118.6	20.177	
	41	Tesis_Arc_Stc_s5_09 A	126.73	6.99	6.953	-0.037	-0.526	128.44	21.551	
	42	Tesis_Arc_Stc_sS_09 B	127.54	6.99	6.998	0.008	0.108	129.25	21.688	
	43	Tesis_Arc_Stc_sS_10 A	138.15	7.52	7.487	-0.033	-0.443	139.86	23.205	
	44	Tesis_Arc_Stc_sS_10 B	139.43	7.52	7.556	0.036	0.476	141.14	23.419	
	45	Tesis_Arc_Stc_sS_11 A	29.59	+.57	1.602	0.032	2.059	31.3	4.961	
	46	Tesis_Are_Stc_ss_11 B	29,6	1.57	1.603	0.033	2,071	31.31	4,962	
	47	Tesis Arc Ste S 12 A	259.43	14.9	14.709	-0,191	-1.285	261.14	45.594	
	48	Tesis Arc Stc ss 12 B	260.51	14.9	14.77	-0.13	-0.874	262.22	45.784	
	49	Tesis Are Ste ss 13 A	179.43	10.12	9,965	-0.155	-1.537	181.1 4	30.888	
	50	Tesis Arc Stc sS 13 B	179.75	10.12	9.983	-0.137	-1.356	181.46	30.943	
	54	Tesis Arc_Stc_s5_14A	231.73	12.71	12.616	-0.094	-0.743	233.44	39.105	ć
V I V	52	Tesis_Arc_Stc_sS_14-B	231.84	12.71	12.621	-0.089	-0,698	233.55	39.123	
	53	Tesis_Arc_Stc_sS_01-C	58.46	3.52	3.565	0.045	1.269	58.46	11.045	
	54	Tesis_Arc_Stc=s5_02 C	53.96	3.51	3.219	-0.291	-8.3	53.96	9.972	
	55	Tesis_Arc_Stc_sS_03 C	69.3	4	4,045	0.045	1,137	69,3	12.53 6	
	56	Tesis_Arc_Stc_s5_04 C	78,72	4.51	4.56	0.05	1.106	78.72	14,131	
	57	Tesis_Arc_Stc_sS_05 C	88.04	5.03	4.983	-0.047	-0.937	\$8.04	15.442	
	58	Tesis_Arc_Stc_sS_06 C	96.92	5.42	5.499	0.079	1.462	96.92	17.043	
	59	Tesis_Arc_Stc_sS_07 C	108.04	5,9 6	6.07	0.11	1.843	108.04	18,812	
	60	Tesis_Arc_Stc_sS_08 C	117.39	6.49	6.538	0.048	0.732	117.39	20.262	
	61	Tesis_Arc_Stc_sS_09 C	128.32	6.99	7.04	0.05	0.719	128.32	21.82	
	62	Tesis_Arc_Stc_sS_10 C	139.48	7.52	7.558	0.038	0.511	139.48	23.427	
	63	Tesis_Arc_Stc_s5_11 C	30.06	1.57	1.628	0.058	3,664	30.06	5.039	
	64	Tesis_Arc_Stc_sS_12 C	263.14	14.9	14.919	0.019	0.127	263.14	46.246	
	65	Tesis_Arc_Stc_sS_13 C	182.39	10.12	10.129	0.009	0.093	182.39	31.398	
	65	Tesis Arc Stc s5 14 C	233.67	12.71	12.721	0.011	0.084	233.67	39,431	

Tabla A.3. Resultados obtenidos para la curva de calibración de Fe₂O₃ (continuación).

.

No.	Estándar	Ineta	Conc.	Conc. XRF	Desv	Desv Rel	Igruesa) corr
24	Tesis_Arc_Stc_10 C	10.296	1.02	1.006	-0.014	~1.352	10.296	3.87
25	Tesis_Arc_Stc_sS_01 A	89.929	10.05	10.04	-0.01	-0.097	89.929	36
26	Tesis_Arc_Stc_sS_01 B	90.13	10.05	10.063	0.013	0.128	90.13	36.081
27	Tesis Arc Stc_65-02 A	<u>52.92</u>	3.51	3.157	-0.353	-10.068	54.63	9.78
28	Tesis_Arc_Stc_s5_02-8	66.51	8.33	7,362	-0.968	-11.617	56.51	25.476
29	Tesis_Arc_Stc_s5_03 A	59.133	6.5	6.495	-0.005	-0.079	59.133	23.391
30	Tesis_Arc_Stc_sS_03 B	59.304	6.5	6.514	0.014	0.215	59.304	23.459
31	Tesis_Arc_Stc_s5_04 A	54.027	5.9	5.887	-0.013	-0.218	54,027	21.229
32	Tesis_Arc_Stc_sS_04 B	54.534	5.9	5.943	0.043	0.732	54.534	21.429
33	Tesis_Arc_Stc_s5_05 A	45.643	3,95	4.929	0.979	24.79 3	45.643	17.823
34	Tesis_Arc_Stc_sS_05-B	45.748	3.95	4.941	0.991	25.083	45.748	17,863
35	Tesis_Arc_Stc_s5_06 A	40.951	4.42	4.377	-0.043	-0.975	40.951	15.858
36	Tesis Arc_Stc_sS_06 B	41.168	4.42	4.4	-0.02	-0.443	41.168	15.942
37	Tesis_Arc_Stc_sS_07 A	34.227	3.6	3.621	0.021	0.571	34.227	13.168
38	Tesis_Arc_Stc_sS_07 B	33.892	3.6	3.584	-0.016	-0.437	33.892	13.039
39	Tesis_Arc_Stc_sS_08 A	26.973	2.77	2.814	0.044	1.603	26.973	10.301
40	Tesis_Arc_Stc_sS_08 B	26.745	2.77	2.79	0.02	0.72	26.745	10.214
41	Tesis_Arc_Stc_sS_09A	18.729	1.91	1.914	0.004	0.197	18.729	7.097
42	Tesis_Arc_Stc_sS_09 B	18.77	1.91	1.918	0.008	0.428	18.77	7.113
43	Tesis_Arc_Stc_sS_10 A	10.478	1.02	1.026	0.006	0.575	10.478	3.94
44	Tesis_Arc_Stc_sS_10 B	10.382	1.02	1.016	-0.004	-0.416	10.382	3.904
45	Tesis_Arc_Stc_sS_11 A	19.613	1.94	2.017	0.077	3.964	19.613	7.464
46	Tesis_Arc_Stc_sS_11 B	19.715	1.94	2.028	0.088	4.524	19.715	7.503
47	Tesis_Arc_Stc_sS_12 A	5.701	0.5	0.52	0.02	3.929	5.701	2.139
48	Tesis_Arc_Stc_sS_12 B	5.471	0.5	0.495	-0.005	-0.935	5.471	2.053
49	Tesis_Arc_Stc_s5_13 A	2.018	0.1	0.134	0.034	33.952	2.018	0.767
50	Tesis_Arc_Stc_sS_13 B	1.703	0.1	0.1	0	0.327	1.703	0.648
51	Tesis_Arc_Stc_sS_14 A	3.913	0.31	0.33	0.02	6.32	3.913	1.463
52	Tesis_Arc_Stc_s5_14 B	3.685	0,31	0.306	-0.004	-1.421	3.685	1.378 -
53	Tesis_Are_Stc_s5_01 C	88.402	10.05	9.868	-0.182	-1,807	88.402	35.389
54	Tesis_Arc_Stc_s5_02-C	65.7	8.33	7,272	-1.058	-12.705	65.7	26.154
55	Tesis_Arc_Stc_sS_03-C	58.076	6.5	6.377	-0.123	-1.887	58.076	22.973
56	Tesis_Arc_Stc_s5_04 C	53.546	5.9	5.834	-0.066	-1.119	53.546	21.04
57	Tesis_Arc_Stc_s5_05-C	45.101	3.95	4.87	0.92	23.286	45.101	17.611
58	Tesis_Arc_Stc_sS_06 C	40.349	4.42	4.311	-0.109	-2.459	40.349	15.625
59	Tesis Arc_Stc_ss_07 C	33.04	3.6	3.492	-0.108	-2,997	33.04	12.711
60	Tesis_Arc_Stc_sS_08 C	26.224	2.77	2.734	-0,036	-1,299	26.224	10.015
61	Tesis_Arc_Stc_s5_09 C	18.38	1.91	1.877	-0.033	-1.75	18.38	6.965
62	Tesis_Arc_Stc_s5_10 C	10.135	1.02	0.99	-0.03	-2.982	10.135	3.81
63	Tesis_Arc_Stc_sS_11 C	19.204	1.94	1.973	0.033	1.707	19,204	7.309
64	Tesis_Arc_Stc_sS_12 C	5.523	0.5	0.501	0.001	0.172	5.523	2.072
65	Tesis_Arc_Stc_s5_13 C	1.692	0.1	0.099	-0.001	-0.869	1.692	0.643
66	Tesis_Arc_Stc_sS_14C	3.582	0.31	0.295	-0.015	-4.915	3.582	1.339

NERSIDA

UNI

Tabla A.4. Resultados obtenidos para la curva de calibración de CaO (continuación).

81

	No.	Estándar	Ineta	Conc.	Conc. XRF	Desv	Desv Rel	Tgruesa	I com	1
	25	Tesis_Arc_Stc_sS_01 A	3.833	1.19	1.2335	0.0435	3.6523	3.833	6.646	
	26	Tesis_Arc_Stc_sS_01 B	3.838	1.19	1.2354	0.0454	3.8178	3.838	6.655	
	27	Tesis Arc Stc s5.02 A	4.875	1.83	1.6464	-0.1836	-10.0338	4.875	8.411	
	28	Tesis_Arc_Stc_s5_02 B	4,902	1.83	1,6569	-0.1731	-9,4594	4.902	8,456	
	29	Tesis_Arc_Stc_sS_03 A	6.988	2.47	2.4901	0.0201	0.8128	6.988	12.016	
	30	Tesis_Arc_Stc_sS_03 B	7.028	2.47	2.5061	0.0361	1.4634	7.028	12.085	
	31	Tesis_Arc_Stc_sS_04 A	8.647	3.15	3.1557	0.0057	0.1798	8.647	14.86	
	32	Tesis_Arc_Stc_sS_04 B	8.734	3.15	3.1905	0.0405	1.287	8.734	15.009	
	33	Tesis_Arc_Stc_s5_05 A	10.179	3.81	3.7771	-0.0329	-0.8628	10.179	17.515	
	34	Tesis_Arc_Stc_sS_OS_8	10.09 9	3.81	3.745	-0.065	-1.7059	10.099	17,378	
	35	Tesis_Arc_Stc_sS_06 A	11.515	4.38	4,3237	-0.0563	-1.2848	11.515	_ 19.851	
	36	Tesis_Arc_Stc_sS_06 B	11.616	4.38	4.3644	-0.0156	-0.3561	11.616	20.025	
	37	Tesis_Arc_Stc_s5_07 A	13.262	5.04	5.0388	-0.0012	-0.0233	13.262	22.907	
N	38	Tesis_Arc_Stc_sS_07 B	13.214	5.04	5.0195	-0.0205	-0.4065	13.214	22.824	
	39	Tesis_Arc_Stc_sS_08 A	14.831	5.71	5.6851	-0.0249	-0.4359	14.831	25.668	
	40	Tesis_Arc_Stc_s5_08 B	14,892	5.71	5.7099	-0.0001	-0.001	14.892	25.774	
	41	Tesis_Arc_Stc_sS_09 A	16.212	6.29	6.2573	-0.0327	-0.5203	16.212	28.113	
	42	Tesis_Arc_Stc_sS_09 B	16.271	6.29	6.2809	-0.0091	-0.1443	16.271	28.214	
	43	Tesis_Arc_Stc_sS_10 A	17.858	6.96	6.9423	-0.0177	-0.2549	17.858	31.04	
商	44	Tesis_Arc_Stc_sS_10 B	17.876	6.96	6.9496	-0.0104	-0.1491	17.876	31,071	
5	45	Tesis_Arc_Stc_sS_11 A	24.594	9.32	9.3565	0.0365	0.3913	24.594	41.356	
	46	Tesis_Arc_Stc_s5_11_B	24.623	9.32	9,3677	0.0477	0.5123	24.623	41.404	
VENN	47	Tesis_Arc_Stc_sS_12 A	0.864	0.05	0.0383	-0.0117	-23.3348	0.864	1.54	
	48	Tesis_Arc_Stc_s5_12 B	0.866	0.05	0.0393	-0.0107	-21.4153	0.866	1.544	ł
	49	Tesis_Arc_Stc_sS_13 A	1.93	0.47	0.4689	-0.0011	-0.2266	1.93	3.38	
	50	Tesis_Arc_Stc_sS_13 B	1.947	0.47	0.4757	0.0057	1.2209	1.947	3.409	
	51	Tesis_Arc_Stc_sS_14 A	20.238	7.91	7.9171	0.0011	0.0137	20.238	35.18	
	52	Tesis_Arc_Stc_sS_14_B	20.422	7.91	7.9856	0.0756	0.9 555	20.422	35.498	
TINITS	53	Tesis_Arc_Stc_sS_01 C	3.789	1.19	1.2162	0.0262	2.2054	3.789	6.573 -	TINO
UNIV	.54	Tesis_Arc_Ste_s5_02 C	4.852	1.83	1.6372	-0.1928	-10.5332	4.852	8.372	UN
	55	Tesis_Arc_Stc_sS_03 C	6.953	2.47	2.4762	0.0062	0.2525	6.953	11.957	
	56	Tesis_Arc_Stc_s5_04 C	8.64	3.15	3.1529	0.0029	0.0924	8.64	14.848	ł
	5 7	Tesis_Arc_Stc_sS_05 C	10.099	3.81	3.7448	-0.0652	-1.7109	10.099	17.377	
	58	Tesis_Arc_Stc_s5_06 C	11.56	4.38	4.3417	-0.0383	-0.8744	11.56	19.928	
	59	Tesis_Arc_Stc_sS_07 C	13.167	5.04	5.0005	-0.0395	-0.7844	13.167	22.743	
	60	Tesis_Arc_Stc_sS_08 C	14.76	5.71	5.6566	-0.0534	-0.9356	14.76	25.546	
	61	Tesis_Arc_Stc_sS_09 C	16.258	6.29	6.2759	-0.0141	-0.2241	16.258	28.192	
	62	Tesis_Arc_Stc_sS_10 C	17,796	6.96	6.9169	-0.0431	-0.6196	17.796	30.931	
	63	Tesis_Arc_Stc_s\$_11 C	24.545	9.32	9.3372	0.0172	0.1849	24.545	41,273	
	64	Tesis_Arc_Stc_sS_12 C	0.825	0.05	0.0222	-0.0278	-55.5816	0.825	1.471	5
	65	Tesis_Arc_Stc_sS_13 C	1.902	0.47	0.4577	-0.0123	-2.619	1.902	3.332	
	66	Tesis_Arc_Stc_sS_14 C	20.184	7.91	7.8893	-0.0207	-0.2614	20.184	35.087	
	65	Tesis_Arc_Stc_sS_13 C	1.692	0,1	0.099	-0.001	-0.869	1.692	0.643	j
	66	Tesis_Arc_Stc_sS_14 C	3.582	0.31	0.295	-0.015	-4.915	3.582	1.339	
	10									-

Tabla A.5. Resultados obtenidos para la curva de calibración de MgO (continuación).

.

	No.	Estándar	Ineta	Conc.	Conc. XRF	Desv	Desv Rel	lgruesa	l con -	[
	25	Tesis_Arc_Stc_sS_01 A	1.1646	0.5	0.5951	0.0951	19.02	1.1646	3.135	ĺ
	26	Tesis Arc Stc_ss_01 8	1.1861	0.5	0.6131	0.1131	22.62	1.1861	3.196	
	27	Tesis_Arc_Stc_s5_02 A	1.7645	1	1.0895	0.0895	8.95	1.7645	4.804	1
	28	Tesis_Arc_Stc_s5_02 B	1.5543	1	0.9133	-0.0867	-8.67	1.5543	4.209	
	29	Tesis_Are_Ste_s5_03 A	2.3919	1.5	1.6082	0.1082	7,21	2.3919	6.555	
	30	Tesis_Arc_Stc_s5_03 B	2.2983	1.5	1.5297	0.0297	1.98	2.2983	6.29	1
	31	Tesis_Arc_Stc_ss_04A	3.0454	2.03	2,1498	0.1198	5.9	3.0454	8.38 4	1
	32	Tesis_Arc_Stc_sS_04 B	2.9423	2.03	2.0633	0.0333	1.54	2,9423	8.092	Î.
	33	Tesis_Arc_Stc_sS_05 A	3.582	2.55	2.593	0.043	1.68	3.582	9.88	
	34	Tesis_Arc_Stc_sS_05 8	3.5327	2.55	2.5516	0.0016	0.06	3.5327	9.741	4
	35	Tesis_Arc_Stc_sS_06 A	3.9849	3	2.9294	-0.0706	-2.35	3,9849	11.016	
	36	Tesis_Arc_Stc_sS_06 B	4.1276	3	3.0492	0.0492	1.64	4.1276	11,421	l i
11	37	Tesis Arc Stc s5 07 A	4.9239	3.53	3.7136	0.1836	5.2	4.9239	13.66 4	
	38	Tesis_Arc_Stc_s5_07 B	4.7749	3.53	3.5885	0.0585	1.66	4.7749	13.242	
	39	Tesis_Arc_Stc_sS_08 A	5.3925	4.03	4.1037	0.0737	1.83	5.3925	14.981	J
	40	Tesis_Arc_Stc_sS_08 B	5.4295	4.03	4.1349	0.1049	2.6	5.4295	15.086	
/Q́/IIIIГ	41	Tesis_Arc_Stc_sS_09 A	5.9972	4.5	4.6068	0.1068	2.37	5.9972	16.68	1
3	42	Tesis_Arc_Stc_s5_09 B	5.9185	4.5	4.5407	0.0407	0.9	5.9185	16.457	1
Ź	43	Tesis_Arc_Stc_sS_10 A	6.5341	5.04	5.054	0.014	0.28	6.5341	18.19	1
<u> </u>	44	Tesis_Arc_Stc_s5_10 B	6.575	5.04	5.0885	0.0485	0.96	6.575	18.306	1
	45	Tesis Arc Stc ss 11 A	0.8434	0.06	0.254	0.194	323.33	0.8434	1.983	{
	46	Tesis_Arc_Stc_sS_11 B	0.6384	0.06	0.0841	0.0241	40.14	0.6384	1.409	1
YENN'	47	Tesis_Arc_Stc_ss_12A	1.0076	0.3	0.4793	0.1793	\$9.77	1.0076	2.744	1
	48	Tesis_Arc_Stc_sS_12 B	0.8499	0.3	0.3434	0.0434	14.48	0.8499	2.285	1
	49	Tesis_Arc_Stc_sS_13 A	0.61	0.08	0.1271	0.0471	58.9	0.61	1.555	i i
	50	Tesis_Arc_Stc_sS_13 B	0.5906	0.08	0.1106	0.0306	38.23	0.5906	1.499	
	51	Tesis_Arc_Stc_s5_14A	0.7675	0.11	0.2204	0.1104	100.37	0.7675	1.87	1
	52	Tesis_Arc_Stc_sS_14 B	0.6897	0.11	0.1543	0.0443	40.27	0.6897	1.646	
	53	Tesis_Arc_Stc_s5_01 C	1.0574	0.5	0.5051	0.0051	1.01	1.0574	2.831	ÓN
	54	Tesis_Arc_Stc_ss_02.C	1.4658	1	0.839	-0.161	-16,1	1.4658	3.958	
	55	Tesis_Arc_Stc_sS_03 C	2.2094	1.5	1.4552	-0.0448	-2.99	2.2094	6.039	
	56	Tests_Arc_Stc_s5_04 C	2,8409	2.03	1.9782	-0.0518	-2.55	2.8409	7.805	1
D	57	Tesis_Arc_Stc_sS_05 C	3.4444	2.55	2.4776	-0.0724	-2.84	3.4444	9.491	1
	58	Tesis_Arc_Stc_sS_06 C	3.9986	3	2.9409	-0.0591	-1.97	3.9986	11.055	l
	59	Tesis_Arc_Stc_sS_07 C	4.6479	3.53	3.4818	-0.0482	-1.37	4.6479	12.881	1
	60	Tesis_Arc_Stc_sS_08 C	5.2535	4.03	3.9869	-0.0431	-1.07	5.2535	14,587	l
	61	Tesis_Arc_Stc_s5_09 C	5.8005	4.5	4,4415	-0.0585	~1.3	5.8005	16.122	1
	62	Tesis_Arc_Stc_sS_10 C	6.4214	5.04	4.9593	-0.0807	-1.6	6.4214	17.87	t
	63	Tesis_Arc_Stc_sS_11 C	0.557	0.06	0.0167	-0.0433	-72.17	0.557	1.182	1
	64	Tesis_Arc_Stc_sS_12 C	0.7254	0.3	0.2361	-0.0639	-21.29	0.7254	1.923	ł
	65	Tesis Arc Stc sS 13 C	0.5082	0.08	0.0405	-0.0395	-49.44	0.5082	1.262	1
	66	Tesis_Arc_Stc_sS_14 C	0.6074	0.11	0.0843	-0.0257	-23.33	0.6074	1.41	ſ
	65	Tesis_Arc_Stc_ss_13 C	1.692	0.1	0.099	-0.001	-0.869	1.692	0.643	1
	66	Tesis Arc_Stc_sS_14 C	3,582	0.31	0.295	-0.015	-4.915	3.582	1,339	
		100000000000000000000000000000000000000	3.202	9127	0.000				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1

Tabla A.7. Resultados obtenidos para la curva de calibración de Na2O (continuación).

87

	No.	Estándar	t neta	Conc	Conc. XRF	Desv	Desy Rel	l gruesa	I con	
	25	Tesis_Arc_Stc_sS_01 A	48.55	4.99	4.9851	-0.0049	-0.099	48.55	22,203	
	26	Tesis_Arc_Stc_sS_01 B	49.121	4.99	5.0446	0.0546	1.093	49.121	22.464	
	27	Tesis_Arc_Stc_sS_02 A	38,706	4.46	3.9736	-0.4864	-10.906	38.706	17.759	
	28	Tesis_Arc_Stc_s5_02 B	38.344	4.46	3.9358	-0.5242	-11.752	38.344	17.594	
	29	Tesis_Arc_Stc_sS_03 A	39.349	3.95	4.0517	0.1017	2.576	39.349	18.103	
	30	Tesis_Arc_Stc_sS_03 B	39.275	3.95	4.044	0.094	2.38	39.275	18.069	
	31	Tesis_Arc_Stc_sS_04 A	32.744	3.32	3.3656	0.0456	1.373	32.744	15.089	
	32	Tesis_Arc_Stc_sS_04 B	32.743	3.32	3.3655	0.0455	1.37	32.743	15.088	
	33	Tesis_Arc_Stc_s\$_05 A	29.144	2.96	2.9917	0.0317	1.07	29.144	13.446	
	34	Tesis_Arc_Stc_sS_05 B	28.947	2,96	2.971	0,011	0.373	28.947	13.355	
	35	Tesis_Arc_Stc_sS_06 A	23.252	2.39	2.3671	-0.0229	-0.959	23.252	10.702	
	36	Tesis_Arc_Stc_sS_06 B	23.773	2.39	2.4217	0.0317	1.327	23.773	10.942	
50	37	Tesis_Arc_Stc_sS_07 A	19.977	1.94	2.0244	0.0844	4,35	19,977	9.197	
	38	Tesis_Arc_Stc_sS_07 B	19.435	1.94	1.9675	0.0275	1.419	19.435	8.947	
	39	Tesis_Arc_Stc_sS_08 A	13.965	1.37	1.3955	0.0255	1.859	13.965	6.434	
ALE	40	Tesis_Arc_Stc_s5_08 B	14.036	1.37	1.4029	0.0329	2.4	14.036	6.467	
	41	Tesis_Arc_Stc_sS_09 A	9.089	0.86	0.8839	0.0239	2.785	9.089	4.187	
	42	Tesis_Arc_Stc_sS_09 B	9.091	0.86	0.8841	0.0241	2.807	9.091	4.188	
	43	Tesis_Arc_Stc_sS_10 A	3.723	0.3	0.3214	0.0214	7.148	3.723	1.716	
	44	Tesis_Arc_Stc_s5_10 B	3.73	0.3	0.3221	0.0221	7.37	3.73	1.719	
5	45	Tesis_Arc_Stc_sS_11 A	10.34	1.01	1.0168	0.0068	0.678	10.34	4.771	
	46	Tesis_Arc_Stc_sS_11 B	10.049	1.01	0.9862	-0.0238	-2.352	10.049	4.636	
	47	Tesis_Arc_Stc_s5_12 A	5.402	0.49	0.4964	0.0064	1.315	5.402	2.485	
	48	Tesis_Arc_Stc_s5_12 B	5.436	0.49	0.5	0.01	2.04	5.436	2.5	
	49	Tesis_Arc_Stc_sS_13A	10.237	1.02	1.01	-0.01	-0.976	10.237	4.741	
	50	Tesis_Arc_Stc_sS_13 B	10.442	1.02	1.0317	0.0117	1.146	10.442	4.836	
	51	Tesis_Arc_Stc_sS_14 A	7.373	0.71	0.6983	-0.0117	-1.654	7.373	3.371	
	52	Tesis_Arc_Stc_sS_14 B	7.648	0,71	0.7268	0.0168	2.37	7.648	3.497	
	53	Tesis_Arc_Stc_sS_01 C	47.922	4.99	4.9197	-0.0703	-1,408	47.922	21,916	ÓNT
UNIVE	54	Tesis_Arc_Stc_sS_02 C	36.973	4.46	3.7926	-0.6674	-14.964	36.973	16.964	UN
DI	55	Tesls_Arc_Stc_sS_03 C	37.91	3.95	3.901	-0.049	-1.239	37.91	17.441	(F
	56	Tesis_Arc_Stc_s5_04 C	31.895	3.32	3.2765	-0.0435	-1,311	31.895	14.697	
	57	Tesis_Arc_Stc_s\$_05 C	28.241	2,96	2.8968	-0.0632	-2,135	28.241	13,029	
	58	Tesis_Arc_Stc_s5_06 C	23.074	2.39	2.3484	-0.0416	-1.739	23.074	10.62	
	59	Tesis_Arc_Stc_sS_07 C	18.874	1.94	1.9087	-0.0313	-1.612	18.874	8.689	
	_ 60	Tesis_Arc_Stc_sS_08 C	13.428	1.37	1.3391	-0.0309	-2.257	13.428	6.185	
	61	Tesis_Arc_Stc_sS_09 C	8.745	0.86	0.8479	-0.0121	-1.404	8.745	4.029	l
	62	Tesis_Arc_Stc_sS_10 C	3.525	0.3	0.3007	0.0007	0.227	3,525	1.625	
	63	Tesis_Arc_Stc_sS_11 C	9.86	1.01	0.9665	-0.0435	-4.31	9.86	4.549	
	64	Tesis_Arc_Stc_sS_12 C	5.122	0.49	0.4671	-0.0229	-4.678	5,122	2.356	ιv.
	65	Tesis_Arc_Stc_sS_13 C	9.731	1.02	0.9567	~0.0633	-6.203	9.731	4,507	
	66	Tesis_Arc_Stc_sS_14 C	7.036	0.71	0.6631	-0.0469	-6.606	7.036	3,217	
	65	Tesis_Arc_Stc_sS_13 C	1.692	0.1	0.099	-0.001	-0.869	1.692	0.643	
	66	Tesis_Arc_Stc_s5_14 C	3.582	0.31	0.295	-0.015	-4.915	3.582	1.339	l i

Tabla A.8. Resultados obtenidos para la curva de calibración de K2O (continuación).

.

	No.	Estándar	l neta	CONC.	Conc. XRF	Desv	Desv Rei	I gruesa	I corr	e
	25	Tesis_Arc_Stc_sS_01 A	1.269	0.05	0.0541	0.0041	8.186	1.269	0.4035	
	26	Tesis_Arc_Stc_sS_01 B	1.288	0.05	0.0561	0.0061	12,245	1.288	0.4097	
	27	Tesis_Arc_Stc_sS_02 A	2.716	0.21	0.1977	-0.0123	-5.844	2.716	0.8442	
	28	Tesis_Arc_Stc_sS_02-B	2,685	0.21	0.1946	-0.0154	-7.312	2.685	0.8347	
	29	Tesis_Arc_Stc_sS_03 A	4.68	0.38	0.3849	0.0049	1.294	4.68	1.4185	
	30	Tesis_Arc_Stc_sS_03 B	4.657	0,38	0.3826	0.0026	0.688	4.657	1.4114	
	31	Tesis_Arc_Stc_5S_04 A	6,443	0.55	0.551	0.001	0.178	6.443	1.928	
	32	Tesis_Arc_Stc_sS_04 B	6.475	0.55	0.5541	0.0041	0.749	6.475	1.9377	l l
	33	Tesis_Arc_Stc_sS_05 A	8.221	0.72	0.7027	-0.0173	-2.408	8.221	2.3934	
	34	Tesis_Arc_Stc_sS_05 B	8.259	0.72	0.7063	-0.0137	-1.902	8.259	2.4046	
	35	Tesis_Arc_Stc_sS_06 A	10.043	0.86	0.8739	0.0139	1,611	10.043	2.9187	
	36	Tesis_Arc_Stc_sS_06 B	10.028	0.86	0.8724	0.0124	1.441	10.028	2.9142	10 1
50	37	Tesis_Arc_Stc_s5_07 A	12	1.04	1.0419	0.0019	0.184	12	3.4343	
	38	Tesis_Arc_Stc_sS_07 B	12.044	1.04	1.0461	0.0061	0.587	12.044	3.4472	8
	39	Tesis_Arc_Stc_s5_08 A	15.813	1.36	1.3742	0.0142	1.041	15.813	4.4537	
	40	Tesis_Arc_Stc_sS_08 B	15.753	1.36	1.3687	0.0087	0.639	15.753	4.4369	
	41	Tesis_Arc_Stc_55_09A	16.083	7.35	1.3729	0.0229	1.696	16.083	4.4498	
	42	Tesis_Arc_Stc_sS_09 B	15.975	1.35	1.3632	0.0132	0.974	15.975	4.42	ĺ
	43	Tesis_Arc_Stc_s5_10 A	18.322	1.53	1.5453	0.0153	0.997	18.322	4.9787	
	44	Tesis Arc Stc_s5_10-8	18.483	1.53	1,5596	0.0296	1.934	18.483	5.0226	
5 (45	Tesis_Arc_Stc_sS_11 A	29.129	2.57	2.5735	0.0035	0.135	29.129	8.1335	
	46	Tesis_Arc_Stc_sS_11 B	29.229	2.57	2.5826	0.0126	0.492	29.229	8.1616	
	47	Tesis_Arc_Stc_sS_12 A	23.313	1.97	1.9697	-0.0003	-0.014	23.313	6.281	8
	48	Tesis_Arc_Stc_sS_12 B	23,449	1.97	1.9817	0.0117	0.596	23.449	6.3179	
	49	Tesis_Arc_Stc_sS_13 A	23.535	2,01	2.0101	0.0001	0.006	23.535	6.405	
	50	Tesis_Arc_Stc_sS_13 B	23.436	2,01	2.0013	-0.0087	-0.435	23.436	6.3778	
	51	Tesis_Arc_Stc_sS_14 A	9.098	0.71	0.7135	0.0035	0.491	9.098	2.4266	2
	52	Tesis_Arc_Stc_sS_14 B	9.109	0.71	0.7145	0.0045	0.637	9,109	2.4298	i
TINITY/	53	Tesis_Arc_Stc_s5_01 C	1.281	0.05	0.0554	0.0054	10.765	1.281	0.4074	бът
UNIVE	54	Tesis_Arc_Stc_s5_02.C	2.645	0.21	0.1905	-0.0195	-9.263	2.645	0.8221	UN
	55	Tesis_Arc_Stc_sS_03 C	4.568	0.38	0.3739	-0.0061	~1.615	4.568	1.3846	
DI	56	Tesis_Arc_Stc_sS_04 C	6.397	0.55	0.5465	-0.0035	-0.635	6.397	1.9143	
	57	Tesis_Arc_Stc_s5_05 C	8.15	0.72	0.6959	-0.0241	3.346	8.15	2.3727	1
	58	Tesis_Arc_Stc_sS_06 C	10.034	0.86	0.873	0.013	1.508	10.034	2.9159	о.
	59	Tesis_Arc_Stc_sS_07 C	11.921	1.04	1.0346	-0.0054	-0.517	11.921	3.412	
	60	Tesis_Arc_Stc_sS_08 C	15.577	1.36	1.3526	-0.0074	-0.547	15.577	4.3874	
	61	Tesis_Arc_Stc_sS_09 C	15.871	1.35	1.3538	0.0038	0,284	15.871	4.3913	
	62	Tesis_Arc_Stc_s5_10 C	18.086	1.53	1.5244	-0.0056	-0.363	18.086	4.9148	1
	63	Tesis Arc_Stc_ss_11-C	28.879	2.57	2,5507	-0.0193	-0.751	28.879	8.0636	
	64	Tesis Arc_Stc_sS_12-C	23,17	1.97	1.9572	-0.0128	-0.649	23,17	6.2427	B
	65	Tesis_Arc_Stc_s5_13 C	23.273	2.01	1.9868	-0.0232	-1.152	23.273	6.3336	
	66	Tesis_Arc_Stc_sS_14 C	8.987	0.71	0.7039	-0.0061	-0.863	8.987	2.3971	
	65	Tesis_Arc_Stc_sS_13 C	1.692	0.1	0.099	-0.001	-0.869	1.692	0.643	
	66	Tesis_Arc_Stc_sS_14 C	3.582	0.31	0.295	-0.015	-4.915	3.582	1.339	
	12							The second s		

Tabla A.9. Resultados obtenidos para la curva de calibración de TiO₂ (continuación).

91

NO.	Estándar	Ineta	Conc.	Conc XRF	Desv	Desv Rel	l gruesa	_1 cont
25	Tesis_Arc_Stc_s5_01-A	1.5077	0.52	0.5348	0.0148	2.838	1-5077	1.0327
26	Tesis Arc Stc. ss. 01-B	1.5075	0.52	0.5347	0.0147	2.823	1.5075	1.0326
27	Tesis Arc_Stc_s5.02 A	1.1908	0.47	0.4148	-0.0552	-11.737	1.1908	0.8198
28	Tesis_Arc_Stc_s5_02-B	1.1948	0.47	0,4164	-0.0536	-11.397	1.1948	0,8226
29	Tesis_Arc_Stc_s5_03 A	1.2087	0.41	0.4266	0.0166	4.043	1.2087	0.8406
30	Tesis_Arc_Stc_s5_03-B	1.2026	0.41	0.4242	0.0142	3,457	1.2026	0.8364
31	Tesis_Arc_Stc_sS_04 A	1.0427	0.37	0.3629	-0.0071	-1.928	1.0427	0.7275
32	Tesis_Arc_Stc_sS_04 B	1.0434	0.37	0.3631	-0.0069	-1.856	1.0434	0.728
33	Tesis_Arc_Stc_sS_05 A	0.9069	0.32	0.3122	-0.0078	-2.43	0.9069	0.6376
34	Tesis_Arc_Stc_sS_05 B	0.9155	0.32	0.3157	-0.0043	-1.353	0.9155	0.6437
35	Tesis_Arc_Stc_sS_06 A	0.7584	0.25	0.2522	0.0022	0.863	0.7584	0.5309
36	Tesis Arc Stc sS 06 B	0.7595	0.25	0.2526	0.0025	1.034	0.7595	0.5317
37	Tesis Arc Stc s5.07 A	0.7196	0:25	0.2382	-0.0118	-4.728	0.7196	0.5061
38	Tesis Arc Stc sS 07 B	0.7325	0.25	0.2433	-0.0067	-2.661	0.7325	0.5153
39	Tesis Are Ste os 08 A	0.6484	0.2	0.2114	0.0114	5.687	0.6484	0.4585
40	Tesis Are Ste sS 08-8	0.6504	0.2	0.2122	0.01-22	5.083	0.6504	0.4599
41	Tesis_Arc_Stc_s5_09A	0.3517	0.09	0.0931	0.0031	3.436	0.3517	0.2485
42	Tesis Arc Stc s5 09 B	0.3459	0.09	0.0907	0.0007	0.832	0.3459	0.2444
43	Tesis Arc Stc_sS 10 A	0.1953	0.03	0.0312	0.0012	3.87	0.1953	0.1386
44	Tesis Arc Stc s5 10 B	0.1936	0.03	0.0305	0.0005	1.574	0.1936	0.1373
45	Tesis Arc Stc sS 11 A	2.6387	1.01	1.011	0.001	0.101	2.6387	1.8783
46	Tesis Arc Stc 55 11 B	2.6074	1.01	0.9984	-0.0116	-1.144	2.6074	1.856
47	Tesis Arc Stc s\$ 12 A	0.2782	0.06	0.0656	0.0056	9.329	0.2782	0.1997
48	Tesis Arc Stc ss 12 B	0.273	0.06	0.0635	0.0035	5.807	0.273	0.196
49	Tesis Are Ste ss 13 A	2,1108	0.8	0.8111	0.0111	1,391	2,1108	1.5234
50	Tesis Are Ste ss 13 B	21478	0.8	0.8262	0.0262	3,272	2.1478	1.5501
51	Tesis Arc Stc s5 14 A	0.3204	0.08	0.0819	0.0019	2.382	0.3204	0.2287
52	Tesis Arc Stc sS 14 B	0.3094	0.08	0.0775	-0.0025	-3.144	0.3094	0.2208
53	Tesis Arc Stc sS 01 C	1.4648	0.52	0.5179	-0.0021	-0.404	1.4648	1.0028
V 54	Tesis Are Ste is 02-C	1.1873	0.47	0.4135	-0.0565	-12.026	1.1873	0.8174
55	Tesis Arc Stc s5 03 C	1,1693	0.41	0.4109	0.0009	0.223	1.1693	0.8128
56	Tesis Are Ste ss 04 C	1.0269	0.27	0.3566	-0.0134	-3.63	1.0269	0.7163
57	Tesis Are Ste ss 05 C	0.8938	0.37	0.307	-0.013	-4.067	0.8938	0.6283
58	Tesis Arc Stc sS 06 C	0.7329	0.25	0.242	-0.008	-3.22	0.7329	0.5128
59	Tesis Arc Stc sS 07 C	0.7279	0.25	0.2415	-0.0085	-3,395	0.7279	0.512
60	Tesis Arc Stc sS 08 C	0.6267	0.2	0.2026	0.0026	1.314	0.6267	0.443
61	Tesis Arc Stc sS 09 C	0.3461	0.09	0.0908	0.0008	0.922	0.3461	0,2445
62	Tesis Arc Stc ss 10 C	0.1877	0.03	0.0281	-0.0019	-6.441	0.1877	0.1331
63	Tesis Arc Stc sS 11 C	2.6296	1.01	1.0073	-0.0027	-0.263	2.6296	1.8718
64	Tasis Arc Str cs 12 C	0.2657	0.06	0.0605	0.0005	0.885	0.2657	0.1907
65	Tesis Arc Str. es 13.C	2 0081	0.00	0.806	0.006	0 745	2 0981	1 5142
65	Tesis Arc Str c6 14 C	0.3012	0.08	0.0742	-0.0058	-7.293	0.3012	0.2140
20	Tasis Arr Str es 120	1 692	0.00	0,000	-0.001	-0.860	1 602	0.643
05		1.000		1000	0.001	0.009		0.0-0

Tabla A.10. Resultados obtenidos para la curva de calibración de P_2O_5 (continuación).

UNIV

			0.05		010010	3.07	1.72.10	0.3303		
4	Tesis_Arc_Stc_04 A	3.1553	0.12	0.1157	-0.0043	-3.56	3.1553	0.6385		
- 5 -	Tesis_Arc_Stc_04 B	3,23	0.12	0.1194	-0.0006	-0.54	3.23	0.6536	EON	
6	Tesis_Arc_Stc_04 C	3.1748	0.12	0.1167	-0.0033	-2.77	3.1748	0.6424		
7	Tesis_Arc_Stc_05 A	4,4081	0.18	0.1739	-0.0061	-3.36	4.4081	0.8814	1	
8	Tesis_Arc_Stc_05 B	4.1944	0.18	0.1637	-0.0163	9.05	4.1944	0.8387	1	
9	Tesis_Arc_Stc_05 C	4.4121	0.18	0.1741	-0.0059	-3.26	4.4121	0.8822		
10]	Tesis_Arc_Stc_06 A	4.6412	0.19	0.1831	-0.0069	-3.65	4.6412	0.9195	1	
Ŧ	Tesis_Arc_Stc_06-B	4.542	0.19	0.1784	-0.0116	-6.12	4.542	0.8998	1	
12	Tesis_Arc_Stc_06 C	4.5369	649	0.1781	-0.0119	-6.25	4,5369	0.8988	1	
13	Tesis_Arc_Stc_07 A	4.9831	0.2	0.1979	-0.0021	-1.07	4.9831	0.9812	1	
14	Tesis_Arc_Stc_07-8	4.7948	0.2	0,189	0.011	-5.51	4.7948	0.9441	1	
15	Tesis_Arc_Stc_07 C	5.021	0.2	0.1996	-0.0004	-0.18	5.021	0.9887	1	
16	Tesis_Arc_Stc_08 A	5.814	0.23	0.2325	0.0025	1.1	5.814	1.1259	l .	
17	Tesis_Arc_Stc_08 B	5,8751	0.23	0.2354	0.0054	2.33	5.8751	1.1377	1	
18	Tesis_Arc_Stc_08 C	5.866	0.23	0.2349	0.0049	2.15	5.866	1.136	1	
19	Tesis_Arc_Stc_09 A	6.6019	0.27	0.266	-0.004	-1.49	6.6019	1.2655	1	
20	Tesis_Arc_Stc_09-B	6,9352	0.27	0.2813	0.0113	4.18	6.9352	1.3293	1	
21	Tesis_Arc_Stc_09 C	6.8077	0.27	0.2754	0.0054	2.01	6.8077	1.3049	1	
22	Tesis_Arc_Stc_10 A	7,7151	0.2 8	0.3132	0.0332	+1.86	7.7151	1.4625	1	
23	Tesis_Arc_Stc_10-B	7.9611	0-28	0.3244	0.0444	15.85	7.9611	1.5093	1	
24	Tesis_Arc_Stc_10 C	7.7775	0.28	0.316	0.036	12.87	7.7775	1.4744	1	
	No.	Estándar 🦾	Ineta	Conc.	Conc XRF	Desv	Desv Rel	1 gruesa	l corr	
------------	-----	-----------------------	--------	-----------------	-------------------	-------------------	-------------------	-------------------	--------------------	---
	25	Tesis_Arc_Ste_s5_01 A	1.7094	0.03	0,0505	0.0205	68.46	1,7094	0.3664	
	26	Tesis_Arc_Stc_55_01-B	1.658	0.03	0.0479	0.0179	59.67	1.658	0.35 54	
	27	Tesis_Arc_Stc_sS_02A	3.2286	0.06	0.125	0.065	108.3	3.2286	0.6771	
	28	Tesis_Arc_Stc_sS_02 B	3,0789	0.06	0.1175	0.0575	95.76	3.0789	0.6456	
	29	Tesis_Arc_Stc_s5_03 A	4.8343	0.09	0.2005	0.1105	122.77	4.8343	0.9922	
	30	Tesis_Arc_Stc_sS_03 B	4,8941	0.09	0.2034	0.1134	126.03	4.8941	1.0044	
	31	Tesis_Arc_Stc_sS_04-A	4.7348	0.12	0.1936	0.0736	61.36	4.7348	0.9635	
	32	Tesis Are Ste 55.04 B	4.6258	0,12	0.1883	0.0683	56.93	4.6258	0.9413	
	33	Tesis_Arc_Stc_sS_05 A	4.3131	Q.15	0.1682	0.0182	12,16	4.3131	0.8576	
	34	Tesis_Arc_Stc_s5_05 B	4.162	0,15	0.161	0.011	7.36	4.162	0.8275	
	35	Tesis_Arc_Stc_sS_06 A	4.5918	0.18	0.1819	0.0019	1.07	4.5918	0.9147	
	36	Tesis_Arc_Stc_sS_06 B	4.5995	0.18	0.1823	0.0023	1.28	4.5995	0.9163	
15	37	Tesis_Arc_Stc_s5_07 A	5.0992	0.2	0.2036	0.0036	1.81	5.0992	1.0052	
	38	Tesis_Arc_Stc_sS_07 B	5.0497	0.2	0.2013	0.0013	0.64	5.0497	0.9955	
	39	Tesis_Arc_Stc_sS_08-A	6.1686	0.24	0.2514	0.0114	4 .75	6.1686	1.2047	
	49	Tesis_Arc_Stc_s5_08-B	6.1941	0.24	0.2526	0.0126	5,25	6.1941	1.2096	
	41	Tesis_Arc_Stc_sS_09 A	6.5435	0.27	0.2643	-0.0057	-2.1	6.5435	1.2586	
	42	Tesis_Arc_Stc_s5_09 B	6.688	0.27	0.271	0.001	0.36	6.688	1.2864	
	43	Tesis_Arc_Stc_sS_10 A	7.4486	0.3	0.3016	0.0016	0.55	7.4486	1.4143	
	44	Tesis_Arc_Stc_sS_10 B	7.4484	0.3	0.3016	0.0015	0.54	7.4484	1.4143	
	45	Tesis Arc Stc ss 11 A	1.6005	0.05	0.0361	-0.0139	-27.82	1.6005	0.3061	
	46	Tesis_Arc_Stc_sS_11 B	1.7114	0.05	0.0412	-0.0088	-17.65	1.7114	0.3273	
AIV.	47	Tesis_Arc_Stc_sS_12 A	3,1303	0.1	0.1104	0.0104	10.35	3.1303	0.616	
	48	Tesis_Arc_Stc_sS_12 B	2.9575	0.1	0.1022	0.0022	2.2	2.9575	0.582	
$\sqrt{1}$	49	Tesis_Arc_Stc_sS_13 A	2.3819	0.08	0.0734	-0.0066	-8.19	2.3819	0.462	
	50	Tesis_Arc_Stc_sS_13 B	2.47	0.08	0.0775	-0.0025	-3.07	2.47	0.4791	
	51	Tesis_Arc_Stc_s5_14.A	3.0584	0.09	0.1019	0.0119	13,19	3.0584	0.5806	
	52	Tesis_Arc_Stc_s5_14 B	2.8093	0.09	0.0905	0.0005	0.6	2.8093	0.5333	
1137	53	Tesis_Arc_Ste_sS_01-C	1-6266	9.03	0.0463	0.0163	54.28	1.6266	0.3486	ć
VIV	54	Tesis_Arc_Stc_s5_02-C	2.8608	0.05	0,1065	0.0465	77.5	2.8608	0.5999	
	55	Tesis_Arc_Stc_sS_03-C	4.9439	0.09	0.2059	0.1159	128.76	4.9439	1.0147	
	56	Tesis_Arc_Stc_s5_04-C	4.4688	0,12	0.1807	0.0507	50,55	4.4688	0.9094	
	57	Tesis_Arc_Stc_sS_05 C	3.9684	0.15	0.1518	0.0018	B 1.21	3.9684	0.7891	
	58	Tesis_Arc_Stc_s5_06 C	4.7099	0.18	0.1876	0.0076	4.21	4.7099	0.9383	
	59	Tesis_Arc_Stc_sS_07 C	5.1522	0.2	0.2061	0.0061	3.06	5.1522	1.0157	
	60	Tesis_Arc_Stc_sS_08 C	5.9402	0.24	0.2407	0.0007	0.3	5.9402	1.1601	
	61	Tesis_Arc_Stc_sS_09 C	6.4945	0.27	0.2621	-0.0079	-2.94	6.4945	1.2491	
	62	Tesis_Arc_Stc_sS_10 C	7.2653	0.3	0.2933	-0.0067	-2.23	7.2653	1.3795	
	63	Tesis_Arc_Stc_sS_11-C	1.5592	0.05	0.0342	-0.0158	~31.6	1.5592	0.2982	
	64	Tesis_Arc_Stc_sS_12 C	3.0872	0.1	0,1083	0.0083	8.32	3.0872	0.6075	
	65	Tesis_Arc_Stc_sS_13 C	2.4394	0.08	0.0761	-0.0039	-4,85	2,4394	0.4731	
	66	Tesis_Arc_Stc_sS_14 C	2.8115	0.09	0.0906	0.0006	0.71	2.8115	0.5337	
	65	Tesis_Arc_Stc_sS_13 C	1.692	0.1	0.099	-0.001	-0.869	1.692	0.643	
	66	Tesis Arc Stc es 14 C	3 582	0.31	0.295	-0.015	-4 915	3 582	1 339	

Tabla A.11. Resultados obtenidos para la curva de calibración de Mn₂O₃ (continuación).

÷

Apéndice 2 Tablas estadísticas

Se presentan para la conveniencia del lector las siguientes tablas, y para su uso en este libro en pruebas estadísticas simples, ejemplos y ejercicios. Están presentadas en un formato compatible con las necesidades de químicos analíticos: el nivel de significación P = 0.05 ha sido utilizado en muchos casos, y se ha supuesto que el número de mediciones disponible es suficientemente pequeño. Excepto donde no se establezca lo contrario, estas tablas abreviadas han sido obtenidas, con autorización de *Elementary Statistics Tables* de Henry R. Neave, publicadas por George Allen & Unwin Ltd. (Tablas A.1-A.3, A.5-A.7 y A 12-A.16). Se remite a estas fuentes a los lectores que requieran números de medicionês no recogidos en las tablas.

Tabla A.1 La distribución /

Los valores críticos de la son adecuados par a una prueba de dos colas. Para un prueba de una cola el valor se toma de la columna para dos veces el valor de P deseado, por ejemplo, para una prueba de una cola, P=0.005, 5 grados de libertad, el valor crítico se lee en la columna P= 10 y es igual A22 F-table (99 %)

- <u>66</u> 1 2	1 4002 99.50	1 3010 64.00	5303 59.17	4 362 99,25	5764 99.30	6 9999 9739	7 .9958 199.36	6022 \$9.31	4 8056 99.19	19 6106 99,41	12 64.57 99,42	15 6209 19(43	10 6236 2943	24 0261 99.44	34 6297 1943	40 6313 9347	60 6539 89.48	120 8360 95.49	99.50
3 4 4	34,12 23,20	30.63 18.60	29.45 16.69	28.51 15.96 11.30	28.24 15.52 10.97	27.90	2767 1499	27.89 14.86	11.30	27.23	14.57	34.57 14.10	29/83 14:00	26.66	2050 13.64	2641	26.32	26,22	3613
8	13.75 12.25 11.36 1056	10.50 9.55 9.65 8.65	9,73 8,45 7,39 6,99	9.15 7.85 7.81 6.42	175 744 183	8.47 7.19 6.37 5.80	126 6.99 6.18 5.11	8,10 6,84 6,03 5,47	7.98 6.72 5.91 3.35	2.47 5.62 5.81 5.26	9.12 647 5.67 5.11	7.36 6.38 1.97	7.60 6.16 5.36 5.81	7.31 6.07 5.26 4.73	1.22	7.14 5.91 5.12 4.57	7.05 3.23 3.03 4.48	4.97 5.34 4.95 4.41	6.32 5.65 4.36 4.31
30 38 82 84 74	1014 9.65 9.31 9.07 8.86	7.56 7.21 6.93 6.79 6.31	6.15 6.21 1.85 5.74 5.76	5.95 5.67 5.41 5.21 5.24	5.52 5.66 4.67	5.39 5.07 4.82 4.62 4.62	5.211 4.69 4.64 4.44 4.28	1.08 4.14 4.30 4.30 4.14	4.49 4.63 4.39 4.19 4.03	4,85 1,34 1,30 1,40 3,84	8.71 844 8.14 3.96 3.89	425 425 400 1.82 1.66	4.41 3.86 3.66 3.51	4.55 4.02 1.78 1.99 3.45	419 199 111 111	4.17 3.86 1.67 1.43 3.27	4.06 3.72 3.14 3.14 1.18	4.00 1.49 1.45 1.25 1.09	1.94 1.60 1.36 1.37 3.00
13 16 17 18 15	8.40 8.40 8.29 9.18 5.10	6.30 6.23 6.11 6.01 6.31 6.36	5.14 5.29 5.14 5.09 5.01 4.91	4.89 4.77 4.67 4.58 4.58 4.50	4.34 4.34 4.23 4.17 4.10	4.62 4.10 4.10 3.94 3.87	4.14 4.03 3.93 3.84 5.77 1.70	4.00 3.99 3.79 3.71 3.63 3.65	7.89 1.71 1.60 1.52 3.46	1.90 1.69 1.59 1.41 1.43	107 9,35 3,46 3,17 3,16 3,23	3.52 3.41 3.31 3.23 3.11 3.09	3,37 3,16 3,08 3,00 2,94	3.29 3.14 3.08 3.00 2.92 2.86	110 100 192 214 273	3.13 3.42 2.92 2.84 2.76 2.69	3,00 2,93 2,83 2,75 2,67 2,61	194 134 175 194 194 194	2.87 2.75 2.65 2.57 2.49 2.49
21 22 23 24 24 25 24 25 24 25 24 24 24 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	8.82 7.95 7.81 7.81 7.81 7.81	6.23 6.11 6.01 5.93 5.57 4.55	4.37 4.92 4.76 4.71 4.69	4.37 4.91 4.26 4.22 4.48	4.01 3.99 3.94 3.90 3.45	1.81 3.76 3.71 3.67 3.67	344 5,89 1,94 1,90 8,46	3.51 3.45 3.41 3.36 3.32 3.35	3.40 3.35 3.30 3.26 3.22	331 326 321 317 313	3.17 3.12 3.07 3,85 299	101 295 100 100 205	2,89 2,83 2,78 2,76 2,76 2,70	2.60 2.75 2.10 2.66 2.42 2.43	212 169 153 154	2.64 2.54 2.54 2.49 2.49 2.45 2.45	2.55 2.50 2.45 2.40 2.36 2.10	244 249 235 231 3.27	2.36 2.31 2.25 2.31 2.31 2.17 7.15
27 28 39 30 40	7.69 7.64 7.50 7.50 7.50 7.50	5.45 5.45 5.42 5.35 5.35 5.18	4.68 4.17 4.54 4.51 4.51 4.31	4.11 4.07 4.04 4.02 3.85	178 175 371 370 351	3.36 7.53 3.50 1.47 3.29	1.39 1.36 1.30 1.30	3,26 3,23 3,20 3,17 2,99	5.15 3.12 3.69 3.69 3.67 289	3.05 3.05 3.00 2.56 7.10	2.93 290 287 2.84 2.66	2.75 2.75 2.70 2.52	2.63 2.60 2.57 2.55 2.55	2.55 2.52 2.49 2.47 2.29	247 244 244 244 244 244 244	2.38 2.33 2.30 2.11	199 126 223 221 221	2.30 2.17 2.14 2.11 1.92	2.10 2.05 2.03 2.01 1.80
TERSIDA	7,08	4.93 4.79 4.61		3.65 3.41 9.32	3.14 3.17 3.62	3.17 2.96 2.10	299 279 244	2.64 2.66 2.51	272 2.56 241	2.63	294 234 2.18	2.18 2.19 2.04	2,20 2,93 1,89	2.12 1.95 1.75	200 1.16 1.76	1.94 1.94 1.99	144 1.66 1.47	1.25	129 138 100
E.					EO Z	7/													
							T	6								T T Z			<u> </u>

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN DIRECCIÓN GENERAL DE BIBLIOTECAS

RESULTADOS GRÁFICOS DEL ANÁLISIS DE RESIDUALES

Figura C.2. Gráfica de análisis de residuales obtenida para Al₂O₃,

Figura C.4. Gráfica de análisis de residuates obtenida para CaO.

Figura C.6. Gráfica de análisis de residuales obtenida para SO₃.

Figura C.10. Gráfica de análisis de residuales obtenida para P2O5.

DIRECCIÓN GENERAL DE BIBLIOTECAS

Certificate of Certified Reference Materials

NCS DC 73319 - NCS DC 73326

Soil

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS Issued in 1998

Approved by China National Analysis Center for Iron and Steel

(Beijing China)

10	Certifi	ed values of a	soil reference	materials (C	ertification19	86, Revision	1998)	
mm	g NCS DC 73319	NCS DC 73320	NCS DC 73321	NCS DC 73322	NCS DC 73323	NCS DC 73324	NCS DC 73325	NCS DC 73326
Ap	0.45 ± 0.07	0.054 ± 0.010	0.091 ± 0.011	0.070 ± 0.016	4.4 ± 0.6	0.2 ± 0.03	0.057 ± 0.016	0.06 ± 0.014
As	34 ± 5	13.7 ± 1.8	4.4 ± 0.9	58±3	412 ± 24	220 ± 21	4.8 ± 1.9	12.7 ± 1.7
Au	(0.00055)	(0.0017)		(0.0055)	0.260 ± 0.006	(0.009)	(0.008)	(0.0014)
в	50 ± 4	36 ± 4	23 ± 4	97 ± 13	53 ± 8	57 ± 7	(10.5)	54 ± 5
Ba	590 ± 50	930 ± 81	1210 ± 101	213 ± 31	296 ± 40	118 ± 21	180 ± 41	480 ± 36
Be	2.5 ± 0.4	1.8 ± 0.3	1.4 ± 0.3	1.85 ± 0.53	2 ± 0.5	4.4 ± 1.0	2.8 ± 0.9	1.9 ± 0.3
Bi	1.2 ± 0.2	0.38 ± 0.06	0.17 ± 0.06	1.04 ± 0.2	41 ± 6	49 ± 7	0.2 ± 0.07	0.3 ± 0.05
Br	2.9 ± 0.5	4.5 ± 0.6	4.3 ± 0.7	4.0 ± 1.1	(1,8)	(7.2)	5.2 ± 1.2	(2.6)
Co	4.3 ± 0.6	0.071 ± 0.022	0.059 ± 0.022	0.35 ± 0.08	0.45 ± 0.09	0.13 ± 0.04	0.08 ± 0.033	0.13 ± 0.05
Ce	70 ± 5	402 ± 25	39 ± 6	136 ± 16	91 ± 15	66 ± 8	98 ± 16	66 ± 10
/ _ ci	A 66 ± 15 A M M	AM (56)	(60)	(36)	(70)	98 ± 20	100 ± 13	(70)
	14.2 ± 1.5	8.7 ± 1.4	5.5 ± 1.0	22 ± 3	12 ± 2	7.6 ± 1.7	97 ± 9	12.7 ± 1.7
Cr	62 ± 6	47 ± 6	32 ± 6	370 ± 24	118 ± 10	75 ± 8	410 ± 35	68 ± 8
C	9 ± 0.9	4.9 ± 0.6	3.2 ± 0.5	21.4 ± 1.3	15 ± 2	10.8 ± 0.7	2.7 ± 0.9	7.5 ± 0.9
CL	21 ± 2	16.3 ± 1.4	11.4 ± 16	40 ± 4	144 ± 9	390 ± 22	97 ± 9	24.3 ± 1.8
Dy	4.6 ± 0.3	4.4 ± 0.3	2.6 ± 0.2	6.6 ± 0.7	3.7 ± 0.6	3.3 ± 0.3	6.6 ± 0.8	4.8 ± 0.5
E	2.6 ± 0.2	2.1 ± 0.4	1.5 ± 0.3	4.5 ± 0.8	2.4 ± 0.3	2.2 ± 0.3	2.7 ± 0.6	2.8 ± 0.2
EU	1.0 ± 0.1	3.0 ± 0.3	0.72 ± 0.06	0.85 ± 0.11	0.82 ± 0.06	0.66 ± 0.06	3.4 ± 0.3	1.2 ± 0.1
F	506 ± 49	2240 ± 175	246 ± 40	540 ± 38	603 ± 43	906 ± 70	321 ± 45	577 ± 37
Ga	19.3 ± 1.7	12 ± 1	13.7 ± 1.4	31 ± 5	32 ± 5	30 ± 4	39 ± 7	14.8 ± 1.6
G	4.6 ± 0.3	7.8 ± 0.6	2.9 ± 0.4	4.7 ± 0.6	35±0.3	3.4 ± 0.3	9.8 ± 1.0	5.4 ± 0.5
Ge	1.34 ± 0.21	1.2 ± 0.2	1.17 ± 0.22	1.9 ± 0.4	2.6 ± 0.4	3.2 ± 0.4	1.6 ± 0.3	1.27 ± 0,22
H	6.8 ± 0.9	5.8 ± 0.9	6.8 ± 0.9	14 ± 2	8.1 ± 1.7	7.5 ± 0.8	7.7 ± 0.4	7 ± 0.8
Hg	0.032 ± 0.006	0.15 ± 0.004	0.60 ± 0.006	0.59 ± 0.08	0.29 ± 0.04	0.072 ± 0.011	0.061 ± 0.008	0.017 ± 0.004
He	0.87 ± 0.08	0.93 ± 0.15	0.53 ± 0.07	1.46 ± 0.14	0.8 ± 0.2	0.69 ± 0.06	1.1 ± 0.2	0.97 ± 0.08
Í,	1.9 ± 0.4	1.8 ± 0.2	1.3 ± 0.4	9.4 ± 1.2	3.8 ± 0.8	19.4 ± 1.0	19 ± 2	1.6 ± 0.5
In	0.08 ± 0.02	0.09 ± 0.03	0.31 ± 0.009	0.12 ± 0.03	4.1 ± 0.6	0.84 ± 0.20	0.10 ± 0.03	(0.044)
La	34 ± 3	164 ± 16	21 ± 2	53 ± 6	36 ± 6	30 ± 3	46 ± 7	36 ± 4
Li	35 ± 2	22 ± 1	18,4 ± 1.2	55 ± 3	56 ± 2	36 ± 2	19.5 ± 1.4	35 ± 2
Lu	0.41 ± 0.06	0.32 ± 0.06	0.29 ± 0.03	0.75 ± 0.09	0.42 ± 0.07	0.42 ± 0.06	0.35 ± 0.08	0.43 ± 0.06
M	1760 ± 98	510 ± 25	304 ± 21	1420 ± 117	1360 ± 111	1450 ± 127	1780 ± 176	650 ± 35
	1.4 ± 0,2	0.98 ± 0.17	0.30 ± 0.13	2.6 ± 0.4	4.8 ± 0.5	18 ± 3	2.9 ± 0,4	1.16 ± 0.15
N	1870 ± 54	630 ± 47	640 ± 40	1000 ± 50	610 ± 25	740 ± 47	660 ± 50	370 ± 43
NE	16.6 ± 2.2	27 ± 3	9,3 ± 2.3	38 ± 5	23 ± 4	27 ± 4	64 ± 10	15 ± 3
No	28 ± 3	210 ± 22	18.4 ± 2.4	27 ± 3	24 ± 2	21 ± 3	45 ± 3	32 ± 3
Ni	20.4 ± 2:7	19.4 ± 1.9	12 ± 2	R64 ± 7	40 ± 5	53 ± 5	276 ± 23	31.5 ± 2.7

88 3

DIRECCIÓN GENERAL DE BIBLIOTECAS

P	735 ± 43	446 ± 38	320 ± 28	695 ± 43	390 ± 53	303 ± 47	1150 ± 61	775 ± 39
Pb	98 ± 8	20 ± 4	26 ± 4	58 ± 7	552 ± 44	314 ± 20	14 ± 4	21 ± 3
Pr	7.5 ± 0.5	57 ± 6	4.8 ± 0.4	8.4 ± 1.9	7.0 ± 1.3	5.8 ± 0.6	11 ± 1	8.3 ± 0.9
Rb	140 ± 8	88 5	85 6	75 6	117 9	237 12	16 4	96 5
S	(310)	210 ± 50	120 ± 20	180 ± 40	410 ± 60	260 ± 50	250 ± 40	120 ± 50
Sb	0.87 ± 0.32	1.3 ± 0.3	0.45 ± 0.15	6.3 ± 1.7	35 ± 7	60 ± 10	0.42 ± 0.13	1.0 ± 0.3
Sc	11.2 ± 0.9	10.7 ± 0.8	5.0 ± 0.6	20 ± 2	17 ± 2	15.5 ± 1.4	28 ± 3	11.7 ± 1.1
Se	0.14 ± 0.04	0.10 ± 0.04	0.094 ± 0.045	0.064 ± 0.18	1.6 ± 0.3	1.34 ± 0.24	0.32 ± 0.09	Q.12 ± 0.04
Sm	5.2 ± 0.4	18 ± 3	3.3 ± 0.3	4.4 ± 0.5	4.0 ± 0.6	3.8 ± 0.6	10.3 ± 0.6	5.9 ± 0.6
Sn	6.1 ± 1.0	3 ± 0.4	2.5 ± 0.4	5.7 ± 1,3	18 ±	72 ± 10	3.6 ± 1.6	2.8 ± 0.7
Sr	155 ± 10	187 ± 14	380 ± 25	77 ± 9	39 ±	39 ± 6	26 ± 6	236 ± 19
Та	1.4 ± 0.2	0.78 ± 0.18	0.76 ± 0.20	3.1 ± 0.3	5.3 ±	5.3 ± 0.6	3.9 ± 0.6	1.05 ± 0.26
Tb	0.75 ± 0.09	0.97 ± 0.40	0.49 ± 0.09	0.94 ± 0.13	0.61 ±	0.61 ± 0.12	1.3 ± 0.3	0.59 ± 0.12
Te	(0.047)	(0.035)	0.04 ± 0.15	(0.15)	(4.0)	(0.4)	(0.047)	0.046 ± 0.012
Th	11.6 ± 1,1	16.6 ± 1.2	6 ± 0.4	27 ± 2	23 ±	23 ± 2	9.1 ± 1.1	11.8 ± 1.1
Ti	4830 ± 250	2710 ± 120	2240 ± 120	10800 ± 470	6290 ±	4390 ± 180	20200 ± 780	3800 ± 180
ि⊓	1.0 ± 0.2	0.62 ± 0.28	0.5 ± 0.2	0.94 ± 0.33	1.6 ±	2.4 ± 0.6	(0.21)	0.59 ± 0.16
Tm	0.42 ± 0.7	0.42 ± 0.13	0.28 ± 0.06	0.7 ± 0.12	0.41 ±	0.4 ± 0.07	0.42 ± 0.06	0.46 ± 0.08
V U	3.3 ± 0.6	1.4 ± 0.4	1.3 ± 0.4	6.7 ± 1.2	6.5 ±	6.7 ± 1.1	2.2 ± 0.5	2.7 ± 0.5
\bigcirc V	86±6	62 ± 6	36 ± 4	247 ± 21	166 ±	130 ± 11	245 ± 32	81 ± 7
- W	3.1 ± 0.4	1.08 ± 0.33	0.95 ± 0.29	6.2 ± 0.7	34 ±	90 ± 10	1.2 ± 0.4	1.7 ± 0.5
2 Y	25 ± 4	22 ± 3	15 ± 2	39 ± 8	21 ±	19 ± 3	27 ± 6	26 ± 3
Yb	2.7 ± 0.4	2.0 ± 0.3	1.7 ± 0.3	4.8 ± 0.8	2.8 ±	2.7 ± 0.5	2.4 ± 0.6	2.8 ± 0.3
Zn	680 ± 39	42 ± 5	31 ± 4	210 ± 19	494 ±	97 ± 9	142 ± 17	68 ± 6
Zr	245 ± 18	219 ± 23	246 ± 21	500 ± 65	272 ±	220 ± 22	318 ± 57	229 ± 18
%						1000 Car	100 CO 0100	5 420 55 555
SiO ₂	62.60 ± 0.22	73.35 ± 0.27	74.72 ± 0.29	50.97 ± 0.21	52.57 ±	59.93 ± 0.27	32.69 ± 0.27	58.61 ± 0.20
Al ₂ O ₃	14.18 ± 0.21	10.31 ± 0.15	12.24 ± 0.14	23.45 ± 0.29	21.85 ±	21.23 ± 0.52	29.26 ± 0.52	11,92 ± 0,23
TFe ₂ O ₃	5.19 ± 0.13	3.52 ± 0.10	2.00 ± 0.07	10.30 ± 0.16	12.62 ±	8.09 ± 0.51	18.75 ± 0.51	4.48 0.07
FeO	(1.27)	0.54 ± 0.09	0.50 ± 0.08	(0.041)	(0.22)	(0.57)	(1.05)	1.22 ± 0.07
MgO	1.18 ± 0.12	1.04 ± 0.06	0.58 ± 0.05	0.49 ± 0.07	0.61 ±	0.34 ± 0.07	0.26 ± 0.06	2.38 ± 0.10
CaO	1.72 ± 0.08	2.36 ± 0.07	1.27 ± 0.06	0.26 ± 0.05	(0.095)	0.22 ± 0.04	0.16 ± 0.05	8.27 ± 0.18
Na ₂ O	1.66 ± 0.05	1.62 ± 0.06	2.71 ± 0.08	0.11 ± 0.03	0.12 ±	0.19 ± 0.02	0.074 ± 0.028	1.72 ± 0.06
K ₂ O	2.59 ± 0.06	2.54 ± 0.07	3.04 ± 0.07	1.03 ± 0.09	1.5 ±	1.70 ± 0.08	0.20 ± 0.03	2.42 ± 0.06
H₂O⁺	(5.0)	(2.9)	(1.9)	(10.1)	(8.8)	(8.9)	(13.7)	(3.3)
CO2	1.12 ± 0.10	(0.13)	(0.13)	(0.12)	(0.10)	(0.084)	(0.11)	5.97 ± 0.20
· Org.C	1.8 ± 0,13	0.49 ± 0.05	0.50 ± 0.04	0.62 ± 0.06	(0.32)	0.81 ± 0.07	0.64 ± 0.05	(0.31)
LOI	(8.59)	4.4 ± 0.2	2.67 ± 0.16	(10.9)	(9.1)	(10.0)	(14.3)	9.12 ± 0.22
S(Corr)	100.37	100.47	100.17	100.35	100 28	100.39	100.36	100 56

ANEXO D

107

National Bureau of Slandards

Certificate of Analysis

Standard Reference Material 98b

Plastic Clay

This Standard Reference Material (SRM) is intended for use in the determination of constituent elements in clay or material of similar matrix. SRM 98b is powdered clay that was air-dried, ball-milled, and blended to ensure homogeneity.

The certified constituent elements of SRM 98b are given below in table 1. The certified values are based on measurements made using two or more independent reliable methods or techniques. Non-certified values for constituent elements are given in table 2 as additional information on the composition. The non-certifical values should not be used for calibration or quality ecouvol. All values are based on samples that were dreed for 2 hours in a conventional oven at 140°C and a minimum sample size of 250 mg.

Table 1

Certified Value for Constituent Elements

Content. Wr. 362

0.20

0.0035

0.0005

0.01

0.0003

0.012

14.30 ?

0.0759 ?

0.0119 9

1.18 7

0.0215 ?

0.358 ?

Element Aluminum Calcium^{bd.} Chromium"# Iron** Lithiam

Manssocaium

Mathods/Techniques

- a Colorimetry (o-phenantroline)
- h DC Plasma Spectroscopy
- c Flame Atomic Absorption Spectrometric
- d Flame Emission Spearometry
- e Gravitnehy

- f Isotope Dilution Mass Spectrometry
- Instrumental Neutron Activation Analysis g h
- Spectrometry

Element

Silicon

Sodiumbala

Strontiumd.e

Titanium^{bai}

Manganese^k

Potassium^{be, fgi}

X-ray Fluorescance i

²The centified value is a weighted mean of secults from two or more analytical techniques. The weights for the weighted means were computed according to the Neralive procedure of Paule and Mandel (NBS Journal of Research 37, 1987, pp. 377-385). The uncertainty is the same, in quadra ture, of the ball building of a 95 to expected telemace interval and an allow are for systematic error among the methods used. The interval where endpoints are the centriced value memory and plans the uncertainty, respectively, will cover the concentration to a maximum sample size of 250 mg of this SRM for a least 95% of the complex with 95 % confidence.

Gaithersburg, MD 20899 April 21, 1988

Stantay D. Rasberry, Choof Office of Standard Reference Motorials

Content. Wt.

0.0005

0.0066

0.0008

0.012

0.07

0.16

0.0116 ?

2.81 ?

26.65 ?

0.1496 ?

0.0189 ?

0.809 ?

Table 2

Non-certified Value for Consultant Elements

Plement ¹	Content, Wr. %2	Element	Contest_Wt. %
Bariues	(0.007)	Rubidium	(0.018)
Phosphorous	(0.03)	Zinc	(0.011)
> ● 25.8	R 6210	Zirconium	(0.022)
Element"	Content, Wt. %2	Element	Cantent, Wt. %
Antimony	(1.6)	Hathium	(7.2)
Cesium	(16.5)	Scandium	(22)
Cobalt	(16.3)	Therium	(21)
Europiam	(1.3)		200 CC
	(1.3) ⁻		

Loos on Ignition (7.5, wt. %)

Loss on ignition was obtained by igniting sample for two hours at 1100°C after sample was dried for two hours at 140°C.

Source and Preparation

The plastic clay for SRM 98b was donated to NBS by F.J. Planagan and J.W. Hasterman of the United States Geological Survey, Reston, Virginia. Approximately 220 kg of plastic clay was collected from the underelay of the Clarion coal bed at the Harbison-Walker Refractories Co. plant at Clearfield, Clearfield Country, P.A. The collected clay was ari-dried and processed by the same method used to prepare USGS rock standards (USGS Bulletin 1582, Flanagan 1986). After processing, the sample was delivered to NBS, where it was again mixed in a 0.3 cubic meter "V" blender for approximately 45 minutes. After blending the clay was placed in polyethylene lined aluminum pails and subsequently bottled.

Homogeneity testing was performed using x-ray fluorescence and instrumental activation analysis on samples randomly selected samples from cans of balk material. There were no significant differences between samples for an of the measured elements.

Chemical analysis were performed in the following laboratories:

-National Bureau of Standards, Center for Analytical Chemistry, E.S. Beary, D.A. Becker, W.A. Bowman III, T.A. Butler, K.A. Brietic, J.W. Gramlich, D. Mo, J.R. Moody, and T.C. Rauss. -Mineral Constitution Laboratory, Pennsylvania State University, University Park, Pennsylvania, J.B. Bodkin, -Engelhard Corporation, Speciality Chemical Division, Edison, New Jersey, B.P. Scibek. -Construction Technology Laboratories, Inc. Skokie, Illinois, H.M. Kanare.

The statistical analysis and evaluation of the data for certification was performed by K.R. Eberhardt and S.B. Schiller of the Statistical Engineering Division and R.L. Watters, Jr. of the Inorganic Analytical Research Division.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by T. E. Gills.

્ર ટેફ્રે અન્સે અન્

Approved by State Bureau of Technical Supervision The People's Republic of China GBW 03103-GBW 03104

 \tilde{n}

Certificate of Certified Reference Material Shale and Clay Sample Number Date of Certification July 1987

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

DIRECCIÓN GENERAL DE BIBLIOTECAS

Research Institute of Geology, State Administration of Building Materials Industry Beijing China

> Distributed by: BRAMMER STANDARD COMPANY, INC. 14603 BENFER ROAD HOUSTON, TX 77069 USA TELEPHONE (713) 440-9396 FAX (713) 440-4482

The Chinese standard specifies the essential requirements and methods of test the values finally for cement raw material, shale and clay matter. The composition may use the standard matter of transmission of values, new method of evaluation, monitoring analysis quarity, experiment instrument of standard, testing standard solution and drawing curves et al. in analysis of rocks & minerals.

1. Introduction of Preparating Methods

Sample-crushing-(<3mm)-grinding in ball mill (all through 200 mesh) -taking samples casually and testing their homogeneity (qualified)-packing in bottle testing the homogenous degree (qualified)-analyzing the samples-process datatesting the values finally.

67	CPW N-	Certified Value and	Chemical Composition (Weight Percent)								
	VERITATIS	Standard Deviation	SiO ₂	A1203	Fe203	FeO	CaO	MgO	K,O	Na ₂ O	
	GBW 03103	Certified Value Standard Deviation(S)	66.64 0.18	13.28 0.12	4.64	(0.80)	3.23 0.11	1.84	2.50	1.81	
	GBW 03104	Certified Value Standard Deviation(S)	69.63 0.16	14.82	5.67	(0, (0)	0.22 0.06	0.67	3.76 0.10	0.20	
		79	TiO2	50 ₃	P205	MnO	L.O. 1.	co.	H ₂ 0 ⁺	C1-	
	GRW 03103	Certified Value Standard Deviation(S)	0.66 0.03	0.027	0.106 0.011	0.088	5.10 0.10	1.66 0.11	(3.38)	0.011	
	CBW 03104	Certified Value Standard Deviation(S)	0.68	0.028	0.043	0.024	4.17	0.13	(3.71)	0.014	

2. Certified Value and Standard Deviation

JNIVE Analytical methods AUTONOMA DE NUEVO LEÓN

Items	CIÓN GENERAL ^{Melho} E BIBLIOTECA
siO,	Gravimetric method after secondary dehydration with chlorhydric acid Gravimetric method after dehydration with chlorhydric acid and recovered SiO ₁ from the filtrate Potassium fluosillicate volumatric method X-fluorescence method

. . . .

	M:0,	Differential gravimetric method EDTA volumetric method Acid-base titration method X-fluorercence method
	FcsO3	Sulfosalicylic acid photometric method Potassium dichromate volumetric method EDTA volumetric method X-fluorescence method
	FeO	Potassium dichromate volumetric method
	CaO CaO	EDTA volumetric method X-fluorescence method Gravimetric method after secondary precipitation with ammonium oralate
THERS IN	MgO	Atomic absorption spectrophometry EDTA volumetric method X-fluorescence method Gravimetric method after secondary precipitation with ammonium monohydric phosphate
	K20 (Na20)	Atomic absorption spectrophometry X-fluorescence method Atomic absorption spectrophmetry Flame spectrophmetry
UNIVE	ER Tio,D	X-fluorescence method Diantipylmethane spectrophotometry Hydrogen peroxide spectrophotometry
DI	RE©3CI	Combustion-iodate volumetric method Turbidimetry Gravimetric method after precipitation with barium chloride
	P203	X-fluorescence method Phosphomolybdic blue spectrophotometry Phosphomolybdic yellow spectrophotometry
	MnO	X-fluorescence method Atomic absorption spectrophotometry 'spectrophotometry after oxidation with periodate potassium
	L.O.I.	950-1000 °C Loss on ignition
		· · · · · · · · · · · · · · · · · · ·

CO1	Absorption gravimetric method Nonageous titration method	*
CI	Mercuric rhodanate spectrophotometry Ion chromatography	
H10+	Bi-pipet gravimetric method	

6. Homogeneity Testing

Use testing of variance(F), samples($F < F\alpha$) are homogeneous. The minimum quantity of the sample in testing is 0.1g.

5. Packing and Use

The certified reference material is packed in bottle. The net weight of each bottle is 60g. Dry at a temperature of 105-110°C for 2h. Store in a desiccator.

6. Co-coperating Analysts

Xian, Sichuan, Yunnan, Hunan, Zhejing and Jiangxi laboratory of Nonmetallic Geological Corporation of SBBMI; Institute of Geology, Academic Sinica; Institute of testing Rocks & Minerals, Chinese Academy of Geological Sciences; Nanjing Comprehensive testing Centre of MGMR; Dep. of Chemical Analysis China University of Geoscience (Beijing); Institute of Building Materials of SBBMI.

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN © DIRECCIÓN GENERAL DE BIBLIOTECAS

BIBLIOGRAFÍA

- Lea, F.M., *The chemistry of cement and concrete*. 3a. ed. Chemical Publishing Co., Inc., USA, 1970.
- 2. Bogue, R.H., *The chemistry of portland cement*. Reinhold Publishing Corporation, USA, 1947.
- 3. Watson, W.; Craddock Q.L. Cement chemist's and works manager's
 - handbook. 2da. ed. Concrete Publications Limited, London, 1962.
- Latimer & Gildelbrand. *Reference book of inorganic chemistry*. 3a.
 ed. Edición Revolucionaria, Cuba, 1951.
- 5. Huang, Walter T. Petrología. 1a. ed. UTEHA, México, 1968.
- 6. Clarke, F.W. U.S. Geol. Survey Prof Paper 127, 24, 1924.
- 7. ASTM, C 323-56. Standard test methods for chemical analysis of ceramic whiteware clays.
- 8. ASTM, C 25-91. Standard test methods for chemical analysis of limestone, quicklime and hydrate lime.
 - 9. ASTM, C 114-88. Standard test methods for chemical of hydraulic cement.
 - 10. Moeller. *Quantitative analysis*. 1a. ed. McGraw Hill Book Company, USA, 1958.
 - 11. Laitinen and Harris. *Chemical analysis*. 2da. ed. McGraw Hill, USA, 1975.

- Jenkins, R.; Gould, R.W. and Gedcke Dale. *Quantitative X-ray spectrometry*. 2da. ed. Marcel Dekker, Inc, USA, 1995.
- 13. Bertin, E.P. Principles and practice of X-ray spectrometric analysis.
 1a. ed. Plenum Press, USA, 1970.
- Jenkins, R. X-ray fluorescence spectrometry. 2da. ed. John Wiley & Sons, Inc., USA, 1999.
- Dziunikowski, B. Comprehensive analytical chemistry. Edited by G. Svehla. Vol. XXIV. Energy dispersive X-ray fluorescence analysis. Elsevier Science Publishing, Co, Inc., Polonia, 1989.
- 16. Burke, V.E.; Jenkins, R. Smith, Deane, K. A practical guide for the preparation of specimens for X-ray fluorescence and X-ray diffraction analysis. 1a. ed. John Wiley and Sons, Inc., USA, 1998.
- 17. Miller y Miller, Estadística para Química Analítica. 2da. ed. Addison-Wesley Iberoamericana, USA, 1993.
- 18. Funk, Damman and Donnevert, Quality Assurance in Analytical Chemistry, 1a. ed. VCH Publishers, USA 1995.
 - 19. Method Validation.

http://www.labcompnance/methods/meth_val.htm

- 20. J. Mark Green, Analytical Chemistry, 68, 305A, 1996.
- 21. Draper, N.R.; Smith H. Applied Regression Analysis, 1a. ed. John Wiley & Sons, Inc. USA, 1966.
- 22. Manual software Fquant v 1.0.

- 23. Jimmy Blanchette; Marcel Dessureault and Freddy Slim. ASTM C-114 Qualification Test Method to Improve Analytical Results Using the Fused Beads Technique. Proceedings of the twenty-three International Conference on Cement Microscopy, Albuquerque, USA. Mayo 2001
- 24. Claisse, Fernand, Glass Disks and Solutions by Fusion in borates for users of Claisse Fluxers*, 2da. ed., Corporation Scientifique Claisse

Inc. 1999.

25. Spectro. Main page for spectro XRF Americas.

http://www.asoma.com.

- 26. IMA engineering Ltd OY website. http://www.ima.ti
- 27. On-line process control. http://www.spectro-

ai.com/pages/e/p01050503.htm

- 28. EcoSpect, Inc. http://www.ecospect.com/equip.html
- 29. EDAX portable products. NIVERSIDAD AUTONOMA DE NUEVO LEÓN <u>http://edaxppd.com/pressrel/CT2000PR.htm</u>
 - 30. NITON. On site, on target. Analysis for soils, sediments, coatings and filter media. <u>http://www.niton.com</u>.
 - 31. EPA. METODO 6200
 - 32. CHEMIN: A miniaturized simultaneous X-ray diffraction/X-ray

fluorescence Instrument. http://chemin.lanl.gov

