Alternative Method to Estimate the Fourier Expansions and Its Rate of Change
Rodríguez Maldonado, Johnny y Posadas Castillo, Cornelio y Zambrano Serrano, Ernesto (2022) Alternative Method to Estimate the Fourier Expansions and Its Rate of Change. Mathematics, 10 (20). pp. 1-12. ISSN 2227-7390
|
Texto
961.pdf - Versión Publicada Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (549kB) | Vista previa |
Resumen
This paper presents a methodology to obtain the Fourier coefficients (FCs) and the derivative Fourier coefficients (DFCs) from an input signal. Based on the Taylor series that approximates the input signal into a trigonometric signal model through the Kalman filter, consequently, the signal’s and successive derivatives’ coefficients are obtained with the state prediction and the state matrix inverse. Compared to discrete Fourier transform (DFT), the new class of filters provides noise reduction and sidelobe suppression advantages. Additionally, the proposed Taylor–Kalman–Fourier algorithm (TKFA) achieves a null-flat frequency response around the frequency operation. Moreover, with the proposed TKFA method, the decrement in the inter-harmonic amplitude is more significant than that obtained with the Kalman–Fourier algorithm (KFA), and the neighborhood of the null-flat frequency is expanded. Finally, the approximation of the input signal and its derivative can be performed with a sumoffunctions related to the estimated coefficients and their respective harmonics.
Tipo de elemento: | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Palabras claves no controlados: | Serie de Fourier, Coeficientes de Fourier, Filtro de Kalman | ||||||||||||
Materias: | Q Ciencia > QA Matemáticas, Ciencias computacionales | ||||||||||||
Divisiones: | Ingeniería Mecánica y Eléctrica | ||||||||||||
Usuario depositante: | Editor Repositorio | ||||||||||||
Creadores: |
|
||||||||||||
Fecha del depósito: | 23 Ene 2025 14:42 | ||||||||||||
Última modificación: | 23 Ene 2025 14:42 | ||||||||||||
URI: | http://eprints.uanl.mx/id/eprint/29019 |
Actions (login required)
![]() |
Ver elemento |