Use of Ensemble Learning to Improve Performance of Known Convolutional Neural Networks for Mammography Classification

Berrones Reyes, Mayra C. y Salazar Aguilar, M. Angélica y Castillo Olea, Cristian (2023) Use of Ensemble Learning to Improve Performance of Known Convolutional Neural Networks for Mammography Classification. Applied Sciences, 13 (17). pp. 1-15. ISSN 2076-3417

[img]
Vista previa
Texto
493.pdf - Versión Publicada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (933kB) | Vista previa
URL o página oficial: http://doi.org/10.3390/app13179639

Resumen

Convolutional neural networks and deep learning models represent the gold standard in medical image classification. Their innovative architectures have led to notable breakthroughs in image classification and feature extraction performance. However, these advancements often remain underutilized in the medical imaging field due to the scarcity of sufficient labeled data which are needed to leverage these new features fully. While many methodologies exhibit stellar performance on benchmark data sets like DDSM or Minimias, their efficacy drastically decreases when applied to real-world data sets. This study aims to develop a tool to streamline mammogram classification that maintains high reliability across different data sources. We use images from the DDSM data set and a proprietary data set, YERAL, which comprises 943 mammograms from Mexican patients. We evaluate the performance of ensemble learning algorithms combined with prevalent deep learning models such as Alexnet, VGG-16, and Inception. The computational results demonstrate the effectiveness of the proposed methodology, with models achieving 82% accuracy without overtaxing our hardware capabilities, and they also highlight the efficiency of ensemble algorithms in enhancing accuracy across all test cases.

Tipo de elemento: Article
Palabras claves no controlados: Redes neuronales convolucionales; Aprendizaje en conjunto; Aprendizaje profundo; Transferir aprendizaje; Clasificación de imágenes; Imágenes medicas; Mamografía
Materias: R Medicina > R Medicina en General
Divisiones: Ingeniería Mecánica y Eléctrica
Usuario depositante: Editor Repositorio
Creadores:
CreadorEmailORCID
Berrones Reyes, Mayra C.NO ESPECIFICADONO ESPECIFICADO
Salazar Aguilar, M. AngélicaNO ESPECIFICADONO ESPECIFICADO
Castillo Olea, CristianNO ESPECIFICADONO ESPECIFICADO
Fecha del depósito: 17 Jul 2024 14:41
Última modificación: 17 Jul 2024 14:41
URI: http://eprints.uanl.mx/id/eprint/27803

Actions (login required)

Ver elemento Ver elemento

Downloads

Downloads per month over past year