Alternative Method to Estimate the Fourier Expansions and Its Rate of Change

Rodríguez Maldonado, Johnny y Posadas Castillo, Cornelio y Zambrano Serrano, Ernesto (2022) Alternative Method to Estimate the Fourier Expansions and Its Rate of Change. Mathematics, 10 (20). pp. 1-12. ISSN 2227-7390

[img]
Vista previa
Texto
961.pdf - Versión Publicada
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (549kB) | Vista previa
URL o página oficial: http://doi.org/10.3390/math10203832

Resumen

This paper presents a methodology to obtain the Fourier coefficients (FCs) and the derivative Fourier coefficients (DFCs) from an input signal. Based on the Taylor series that approximates the input signal into a trigonometric signal model through the Kalman filter, consequently, the signal’s and successive derivatives’ coefficients are obtained with the state prediction and the state matrix inverse. Compared to discrete Fourier transform (DFT), the new class of filters provides noise reduction and sidelobe suppression advantages. Additionally, the proposed Taylor–Kalman–Fourier algorithm (TKFA) achieves a null-flat frequency response around the frequency operation. Moreover, with the proposed TKFA method, the decrement in the inter-harmonic amplitude is more significant than that obtained with the Kalman–Fourier algorithm (KFA), and the neighborhood of the null-flat frequency is expanded. Finally, the approximation of the input signal and its derivative can be performed with a sumoffunctions related to the estimated coefficients and their respective harmonics.

Tipo de elemento: Article
Palabras claves no controlados: Serie de Fourier, Coeficientes de Fourier, Filtro de Kalman
Materias: Q Ciencia > QA Matemáticas, Ciencias computacionales
Divisiones: Ingeniería Mecánica y Eléctrica
Usuario depositante: Editor Repositorio
Creadores:
CreadorEmailORCID
Rodríguez Maldonado, Johnnyjohnny.rodriguezml@uanl.edu.mxNO ESPECIFICADO
Posadas Castillo, CornelioNO ESPECIFICADONO ESPECIFICADO
Zambrano Serrano, ErnestoNO ESPECIFICADONO ESPECIFICADO
Fecha del depósito: 23 Ene 2025 14:42
Última modificación: 23 Ene 2025 14:42
URI: http://eprints.uanl.mx/id/eprint/29019

Actions (login required)

Ver elemento Ver elemento

Downloads

Downloads per month over past year